一级水处理设计计算 15页

  • 717.50 KB
  • 2023-01-01 08:31:57 发布

一级水处理设计计算

  • 15页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
第一章污水的一级处理构筑物设计计算1.1格栅格栅是由一组平行的金属栅条或筛网制成,安装在污水渠道、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物,如纤维、碎皮、毛发、果皮、蔬菜、塑料制品等,以便减轻后续处理构筑物的处理负荷,并使之正常进行。被截留的物质称为栅渣。设计中格栅的选择主要是决定栅条断面、栅条间隙、栅渣清除方式等。格栅断面有圆形、矩形、正方形、半圆形等。圆形水力条件好,但刚度差,故一般多采用矩形断面。格栅按照栅条形式分为直棒式格栅、弧形格栅、辐流式格栅、转筒式格栅、活动格栅等;按照格栅栅条间距分为粗格栅和细格栅(1.5~10mm);按照格栅除渣方式分为人工除渣格栅和机械除渣格栅,目前,污水处理厂大多都采用机械格栅;按照安装方式分为单独设置的格栅和与水泵池合建一处的格栅。1.1.1格栅的设计城市的排水系统采用分流制排水系统,城市污水主干管由西北方向流入污水处理厂厂区,主干管进水水量为,污水进入污水处理厂处的管径为1250,管道水面标高为80.0。本设计中采用矩形断面并设置两道格栅(中格栅一道和细格栅一道),采用机械清渣。其中,中格栅设在污水泵站前,细格栅设在污水泵站后。中细两道格栅都设置三组即N=3组,每组的设计流量为0.502。1.1.2设计参数1、格栅栅条间隙宽度,应符合下列要求:1)粗格栅:机械清除时宜为16~25mm;人工清除时宜为25~40mm。特殊情况下,最大间隙可为100mm。2)细格栅:宜为1.5~10mm。3)水泵前,应根据水泵要求确定。2、污水过栅流速宜采用0.6~1.Om/s。除转鼓式格栅除污机外,机械清除格栅的安装角度宜为60~90°。人工清除格栅的安装角度宜为30°~60°。3、当格栅间隙为16~25mm时,栅渣量取0.10~0.05污水;当格栅间隙为30~50mm时,栅渣量取0.03~0.01污水。4、格栅除污机,底部前端距井壁尺寸,钢丝绳牵引除污机或移动悬吊葫芦\n抓斗式除污机应大于1.5m;链动刮板除污机或回转式固液分离机应大于1.Om。5、格栅上部必须设置工作平台,其高度应高出格栅前最高设计水位0.5m,工作平台上应有安全和冲洗设施。6、格栅工作平台两侧边道宽度宜采用0.7~1.Om。工作平台正面过道宽度,采用机械清除时不应小于1.5m,采用人工清除时不应小于1.2m。7、粗格栅栅渣宜采用带式输送机输送;细格栅栅渣宜采用螺旋输送机输送。8、格栅除污机、输送机和压榨脱水机的进出料口宜采用密封形式,根据周围环境情况,可设置除臭处理装置。9、格栅间应设置通风设施和有毒有害气体的检测与报警装置。10、沉砂池的超高不应小于0.3m。1.1.3中格栅设计计算1、进水渠道宽度计算根据最优水力断面公式计算设计中取污水过栅流速=0.8则栅前水深:2、格栅的间隙数式中格栅栅条间隙数,个;设计流量,;格栅倾角,º;设计的格栅组数,组;格栅栅条间隙数,。设计中取=0.02个3、格栅栅槽宽度\n式中格栅栅槽宽度,;每根格栅条宽度,。设计中取=0.0154、进水渠道渐宽部分的长度计算式中进水渠道渐宽部分长度,;渐宽处角度,º。设计中取=5、进水渠道渐窄部分的长度计算6、通过格栅的水头损失式中水头损失,;格栅条的阻力系数,查表知=2.42;格栅受污物堵塞时的水头损失增大系数,一般取=3。则7、栅后槽总高度设栅前渠道超高则栅后槽总高度:8、栅槽总长度\n中格栅示意图如图3—1图3—1中格栅示意草图9、每日栅渣量式中每日栅渣量,;每日每1000污水的栅渣量,污水。设计中取=0.05污水\n应采用机械除渣及皮带输送机或无轴输送机输送栅渣,采用机械栅渣打包机将栅渣打包,汽车运走。10、进水与出水渠道城市污水通过的管道送入进水渠道,然后,就由提升泵将污水提升至细格栅。1.1.4细格栅设计计算设计中取格栅栅条间隙数=0.01,格栅栅前水深=0.9,污水过栅流速=1.0,每根格栅条宽度=0.01,进水渠道宽度=0.8,栅前渠道超高,每日每1000污水的栅渣量=0.04则格栅的间隙数:个格栅栅槽宽度:进水渠道渐宽部分的长度:进水渠道渐窄部分的长度计算:通过格栅的水头损失:栅后槽总高度:栅槽总长度:每日栅渣量:应采用机械除渣及皮带输送机或无轴输送机输送栅渣,采用机械栅渣打包机将栅渣打包,汽车运走。细格栅示意图见图3—2图3—2细格栅示意图\n1.2提升泵站污水总泵站接纳来自整个城市排水管网来的所有污水,其任务是将这些污水抽送到污水处理厂,以利于处理厂各构筑物的设置。因采用城市污水与雨水分流制,故本设计仅对城市污水排水系统的泵站进行设计。排水泵站的基本组成包括:机器间、集水池、格栅和辅助间。3.2.1泵站设计的原则1、污水泵站集水池的容积,不应小于最大一台水泵5min的出水量;如水泵机组为自动控制时,每小时开动水泵不得超过6次。2、集水池池底应设集水坑,倾向坑的坡度不宜小于10%。3、水泵吸水管设计流速宜为0.7~1.5m/s。出水管流速宜为0.8~2.5m/s。其他规定见GB50014—2006《室外排水规范》。1.2.2泵房形式及工艺布置本设计采用地下湿式矩形合建式泵房,设计流量选用最高日最高时流量。1、泵房形式为运行方便,采用自灌式泵房。自灌式水泵多用于常年运转的污水泵站,它的优点是:启动及时可靠,管理方便。该泵站流量小于2m3/s,且鉴于其设计和施工均有一定经验可供利用,故选用矩形泵房。由于自灌式启动,故采用集水池与机器间合建,前后设置。大开槽施工。2、工艺布置\n本设计采用来水为一根污水干管,无滞留、涡流等不利现象,故不设进水井,来水管直接经进水闸门、格栅流入集水池,经机器间的泵提升污水进入出水井,然后依靠重力自流输送至各处理构筑物。3.2.3泵房设计计算1、设计参数设计流量为,集水池最高水位为79.93m,出水管提升至细格栅,出水管长度为5m,细格栅水面标高为85.001m。泵站设在处理厂内,泵站的地面高程为81.50m。2、泵房的设计计算(1)集水池的设计计算设计中选用5台污水泵(4用1备),则每台污水泵的设计流量为:,按一台泵最大流量时5min的出水量设计,则集水池的容积为:取集水池的有效水深为集水池的面积为:集水池保护水深0.71m,实际水深为2.0+0.71=2.71m。(2)水泵总扬程估算1)集水池最低工作水位与所需提升最高水位之间的高差为:85.001-(79.93-2)=7.071m2)出水管管线水头损失每一台泵单用一根出水管,其流量为,选用的管径为的铸铁管,查《给水排水设计手册》第一册常用资料得流速(介于0.8~2.5之间),。出水管出水进入一进水渠,然后再均匀流入细格栅。设局部损失为沿程损失的30%,则总水头损失为:泵站内的管线水头损失假设为1.5m,考虑自由水头为1.0,则水泵总扬程为:(3)选泵\n本设计单泵流量为,扬程。查《给水排水设计手册》第11册常用设备,选用300TLW-540IB型的立式污水泵。该泵的规格性能见表3-1。表3-1300TLW-540IB型的立式污水泵的规格性能流量Q扬程H转度n电动机功率N效率污物通过能力气蚀余量r重量固体纤维1414392.816.69701107725015008.031503、泵站总扬程的校核水泵的平面布置形式可直接影响机器间的面积大小,同时,也关系到养护管理的方便与否。机组间距以不妨碍操作和维修的需要为原则。机组的布置应保持运行安全、装卸、维修和管理方便,管道总长度最短,接头配件最少,水头损失最小,并应考虑泵站有扩建的余地。(1)吸水管路的水头损失每根吸水管的流量为,选用的管径为,流速为,,坡度为。吸水管路的直管部分的长度为1.0m,设有喇叭口(),的弯头1个(0.67),的闸阀1个(0.06),渐缩管1个(0.20)。①喇叭口喇叭口一般取吸水管的1.3~1.5倍,设计中取1.3则喇叭口直径为:,取800②闸阀,mm。③渐缩管选用mm\n其中,得。④直管部分为1.0m,管道总长为:m‰则沿程损失为:局部损失为:吸水管路水头损失为:(2)出水管路水头损失出水管直管部分长为5m,设有渐扩管1个(0.20),闸阀1个(0.06),单向止回阀(1.7,)。沿程水头损失:局部水头损失:总出水水头损失:(3)水泵总扬程水泵总扬程用下式计算:式中——吸水管水头损失,m;——出水管水头损失,m;——集水池最低工作水位与所提升最高水位之差,m;\n——自由水头,一般取=1.0m。故选用5台300TLW-540IB型的立式污水泵是合适的。1.3沉砂池沉砂池是借助污水中的颗粒与水的比重不同,使大颗粒的砂粒、石子、煤渣等无机颗粒沉降,以去除相对密度较大的无机颗粒。常用的沉砂池有平流沉砂池、曝气沉砂池、竖流式沉砂池、涡流式沉砂池和多尔沉砂池。这几种沉砂池各有其优点,但是在实际工程中一般多采用曝气沉砂池。本设计中采用曝气(aeration)沉砂池,其优点是:通过调节曝气量可控制污水旋转流速,使之作旋流运动,产生离心力,去除泥砂,排除的泥砂较为清洁,处理起来比较方便;且它受流量变化影响小,除砂率稳定。同时,对污水也起到预曝气作用。1.3.1曝气沉砂池本设计中选择三组曝气沉砂池,N=3组。每组沉砂池的设计流量为0.502。1.3.2设计参数1、水平流速宜为0.1m/s。2、最高时流量的停留时间应大于2min。3、有效水深宜为2.0~3.Om,宽深比宜为1~1.5。4、处理每立方米污水的曝气量宜为0.1~0.2m3空气。5、进水方向应与池中旋流方向一致,出水方向应与进水方向垂直,并宜设置挡板。6、污水的沉砂量,可按每立方米污水0.03L计算;合流制污水的沉砂量应根据实际情况确定。7、砂斗容积不应大于2d的沉砂量,采用重力排砂时,砂斗斗壁与水平面的倾角不应小于55°。8、池底坡度一般取为0.1~0.5。9、沉砂池除砂宜采用机械方法,并经砂水分离后贮存或外运。采用人工排砂时,排砂管直径不应小于200mm。排砂管应考虑防堵塞措施。1.3.3曝气沉砂池的设计计算1、沉砂池有效容积\n式中沉砂池有效容积,;停留时间,。本设计中取=32、水流断面面积式中水流断面面积,;水平流速,。设计中取=0.13、池总宽度式中沉砂池宽度,;沉砂池有效水深,。设计中取=2在1.0~1.5之间。4、池长5、每小时所需的空气量式中每小时所需的空气量,;1的污水所需要的空气量,。设计中=0.2污水\n6、沉砂室所需容积式中城市污水沉砂量,设计中取=30污水清除沉砂的间隔时间,设计中取=2。从而可计算得每个沉砂斗的容积为:7、沉砂斗几何尺寸计算设计中取沉砂斗底宽为0.5,沉砂斗壁与水平面的倾角为,沉砂斗高度则沉砂斗的上口宽度为:沉砂斗的有效容积:8、池子总高设池底坡度为0.4,破向沉砂斗,池子超高则池底斜坡部分的高度:池子总高:9、验算流速当有一格池子出故障,仅有两格池子工作时:当有两格池子出故障,仅有一格池子工作时:10、进水渠道格栅的出水通过\n的管道送入沉砂池的进水渠道,然后进入沉砂池,进水渠道的水流流速式中进水渠道水流流速,;进水渠道宽度,;进水渠道水深,。设计中取=1.2,=0.8。水流经过进水渠道再分别由进水口进入沉砂池,进水口尺寸900×900,流速校核:进水口水头损失代入数值得:进水口采用方形闸板,SFZ型明杆或镶钢铸铁方形闸门SFZ—900,沉砂斗采用H46Z—2.5旋启式底阀,公称直径200mm。11、出水堰计算出水采用沉砂池末端薄壁出水堰跌落出水,出水堰可保证沉砂池内水位标高恒定,堰上水头为式中堰上水头,;流量系数,一般取0.4~0.5,设计中取=0.4;堰宽,,等于沉砂池的宽度。\n出水堰后自由跌落高度0.12,出水流入出水槽,出水槽宽度1.0,出水槽水深0.6,水流流速。采用出水管道在出水槽中部与出水槽连接,出水槽用钢混管,管径,管内流速,水利坡度‰,水流经出水槽流入集配水井。12、排砂装置采用吸砂泵排砂,吸砂泵设置在沉砂斗内,借助空气提升将沉砂排出沉砂池,吸砂泵管径200。曝气沉砂池示意图见下图3-3图3-3曝气沉砂池剖面图示意图1—压缩空气管2—空气扩散管3—集砂槽1.3.4曝气沉砂池曝气计算1、空气干管设计干管中空气流速一般为10~15m/s,取空气流速12m/s,则2、支管设计干管上设10根配气管,则每根竖管上的供气量为:根沉砂池总平面面积为:L×B=,取\n选用YBM-2型号的膜式扩散器,每个扩散器的服务面积为1.5m2,直径为500mm,则需空气扩散器总数为:个。则每根配气管有1个空气扩散器,每个扩散器的配气量为:。