• 137.51 KB
  • 2023-01-02 08:31:29 发布

膜技术在水处理中的应用及膜材料的研究进展

  • 14页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
膜技术在水处理中的应用及膜材料的研究进展出自:<化工环保>2004年何小娟1,杨再鹏1,党海燕2,陈石登1,彭海珠1,卢姝1,莫馗1,梁燕1(1.中国石化集团北京化工研究院环保所,北京100013;2.上海岩土工程勘察设计研究院,上海200031)[摘要]综述了膜技术在给水处理、废水处理和特殊行业水处理中的应用,介绍了近年来膜材料的研究进展:包括开发新型的膜材料和对现有的膜材料进行改性。新型膜材料有金属膜、有机-无机混合膜和新型有机膜等;几种最常用的膜材料改性方法有等离子体改性法、表现活性剂改性法、紫外辐照法、高分子合金法和表面化学反应法。[关键词]膜;水处理;新材料;改性[中图分类号]X703  [文献标识码]A  [文章编号]1006-1878(2004)03-0185-05    膜技术被称为是21世纪的水处理技术,是近40年来发展最迅速、应用最广泛的技术[1,2]。膜技术在水处理中应用的基本原理是:利用水溶液(原水)中的水分子具有透过分离膜的能力,而溶质或其他杂质不能透过分离膜,在外力作用下对水溶液(原水)进行分离,获得纯净的水,从而达到提高水质的目的[3]。与传统水处理技术相比,膜技术具有节能、投资少、操作简便、处理效率高等优点[4~6],膜技术的应用给人类带来了巨大的环境和经济效益。1 膜技术在水处理中的应用  膜技术在水处理中的应用范围相当广泛,既可用于给水处理也可用于废水处理,在某些特殊行业的水处理中也有涉足,且其应用规模在不断扩大[7,8]。目前,在膜法水处理应用方面领先的国家美国、日本、德国等[9]。1.1 膜技术在给水处理中的应用  发达国家如法国、荷兰、美国等已有越来越多的人口饮用采用膜技术生产的饮用水[7]:法国有一座产水量高达314×105m3/d的膜法净水厂;英国建设的膜净水厂最大产水量达到80000m3/d。在淡水资源缺乏的地区,以海水、苦碱水或处理后的市政污水作为直接或间接饮用水源(回灌地下作为地下饮用水源),已成为拓展现有水供应的有效方法[4,7,10,11]\n,如1993年巴黎郊区建成一座产水量为2800m3/d的纳滤净水厂,利用经传统工艺处理后的地表水生产饮用水,此地表水经过三级纳滤系统处理,可有效去除其中的杀虫剂及THAs前体。在全世界范围内已建成的以二级市政污水为水源生产高质量饮用水的示范性膜法净水处理厂中,以美国科罗拉多州丹佛市的膜法水处理厂最为有名,其处理系统中的反渗透装置发挥着去除总溶解性固体和有机污染物的作用[7,12]。1.2 膜技术在废水处理中的应用  膜技术在废水处理方面的研究和应用几乎涉及到废水处理的各个领域,包括电泳漆废水和石油、化工、纺织、食品加工、造纸、医药、机械加工等行业的废水处理[7,13~16]。近年来,随着环境污染的加剧和水资源的枯竭,人们对水的循环再利用、深度处理的呼声和要求越来越高,如何尽可能多地回收利用现有的水资源已成为人们关注的焦点,废水作为一种资源的观点也逐渐被公众所接受。膜技术在废水处理中的应用也向综合利用方向转变[4,7],一些新的膜过程不断地得到开发研究,如膜软化、渗透汽化、膜蒸馏、支撑膜液、膜生物反应器、仿生膜及生物膜等过程的研究工作不断深入。这些工作既以充分回收利用废水中的有价资源为目的,又在一定程度上推进了废水处理的深度,具有重大的环境效益和经济效益。113 膜技术在特殊行业水处理中的应用  利用膜法处理放射性废水的研究始于20世纪60年代初,最早采用电渗析技术,近年来又开发了反渗透和超滤技术,在国内外均有一些实际工程[7]。此外,膜技术在含镍电镀废水、含锌废水、垃圾填埋场渗滤液等高难度废水处理领域的应用也有报道[5,7]。2 膜材料研究进展  膜材料作为膜分离技术的核心越来越受到人们的关注[7]。最早的分离膜材料是纤维素及其衍生物,近年来,各种高性能纤维素及高分子有机聚合物膜材料的开发层出不穷,并出现了新型的陶瓷、多孔玻璃、氧化铝等无机膜材料和有机2无机膜材料[18]。为了更好地发挥膜技术的优势,分离膜材料成为近年来研究的热点。2.1 新型膜材料2.1.1 金属膜  国外新研制的金属膜采用不对称结构,以粗金属粉末作支撑材料,以同种合金的细粉末喷涂作有效滤层(厚度小于200μm);其孔径分布集中在1~2μm之间,属微滤(MF)范围;颗粒物难以进入滤膜内部堵塞滤道而滞留在膜表面,形成表面过滤[19]。与传统多孔烧结金属滤材相比,不对称金属膜滤通量高3~4\n倍,压降较小,反冲洗周期长达6~8个月,且反冲效果较好。2.1.2 有机-无机混合膜  制造有机-无机混合膜,使之兼具有机膜及无机膜的长处。无机矿物颗粒(如二氧化锆)掺入有机多孔聚合物(如聚丙烯腈)网状结构中形成的有机-无机矿物膜,具有机膜的柔韧性及无机膜的抗压性能、表面特性[20],可显著提高表面孔隙率及通量。填料类型、粒径、比表面积对膜性能均有影响。2.1.3 新型有机膜  大连理工大学研究开发出一种新型含二氮杂萘铜结构类双酚单体(DHPZ),该单体具有芳环杂非共平面扭曲结构,由其合成的含二氮杂萘铜结构的聚芳醚铜(PPEK)和聚芳醚砜(PPES)具有耐高温、可溶解的综合性能[21]。2.2 膜材料的改性  纤维素是最早应用的膜材料,纤维素及其衍生物作为分离膜材料具有来源广泛、价格低廉、制膜工艺简单、成膜性能良好、成膜后选择性高、亲水性好、透水量大、机械强度高、孔径分布窄和使用寿命长等突出优点[9,22]。但是这类膜也存在一些不容忽视的缺点,如目前使用最为广泛的乙酸纤维素膜(CA)存在pH适用范围小、不耐高温、不耐微生物腐蚀、易生物降解、抗化学腐蚀性差、易被酸碱水解、抗压实性差、易被压密等缺点[18,23]。为了充分发挥纤维素及其衍生物膜材料的优点,克服其缺点,人们对其进行了大量的改性研究,并开发出一些新型的高分子膜材料[24]。  从20世纪80年代初开始,采用耐热性、耐化学稳定性、耐细菌侵蚀和较好机械强度的特种工程高分子材料作为膜材料,克服了用纤维素类材料所制膜易被细菌侵蚀、不适合酸碱清洗液洗、不耐高温和机械强度较差等弱点。在这20多年中,先后出现了聚砜(PSF)、聚丙烯腈(PAN)、聚偏氟乙烯(PVDF)、聚醚酮(PEK)、聚醚砜(PES)等多种特种工程高分子材料,这些材料的出现使得膜的品种和应用范围大大增加[25]。有机膜虽然耐高温、耐酸碱、耐细菌腐蚀,但制出的膜针孔很多,不易制出截留分子量小、透水速度高的膜产品,且由于特种工程高分子材料具有较强的疏水性,用这些材料制成的膜表面亲水性差,在实际使用中,由于被分离物质在疏水表面产生吸附等原因,易造成膜污染,其后果是带来膜通量明显下降、膜使用寿命缩短、生产成本增加等一系列问题,成为膜技术进一步推广应用的阻碍[26]。因此,若要保持特种工程高分子材料耐热性、耐化学稳定性、耐细菌侵蚀和较高的机械强度等优点,又要克服其疏水、易造成膜污染的缺点,就必须对膜材料进行改性[23,27]\n。高分子分离膜材料的亲水改性主要有化学改性和物理改性两种方法:化学改性可以通过膜材料化学改性和膜表面化学改性来实现;物理改性即高分子膜材料的物理共混,也可以改善膜材料的亲水性能。膜的改性,增大膜的透水量,尤其是在膜表面引入亲水性基团是解决问题的关键。提高膜的亲水性,则膜的透水量变大,但亲水性过高后,膜不仅易溶解,而且会失去机械强度。因此,巧妙地平衡膜的亲水性和疏水性,是制作膜的关键[18]。近年来研究的高分子膜的改性方法有等离子体改性法、表面活性剂改性法、紫外辐照法、高分子合金法和表面化学反应法等。2.2.1 等离子体法  等离子体改性的原理是:利用离子体中富集的各种活性粒子,如离子、电子、自由基、激发态原子或分子等轰击高分子材料的表面,使表面形成活性自由基,利用活性自由基引发功能性单体使之在表面聚合或接枝到表面。利用等离子体处理疏水性较强的膜材料,可以提高膜表面的能量,同时也可方便地使膜表面带上羰基、羟基等极性基团,以增强膜表面的极性而对材料本体损伤较小[27]。与其他改性方法相比,等离子体技术有其独特的优点:具有较高的能量密度;能够产生活性成分,从而可快速、高效地引发通常条件下不能或难以实现的物理化学变化;能赋予改性层表面各种优异性能;改性层的厚度极薄(几纳米到数百纳米);基体的整体性质不变;不产生大量副产品和废料,无环境污染等[28]。邢丹敏[29]用氧等离子体照射改性聚氯乙烯(PVC)超滤膜,PVC经过等离子体处理以后,膜表面生成的含氧基团主要是—COOH及含羰基化合物(—COO—),表面接触角明显减小,入射功率为30W,处理时间为115min,预抽气压为1133Pa,工作气压为26166Pa时,膜的截留特性保持不变,纯水通量可增加10倍。2.2.2 表面活性剂法  表面活性剂在膜表面的吸附改性,是利用表面活性剂的极性或亲媒性显著不同的官能团在溶液与膜的界面上形成选择性定向吸附,使界面的状态或性质发生显著变化,从而达到改性目的。表面活性剂具有带电特性,不仅可提供亲水性的膜表面,而且表面活性剂在膜表面的吸附会增大膜的初始通量,同时降低使用过程中通量的衰减和蛋白质在膜表面的吸附。陆晓峰等人[30]在研究中分别选用了非离子型、阴离子型和两性离子的表面活性剂对聚砜超滤膜进行改性,结果表明:用表面活性剂对膜改性后,膜亲水性增强,通量都比未改性膜有不同程度的提高;采用不同类型表面活性剂的改性效果优劣顺序为:非离子型表面活性剂,离子型表面活性剂,两性离子表面活性剂。但也发现随过滤时间的延长,表面活性剂逐渐脱落,通量下降。2.2.3\n 紫外辐照法  辐照激发是在辐射能的作用下使膜的结构发生变化,分子键断裂,产生一些亲水性基团,如羰基、乙烯基等。这些亲水性基团的增加使膜表面的亲水性基团增多,通量增多,但截留率和膜强度略有下降。辐照接枝聚合反应是通过γ射线、电子束、紫外线等高能辐射使聚合物分子链产生自由基,再通过接枝聚合反应的方法在膜表面得到亲水性基团,对制备亲水性膜是一种行之有效的方法[31]。陆晓峰等[32]将PVDF干膜经Co260γ源辐照,在PVDF分子链上产生自由基,苯乙烯基单体与之聚合接枝到PVDF膜上,形成一定长度的支链,再经磺化反应,将苯乙烯基转化成具有磺酸基团的苯环。试验表明,提高辐照剂量、延长接枝反应时间,可提高接枝率。适当提高磺化反应温度和延长磺化反应时间,可增加膜的交换容量。改性后的聚偏氟乙烯超滤膜,截留率提高,污染程度下降,亲水性增强。2.2.4 高分子合金法  高分子合金材料由多种高分子混合而成,通过共混改性,形成一种新的高分子多成分系统材料,不仅可保留原有材料的优良性能,还可克服原有材料的各自缺陷,并产生原有材料所没有的优异性能。李焦丽等人[33]报道改性后的聚砜/聚丙烯酰胺合金膜具有良好的耐溶剂性能和耐压性能,适用于非水体系的分离,小试结果表明,其具有一定的渗透通量和截留效果。Vigo、邢丹敏、Tsuchihara等人[34~36]报道,在PVC分子上导入亲水基团,对PVC材料进行物理改性,即PVC材料合金化,方法简单易行,调节幅度大,有着广阔的应用前景。邱运仁[37]以不锈钢金属纤维烧结毡作基材,对一定浓度的PVA进行缩醛改性,制备了金属2改性PVA亲水分相膜,用其处理含油乳化废水,具有操作压力小、处理量大和除油效果好等优点。2.2.5 表面化学反应法  表面化学反应是在膜的表面引入另一种基团,在表面反应的作用下改变膜的缺点。如表面磺化反应,是通过引入具有负电荷的—SO3-来改变膜的亲水性。目前,在膜改性中磺化反应是应用最多的,如磺化聚砜、磺化聚醚砜、磺化聚苯醚等。用磺化材料制得的膜亲水性好,且抗污染性能有所提高。另一种表面化学反应是弗克反应,在乙烷、氯甲基乙醚等溶液中,弗克催化剂(AlCl3、SnCl4、ZnCl2)使膜材料芳香环上的氢原子发生亲电子取代反应,以便引入亲水基团—CH2Cl,也可以利用弗克反应引入—(CH2)3SO-3和—CH·(CH3)CH2OH等基团。2.2.6 其他改性方法  还有其他的一些膜材料改性方法,如添加剂改性,添加剂使膜表面结构永久性改变,并使膜亲水性增强,不易污损。这种膜的通量高、液体相容性好,稳定性比市场上其他膜高4\n倍以上,不需经常清洗,特别适于原水预处理以减少用氯量,对病毒的去除率达到70%~78%以上,对细菌的去除率更高[38]。  英国Kalsep公司在聚醚砜中加入低沾污添加剂化学改性制得一种广适性低沾污膜,生产的Kalmen系列低沾污改性聚醚砜膜及成套设施已投放市场。也可用其他聚合物作添加剂,形成亲水性水平不同的膜,如水溶性聚乙烯吡咯烷酮添加剂能使聚砜膜具有亲水特性[39]。此外,还可以在辐照改性中引入其他物质,如Stevens等人[40]将水解明胶经紫外光照射固定到聚砜膜表面所得到的新膜,其通量及抗污损能力亦显著提高。3 结语  在水处理中膜分离技术具有节能、投资少、操作简便、处理效率高等优点,应用非常广泛。膜材料是膜分离技术的核心,为了更好地发挥膜分离技术的优势,开发新型的膜材料及对现有的膜材料进行改性非常必要。随着更多新型膜材料的开发和更多膜改性方法的推出,必然使膜分离技术不断地得以完善,更好地在水处理领域发挥作用。参考文献1 任建新.膜分离技术及其应用.北京:化学工业出版社,20032 赵文蓓,赵文蕾.膜分离技术在水处理中的应用与发展.黑龙江水利科技,2002,(4):136~1383 胡士英,赵得地,董晓微.膜技术在水处理中的应用.新技术新工艺,1995,(5):32~334 P希利斯编,刘广立、赵广英译.膜技术在水和废水处理中的应用.北京:化学工业出版社,20035 许振良.膜法水处理技术.北京:化学工业出版社,20016 刘茉娥.膜分离技术应用手册.北京:化学工业出版社,20017 邵刚.膜法水处理技术及工程实例.北京:化学工业出版社,20028 续曙光,李锁定,刘忠洲.我国膜分离技术研究、生产现状及在水处理中的应用.环境科学进展,1997,5(6):72~769 汪洪生,陆雍森.国外膜技术进展及其在水处理中的应用.膜科学与技术,1999,19(4):17~2210 BergmanRA.MembraneSofteningVersusLimeSofteninginFlorida.Desalination,1995,102:11~2411 BetrandS,LemaitreI,WittmannE.PerformanceofaNanofiltrationPlantonHardandHighlySulphatedWaterDuringTwoYearsofOperation.\nDesalination,1997,113:227~28112 董秉直,曹达文,范瑾初.膜技术应用于净水处理的研究和现状.给水排水,1999,25(1):28~3213 Z阿默加德主编,殷琦、华耀祖译.反渗透—膜技术水化学和工业应用.北京:化学工业出版社,199914 艾翠玲,贺延龄,周孝德.膜技术在废水处理中的应用.苏州城建环保学院学报,2001,14(4):43~4715 孙卫明,侯惠奇.膜技术在水处理中的应用(上).上海化工,1999,24(13):7~816 孙卫明,候惠奇.膜技术在水处理中的应用(下).上海化工,1999,24(14):6~817 高以煊,叶凌碧.膜分离技术基础.北京:科学出版社,198918 罗川南,杨勇.高分子分离膜材料亲水改性及对膜性能的影响.合成技术及应用,2002,17(2):23~2619 NeumanP,RohligR,KohstoBA,etal.Matellicmembranes.FiltrationSep,1998,35(1):40~4220 GenneI,DoyenW,AdriansensW,etal.OrganomineralUltrafiltrationMembranes.FiltrationSep,1997,34(9):964~96621 张守海,蹇锡高,杨大令.新型耐高温分离膜用高分子材料.现代化工,2002,22(增刊):203~20522 徐南平,邢卫红,王沛.无机膜在工业废水处理中的应用与展望.膜科学与技术,2000,20(3):23~2823 陆晓峰,卞晓锴.超滤膜的改性研究及应用.膜科学与技术,2003,23(4):97~102,11524 李娜,刘忠洲,续曙光.再生纤维素分离膜制备方法研究进展.膜科学与技术,2001,21(6):27~3325 杜润红,赵家森.一种新的膜材料———聚苯硫醚.膜科学与技术,2002,22(3):56~5926 OsadaY,NakagawaT.MembraneScienceandTechnology.NewYork:MarcelDekkerInc,1992,321~32627 王庐岩,钱英,刘淑秀等.聚偏氟乙烯分离膜改性研究进展.膜科学与技术,2002,22(5):52~5728 张丹霞,王保国,陈翠仙.等离子体技术在膜分离领域的应用.\n膜科学与技术,2002,22(4):65~7029 邢丹敏,武冠英,胡家俊.改性聚氯乙烯超滤膜材料的研究(Ⅰ)———等离子体改性膜结构和性能的研究.膜科学与技术,1996,16(1):49~5530 陆晓峰,陈仕意,李存珍等.表面活性剂对超滤膜表面改性的研究.膜科学与技术,1997,17(4):6~4131 申颖洁,钟慧,吴光夏.膜表面光接枝改性的研究现状及展望.环境污染治理技术与设备,2001,2(6):31~3732 陆晓峰,刘光全,刘忠英等.紫外辐照改性聚砜超滤膜.膜科学与技术,1998,18(5):50~5333 李焦丽,奚西峰,李旭祥等.聚砜/聚丙烯酰胺合金膜及其在有机溶剂回收中的应用.膜科学与技术,2002,22(5):32~3534 VigoF,UlianaC.UltrafiltrationMembranesObtainedbyChemicalModificationofPolyvinylChloride.SyntheticPolymericMembranes.BSedlacek,JKahover,Ed,Berlin:WaterdeGrugter,1987,20335 邢丹敏,武冠英,胡家俊.改性聚氯乙烯超滤膜的研究(Ⅱ)———共混改性膜性能的研究.膜科学与技术,1996,16(2):45~5036 Tsuchihara,Toyji.SeperationofCharacteristicofCya2noethylatedPVCMembranes.Maku,1981,6(5):355~881    37 邱运仁,方惠会,熊曰华.金属2改性PVA复合亲水分相膜处理含油乳化废水.膜科学与技术,2001,21(6):16~2038 PearceG,AllamJ,CroosJ.UsingMembranestoTreatPotableWater.FiltrationSep,1998,35(1):30~3239 RoesinkHDW,KlezecwskiE,KoenhenDM.TheXIGA2Concept:aNewModuleSystemforUltrafiltration.Filtra2tionSep,1997,34(6):562~56340 StevensPV,NystromM,EhsaniN.ModificationofUltra2filtrationMembranewithGelatinProtin.BiotechnolBio2engng,1998,57(1):26~3膜分离技术在水处理中的应用原理与展望  PostBy:2010-10-1511:43:37\n 1、引言    水是人类赖以生存的重要自然资源。全球水环境质量的严重恶化和经济的高速发展,迫切要求适合时代发展的污水资源化技术,以缓解水资源的短缺状况,水资源短缺已成为制约社会发展的瓶颈。因此,近年来各种新型、改良型的高效废水处理技术应运而生。其中,膜技术以其高效、节能、设备简单、操作方便等特点,在水处理领域中的应用越来越广泛。比如2008年,北京要实现绿色奥运的几项举措都将应用到膜技术。国外有专家把膜技术的发展称为“第三次工业革命”,作为21世纪最有前途的高新技术之一。    2、膜分离技术的工作原理    膜分离技术,是利用一张特殊制造的,有选择透过性的薄膜,在外力推动下对混合物进行分离、提纯、浓缩的一种新型分离技术,是根据混合物的物理性质的不同用过筛的方法将其分离,或根据混合物的不同化学性质分离开物质。物质通过分离膜的速度(溶解速度)取决于进入膜的速度和进入膜的表面扩散到膜的龙眼、另一表面的速度(扩散速度)。而溶解速度完全取决于被分离于膜材料之间化学性质的差异,扩散速度除化学性质外还与物质的分子量有关,速度越大,透过膜所需的时间越短,混合物中各组分透过膜的速度相差越大,则分离效率越高。    3、膜分离技术在水处理中的应用    3.1膜分离技术在城市污水深度处理中的应用\n    城市污水深度处理和回用开始于20世纪60年代。城市污水具有量大、集中、水质较为稳定的特点,是一种潜在的水资源。城市污水深度处理通常以污水处理厂的二级或三级排放液为水源,用反渗透(RO)对它进行最后的脱盐,脱COD、BOD以及微量有机物和重金属离子的脱除,出水水质可达到饮用水标准。但由于某些主观原因,目前大多不直接用作饮用水。国外常将其注入地下蓄水层或淡水水库进行自然净化(通常需存放两年),也有用作工业冷却水,锅炉用水等非饮用目的。城市缺水制约着经济的发展,把城市的二级出水进行处理后再生回用是解决水源短缺的一条途径。二级排放液在进RO装置前需进行预处理,以使进水水质符合RO装置的使用要求。预处理的好坏是RO技术应用成败的关键。现在,RO前采用MF或UF预处理的深度水处理过程已成为非直接饮用水回用工程中城市废水处理的工业标准,国内外都在积极地采用膜技术大规模地把城市污水开发为新的水资源。我国采用“微絮凝纤维过滤+膜滤”对洗浴废水进行了研究,试验表明,此工艺具有出水稳定、占地面积小的特点。天津经济技术开发区污水处理厂引进挪威SBR序批式活性污泥法先进工艺,每天可提供10万吨二级生化处理出水作为水源,使污水深度处理后回用成为可能。我国的城市污水再生回用并不普及,膜技术在深度处理的应用相对也很少,今后我们还需在污水的再生回用和深度处理技术上进行研究。    3.2膜分离技术在工业废水处理中的应用    由于工业的发展,大量工业废水排入水体,这些工业废水,面广量大、危害深,大多含有不同浓度的化学物质,其中有些具有较高的经济价值,而有些则具有毒性,对人类环境有害。为保护环境不受污染,并回收有用物质,在工业废水排放之前必须进行净化处理,膜分离技术既能对工业废水进行有效的净化,又能回用其中的有用物质,同时还可节省能源。排水工程师:水处理中膜分离技术应用的研究发布日期:2011-1-3浏览次数:49本资料需要注册并登录后才能下载!·用户名 密码  验证码  找回密码·您还未注册?请注册您的账户余额为元,余额已不足,请充值。您的账户余额为元。此购买将从您的账户中扣除费用0.0元。本站资料统一解压密码:www.100gczg.com内容介绍>>   一前言  自从1748年法国科学家AbbleNallet发现了膜分离现象,即水能自然扩散到装有酒精溶液的猪膀胱膜内,各国学者就开始了对膜的研究[1]。膜分离技术与传统的分离过程如过滤、精馏、萃取、蒸发、重结晶、脱色、吸附等相比,具有操作简便,设备紧凑,工作环境安全,节约能耗和化学试剂,无相变,无污染等特点,被认为是21世纪最有发展前途的高新技术之一,将在21世纪的工业技术改造中起决定性的作用[2]。目前,膜分离技术已广泛应用于各行各业,尤其在水处理的领域,现已遍布生活污水、工业废水(电厂废水、重金属废水、造纸工业、印染废水、石化工业废水和医药废水)、生活饮用水等方面。  二.膜分离原理及其特点  膜分离技术是在外力推动下,利用一种具有选择透过性能的特制薄膜作为选择障碍层使混合物中某些组分易透过,其他组分难透过被截留,来达到分离、提纯、浓缩作用的技术[3],其工作原理为:一是根据混合物中组分质量、体积、大小和几何形态的不同,用过筛的方法将其分离;二是根据混合物不同化学性质进行分离,物质通过分离膜的速度(溶解速度)取决于进入膜内的速度和进入膜表面扩散到膜另一表面的速度(扩散速度),其中溶解速度完全取决于被分离物与膜材料之间化学性质。一般,膜的形态结构决定其分离机理及应用方式。根据结构的不同,膜可分为固膜和液膜,固膜又可分为对称膜(柱状孔膜、多孔膜、均质膜)和不对称膜(多孔膜、具有皮层的多孔膜、复合膜),液膜可分为存在于固体多孔支撑层中的液膜和以乳液形式存在的液膜两种。\n  目前,常用膜分离技术可分为反渗透(RO)、超滤(UF)、微滤(MF)、纳滤(NF)、电渗析(ED)和膜接触器(MC)等。在使用过程中,膜都需制成组件形式作为膜分离装置的分离单元,工业上常用的膜组件形式有板框式、圆管式、螺旋卷式和中空纤维式。后三种皆为管状膜,差别主要是直径不同:直径大干10mm的为管式膜,直径在0.5~10mm之间的是毛细管式膜,直径小于0.5mm的为中空纤维膜。管状膜直径越小,则单位体积里的膜面积越大。废水处理中常用膜分离法如表所示[4]。  与传统分离技术相比,膜分离技术具有以下特点:①膜分离是可分离相对分子量为几千甚至几百物质的高效分离过程。②膜分离过程基本不发生“相”的变化,耗能低,能量转化率高。③膜分离过程可在常温下进行,适用于热敏性物料如果汁、酶、药物等的分离、分级和浓缩。④膜分离设备的运动部件少,结构简单,操作、控制、维修方便。⑤膜分离效率高,设备体积小,占地少,适用范围广。三、膜分离技术在生活污水处理方面的应用  1.超滤在生活污水处理方面的应用  超滤以压力为驱动力,利用超滤膜的高精度截留性能进行固液分离或使不同分子量物质分级的膜分离技术。广泛应用于生活污水处理中的超滤膜过滤精度为0.01m,对胶体、藻类、病毒、有机大分子等有很好的去除率。山西大唐国际云冈热电有限责任公司的生活污水处理系统[6],就是采用生物处理+超滤的处理方案,经过长时间运行,结果证明在生活污水处理回用系统中采用超滤技术是可行的,处理后水质稳定且出水完全满足回用要求。  周李鑫、濮文虹等[7]以北京市郊某市政污水处理厂一期(氧化沟处理工艺)工程二沉池出水和二期(SBR处理工艺)工程二沉池出水为原水,分别采用絮凝一砂滤一超滤和直流一混凝一超滤的预处理工艺,结果表明,两种工艺出水的SDI,'b于2,浊度达No.04-0.1NTU,COD去除率20%~60%,一定程度上还降低了氨氮、总磷等污染物浓度,SDI、浊度与产水量均达到了反渗透进水水质的要求。  蔡虹、金同轨[8]使用孔径为0.25μm的中空纤维聚丙烯腈微滤膜和切割分子量为10000的中空纤维的聚砜超滤膜对经二级生物处理后的机场污水进行处理,结果浊度去除率达到99%,有机物去除率达到55%~85%,符合生活杂用水指标要求,达到污水回用的目的。  刘静伟等[9]设计了以超滤装置为主的水处理回用流程,如洗浴水一前处理一超滤处理一后处理一回用,可有效去除洗浴水中含有的大量皮肤分泌物、合成洗涤剂、污垢和香料等物质以及水中的细菌、真菌、大肠杆菌和病毒等物质,处理水水质满足回用要求。  2.纳滤在生活污水处理方面的应用  纳滤(NF)是近20年发展起来的介于反渗透(RO)和超滤(UF)之间的新型膜分离技术,对二价或多价离子及分子量介于200~500之间的有机物有较高脱除率。由于其特殊的孔径范围和制备时的特殊处理(如复合化、荷电化),使得纳滤膜具有较特殊的分离性能。生活污水一般用生物降解/化学氧化法结合处理,但氧化剂用量太大,残留物多[10],若在它们之间加上纳滤环节,使可被微生物降解的小分子(Mw<100)透过,截留住不可生物降解的大分子(Mw>100),然后大分子物质在化学氧化器处理后再进行生物降解,这样就可节约氧化剂和活性炭的用量,降低最终残留物的含量,其工艺流程见图1。\n刘研萍、王琳等[11]慢用新型抗污染滤膜对主要成分为某高校家属院区化粪池上清液的生活污水进行处理,结果经纳滤中试设备过滤的处理水的水质完全达到建设部颁布的生活杂用水标准,除不能饮用外,可满足浇花、洗车、洗衣、洗浴等各种生活杂用,回用率达75%。  四、膜分离技术在工业废水处理方面的应用  随着膜分离技术的发展,其在生活污水和工业废水方面的应用越来越广泛,如循环冷却排污水、重金属废水、造纸废水、印染废水、制药废水等。  1.膜分离技术在循环冷却排污水处理方面的应用  火力发电厂一直是工业用水大户,其耗水量约占工业用水总量的20%左右。火电厂用水中循环冷却水的用量最大,因此许多火电厂把节水工作的重点放在循环冷却排污水回用上。于是,采用反渗透技术处理循环冷却水达到回用目的就显得十分重要[12]。河北某电厂共有6台发电机组,总循环冷却水量6.3万m3/h。循环水浓缩3倍左右,排污水约为900m3/h。该电厂地处北方缺水地区,淡水资源紧缺,为缓解供水矛盾,电厂投资建设了200m3/h,l1反渗透除盐水项目,以循环冷却排污水为水源,反渗透出水作为锅炉预脱盐补充水,通过泵打到煤场和输煤栈桥做喷淋水[13],结果实现回用及综合利用目的。其工艺流程如图2示。聂锦旭[14]用纳滤膜处理电厂冷却循环冷却排污水,经过强化微絮凝、强化过滤等预处理后,再通过纳滤膜出水,结果出水水质达到循环冷却水补充水的要求。在此基础上,以3×10m3/d规模为例,分析纳滤膜处理工艺的投资和运行费用可知,纳滤膜处理系统是一种经济、可行的循环冷却排污水处理工艺。  2.膜分离技术在重金属废水处理方面的应用  含硒的农业排放废水已在世界范围内成为一个新的污染源,如美国加利福尼亚州的SanJoaquin谷,盐化污水含硒量已达到4\n200mg/L。湿地环境受该废水污染,出现高比率的水鸟胚胎畸形和死亡的硒中毒现象。Kharaka等人[15]试验得出,采用纳滤技术处理加利福尼亚卅[SanJoaquin谷的重污染废水,可截留95%以上的硒和90%以上的其他多价阴离子。  纳滤膜处理大量污水且所需压力低,预处理步骤少,成本低,处理含硒的农业排放废水为其他含硒废水提供了突破性的处理方法。在金属加工和电镀工业中清洗水和电镀液中常含有浓度较高的重金属离子,如铜、镉、镍、铁等,采用纳滤膜可使这些金属离子浓缩10倍,并回收90%以上的废水。利用某些金属离子在一定氯离子浓度下可形成荷电和非荷电络合物的性质,用荷电纳滤膜可将它们分离开,如镉和镍在氯化纳浓度为0.5mo1/L时,前者以电中性络合物的形式存在,而后者形成荷正电络合物,于是带正电的纳滤膜可截留镍离子,实现两种离子的分离”[16]。  3.膜分离技术在造纸废水处理方面的应用  造纸废水是造成环境污染的重要因素,膜分离技术处理制浆造纸工业废水在国外已较成熟,主要使用纳滤和超滤处理制浆废水及回收有用副产品。纳滤膜可以代替吸收和电化学方法除去深色木质素和木浆漂白过程中产生的氯化木质素,因污染物中许多有色的物质都带有负电荷,易被负电荷的纳滤膜截留,且对膜不产生污染。PontiusEW.[17]采用纳滤膜处理造纸厂的废水,得到无色、透明,不含阴离子废物的渗透水。且渗透水COD、TOC和无机物含量的去除率均可达到80%以上。DePinho和Geraldes等采用纳滤与电渗析组合处理红麻制浆厂漂洗出水,结果阴离子几乎全部除去,NaCI量降低到60×10-6,基本可回用于造纸工艺。  杨友强、李友明等采用SPK100超滤膜对化机浆废水进行处理,超滤浓缩液的燃烧热为15.54kJ/g,固形物含量为188.9g/L,达到了碱回收工段的要求[18]。采用能耐介质pH值为1~14的无机分离膜处理碱性造纸黑液,不必调整黑夜pH值,就可以回收其中有用组分,分离过程为纯物理过程,流程简单,易于管理和维护。利用不同孔径的膜可分别回收纤维素、胶体SiO2、木质素和还原糖,最终透过液中主要含烧碱,调整其浓度,即可回用于蒸煮制糖。  除此之外,膜分离技术还可以与生物处理工艺相结合,即膜生物反应器。膜生物反应器是将膜分离技术与生物处理工艺相结合而开发的新型系统,是近年发展较快的高效废水处理技术,在处理难降解有机物废水方面有明显的优越性。采用中空纤维膜组件和活性污泥反应器组成的分置式膜生物反应器,对造纸废水的CODcr的去除率较高,处理后的水可回用,且出水稳定性好,一般稳定度可达到85%以上。  4.膜分离技术在印染废水处理方面的应用  染料工业生产过程中,会产生大量的高盐度(质量分数>5%),高色度(数万倍以上),高COD,(高达数万mg/L)的废水,且还混有相当数量的异构体。由于该类废水的BOD5与CODcr的比值通常低于0.3,可生物降解性差,同时废水中所含无机盐还将进一步降低废水的生物降解性。高浓度的染料废水对环境造成严重污染,直接影响染料工业的可持续发展。  刘梅红等[19]采用纳滤技术对上海某染料厂提供的蓝色染料废水进行处理,结果表明:纳滤膜对染料的截留率和色度的去除率保持在100%左右,即使过程回收率达到80%(浓缩5倍)情况下,膜对废水中色度和CODcr的去除率仍高达99%以上。陈国华等[20]采用ATF50型纳滤膜对香港的印染废水进行处理,COD分别为14000mg/L和5430mg/L的两股废水经纳滤后,COD截留率分别达到95%和80%~85%,出水达到香港排放标准。  膜技术不仅可以处理印染废水也可以回收其有用成分。董波等人[21]采用聚丙烯腈超滤膜进行了涂料废稀料的回收。结果表明,用超滤法可以回收涂料稀料中的溶剂,且回收的混合溶剂组成与原稀料溶剂组成基本相同,可用于洗罐和部分涂料的掺和料。  5.膜分离技术在石油化工废水处理方面的应用\n  石油工业废水主要包括石油开采和炼制过程中产生的含各种无机盐和有机物的废水,其成分复杂,处理难度大,一般方法难以取得理想的处理效果。膜技术可有效处理废水及回收有用物质。含酚的石油工业废水毒性很大,必须脱除后才能排放,若采用纳滤技术,不仅酚的脱除率可达95%以上,且在较低压力下就能高效地将废水中的镍、汞等重金属高价离子脱除,其费用比反渗透等方法低得多。Ohya等[22]成功地制备出一种聚酰亚胺纳滤膜,该纳滤膜具有高通量并耐高压、高温及耐有机溶剂的特点,截留相对分子质量为170~400,能有效地分离汽油和煤油。张裕卿等[23]研制出聚砜一A10,复合膜超滤技术,并用该复合膜对华北油田北大站外排水砂滤后水样进行了超滤处理,原水油的质量浓度为640mg/L,处理后油质量浓度小于0.5mg/L,完全符合回注水的要求,截留率皆在99%以上,复合膜运行一定时间后,清洗后水通量恢复率较高。李发永等[24\25]在国内最早采用膜技术处理采油污水,先用外管式聚砜(Ps)超滤膜处理采油污水;然后采用磺化聚砜(SPS)平板式和外管式超滤膜再次处理含油污水,结果表明SPS膜通量随磺化度的增加而提高,且优于Ps膜,透过液基本达到国家排放标准及低渗透油田注水标准。  6.膜分离技术在其他工业废水处理方面的应用  随着医药行业的发展,制药废水越来越多,已成为工业废水中的重要部分,膜分离技术是处理该类废水的新技术。近年来,超滤法在中药制剂领域内的应用也逐渐开展。任冬伟等人采用超滤法对生物农药新型苏云金杆菌(Bt)杀虫剂进行了工业性生产试验,结果对每釜6t发酵罐生产的料液,只须2h时即可浓缩完,细菌数由60(L/mL浓缩到150(L/mL,镜检观察细菌无伤害,且非常活跃,取得了满意的结果。张茂林等人[27]在东北制药厂采用超滤技术对传统的维生素c(Vc)生产工艺进行改造,使Vc收率提高5%,且节汽,节水,节能和减少环境污染。膜使用寿命达3年以上。除此之外,超滤和其他技术联用的处理效果更理想。刘路等[28]采用超滤与纳滤组合进行林可霉素发酵液的分离浓缩,超滤截留除去固体颗粒及蛋白质等大分子物质,起净化作用,纳滤基本截留全部的可林可霉素。  五.膜分离技术在生活饮用水处理方面的应用  膜分离技术在水的净化与纯化方面即从水中去除悬浮物、细菌、病毒、无机物、农药、有机物和溶解气体等发挥了独特的分离作用。微滤可去除悬浮物和细菌,超滤可分离大分子和病毒,纳滤可去除部分硬度、重金属和农药等有毒化合物,反渗透几乎可除去各种杂质,电渗析可除氟,电化膜过程可对水消毒及产生酸性水和碱性水,膜接触器可去除水中挥发性有害物质,因此欧、美、日等国家和地区将膜分离技术作为21世纪饮用水净化的优选技术[29]。我国反渗透应用始于20世纪70年代,90年代起在饮用水处理方面获得普及,目前已应用于家庭饮用纯水的处理。1999年l1月18日正式投产运行的秦皇岛热电纯净水公司的饮用水制水设备采用加拿大格兰特科技有限公司GRT—WP一13K型反渗透净水设备,由前处理、反渗透、杀菌处理系统等部分组成,净水产量2t/h。  六.结束语  半个世纪以来,膜分离完成了从实验室到大规模工业应用的转变,成为一项高效节能的新分离技术。膜分离技术在水处理方面的应用既保护环境,又回收有用物资。除上述应用外,膜分离技术在电镀废水、电泳漆废水、纤维工业废水、食品加工、医疗医药、摄影废水和放射性废水等方面也都有很多应用。但是膜技术毕竟还是一门年轻的发展中的综合性学科,膜分离技术正处于发展上升阶段,无论是理论上还是应用上都还有很多工作要做,所以还需要不断探索,不断开发新的过程,研制新的材料,将膜技术进一步发展和完善,使它在各个领域发挥更大的作用。