- 359.93 KB
- 2022-04-22 11:22:42 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'UDC中华人民共和国国家标准GBPGB50014—2006室外排水设计规范Codefordesignofoutdoorwastewaterengineering(2014年版)2006-01-18发布2006-06-01实施中华人民共和国住房和城乡建设部联合发布中华人民共和国国家质量监督检验检疫总局
中华人民共和国国家标准室外排水设计规范Codefordesignofoutdoorwastewaterengineering(2014年版)GB50014-2006主管部门:中华人民共和国住房和城乡建设部批准部门:中华人民共和国住房和城乡建设部施行日期:2006年6月1日中国计划出版社2014北京
中华人民共和国住房和城乡建设部公告第311号住房城乡建设部关于发布国家标准《室外排水设计规范》局部修订的公告现批准《室外排水设计规范》GB50014-2006(2011年版)局部修订的条文,经此次修改的原条文同时废止。局部修订的条文及具体内容,将刊登在我部有关网站和近期出版的《工程建设标准化》刊物上。中华人民共和国住房和城乡建设部2014年2月10日
修订说明本次局部修订是根据住房和城乡建设部《关于请组织开展城市排水相关标准制修订工作的函》(建标[2013]46号)的要求,由上海市政工程设计研究总院(集团)有限公司会同有关单位对《室外排水设计规范》GB50014-2006(2011年版)进行修订而成。本次修订的主要技术内容是:补充规定排水工程设计应与相关专项规划协调;补充与内涝防治相关的术语;补充规定提高综合生活污水量总变化系数;补充规定推理公式法计算雨水设计流量的适用范围和采用数学模型法的要求;补充规定以径流量作为地区改建的控制指标,并增加核实地面种类组成和比例的规定;补充规定在有条件的地区采用年最大值法代替年多个样法计算暴雨强度公式,调整雨水管渠设计重现期和合流制系统截流倍数标准,增加内涝防治设计重现期的规定;取消原规范降雨历时计算公式中的折减系数m;补充规定雨水口的设置和流量计算;补充规定检查井应设置防坠落装置;补充规定立体交叉道路地面径流量计算的要求;补充规定用于径流污染控制的雨水调蓄池的容积计算公式和雨水调蓄池出水处理的要求;增加雨水利用设施和内涝防治工程设施的规定;补充规定排水系统检测和控制等。本规范中下划线表示修改的内容;用黑体字表示的条文为强制性条文,必须严格执行。本规范由住房和城乡建设部负责管理和对强制性条文的解释,上海市政工程设计研究总院(集团)有限公司负责具体技术内容的解释。执行过程中如有意见或建议,请寄送至上海市政工程设计研究总院(集团)有限公司《室外给水排水设计规范》国家标准管理组(地址:上海市中山北二路901号,邮编:200092)。本次局部修订的主编单位、参编单位、主要起草人和主要审查人:上海市政工程设计研究总院(集团)有限公司主编单位:北京市市政工程设计研究总院参编单位:天津市市政工程设计研究院中国市政工程中南设计研究总院有限公司中国市政工程西南设计研究总院
中国市政工程东北设计研究总院中国市政工程西北设计研究院有限公司中国市政工程华北设计研究总院张辰(以下按姓氏笔划为序)主要起草人:马小蕾孔令勇支霞辉王秀朵王国英王立军厉彦松卢峰付忠志刘常忠吕永鹏吕志成孙海燕李艺李树苑李萍李成江张林韵杨红罗万申邹伟国陈嫣周克钊贺晓红姚玉健高旭梁小光袁琳郭垒谢胜曾光荣谭学军张杰侯立安杭世珺杨向平羊寿生主要审查人:邓培德王洪臣宋启元陈萌唐建国邹慧君颜学贵
1总则1.0.3A排水工程设计应依据城镇排水与污水处理规划,并与城市防洪、河道水系、道路交通、园林绿地、环境保护、环境卫生等专项规划和设计相协调。排水设施的设计应根据城镇规划蓝线和水面率的要求,充分利用自然蓄排水设施,并应根据用地性质规定不同地区的高程布置,满足不同地区的排水要求。【条文说明】关于排水工程设计与其他专项规划和设计相互协调的规定。排水工程设施,包括内涝防治设施、雨水调蓄和利用设施,是维持城镇正常运行和资源利用的重要基础设施。在降雨频繁、河网密集或易受内涝灾害的地区,排水工程设施尤为重要。排水工程应与城市防洪、道路交通、园林绿地、环境保护和环境卫生等专项规划和设计密切联系,并应与城市平面和竖向规划相互协调。河道、湖泊、湿地、沟塘等城市自然蓄排水设施是城市内涝防治、排水的重要载体,在城镇平面规划中有明确的规划蓝线和水面率要求,应满足规划中的相关控制指标,根据城市自然蓄排水设施数量、规划蓝线保护和水面率的控制指标要求,合理确定排水设施的建设方案。排水工程设计中应考虑对河湖水系等城市现状受纳水体的保护和利用。排水设施的设计,应充分考虑城镇竖向规划中的相关指标要求,根据不同地区的排水优先等级确定排水设施与周边地区的高程差;从竖向规划角度考虑内涝防治要求,根据竖向规划要求确定高程差,而不能仅仅根据单项工程的经济性要求进行设计和建设。1.0.4排水体制(分流制或合流制)的选择,应符合下列规定:1根据城镇的总体规划,结合当地的地形特点、水文条件、水体状况、气候特征、原有排水设施、污水处理程度和处理后出水利用等综合考虑后确定;2同一城镇的不同地区可采用不同的排水体制;3除降雨量少的干旱地区外,新建地区的排水系统应采用分流制;4现有合流制排水系统,应按城镇排水规划的要求,实施雨污分流改造;5暂时不具备雨污分流条件的地区,应采取截流、调蓄和处理相结合的措施,提高截流倍数,加强降雨初期的污染防治。【条文说明】规定排水体制选择的原则。分流制指用不同管渠系统分别收集、输送污水和雨水的排水方式。合流制指用同一管渠1
系统收集、输送污水和雨水的排水方式。分流制可根据当地规划的实施情况和经济情况,分期建设。污水由污水收集系统收集并输送到污水厂处理;雨水由雨水系统收集,并就近排入水体,可达到投资低,环境效益高的目的,因此规定除降雨量少的干旱地区外,新建地区应采用分流制,降雨量少一般指年均降雨量300mm以下的地区。旧城区由于历史原因,一般已采用合流制,故规定同一城镇的不同地区可采用不同的排水体制,同时规定现有合流制排水系统应按照规划的要求加大排水管网的改建力度,实施雨污分流改造。暂时不具备雨污分流条件的地区,应提高截流倍数,采取截流、调蓄和处理相结合的措施减少合流污水和降雨初期的污染。1.0.4B城镇内涝防治应采取工程性和非工程性相结合的综合控制措施。【条文说明】关于采取综合措施进行内涝防治的规定。城镇内涝防治措施包括工程性措施和非工程性措施。通过源头控制、排水管网完善、城镇涝水行泄通道建设和优化运行管理等综合措施防治城镇内涝。工程性措施,包括建设雨水渗透设施、调蓄设施、利用设施和雨水行泄通道,还包括对市政排水管网和泵站进行改造、对城市内河进行整治等。非工程性措施包括建立内涝防治设施的运行监控体系、预警应急机制以及相应法律法规等。2
2术语和符号2.1术语2.1.15总变化系数peakingfactor最高日最高时污水量与平均日平均时污水量的比值。2.1.16A径流量runoff降落到地面的雨水,由地面和地下汇流到管渠至受纳水体的流量的统称。径流包括地面径流和地下径流等。在排水工程中,径流量指降水超出一定区域内地面渗透、滞蓄能力后多余水量产生的地面径流量。2.1.18A雨水管渠设计重现期recurrenceintervalforstormsewerdesign用于进行雨水管渠设计的暴雨重现期。2.1.20B内涝防治系统localfloodingpreventionandcontrolsystem用于防止和应对城镇内涝的工程性设施和非工程性措施以一定方式组合成的总体,包括雨水收集、输送、调蓄、行泄、处理和利用的天然和人工设施以及管理措施等。2.1.20C内涝防治设计重现期recurrenceintervalforlocalfloodingdesign用于进行城镇内涝防治系统设计的暴雨重现期,使地面、道路等地区的积水深度不超过一定的标准。内涝防治设计重现期大于雨水管渠设计重现期。2.1.21地面集水时间timeofconcentration雨水从相应汇水面积的最远点地面流到雨水管渠入口的时间,简称集水时间。2.1.53混合液回流mixedliquorrecycle污水生物处理工艺中,生物反应区内的混合液由后端回流至前端的过程。该过程有别于将二沉池沉淀后的污泥回流至生物反应区的过程。2.1.89再生水reclaimedwater,reusewater污水经适当处理后,达到一定的水质标准,满足某种使用要求的水。3
3设计流量和设计水质3.1生活污水量和工业废水量3.1.3综合生活污水量总变化系数可根据当地实际综合生活污水量变化资料确定。无测定资料时,可按表3.1.3的规定取值。新建分流制排水系统的地区,宜提高综合生活污水量总变化系数;既有地区可结合城区和排水系统改建工程,提高综合生活污水量总变化系数。表3.1.3综合生活污水量总变化系数平均日流量(L/s)5154070100200500≥1000总变化系数2.32.01.81.71.61.51.41.3注:当污水平均日流量为中间数值时,总变化系数可用内插法求得。【条文说明】关于综合生活污水量总变化系数的规定。我国现行综合生活污水量总变化系数参考了全国各地51座污水厂总变化系数取值资料,按照污水平均日流量数值而制定。国外大多按照人口总数来确定综合生活污水量总变化0.2系数,并设定最小值。例如,日本采用Babbitt公式,即K=5/(P/1000)(P为人口总数,下同),规定中等规模以上的城市,K值取1.3~1.8,小规模城市K值取1.5以上,也有超过2.0以上的情况;美国十州标准(TenStatesStandards)采用Baumann公式确定综合生活污水0.5量总变化系数,即K=1+14/(4+(P/1000)),当人口总数超过10万时,K值取最小值2.0;美0.0963国加利福尼亚州采用类似Babbitt公式,即K=5.453/P,当人口总数超过10万时,K值取最小值1.8。与发达国家相比较,我国目前的综合生活污水量总变化系数取值偏低。本次修订提出,为有效控制降雨初期的雨水污染,针对新建分流制地区,应根据排水总体规划,参照国外先进和有效的标准,宜适当提高综合生活污水量总变化系数;既有地区,根据当地排水系统的实际改建需要,综合生活污水量总变化系数也可适当提高。本次修订暂不对表3.1.3做具体改动。3.2雨水量23.2.1采用推理公式法计算雨水设计流量,应按下式计算。当汇水面积超过2km时,宜考虑4
降雨在时空分布的不均匀性和管网汇流过程,采用数学模型法计算雨水设计流量。Qs=qΨF(3.2.1)式中:Qs——雨水设计流量(L/s);2q——设计暴雨强度[L/(s·hm)];Ψ——径流系数;2F——汇水面积(hm)。注:当有允许排入雨水管道的生产废水排入雨水管道时,应将其水量计算在内。【条文说明】规定雨水设计流量的计算方法。我国目前采用恒定均匀流推理公式,即用式(3.2.1)计算雨水设计流量。恒定均匀流推理公式基于以下假设:降雨在整个汇水面积上的分布是均匀的;降雨强度在选定的降雨时段内均匀不变;汇水面积随集流时间增长的速度为常数,因此推理公式适用于较小规模排水系统的计算,当应用于较大规模排水系统的计算时会产生较大误差。随着技术的进步,管渠直径的放大、水泵能力的提高,排水系统汇水流域面积逐步扩大应该修正推理公式的精确度。发达国家已采用数学模型模拟降雨过程,把排水管渠作为一个系统考虑,并用数学模型对管22网进行管理。美国一些城市规定的推理公式适用范围分别为:奥斯汀4km,芝加哥0.8km,22纽约1.6km,丹佛6.4km且汇流时间小于10min;欧盟的排水设计规范要求当排水系统面2积大于2km或汇流时间大于15min时,应采用非恒定流模拟进行城市雨水管网水力计算。2在总结国内外资料的基础上,本次修订提出当汇水面积超过2km时,雨水设计流量宜采用数学模型进行确定。排水工程设计常用的数学模型一般由降雨模型、产流模型、汇流模型、管网水动力模型等一系列模型组成,涵盖了排水系统的多个环节。数学模型可以考虑同一降雨事件中降雨强度在不同时间和空间的分布情况,因而可以更加准确地反映地表径流的产生过程和径流流量,也便于与后续的管网水动力学模型衔接。数学模型中用到的设计暴雨资料包括设计暴雨量和设计暴雨过程,即雨型。设计暴雨量可按城市暴雨强度公式计算,设计暴雨过程可按以下三种方法确定:1)设计暴雨统计模型。结合编制城市暴雨强度公式的采样过程,收集降雨过程资料和雨峰位置,根据常用重现期部分的降雨资料,采用统计分析方法确定设计降雨过程。2)芝加哥降雨模型。根据自记雨量资料统计分析城市暴雨强度公式,同时采集雨峰位置系数,雨峰位置系数取值为降雨雨峰位置除以降雨总历时。5
3)当地水利部门推荐的降雨模型。采用当地水利部门推荐的设计降雨雨型资料,必要时需做适当修正,并摈弃超过24h的长历时降雨。排水工程设计常用的产、汇流计算方法包括扣损法、径流系数法和单位线法(UnitHydrograph)等。扣损法是参考径流形成的物理过程,扣除集水区蒸发、植被截留、低洼地面积蓄和土壤下渗等损失之后所形成径流过程的计算方法。降雨强度和下渗在地面径流的产生过程中具有决定性的作用,而低洼地面积蓄量和蒸发量一般较小,因此在城市暴雨计算中常常被忽略。Horton模型或Green-Ampt模型常被用来描述土壤下渗能力随时间变化的过程。当缺乏详细的土壤下渗系数等资料,或模拟城镇建筑较密集的地区时,可以将汇水面积划分成多个片区,采用径流系数法,即式(3.2.1)计算每个片区产生的径流,然后运用数学模型模拟地面漫流和雨水在管道的流动,以每个管段的最大峰值流量作为设计雨水量。单位线是指单位时段内均匀分布的单位净雨量在流域出口断面形成的地面径流过程线,利用单位线推求汇流过程线的方法称为单位线法。单位线可根据出流断面的实测流量通过倍比、叠加等数学方法生成,也可以通过解析公式如线性水库模型来获得。目前,单位线法在我国排水工程设计中应用较少。采用数学模型进行排水系统设计时,除应按本规范执行外,还应满足当地的地方设计标准,应对模型的适用条件和假定参数做详细分析和评估。当建立管道系统的数学模型时,应对系统的平面布置、管径和标高等参数进行核实,并运用实测资料对模型进行校正。3.2.2应严格执行规划控制的综合径流系数,综合径流系数高于0.7的地区应采用渗透、调蓄等措施。径流系数,可按本规范表3.2.2-1的规定取值,汇水面积的综合径流系数应按地面种类加权平均计算,可按表3.2.2-2的规定取值,并应核实地面种类的组成和比例。表3.2.2-1径流系数地面种类Ψ各种屋面、混凝土或沥青路面0.85~0.95大块石铺砌路面或沥青表面各种的碎石路面0.55~0.65级配碎石路面0.40~0.50干砌砖石或碎石路面0.35~0.40非铺砌土路面0.25~0.35公园或绿地0.10~0.20表3.2.2-2综合径流系数6
区域情况Ψ城镇建筑密集区0.60~0.70城镇建筑较密集区0.45~0.60城镇建筑稀疏区0.20~0.45【条文说明】规定综合径流系数的确定原则。小区的开发,应体现低影响开发的理念,不应由市政设施的不断扩建与之适应,而应在小区内进行源头控制。本条规定了应严格执行规划控制的综合径流系数,还提出了综合径流系数高于0.7的地区应采用渗透、调蓄等措施。本次修订增加了应核实地面种类的组成和比例的规定,可以采用的方法包括遥感监测、实地勘测等。表3.2.2-1列出按地面种类分列的径流系数Ψ值。表3.2.2-2列出按区域情况分列的综合径流系数Ψ值。国内一些地区采用的综合径流系数见表1。《日本下水道设计指南》推荐的综合径流系数见表2。表1国内一些地区采用的综合径流系数城市综合径流系数城市综合径流系数北京0.5~0.7扬州0.5~0.8上海0.5~0.8宜昌0.65~0.8天津0.45~0.6南宁0.5~0.75乌兰浩特0.5柳州0.4~0.8旧城区:0.7~0.8南京0.5~0.7深圳新城区:0.6~0.7杭州0.6~0.8表2日本下水道设计指南推荐的综合径流系数区域情况Ψ空地非常少的商业区或类似的住宅区0.80有若干室外作业场等透水地面的工厂或有若干庭院的住宅区0.65房产公司住宅区之类的中等住宅区或单户住宅多的地区0.507
庭院多的高级住宅区或夹有耕地的郊区0.353.2.2A当地区整体改建时,对于相同的设计重现期,改建后的径流量不得超过原有径流量。【条文说明】关于以径流量作为地区改建控制指标的规定。本条为强制性条文。本次修订提出以径流量作为地区开发改建控制指标的规定。地区开发应充分体现低影响开发理念,除应执行规划控制的综合径流系数指标外,还应执行径流量控制指标。规定整体改建地区应采取措施确保改建后的径流量不超过原有径流量。可采取的综合措施包括建设下凹式绿地,设置植草沟、渗透池等,人行道、停车场、广场和小区道路等可采用渗透性路面,促进雨水下渗,既达到雨水资源综合利用的目的,又不增加径流量。3.2.3设计暴雨强度,应按下式计算:167(1ACPlg)1qn(3.2.3)()tb2式中:q——设计暴雨强度[L/(s·hm)];t——降雨历时(min);P——设计重现期(年);A1,C,b,n——参数,根据统计方法进行计算确定。具有20年以上自动雨量记录的地区,排水系统设计暴雨强度公式应采用年最大值法,并按本规范附录A的有关规定编制。【条文说明】关于设计暴雨强度的计算公式的规定。目前我国各地已积累了完整的自动雨量记录资料,可采用数理统计法计算确定暴雨强度公式。本条所列的计算公式为我国目前普遍采用的计算公式。水文统计学的取样方法有年最大值法和非年最大值法两类,国际上的发展趋势是采用年最大值法。日本在具有20年以上雨量记录的地区采用年最大值法,在不足20年雨量记录的地区采用非年最大值法,年多个样法是非年最大值法中的一种。由于以前国内自记雨量资料不多,因此多采用年多个样法。现在我国许多地区已具有40年以上的自记雨量资料,具备采用年最大值法的条件。所以,规定具有20年以上自动雨量记录的地区,应采用年最大值法。3.2.4雨水管渠设计重现期,应根据汇水地区性质、城镇类型、地形特点和气候特征等因素,经技术经济比较后按表3.2.4的规定取值,并应符合下列规定:1经济条件较好,且人口密集、内涝易发的城镇,宜采用规定的上限;2新建地区应按本规定执行,既有地区应结合地区改建、道路建设等更新排水系统,并8
按本规定执行;3同一排水系统可采用不同的设计重现期。表3.2.4雨水管渠设计重现期(年)城区类型中心城区地下通道和中心城区的中心城区非中心城区下沉式广场等重要地区城镇类型特大城市3~52~35~1030~50大城市2~52~35~1020~30中等城市和小城2~32~33~510~20市注:1按表中所列重现期设计暴雨强度公式时,均采用年最大值法;2雨水管渠应按重力流、满管流计算;3特大城市指市区人口在500万以上的城市;大城市指市区人口在100万~500万的城市;中等城市和小城市指市区人口在100万以下的城市。【条文说明】规定雨水管渠设计重现期的选用范围。雨水管渠设计重现期,应根据汇水地区性质、城镇类型、地形特点和气候特征等因素,经技术经济比较后确定。原《室外排水设计规范》GB50014-2006(2011年版)中虽然将一般地区的雨水管渠设计重现期调整为1年~3年,但与发达国家相比较,我国设计标准仍偏低。表3为我国目前雨水管渠设计重现期与发达国家和地区的对比情况。美国、日本等国在城镇内涝防治设施上投入较大,城镇雨水管渠设计重现期一般采用5年~10年。美国各州还将排水干管系统的设计重现期规定为100年,排水系统的其他设施分别具有不同的设计重现期。日本也将设计重现期不断提高,《日本下水道设计指南》(2009年版)中规定,排水系统设计重现期在10年内应提高到10年~15年。所以本次修订提出按照地区性质和城镇类型,并结合地形特点和气候特征等因素,经技术经济比较后,适当提高我国雨水管渠的设计重现期,并与发达国家标准基本一致。表3我国当前雨水管渠设计重现期与发达国家和地区的对比国家(地区)设计暴雨重现期中国大陆一般地区1年~3年;重要地区3年~5年;特别重要地区10年中国香港高度利用的农业用地2年~5年;农村排水,包括开拓地项目的内部排水9
系统10年;城市排水支线系统50年美国居住区2年~15年,一般10年;商业和高价值地区10年~100年欧盟农村地区1年;居民区2年;城市中心/工业区/商业区5年英国30年日本3年~10年,10年内应提高至10年~15年高密度开发的办公、商业和工业区20年~50年;其他地区以及住宅区为澳大利亚10年;较低密度的居民区和开放地区为5年一般管渠、次要排水设施、小河道5年;新加坡河等主干河流50年~100新加坡年;机场、隧道等重要基础设施和地区50年表3.2.4中,城镇类型按人口数量划分为“特大城市”、“大城市”和“中等城市和小城市”。根据住房和城乡建设部编制的《2010年中国城市建设统计年鉴》,市区人口大于500万的特大城市有12个,市区人口在100万~500万的大城市有287个,市区人口在100万以下的中等城市和小城市有457个。城区类型则分为“中心城区”、“非中心城区”、“中心城区的重要地区”和“中心城区的地下通道和下沉式广场”。其中,中心城区重要地区主要指行政中心、交通枢纽、学校、医院和商业聚集区等。本次修订还根据我国目前城市发展现状,并参照国外相关标准,将“中心城区地下通道和下沉式广场等”单独列出。以德国、美国为例,德国给水废水和废弃物协会(ATV-DVWK)推荐的设计标准(ATV-A118)中规定:地下铁道/地下通道的设计重现期为5年~20年。我国上海市虹桥商务区的规划中,将下沉式广场的设计重现期规定为50年。由于中心城区地下通道和下沉式广场的汇水面积可以控制,且一般不能与城镇内涝防治系统相结合,因此采用的设计重现期应与内涝防治设计重现期相协调。3.2.4B内涝防治设计重现期,应根据城镇类型、积水影响程度和内河水位变化等因素,经技术经济比较后确定,按表3.2.4B的规定取值,并应符合下列规定:1经济条件较好,且人口密集、内涝易发的城市,宜采用规定的上限;2目前不具备条件的地区可分期达到标准;3当地面积水不满足表3.2.4B的要求时,应采取渗透、调蓄、设置雨洪行泄通道和内河整治等措施;4对超过内涝设计重现期的暴雨,应采取综合控制措施。10
表3.2.4B内涝防治设计重现期城镇类型重现期(年)地面积水设计标准特大城市50~1001居民住宅和工商业建筑物的底层不大城市30~50进水;2道路中一条车道的积水深度不超过中等城市和小城市20~3015cm。注:1按表中所列重现期设计暴雨强度公式时,均采用年最大值法。2特大城市指市区人口在500万以上的城市;大城市指市区人口在100万~500万的城市;中等城市和小城市指市区人口在100万以下的城市。【条文说明】规定内涝防治设计重现期的选用范围。城镇内涝防治的主要目的是将降雨期间的地面积水控制在可接受的范围。鉴于我国还没有专门针对内涝防治的设计标准,本次修订增加了内涝防治设计重现期和积水深度标准,新增加的内涝设计重现期见本规范表3.2.4B,用以规范和指导内涝防治设施的设计。根据内涝防治设计重现期校核地面积水排除能力时,应根据当地历史数据合理确定用于校核的降雨历时及该时段内的降雨量分布情况,有条件的地区宜采用数学模型计算。如校核结果不符合要求,应调整设计,包括放大管径、增设渗透设施、建设调蓄段或调蓄池等。执行表3.2.4B标准时,雨水管渠按压力流计算,即雨水管渠应处于超载状态。表3.2.4B“地面积水设计标准”中的道路积水深度是指该车道路面标高最低处的积水深度。当路面积水深度超过15cm时,车道可能因机动车熄火而完全中断,因此表3.2.4B规定每条道路至少应有一条车道的积水深度不超过15cm。发达国家和我国部分城市已有类似的规定,如美国丹佛市规定:当降雨强度不超过10年一遇时,非主干道路(collector)中央的积水深度不应超过15cm,主干道路和高速公路的中央不应有积水;当降雨强度为100年一遇时,非主干道路中央的积水深度不应超过30cm,主干道路和高速公路中央不应有积水。上海市关于市政道路积水的标准是:路边积水深度大于15cm(即与道路侧石齐平),或道路2中心积水时间大于1h,积水范围超过50m。发达国家和地区的城市内涝防治系统包含雨水管渠、坡地、道路、河道和调蓄设施等所有雨水径流可能流经的地区。美国和澳大利亚的内涝防治设计重现期为100年或大于100年,英国为30年~100年,香港城市主干管为200年,郊区主排水渠为50年。图1引自《日本下水道设计指南》(2001年版)中日本横滨市鹤见川地区的“不同设11
计重现期标准的综合应对措施”。图1反映了该地区从单一的城市排水管道排水系统到包含雨水管渠、内河和流域调蓄等综合应对措施在内的内涝防治系统的发展历程。当采用雨水调蓄设施中的排水管道调蓄应对措施时,该地区的设计重现期可达10年一遇,可排除50mm/h的降雨;当采用雨水调蓄设施和利用内河调蓄应对措施时,设计重现期可进一步提高到40年一遇;在此基础上再利用流域调蓄时,可应对150年一遇的降雨。图1不同设计重现期标准的综合应对措施(鹤见川地区)欧盟室外排水系统排放标准(BSEN752:2008)见表3A和表3B。该标准中,“设计暴雨重现期(DesignStormFrequency)”与我国雨水管渠设计重现期相对应;“设计洪水重现期(DesignFloodingFrequency)”与我国的内涝防治设计重现期概念相近。表3A欧盟推荐设计暴雨重现期(DesignStormFrequency)设计暴雨重现期地点重现期(年)超过1年一遇的概率农村地区1100%居民区250%城市中心/工业区/商业区520%地下铁路/地下通道1010%表3B欧盟推荐设计洪水重现期(DesignFloodingFrequency)设计洪水重现期地点重现期(年)超过1年一遇的概率农村地区1010%12
居民区205%城市中心/工业区/商业区303%地下铁路/地下通道502%根据我国内涝防治整体现状,各地区应采取渗透、调蓄、设置行泄通道和内河整治等措施,积极应对可能出现的超过雨水管渠设计重现期的暴雨,保障城镇安全运行。城镇内涝防治设计重现期和水利排涝标准应有所区别。水利排涝标准中一般采用5年~10年,且根据作物耐淹水深和耐淹历时等条件,允许一定的受淹时间和受淹水深,而城镇不允许长时间积水,否则将影响城镇正常运行。3.2.5雨水管渠的降雨历时,应按下式计算:t=t1+t2(3.2.5)式中:t——降雨历时(min);t1——地面集水时间(min),应根据汇水距离、地形坡度和地面种类通过计算确定,一般采用5min~15min;t2——管渠内雨水流行时间(min)。【条文说明】规定雨水管渠降雨历时的计算公式。本次修订取消了原《室外排水设计规范》GB50014-2006(2011年版)降雨历时计算公式中的折减系数m。折减系数m是根据前苏联的相关研究成果提出的数据。近年来,我国许多地区发生严重内涝,给人民生活和生产造成了极不利影响。为防止或减少类似事件,有必要提高城镇排水管渠设计标准,而采用降雨历时计算公式中的折减系数降低了设计标准。发达国家一般不采用折减系数。为有效应对日益频发的城镇暴雨内涝灾害,提高我国城镇排水安全性,本次修订取消折减系数m。根据国内资料,地面集水时间采用的数据,大多不经计算,按经验确定。在地面平坦、地面种类接近、降雨强度相差不大的情况下,地面集水距离是决定集水时间长短的主要因素;地面集水距离的合理范围是50m~150m,采用的集水时间为5min~15min。国外常用的地面集水时间见表4。13
表4国外采用的地面集水时间资料来源工程情况t1(min)人口密度大的地区5人口密度小的地区10《日本下水道设计指南》平均7干线5支线7~10全部铺装,排水管道完备的5密集地区美国土木工程学会地面坡度较小的发展区10~15平坦的住宅区20~303.3合流水量3.3.3截流倍数n0应根据旱流污水的水质、水量、排放水体的环境容量、水文、气候、经济和排水区域大小等因素经计算确定,宜采用2~5。同一排水系统中可采用不同截流倍数。【条文说明】规定截流倍数的选用原则。截流倍数的设置直接影响环境效益和经济效益,其取值应综合考虑受纳水体的水质要求、受纳水体的自净能力、城市类型、人口密度和降雨量等因素。当合流制排水系统具有排水能力较大的合流管渠时,可采用较小的截流倍数,或设置一定容量的调蓄设施。根据国外资料,英国截流倍数为5,德国为4,美国一般为1.5~5。我国的截流倍数与发达国家相比偏低,有的城市截流倍数仅为0.5。本次修订为有效降低初期雨水污染,将截流倍数n0提高为2~5。14
4排水管渠和附属构筑物4.4检查井4.4.7A排水系统检查井应安装防坠落装置。【条文说明】关于检查井安装防坠落装置的规定。为避免在检查井盖损坏或缺失时发生行人坠落检查井的事故,规定污水、雨水和合流污水检查井应安装防坠落装置。防坠落装置应牢固可靠,具有一定的承重能力(≥100kg),并具备较大的过水能力,避免暴雨期间雨水从井底涌出时被冲走。目前国内已使用的检查井防坠落装置包括防坠落网、防坠落井箅等。4.7雨水口4.7.1雨水口的形式、数量和布置,应按汇水面积所产生的流量、雨水口的泄水能力和道路形式确定。立箅式雨水口的宽度和平箅式雨水口的开孔长度和开孔方向应根据设计流量、道路纵坡和横坡等参数确定。雨水口宜设置污物截留设施,合流制系统中的雨水口应采取防止臭气外溢的措施。【条文说明】规定雨水口设计应考虑的因素。雨水口的形式主要有立箅式和平箅式两类。平箅式雨水口水流通畅,但暴雨时易被树枝等杂物堵塞,影响收水能力。立箅式雨水口不易堵塞,但有的城镇因逐年维修道路,路面加高,使立箅断面减小,影响收水能力。各地可根据具体情况和经验确定适宜的雨水口形式。雨水口布置应根据地形和汇水面积确定,同时本次修订补充规定立箅式雨水口的宽度和平箅式雨水口的开孔长度应根据设计流量、道路纵坡和横坡等参数确定,以避免有的地区不经计算,完全按道路长度均匀布置,雨水口尺寸也按经验选择,造成投资浪费或排水不畅。规定雨水口宜设污物截留设施,目的是减少由地表径流产生的非溶解性污染物进入受纳水体。合流制系统中的雨水口,为避免出现由污水产生的臭气外溢的现象,应采取设置水封或投加药剂等措施,防止臭气外溢。4.7.1A雨水口和雨水连接管流量应为雨水管渠设计重现期计算流量的1.5倍~3倍。【条文说明】关于雨水口和雨水连管流量设计的规定。雨水口易被路面垃圾和杂物堵塞,平箅雨水口在设计中应考虑50%被堵塞,立箅式雨15
水口应考虑10%被堵塞。在暴雨期间排除道路积水的过程中,雨水管道一般处于承压状态,其所能排除的水量要大于重力流情况下的设计流量,因此本次修订规定雨水口和雨水连接管流量按照雨水管渠设计重现期所计算流量的1.5倍~3倍计,通过提高路面进入地下排水系统的径流量,缓解道路积水。4.7.2A道路横坡坡度不应小于1.5%,平箅式雨水口的箅面标高应比周围路面标高低3cm~5cm,立箅式雨水口进水处路面标高应比周围路面标高低5cm。当设置于下凹式绿地中时,雨水口的箅面标高应根据雨水调蓄设计要求确定,且应高于周围绿地平面标高。【条文说明】关于道路横坡坡度和雨水口进水处标高的规定。为就近排除道路积水,规定道路横坡坡度不应小于1.5%,平箅式雨水口的箅面标高应比附近路面标高低3cm~5cm,立箅式雨水口进水处路面标高应比周围路面标高低5cm,有助于雨水口对径流的截流。在下凹式绿地中,雨水口的箅面标高应高于周边绿地,以增强下凹式绿地对雨水的渗透和调蓄作用。4.10立体交叉道路排水4.10.2立体交叉道路排水系统的设计,应符合下列规定:1雨水管渠设计重现期不应小于10年,位于中心城区的重要地区,设计重现期应为20年~30年,同一立体交叉道路的不同部位可采用不同的重现期;2地面集水时间应根据道路坡长、坡度和路面粗糙度等计算确定,宜为2min~10min;3径流系数宜为0.8~1.0;4下穿式立体交叉道路的地面径流,具备自流条件的,可采用自流排除,不具备自流条件的,应设泵站排除;5当采用泵站排除地面径流时,应校核泵站及配电设备的安全高度,采取措施防止泵站受淹;6下穿式立体交叉道路引道两端应采取措施,控制汇水面积,减少坡底聚水量。立体交叉道路宜采用高水高排、低水低排,且互不连通的系统;7宜采取设置调蓄池等综合措施达到规定的设计重现期。【条文说明】关于立体交叉道路排水系统设计的规定。立体交叉道路的下穿部分往往是所处汇水区域最低洼的部分,雨水径流汇流至此后再无其他出路,只能通过泵站强排至附近河湖等水体或雨水管道中,如果排水不及时,必然会引起严重积水。国外相关标准中均对立体交叉道路排水系统设计重现期有较高要求,美国联邦16
高速公路管理局规定,高速公路“低洼点”(包括下立交)的设计标准为最低50年一遇。原《室外排水设计规范》GB50014-2006(2011年版)对立体交叉道路的排水设计重现期的规定偏低,因此,本次修订参照发达国家和我国部分城市的经验,将立体交叉道路的排水系统设计重现期规定为不小于10年,位于中心城区的重要地区,设计重现期为20年~30年。对同一立交道路的不同部位可采用不同重现期。本次修订提出集水时间宜为2min~10min。因为立体交叉道路坡度大(一般是2%~5%),坡长较短(100m~300m),集水时间常常小于5min。鉴于道路设计千差万别,坡度、坡长均各不相同,应通过计算确定集水时间。当道路形状较为规则,边界条件较为明确时,可采用公式4.2.2(曼宁公式)计算;当道路形状不规则或边界条件不明确时,可按照坡面汇流参照下式计算:合理确定立体交叉道路排水系统的汇水面积、高水高排、低水低排,并采取有效的防止高水进入低水系统的拦截措施,是排除立体交叉道路(尤其是下穿式立体交叉道路)积水的关键问题。例如某立交地道排水,由于对高水拦截无效,造成高于设计径流量的径流水进入地道,超过泵站排水能力,造成积水。下穿式立体交叉道路的排水泵站为保证在设计重现期内的降雨期间水泵能正常启动和运转,应对排水泵站及配电设备的安全高度进行计算校核。当不具备将泵站整体地面标高抬高的条件时,应提高配电设备设置高度。为满足规定的设计重现期要求,应采取调蓄等措施应对。超过设计重现期的暴雨将产生内涝,应采取包括非工程性措施在内的综合应对措施。4.14雨水调蓄池4.14.4用于合流制排水系统的径流污染控制时,雨水调蓄池的有效容积,可按下式计算:V=3600ti(n-n0)Qdrβ(4.14.4)3式中:V——调蓄池有效容积(m);ti——调蓄池进水时间(h),宜采用0.5h~1h,当合流制排水系统雨天溢流污水水质在单次降雨事件中无明显初期效应时,宜取上限;反之,可取下限;n——调蓄池建成运行后的截流倍数,由要求的污染负荷目标削减率、当地截流倍数和截流量占降雨量比例之间的关系求得;17
n0——系统原截流倍数;3Qdr——截流井以前的旱流污水量(m/s);β——安全系数,可取1.1~1.5。【条文说明】关于用于控制合流制系统径流污染的雨水调蓄池有效容积计算的规定。雨水调蓄池用于控制径流污染时,有效容积应根据气候特征、排水体制、汇水面积、服务人口和受纳水体的水质要求、水体的流量、稀释自净能力等确定。本条规定的方法为截流倍数计算法。可将当地旱流污水量转化为当量降雨强度,从而使系统截流倍数和降雨强度相对应,溢流量即为大于该降雨强度的降雨量。根据当地降雨特性参数的统计分析,拟合当地截流倍数和截流量占降雨量比例之间的关系。截流倍数计算法是一种简化计算方法,该方法建立在降雨事件为均匀降雨的基础上,且假设调蓄池的运行时间不小于发生溢流的降雨历时,以及调蓄池的放空时间小于两场降雨的间隔,而实际情况下,很难满足上述2种假设。因此,以截流倍数计算法得到的调蓄池容积偏小,计算得到的调蓄池容积在实际运行过程中发挥的效益小于设定的调蓄效益,在设计中应乘以安全系数β。德国、日本、美国、澳大利亚等国家均将雨水调蓄池作为合流制排水系统溢流污染控制的主要措施。德国设计规范《合流污水箱涵暴雨削减装置指针》(ATVA128)中以合流制排水系统排入水体负荷不大于分流制排水系统为目标,根据降雨量、地面径流污染负荷、旱流污水浓度等参数确定雨水调蓄池容积。4.14.4A用于分流制排水系统径流污染控制时,雨水调蓄池的有效容积,可按下式计算:V=10DFψβ(4.14.4A)3式中:V——调蓄池有效容积(m);D——调蓄量(mm),按降雨量计,可取4mm~8mm;2F——汇水面积(hm);Ψ——径流系数;β——安全系数,可取1.1~1.5。【条文说明】关于用于分流制排水系统控制径流污染的雨水调蓄池有效容积计算的规定。雨水调蓄池有效容积的确定应综合考虑当地降雨特征、受纳水体的环境容量、降雨初期的雨水水质水量特征、排水系统服务面积和下游污水处理系统的受纳能力等因素。国外有研究认为,1h雨量达到12.7mm的降雨能冲刷掉90%以上的地表污染物;同济大学对上海芙蓉江、水城路等地区的雨水地面径流研究表明,在降雨量达到10mm时,径18
流水质已基本稳定;国内还有研究认为一般控制量在6mm~8mm左右可控制约60%~80%的污染量。因此,结合我国实际情况,调蓄量可取4mm~8mm。4.14.9用于控制径流污染的雨水调蓄池出水应接入污水管网,当下游污水处理系统不能满足雨水调蓄池放空要求时,应设置雨水调蓄池出水处理装置。【条文说明】关于控制径流污染的调蓄池出水的规定。降雨停止后,用于控制径流污染调蓄池的出水,一般接入下游污水管道输送至污水厂处理后排放。当下游污水系统在旱季时就已达到满负荷运行或下游污水系统的容量不能满足调蓄池放空速度的要求时,应将调蓄池出水处理后排放。国内外常用的处理装置包括格栅、旋流分离器、混凝沉淀池等,处理排放标准应考虑受纳水体的环境容量后确定。4.15雨水渗透设施4.15.1城镇基础设施建设应综合考虑雨水径流量的削减。人行道、停车场和广场等宜采用渗透性铺面,新建地区硬化地面中可渗透地面面积不宜低于40%,有条件的既有地区应对现有硬化地面进行透水性改建;绿地标高宜低于周边地面标高5cm~25cm,形成下凹式绿地。【条文说明】关于城镇基础设施雨水径流量削减的规定。多孔渗透性铺面有整体浇注多孔沥青或混凝土,也有组件式混凝土砌块。有关资料表明,组件式混凝土砌块铺面的效果较长久,堵塞时只需简单清理并将铺面砌块中间的沙土换掉,处理效率就可恢复。整体浇注多孔沥青或混凝土在开始使用时效果较好,1年~2年后会堵塞,且难以修复。绿地标高宜低于周围地面适当深度,形成下凹式绿地,可削减绿地本身的径流,同时周围地面的径流能流入绿地下渗。下凹式绿地设计的关键是调整好绿地与周边道路和雨水口的高程关系,即路面标高高于绿地标高,雨水口设在绿地中或绿地和道路交界处,雨水口标高高于绿地标高而低于路面标高。如果道路坡度适合时可以直接利用路面作为溢流坎,使非绿地铺装表面产生的径流雨水汇入下凹式绿地入渗,待绿地蓄满水后再流入雨水口。本次修订补充规定新建地区硬化地面的可渗透地面面积所占比例不宜低于40%,有条件的既有地区应对现有硬化地面进行透水性改建。下凹式绿地标高应低于周边地面5cm~25cm。过浅则蓄水能力不够;过深则导致植被长时间浸泡水中,影响某些植被正常生长。底部设排水沟的大型集中式下凹绿地可不受此限制。4.15.2当场地条件许可时,可设置植草沟、渗透池等设施接纳地面径流;地区开发和改建时,宜保留天然可渗透性地面。19
【条文说明】关于接纳雨水径流的渗透设施设置的规定。雨水渗透设施特别是地面下的入渗增加了深层土壤的含水量,使土壤力学性能改变,可能会影响道路、建筑物或构筑物的基础。因此,建设雨水渗透设施时,需对场地的土壤条件进行调查研究,以便正确设置雨水渗透设施,避免影响城镇基础设施、建筑物和构筑物的正常使用。植草沟是指植被覆盖的开放式排水系统,一般呈梯形或浅碟形布置,深度较浅。植被一般指草皮。该系统能够收集一定的径流量,具有输送功能。雨水径流进入植草沟后首先下渗而不是直接排入下游管道或受纳水体,是一种生态型的雨水收集、输送和净化系统。渗透池可设置于广场、绿化物地下,或利用天然洼地,通过管渠接纳服务范围内的地面径流,使雨水滞留并渗入地下,超过渗透池滞留能力的雨水通过溢流管排入市政雨水管道,可削减服务范围内的径流量和径流峰值。4.16雨水综合利用4.16.1雨水综合利用应根据当地水资源情况和经济发展水平合理确定,并应符合下列规定:1水资源缺乏、水质性缺水、地下水位下降严重、内涝风险较大的城市和新建开发区等宜进行雨水综合利用;2雨水经收集、储存、就地处理后可作为冲洗、灌溉、绿化和景观用水等,也可经过自然或人工渗透设施渗入地下,补充地下水资源;3雨水利用设施的设计、运行和管理应与城镇内涝防治相协调。【条文说明】规定雨水利用的基本原则和方式。随着城镇化和经济的高速发展,我国水资源不足、内涝频发和城市生态安全等问题日益突出,雨水利用逐渐受到关注,因此,水资源缺乏、水质性缺水、地下水位下降严重、内涝风险较大的城市和新建开发区等应优先雨水利用。雨水利用包括直接利用和间接利用。雨水直接利用是指雨水经收集、储存、就地处理等过程后用于冲洗、灌溉、绿化和景观等;雨水间接利用是指通过雨水渗透设施把雨水转化为土壤水,其设施主要有地面渗透、埋地渗透管渠和渗透池等。雨水利用、污染控制和内涝防治是城镇雨水综合管理的组成部分,在源头雨水径流削减、过程蓄排控制等阶段的不少工程措施是具有多种功能的,如源头渗透、回用设施,既能控制雨水径流量和污染负荷,起到内涝防治和控制污染的作用,又能实现雨水利用。4.16.2雨水收集利用系统汇水面的选择,应符合下列规定:20
1应选择污染较轻的屋面、广场、人行道等作为汇水面;对屋面雨水进行收集时,宜优先收集绿化屋面和采用环保型材料屋面的雨水;2不应选择厕所、垃圾堆场、工业污染场地等作为汇水面;3不宜收集利用机动车道路的雨水径流;4当不同汇水面的雨水径流水质差异较大时,可分别收集和储存。【条文说明】关于雨水收集利用系统汇水面选择的规定。选择污染较轻的汇水面的目的是减少雨水渗透和净化处理设施的难度和造价,因此应选择屋面、广场、人行道等作为汇水面,不应选择工业污染场地和垃圾堆场、厕所等区域作为汇水面,不宜选择有机污染和重金属污染较为严重的机动车道路的雨水径流。4.16.3对屋面、场地雨水进行收集利用时,应将降雨初期的雨水弃流。弃流的雨水可排入雨水管道,条件允许时,也可就近排入绿地。【条文说明】关于雨水收集利用系统降雨初期的雨水弃流的规定。由于降雨初期的雨水污染程度高,处理难度大,因此应弃流。弃流装置有多种设计型式,可采用分散式处理,如在单个落水管下安装分离设备;也可采用在调蓄池前设置专用弃流池的方式。一般情况下,弃流雨水可排入市政雨水管道,当弃流雨水污染物浓度不高,绿地土壤的渗透能力和植物品种在耐淹方面条件允许时,弃流雨水也可排入绿地。4.16.4雨水利用方式应根据收集量、利用量和卫生要求等综合分析后确定。雨水利用不应影响雨水调蓄设施应对城镇内涝的功能。【条文说明】关于雨水利用方式的规定。雨水利用方式应根据雨水的收集利用量和相关指标要求综合考虑,在确定雨水利用方式时,应首先考虑雨水调蓄设施应对城镇内涝的要求,不应干扰和妨碍其防治城镇内涝的基本功能。4.16.5雨水利用设施和装置的设计应考虑防腐蚀、防堵塞等。【条文说明】关于雨水利用设计的规定。雨水水质受大气和汇水面的影响,含有一定量的有机物、悬浮物、营养物质和重金属等。可按污水系统设计方法,采取防腐、防堵措施。4.17内涝防治设施4.17.1内涝防治设施应与城镇平面规划、竖向规划和防洪规划相协调,根据当地地形特点、水文条件、气候特征、雨水管渠系统、防洪设施现状和内涝防治要求等综合分析后确定。21
【条文说明】关于内涝防治设施设置的规定。目前国外发达国家普遍制定了较为完善的内涝灾害风险管理策略,在编制内涝风险评估的基础上,确定内涝防治设施的布置和规模。内涝风险评估采用数学模型,根据地形特点、水文条件、水体状况、城镇雨水管渠系统等因素,评估不同降雨强度下,城镇地面产生积水灾害的情况。为保障城市在内涝防治设计重现期标准下不受灾,应根据内涝风险评估结果,在排水能力较弱或径流量较大的地方设置内涝防治设施。内涝防治设施应根据城镇自然蓄排水设施数量、规划蓝线保护和水面率的控制指标要求,并结合城镇竖向规划中的相关指标要求进行合理布置。4.17.2内涝防治设施应包括源头控制设施、雨水管渠设施和综合防治设施。【条文说明】关于内涝防治设施种类的规定。源头控制设施包括雨水渗透、雨水收集利用等,在设施类型上与城镇雨水利用一致,但当用于内涝防治时,其设施规模应根据内涝防治标准确定。综合防治设施包括调蓄池、城市水体(包括河、沟渠、湿地等)、绿地、广场、道路和大型管渠等。当降雨超过雨水管渠设计能力时,城镇河湖、景观水体、下凹式绿地和城市广场等公共设施可作为临时雨水调蓄设施;内河、沟渠、经过设计预留的道路、道路两侧局部区域和其他排水通道可作为雨水行泄通道;在地表排水或调蓄无法实施的情况下,可采用设置于地下的大型管渠、调蓄池和调蓄隧道等设施。4.17.3采用绿地和广场等公共设施作为雨水调蓄设施时,应合理设计雨水的进出口,并应设置警示牌。【条文说明】关于采用绿地和广场等公共设施作为雨水调蓄设施的规定。当采用绿地和广场等作为雨水调蓄设施时,不应对设施原有功能造成损害;应专门设计雨水的进出口,防止雨水对绿地和广场造成严重冲刷侵蚀或雨水长时间滞留。当采用绿地和广场等作为雨水调蓄设施时,应设置指示牌,标明该设施成为雨水调蓄设施的启动条件、可能被淹没的区域和目前的功能状态等,以确保人员安全撤离。22
5泵站5.1一般规定5.1.13雨污分流不彻底、短时间难以改建的地区,雨水泵站可设置混接污水截流设施,并应采取措施排入污水处理系统。【条文说明】关于雨水泵站设置混接污水截流设施的规定。目前我国许多地区都采用合流制和分流制并存的排水制度,还有一些地区雨污分流不彻底,短期内又难以完成改建。市政排水管网雨污水管道混接一方面降低了现有污水系统设施的收集处理率,另一方面又造成了对周围水体环境的污染。雨污混接方式主要有建筑物内部洗涤水接入雨水管、建筑物污废水出户管接入雨水管、化粪池出水管接入雨水管、市政污水管接入雨水管等。以上海为例,目前存在雨污混接的多个分流制排水系统中,旱流污水往往通过分流制排水系统的雨水泵站排入河道。为减少雨污混接对河道的污染,《上海市城镇雨水系统专业规划》提出在分流制排水系统的雨水泵站内增设截流设施,旱季将混接的旱流污水全部截流,纳入污水系统处理后排放,远期这些设施可用于截流分流制排水系统降雨初期的雨水。目前上海市中心城区已有多座设有旱流污水截流设施的雨水泵站投入使用。23
2014年2月10日8检测和控制8.2检测8.2.5排水管网关键节点应设置流量监测装置。【条文说明】关于排水管网关键节点设置检测和监测装置的规定。排水管网关键节点指排水泵站、主要污水和雨水排放口、管网中流量可能发生剧烈变化的位置等。8.3控制8.3.1排水泵站宜按集水池的液位变化自动控制运行,宜建立遥测、遥讯和遥控系统。排水管网关键节点流量的监控宜采用自动控制系统。【条文说明】关于排水泵站和排水管网控制原则的规定。排水泵站的运行管理应在保证运行安全的条件下实现自动控制。为便于生产调度管理,宜建立遥测、遥讯和遥控系统。24
附录A暴雨强度公式的编制方法II年最大值法取样A.0.8计算降雨历时采用5min、10min、15min、20min、30min、45min、60min、90min、120min、150min、180min共十一个历时。计算降雨重现期宜按2年、3年、5年、10年、20年、30年、50年、100年统计。25'
您可能关注的文档
- 《GB50014-2006(2011-版)室外排水设计规范》.pdf
- 建筑给水排水设计规范(2010版)讲义
- 建筑给水排水设计规范(2009版)讲义
- 建筑给水排水设计规范(2009+版)讲义
- 建筑给水排水设计规范(2009_版)讲义(1)
- GB 50015-2003 建筑给水排水设计规范
- GB 50015-2003(2009年版) 建筑给水排水设计规范
- GB 50015-2003(2009版)建筑给水排水设计规范条文说明
- GB 50014-2006(2016年版)室外排水设计规范(书签 条文说明)
- 02@室外排水设计规范GB 50014—2006(2011年修订版)
- 50014 GB 50014-2006(2014年版) 室外排水设计规范s
- 室外排水设计规范[222页]
- 2009版给排水设计规范
- 建筑给排水设计规范_gb50015-2010(附条文说明,详细版)
- 【给排水工程】游泳池给水排水设计规范
- 建筑给水排水设计规范及关键技术应用
- 《室外排水设计规范》(GB 50014-2006(2011年版))
- 《公路排水设计规范》(JTG∕TD33-2012)
相关文档
- 施工规范CECS140-2002给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程
- 施工规范CECS141-2002给水排水工程埋地钢管管道结构设计规程
- 施工规范CECS142-2002给水排水工程埋地铸铁管管道结构设计规程
- 施工规范CECS143-2002给水排水工程埋地预制混凝土圆形管管道结构设计规程
- 施工规范CECS145-2002给水排水工程埋地矩形管管道结构设计规程
- 施工规范CECS190-2005给水排水工程埋地玻璃纤维增强塑料夹砂管管道结构设计规程
- cecs 140:2002 给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程(含条文说明)
- cecs 141:2002 给水排水工程埋地钢管管道结构设计规程 条文说明
- cecs 140:2002 给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程 条文说明
- cecs 142:2002 给水排水工程埋地铸铁管管道结构设计规程 条文说明