水处理工艺学习介绍 5页

  • 32.73 KB
  • 2023-01-03 08:30:33 发布

水处理工艺学习介绍

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
MBBR工艺原理是通过向反应器中投加一定数量的悬浮载体,提高反应器中的生物量及生物种类,从而提高反应器的处理效率。由于填料密度接近于水,所以在曝气的时候,与水呈完全混合状态,微生物生长的环境为气、液、固三相。载体在水中的碰撞和剪切作用,使空气气泡更加细小,增加了氧气的利用率。另外,每个载体内外均具有不同的生物种类,内部生长一些厌氧菌或兼氧菌,外部为好养菌,这样每个载体都为一个微型反应器,使硝化反应和反硝化反应同时存在,从而提高了处理效果。MBBR工艺兼具传统流化床和生物接触氧化法两者的优点,是一种新型高效的污水处理方法,依靠曝气池内的曝气和水流的提升作用使载体处于流化状态,进而形成悬浮生长的活性污泥和附着生长的生物膜,这就使得移动床生物膜使用了整个反应器空间,充分发挥附着相和悬浮相生物两者的优越性,使之扬长避短,相互补充。与以往的填料不同的是,悬浮填料能与污水频繁多次接触因而被称为“移动的生物膜”。MBBR是移动床生物膜反应器   MBBR工艺原理是通过向反应器中投加一定数量的悬浮载体,提高反应器中的生物量及生物种类,从而提高反应器的处理效率。由于填料密度接近于水,所以在曝气的时候,与水呈完全混合状态,微生物生长的环境为气、液、固三相。载体在水中的碰撞和剪切作用,使空气气泡更加细小,增加了氧气的利用率。另外,每个载体内外均具有不同的生物种类,内部生长一些厌氧菌或兼氧菌,外部为好养菌,这样每个载体都为一个微型反应器,使硝化反应和反硝化反应同时存在,从而提高了处理效果。   MBBR工艺兼具传统流化床和生物接触氧化法两者的优点,是一种新型高效的污水处理方法,依靠曝气池内的曝气和水流的提升作用使载体处于流化状态,进而形成悬浮生长的活性污泥和附着生长的生物膜,这就使得移动床生物膜使用了整个反应器空间,充分发挥附着相和悬浮相生物两者的优越性,使之扬长避短,相互补充。与以往的填料不同的是,悬浮填料能与污水频繁多次接触因而被称为“移动的生物膜”。   MBBR的主要特点是:   ①处理负荷高;   ②氧化池容积小,降低了基建投资;   ③ MBBR工艺中可不需要污泥回流设备,不需反冲洗设备,减少了设备投资,操作简便,降低了污水的运行成本;   ④MBBR工艺污泥产率低,降低了污泥处置费用;   ⑤ MBBR工艺中不需要填料支架,直接投加,节省了安装时间和费用。 生物流化床(Moving Bed Biofilm Reactor Process简称MBBR法)是生长生物膜的载体层在废水中不断流动的生物接触氧化法。载体是聚乙烯中空圆柱体,长5~7mm,直径10mm,内部有十字支撑,外部有翅片,密度0.95g/cm2,空隙率88%,可供生物膜附着的比表面积约 800 m2/m3,能给微生物提供良好的生长环境;填充率可高达67%,可在好氧操作下以空气搅拌,或在兼/厌氧操作下以机械搅拌,使生物接触材在水中均匀的悬浮流动。这种载体的特殊形状使微生物在有保护的载体内表面生长而去除废水中的 BOD5。 生物流化床运用生物膜法的基本原理,并结合了传统活性污泥法的优点,而又超越了活性污泥法及生物膜法的缺点及限制。聚偏氟乙烯(PVDF)中空纤维膜的应用取代传统活性污泥法中的二沉池,进行固液分离,有效的达到了泥水分离的目的。膜的高效截留作用,可以使生物池中的菌种浓度大大提高,使生化效率大大增强,有效去除氨氮、磷及难于降解的大分子有机物。     生物流化床系统有如下优点: ①  省地:占地仅为传统方法的五分之一至十分之一,并取消了二沉池。将传统的“初沉、生化及二沉”三个步骤合为一个步骤; ②  省时:比传统方法快一倍,只需2~6小时; ③  \n无须污泥回流或循环反冲洗;污泥产量极少; ④  操作简单:过程可实现自动化,易于操作和控制; 双滤料过滤器:是一种高效、易操作的污水处理设备。适用于含油污水的深度处理,对污水中悬浮物、铁离子及胶体物等的精细处理有较好的过滤作用。双滤料过滤器因为有着两种过滤介质:石英砂与无烟煤。故此得名。优点:它具有结构紧凑、操作方便、自动化程度高、运行平稳、设备滤速大、过滤精度高、截污能力强、反洗彻底及维护方便等特点,构造简单,使用周期长,反洗可自动化应用。因而在火力发电厂是一种常用且必须用的初级过滤设备。常常作为串联过滤的第一级过滤设备。技术特性1、结构独特,采用雨淋式设计结构过滤面积大,可降低穿透力,滤床稳定,提高过滤效果。2、滤料采用纯度高达99%以上的SiO2颗粒,其密度大、硬度强、表面光滑,反冲洗干净彻底,同时选用密度相对较大的磁铁矿石或锰砂作为一级滤料,这样不易损失滤料,延长使用寿命,再通过合理基配,能够有效的去除水中的悬浮物、胶状物及铁离子。3、雨淋式双层滤料过滤器下部采用小阻力配水系统,不受反洗强度限制,而且冲洗干净彻底,杜绝漏砂和乱层,对水中的悬浮物去除率在60%以上。4、处理量大,操作方便,过滤精度高,运行安全可靠。5、可与泵循环再生式核桃壳过滤器进行串联运行,以满足油田污水处理高精度运行的要求。6、可安装全自动控制系统,使设备自动运行,启动、反洗等全部自动化。  工作原理它以较大粒径的无烟煤和较小粒径的金刚砂为滤料,使滤层分布接近最理想的滤层状态,达到截污的最佳效果。滤料的比重不同,可保证反洗时滤层不混合。本设备广泛应用于油田水处理中,尤其是含油污水的处理,处理后的水质,提高到一个新水平,对油田过滤设备提升起到了较大的作用,本设备也适用于冶金、化工、纺织等其它行业的工业废水的深度处理。\n高级氧化技术:定义:高级氧化法(AdvancedOxidationProcess,简称AOPs)可将其直接矿化或通过氧化提高污染物的可生化性,同时还在环境类激素等微量有害化学物质的处理方面具有很大的优势,能够使绝大部分有机物完全矿化或分解,具有很好的应用前景。分类:高级氧化技术又称做深度氧化技术,以产生具有强氧化能力的羟基自由基(·OH)为特点,在高温高压、电、声、光辐照、催化剂等反应条件下,使大分子难降解有机物氧化成低毒或无毒的小分子物质。根据产生自由基的方式和反应条件的不同,可将其分为光化学氧化、催化湿式氧化、声化学氧化、臭氧氧化、电化学氧化、Fenton氧化等。光化学氧化法由于反应条件温和、氧化能力强光化学氧化法近年来迅速发展,但由于反应条件的限制,光化学法处理有机物时会产生多种芳香族有机中间体,致使有机物降解不够彻底,这成为了光化学氧化需要克服的问题。光化学氧化法包括光激发氧化法(如03/UV)和光催化氧化法(如Ti02/UV)。光激发氧化法主要以03、H202、02和空气作为氧化剂,在光辐射作用下产生·OH;光催化氧化法则是在反应溶液中加入一定量的半导体催化剂,使其在紫外光的照射下产生·OH,两者都是通过·OH的强氧化作用对有机污染物进行处理。催化湿式氧化法催化湿式氧化法(CWAO)是指在高温(123℃~320℃)、高压(0.5~10MPa)和催化剂(氧化物、贵金属等)存在的条件下,将污水中的有机污染物和NH3-N氧化分解成C02、N2和H20等无害物质的方法。声化学氧化声化学氧化中主要是超声波的利用。超声波法用于垃圾渗滤液的处理主要有两个方面:一是利用频率在15kHz~1MHz的声波,在微小的区域内瞬间高温高压下产生的氧化剂(如·OH)去除难降解有机物。另外一种是超声波吹脱,主要用于废水中高浓度的难降解有机物的处理。臭氧氧化法臭氧氧化法主要通过直接反应和间接反应两种途径得以实现。其中直接反应是指臭氧与有机物直接发生反应,这种方式具有较强的选择性,一般是进攻具有双键的有机物,通常对不饱和脂肪烃和芳香烃类化合物较有效;间接反应是指臭氧分解产生·OH,通过·OH与有机物进行氧化反应,这种方式不具有选择性。臭氧氧化法虽然具有较强的脱色和去除有机污染物的能力,但该方法的运行费用较高,对有机物的氧化具有选择性,在低剂量和短时间内不能完全矿化污染物,且分解生成的中间产物会阻止臭氧的氧化进程。可见臭氧氧化法用于垃圾渗滤液的处理仍存在很大的局限性。电化学氧化法电化学氧化法是指通过电极反应氧化去除污水中污染物的过程,该法也可分为直接氧化和间接氧化。直接氧化主要依靠水分子在阳极表面上放电产生的·OH的氧化作用,·OH亲电进攻吸附在阳极上的有机物而发生氧化反应去除污染物;间接氧化是指通过溶液中\nC12/C10。的氧化作用去除污染物。电化学氧化对垃圾渗滤液中的COD和NH3一N都有很好的去除效果,缺点是能耗较大。Fenton氧化法Fenton法是一种深度氧化技术,即利用Fe和H202之间的链反应催化生成·OH自由基,而·OH自由基具有强氧化性,能氧化各种有毒和难降解的有机化合物,以达到去除污染物的目的。特别适用于生物难降解或一般化学氧化难以奏效的有机废水如垃圾渗滤液的氧化处理。Fenton法处理垃圾渗滤液的影响因素主要为pH、H202的投加量和铁盐的投加量。类Fenton法类Fenton法就是利用Fenton法的基本原理,将UV、03和光电效应等引入反应体系,因此,从广义上讲,可以把除Fenton法外,通过H202产生羟基自由基处理有机物的其他所有技术都称为类Fenton法。作为对Fenton氧化法的改进,类Fenton法的发展潜力更大。阴极保护技术:(CathodicProtection)阴极保护技术是指通过电化学的方法,将需要保护的金属结构极化,使之电位向负向移动。以达到在环境介质中处于阴极,即被保护状态的地位的一种方法。阴极保护技术是一种电化学保护技术,其核心是在电解质环境中,将金属的电位向负向移动,以达到免蚀电位。两种阴极保护法:外加电流阴极保护和牺牲阳极保护。1、牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,使该金属上的电子转移到被保护金属上去,使整个被保护金属处于一个较负的相同的电位下。该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型(电流一般小于1安培)或处于低土壤电阻率环境下(土壤电阻率小于100欧姆.米)的金属结构。如,城市管网、小型储罐等。根据国内有关资料的报道,对于牺牲阳极的使用有很多失败的教训,认为牺牲阳极的使用寿命一般不会超过3年,最多5年。牺牲阳极阴极保护失败的主要原因是阳极表面生成一层不导电的硬壳,限制了阳极的电流输出。产生该问题的主要原因是阳极成份达不到规范要求,其次是阳极所处位置土壤电阻率太高。因此,设计牺牲阳极阴极保护系统时,除了严格控制阳极成份外,一定要选择土壤电阻率低的阳极床位置。  2、外加电流阴极保护是通过外加直流电源以及辅助阳极,是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,使被保护金属结构电位低于周围环境。该方式主要用于保护大型或处于高土壤电阻率土壤中的金属结构,如:长输埋地管道,大型罐群等。在采用阴极保护时,应具备以下条件:1.被保护构筑物必须是可导电的金属件,且具有足够低的纵向导电率;2.与低欧姆的接地装置不得有金属导电性连接;3.容器和管道均应具有足够电阻率的防腐层。注:随着防腐层电阻的增大,保护电流密度相应地降低,越加有利于电流均匀分布,扩大保护范围。当保护电流密度增大时对外部装置的干扰影响也增加。\n若管道建在或运行在高压电装置附近,就必须遵循Akf第三号推荐标准。若考虑到防爆和放接触电压,需要与接地的外部设备进行电连接或者这类连接决不可被取消,这是应按照Afk第九号标准推荐采用局部阴极保护技术。阳极保护技术:(先大电流再小电流,使极化后钝化,保持稳定状态)把电位与电流密度之间对应的关系画成曲线叫做极化曲线。具有钝性倾向的金属在进行阳极极化时,如果电流达到足够的数值,在金属表面上能够生成一层具有很高耐蚀性能的钝化膜而使电流减少,金属表面呈钝态。继续施较小的电流就可以维持这种钝化状态,钝态金属表面溶解量很小从而防止了金属的腐蚀,这就是阳极保护的基本原理。图为典型的钝性金属阳极保护曲线,曲线中表现出四个特性:表现出四个特性区域a. 活化区(曲线中AB段)施加阳极电流时,金属表面发生如下反应:Fe-->Fe2++2e此区处于活性溶解状态,且电位越正,电流密度越大,电流密度的大小反映出腐蚀的快慢。当电流密度超过峰值点后,电流急剧下降,这个峰值点对应称为致钝电流密度,对应的电位称为致钝电位。b.活化—钝化区(BC段)金属处于由活化状态向钝化状态的突变过程中,金属开始发、钝化,电流急剧下降,在金属表面可能生成二价到三价的不稳定氧化物。c.稳定钝化区(CD段)不锈钢中金属元素发生氧化反应,生成高价氧化物(膜),这种氧化物溶解量很小,即腐蚀速率很低,这正是阳极保护所需要的电位控制区,对应的电流密度称为维钝电流密度,可由控制仪的d.过钝化区(DF段)当电位高于稳定钝化区,电流又出现增大现象,钝化膜转化成可溶性的氧化物而遭受破坏,金属腐蚀重新加剧,这区域称为过钝化保护区。阳极保护酸冷器的工作原理是把与硫酸接触的全部表面作为阳极,另外设置一根或几根阴极,形成电流回路。向冷却器施加一定的电流,使其产生阳极极化,通过致钝电位,然后进入稳定钝化区并维持其电位在这个区域,依靠在钝化区新形成的钝化膜降低冷却器在硫酸中的腐蚀。