• 7.57 MB
  • 2023-01-05 08:30:33 发布

《污水处理培训知识资料》活性污泥法原理与应用(1)

  • 146页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
1活性污泥法\n一、活性污泥法起源1.1活性污泥法背景18世纪60年代欧洲工业革命,工业和城市化快速发展,大量的工业废水、生活污水未经处理直接排入水体,成为当时污染最为严重的地区。图11858年,伦敦发生“大恶臭(TheGreatStink)”事件\n1.2活性污泥法起源大事记1865年,英国成立河流污染皇家委员会1898年,成立污水处理皇家委员会,是污水处理技术发展的里程碑事件1908年,污水处理皇家委员会提出著名的“30:20(SS:30mg/L、BOD:20mg/L)+完全硝化”出水标准,1912年该标准被采纳,当时被视为污水处理工艺发展的巨大挑战。\n1.3活性污泥法发明过程第一阶段:认识到氧气对污水净化的作用1882年,英国的安格斯·史密斯博士尝试向污水中鼓入空气,发现在任何情况下曝气都会使污水腐败延迟,且更易形成硝酸盐氮。1891~1898年,英国人洛可克在著名的劳伦斯试验站,采用生物滤池对污水进行了类似的曝气研究。1897年,英国曼彻斯特大学吉尔伯特·福勒教授进行了污水曝气试验,产生了清澈的出水;同时也产生了快速沉淀的颗粒物,但福勒当时认为这些沉淀物是试验的失败之处。结论:认识到氧的存在会使污水中的物质得到良好降解,但污水处理效率的提高却收效甚微。\n1.3活性污泥法发明过程第二阶段:认识到活性污泥对污水的净化作用1911年,劳伦斯试验站的首席化学家克拉克(Clark)和盖奇(Gage)进行污水曝气实验,发现随着污水的不断加入和曝气时间的增长,池内出现了絮状沉淀物;并发现当曝气停止后,随着沉淀物排出,出水开始变清。--首次发现了絮状沉淀物对污水的净化作用。1913年,英国曼彻斯特戴维汉姆实验室的化学工程师阿登(Arden)和洛克(Locket)特进行了曝气实验,在实验室过程中未将絮状物排出,而是把絮状物留存下来继续曝气,发现污水净化周期从初始的3周减少到24h内。--首次验证了絮状沉淀物对污水的净化作用。阿登在《无需滤池的污水氧化试验1》一文中首次提出“活性污泥”的概念,对活性污泥的发明具有划时代的意义\n6什么是活性污泥法?以活性污泥为主体的污水生物处理技术。本质:天然水体自净化作用的人工强化,是好氧生物处理过程。应用:去除污水中溶解和胶体状态的可生物降解有机物。\n7(一)什么是活性污泥?由细菌、菌胶团、原生动物、后生动物等微生物群体及吸附的污水中有机和无机物质组成的、有一定活力的、具有良好的净化污水功能的絮绒状污泥。一、活性污泥\n88一组活性污泥图片\n9(二)曝气池活性污泥的性状颜色黄褐色、茶褐色状态似矾花絮绒颗粒味道土腥味,有霉臭味相对密度曝气池混合液:1.002~1.003回流污泥:1.004~1.006粒径0.02~0.2mm20~100cm2/mL比表面积1、正常pH略显酸性\n10(二)活性污泥的性状供氧不足或厌氧黑色灰白色供养过多或营养不足1、不正常\n1111曝气池\n1212\n1313曝气池出水堰\n1414曝气池混合液配水进入二沉池\n151、栖息着的微生物(三)活性污泥的组成大量的细菌真菌原生动物后生动物除活性微生物外,活性污泥还挟带着来自污水的有机物、无机悬浮物、胶体物;活性污泥中栖息的微生物以好氧微生物为主,是一个以细菌为主体的群体,除细菌外,还有酵母菌、放线菌、霉菌以及原生动物和后生动物。活性污泥中细菌含量一般在107~108个/mL;原生动物103个/mL,原生动物中以纤毛虫居多数,固着型纤毛虫可作为指示生物,固着型纤毛虫如钟虫、等枝虫、盖纤虫、独缩虫、聚缩虫等出现且数量较多时,说明培养成熟且活性良好。2、干固体和水分含水98%~99%干固体1%~2%MLSS\n16按McKinney的分析:混合液悬浮固体:MLSS=Ma+Me+Mi+Mii式中:Ma——有活性的微生物;Me——微生物自身氧化残留物,即内源代谢残留的微生物有机体;Mi——有机污染物,吸附在污泥上未被降解;Mii——无机悬浮固体,吸附在污泥上。3、活性污泥的组成:有活性的微生物存在形态——菌胶团:由细菌分泌的多糖类物质将细菌等包覆成的粘性团块。\n174、按有机性和无机性成分:MLSSMLVSS:70%MLNVSS:30%MLSS——混合液悬浮固体浓度,也叫污泥浓度(g/L),MLVSS——混合液挥发性悬浮固体浓度,表示混合液悬浮固体中有机物含量,但不仅是微生物的量,由于测定方便,目前还是近似用于表示污泥。MLNVSS——灼烧残量,表示无机物含量。MLVSS:一般范围为55%~75%,即MLVSS/MLSS=0.7~0.8,\n18污泥沉降比:SV(四)活性污泥的沉降浓缩性能取混合液至1000mL或100mL量筒,静止沉淀30min后,度量沉淀活性污泥的体积,以占混合液体积的比例(%)表示污泥沉降比。可反映污泥的沉降性能。污泥沉淀30min后密度接近最大,故SV可反映沉降性能。能反映污泥膨胀等异常情况,可控制剩余污泥的排放量。城市污水正常值为15%~30%左右。简单易行但SV不能确切表示污泥沉降性能。\n1919污泥体积指数:SVI(污泥指数、污泥容积指数曝气池出口处出混合液,经30分钟静沉后,每g干泥所形成的湿污泥的体积,简称污泥指数,单位为mL/g。1L混合液沉淀30min的活性污泥体积(mL)SV(mL/L)SVI==1升混合液中悬浮固体干重(g)MLSS(g/L)反映污泥的凝聚、沉降性能。SVI应在100~150(有说70~100)。影响SVI的最重要的因素是微生物群体所在的增殖期。太高,沉降性能差,可能膨胀;太低,可能处在内源呼吸期,泥粒细小而紧密,易沉降,活性差,无机物多。实际运行中,一般用SV了解SVI,因为曝气池MLSS变化不大。\n206、污泥龄(SRT)θc:是指微生物平均停留时间,实质上是反应系统内的微生物全部更新一次所用的时间,在工程上,就是指反应系统内微生物总量与每日排出的剩余微生物量的比值。以θC表示,单位为d。定义式为(X)T——曝气池中活性污泥总质量,kg(ΔX/Δt)T——每天从系统中排出的活性污泥质量,kg/d\n21(1)含义:对于一定量的基质,达到一定处理效率所需要的微生物的量;对于一定进水浓度的污水(S0)只有合理选择污泥浓度(X)和恰当的污泥负荷Ls才能达到指定的处理效率;污泥负荷决定活性污泥的生长阶段;Ls决定活性污泥的凝聚、沉降和系统的处理效率。【7】污泥负荷\n22指曝气池的单位容积,在单位时间内所能够接受,并将其降解到某一规定额数的BOD5的质量,即:式中:Lv——容积负荷,kg(BOD5)/(m3·d)。【8】容积负荷实际计算:X、Ls、Lv可查p118表12-1.对于某些工业污水,试验确定X、Ls、Lv污泥负荷法应用方便,但需要一定的经验。\n2323二.活性污泥法的基本流程\n24三、活性污泥降解污水中有机物的过程活性污泥在曝气过程中,对有机物的降解(去除)过程可分为两个阶段:吸附阶段稳定阶段由于活性污泥具有巨大的表面积,而表面上含有多糖类的黏性物质,导致污水中的有机物转移到活性污泥上去。主要是转移到活性污泥上的有机物为微生物所利用。\n25第二节活性污泥法数学模型基础\n26莫诺特(Monod)模式方程式研究微生物的比生长速率与底物的浓度之间的关系——探讨微生物生长动力学\n27微生物增长速度和微生物本身的浓度、底物浓度之间的关系是废水生物处理中的一个重要课题。有多种模式反映这一关系。当前公认的是莫诺特方程式:式中:S——限制微生物增长的底物浓度,mg/L;μ——微生物比增长速度,即单位生物量的增长速度。\n微生物实际增长模型:其中μmax为最大比生长速率(T-1);Ks为微生物生长速率为最大比生长速率1/2时的基质浓度(g/L);Kd为微生物内源衰减速率微生物实际增长模型(考虑衰亡)\n29在生化反应中,反应速度是指单位时间里底物的减少量、最终产物的增加量或细胞的增加量。在废水生物处理中,是以单位时间里底物的减少或细胞的增加来表示生化反应速度。图中的生化反应可以用下式表示:即该式反映了底物减少速率和细胞增长速率之间的关系,是废水生物处理中研究生化反应过程的一个重要规律。及式中:反应系数又称产率系数,mg(生物量)/mg(降解的底物)\n基质降解模型:其中μmax为最大比生长速率(T-1);Ks为微生物生长速率为最大比生长速率1/2时的基质浓度(g/L);Kd为微生物内源衰减速率基质降解速率模型\n31微生物增长与底物降解的基本关系式式中:Y——产率系数;Kd——内源呼吸(或衰减)系数;X——反应器中微生物浓度。——微生物净增长速度;——底物利用(或降解)速度;\n32在实际工程中,产率系数(微生物增长系数)Y常以实际测得的观测产率系数(微生物净增长系数)Yobs代替。故式从上式得:式中:μ′为微生物比净增长速度。上列诸式表达了生物反应处理器内,微生物的净增长和底物降解之间的基本关系,亦可称废水微生物处理工程基本数学模式。可改写为:或同理,从式得:\n反应器动力学-物料平衡如何建立物料平衡方程?关键步骤:第一步:确定处理系统的组成第二步:必须确定控制单元第三步:建立某一种物质组分物料平衡方程总原则:一个物料方程只能针对一种成分!!\n反应器动力学-物料平衡Q=Qin-Qout+QpQ-控制单元内物质累积速率Qin-物质流进速率Qout-物质流进速率Qp-物质产生速率控制单元内某成分物料平衡总方程:QinQoutQp某控制单元内某组分物料图\n间歇反应器动力学模型Q=Qin-Qout+Qp其中Qin=0,Qout=0以反应器中底物降解与微生物生长为例:QinQoutQproduce某控制单元内某组分物料图Q=Qp控制单元内只需考虑反应器内部底物的降解和微生物积累,无外源添加或排出。\n间歇反应器污染物降解与微生物增长动力学模型:微生物增长模型:假设基质利用速率和微生物增长速率均符合Monod模型:其中qmax为最大比基质利用速率[(g基质/g微生物)/T];K为微生物生长速率为最大比生长速率1/2时的基质浓度(g/L);Xa为微生物浓度(g/L)底物降解模型:其中μmax为最大比生长速率(T-1);K为微生物生长速率为最大比生长速率1/2时的基质浓度(g/L);b为微生物内源衰减速率非稳态\n间歇反应器动力学模型从底物S降解和微生物Xa增长方程,可以看出两者均随时间t变化,同时又相互依赖由于Monod方程为非线性方向,无法得到底物S或微生X与反应t分析解底物降解:微生物增长:\n间歇反应器底物降解动力学模型求解:引入参数Y,即微生物细胞合成实际产率(消耗单位底物可合成的微生物量)假设条件:微生物衰亡速率忽略(b=0),在微生物指数生长期这一假设是合适的。可得出任何时刻微生物浓度Xa:Xa=Xa0+Y(S0-S)代入到底物降方程中,可得到间歇反应器中底物降解方程:\n根据边界条件(S(0)=S0;Xa(0)=Xa0),,可得出污水间歇处理系统中反应时间t-底物浓度S函数关系图(S-t关系太过复杂)污水间歇处理系统中,初始微生物接种浓度Xa0对微生物生长和底物降解影响显著接种污泥初始浓度过低,可显著增加污水净化所需时间,从而增大整个反应器体积和造价间歇反应器底物降解动力学模型求解:\n40第三节活性污泥法的发展\n活性污泥法典型工艺组成典型好氧活性污泥法处理工艺流程\n工艺主要组成部分及功能1、生化反应池:通过生化池中的微生物群落(活性污泥)多种物理(吸附、络合、沉淀)或生长代谢(主要化能异养、化能自养),实现废水中有机物降解去除。2、供气或曝气系统:由曝气风机或曝气器为微生物呼吸作用提供足够的溶解氧,是整个工艺的主要能耗部分。3、沉淀/回流系统:1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。\n43封闭环流式序批式曝气池的四种池型推流式曝气池完全混合式曝气池活性污泥法曝气反应池的基本形式其他曝气池基本上是这四种池型的组合或变形\n441、推流式曝气池推流式曝气池的长宽比一般为5~10;进水方式不限;出水用溢流堰。1.平面布置推流式曝气池的池宽和有效水深之比一般为1~2。2.横断面布置工艺流程:见p107水流:推流型底物浓度分布:进口最高,沿池长逐渐降低,出口端最低。理想推流:横断面上浓度均匀,纵向无掺混\n45根据横断面上的水流情况,可分为平流推移式旋转推移式\n4646推流式曝气池\n4747推流式曝气池\n482.完全混合曝气池池形根据和沉淀池的关系圆形方形矩形分建式合建式\n49\n50污水与回流污泥在进入曝气池后,立即与池中的混合液完全混合池中微生物的种类和浓度、底物浓度需氧速率各点相同——与推流式不同;对冲击负荷有较强的适应能力;出水水质不及传统法。完全混合法的特征完全混合法\n5151曝气池的三种池型\n5252机械曝气完全混合曝气池\n5353鼓风曝气完全混合曝气池\n5454局部完全混合推流式曝气池\n55553.封闭环流式反应池结合了推流和完全混合两种流态与推流式的区别:污水有40~300次循环\n564.序批式反应池(SBR)SBR工艺的基本运行模式由进水、反应、沉淀、出水和闲置五个基本过程组成,从污水流入到闲置结束构成一个周期,在每个周期里上述过程都是在一个设有曝气或搅拌装置的反应器内依次进行的。\n57(1)工艺系统组成简单,不设二沉池,曝气池兼具二沉池的功能,无污泥回流设备;(2)耐冲击负荷,在一般情况下(包括工业污水处理)无需设置调节池;(3)反应推动力大,易于得到优于连续流系统的出水水质;(4)运行操作灵活,通过适当调节各单元操作的状态可达到脱氮除磷的效果;(5)污泥沉淀性能好,SVI值较低,能有效地防止丝状菌膨胀;(6)该工艺的各操作阶段及各项运行指标可通过计算机加以控制,便于自控运行,易于维护管理。序批式活性污泥法(SBR法)SBR工艺与连续流活性污泥工艺相比的优点\n58(1)容积利用率低;(2)水头损失大;(3)出水不连续;(4)峰值需氧量高;(5)设备利用率低;(6)运行控制复杂;(7)不适用于大水量。序批式活性污泥法(SBR法)SBR工艺的缺点\n59传统活性污泥法渐减曝气分步曝气完全混合法浅层曝气深层曝气高负荷曝气或变形曝气克劳斯法延时曝气接触稳定法氧化沟纯氧曝气活性污泥生物滤池(ABF工艺)吸附-生物降解工艺(AB法)序批式活性污泥法(SBR法)二、活性污泥法的发展和演变有机物去除和氨氮硝化\n60一般采用3~5条廊道。充氧设备沿池长均匀分布。在推流式的传统曝气池中,混合液的需氧量在长度方向是逐步下降的。前半段氧远远不够,后半段供氧量超过需要,而充氧设备沿池长均匀分布。易受冲击负荷的影响,适应水质水量变化的能力差:污泥进入池后不能立即与混合液充分混合。1、传统推流式\n61\n622、渐减曝气:特征:充氧设备沿池长布置与需氧量匹配。节能\n63在推流式的传统曝气池中,混合液的需氧量在长度方向是逐步下降的。实际情况是:前半段氧远远不够,后半段供氧量超过需要。渐减曝气的目的就是合理地布置扩散器,使布气沿程变化,而总的空气量不变,这样可以提高处理效率。渐减曝气\n64特征:把入流的一部分从池端引入到池的中部分点进水。优点:均衡了污染负荷和需氧率提高了耐冲击负荷的能力3、阶段曝气(分步曝气)阶段曝气示意图\n65部分污水厂只需要部分处理,因此产生了高负荷曝气法。曝气池构造与传统推流式相同。曝气时间比较短,约为1.5~3h,BOD5处理效率仅约70%~75%左右。活性污泥处于旺盛生长期。4.高负荷曝气(改良曝气)\n66延时曝气的特点:曝气时间很长,达24h甚至更长,MLSS较高,达到3000~6000mg/L;活性污泥在时间和空间上部分处于内源呼吸状态,剩余污泥主要是一些难于生物降解的微生物内源代谢残留物,少而稳定,无需消化,可直接排放;适用于污水量很小的场合,近年来,国内小型污水处理系统多有使用。耐冲击负荷,无需初沉池,缺点:池体积大,基建费运行费高5、延时曝气\n6767\n686.接触稳定法(吸附再生法)混合液曝气过程中第一阶段BOD5的下降是由于吸附作用造成的,对于溶解的有机物,吸附作用不大或没有,因此,把这种方法称为接触稳定法,也叫吸附再生法。间隔较短时间测得的曲线,下降由吸附引起间隔较长时间测得的曲线\n69直接用于原污水的处理比用于初沉池的出流处理效果好;可省去初沉池;此方法接触时间短,氨氮难硝化,不适于处理溶解性有机污染物废水,剩余污泥量多。接触稳定法混合液的曝气完成了吸附作用,回流污泥的曝气完成了污泥再生。回流污泥的曝气使污泥再生曝气的同时吸附\n707.吸附-生物降解工艺(AB法)\n71特征:分为预处理段、A级和B级三段,无初沉池A级以高负荷或超高负荷运行,B级以低负荷运行,A级曝气池停留时间短,30~60min,B级停留时间2~4h。该系统不设初沉池,A级曝气池是一个开放性的生物系统。A、B两级各自有独立的污泥回流系统,两级的污泥互不相混。处理效果稳定,具有抗冲击负荷和pH变化的能力。该工艺还可以根据经济实力进行分期建设。7.吸附-生物降解工艺(AB法)\n728.完全混合法长条形池子的完全混合法:在分步曝气的基础上,进一步大大增加进水点,同时相应增加回流污泥并使其在曝气池中迅速混合,长条形池子中也能做到完全混合状态。\n73\n74(1)池液中各个部分的微生物种类和数量基本相同,生活环境也基本相同。(2)入流出现冲击负荷时,池液的组成变化也较小,因为骤然增加的负荷可为全池混合液所分担,而不是像推流中仅仅由部分回流污泥来承担。完全混合池从某种意义上来讲,是一个大的缓冲器和均和池,在工业污水的处理中有一定优点。(3)池液里各个部分的需氧量比较均匀。完全混合法的特征完全混合法\n75759.深层曝气深井曝气法处理流程深井曝气池简图\n7676一般深层曝气池直径约1~6m,水深约10~20m。但深井曝气法深度可达150~300m,节省了用地面积。在深井中可利用空气作为动力,促使液流循环。深井曝气法中,活性污泥经受压力变化较大,实践表明这时微生物的活性和代谢能力并无异常变化,但合成和能量分配有一定的变化。深井曝气池内,气液紊流大,液膜更新快,促使KLa值增大,同时气液接触时间延长,溶解氧的饱和度也随深度的增加而增加。需解决的问题:当井壁腐蚀或受损时,污水可能会通过井壁渗透,污染地下水。深层曝气普通曝气池经济深度:5~6m,占地面积大。\n77纯氧代替空气,可以提高生物处理的速度。纯氧曝气池的构造见右图。10.纯氧曝气缺点:纯氧发生器容易出现故障,装置复杂,运转管理较麻烦。在密闭的容器中,溶解氧的饱和度可提高,氧溶解的推动力也随着提高,氧传递速率增加了,因而处理效果好,污泥的沉淀性也好。纯氧曝气并没有改变活性污泥或微生物的性质,但使微生物充分发挥了作用。采用密闭池\n78\n79氧化沟是延时曝气法的一种特殊形式,它的池体狭长,池深较浅,在沟槽中设有表面曝气装置。曝气装置的转动,推动沟内液体迅速流动,具有曝气和搅拌两个作用,沟中混合液流速约为0.3~0.6m/s,使活性污泥呈悬浮状态。5~15min完成一次循环。廊道水流呈推流式,但总体接近完全混合反应器12.氧化沟\n80\n8113.浅层曝气特点:气泡形成和破裂瞬间的氧传递速率是最大的。在水的浅层处用大量空气进行曝气,就可以获得较高的氧传递速率。1953年派斯维尔(Pasveer)的研究:氧在10℃静止水中的传递特征,如下图所示。\n82浅层曝气扩散器的深度以在水面以下0.6~0.8m范围为宜,可以节省动力费用,动力效率可达1.8~2.6kg(O2)/kW·h。可以用一般的离心鼓风机。浅层曝气与一般曝气相比,空气量增大,但风压仅为一般曝气的1/4~1/6左右,约10kPa,故电耗略有下降。曝气池水深一般3~4m,深宽比1.0~1.3,气量比30~40m3/(m3H2O.h)。浅层池适用于中小型规模的污水厂。由于布气系统进行维修上的困难,没有得到推广利用。\n8314.活性污泥生物滤池(ABF工艺)上图为ABF的流程,在通常的活性污泥过程之前设置一个塔式滤池,它同曝气池可以是串联或并联的。\n84塔式滤池滤料表面附着很多的活性污泥,因此滤料的材质和构造不同于一般生物滤池。滤池也可以看作采用表面曝气特殊形式的曝气池,塔是一外置的强烈充氧器。因而ABF可以认为是一种复合式活性污泥法。活性污泥生物滤池(ABF工艺)\n8515.序批式活性污泥法(SBR法)SBR工艺的基本运行模式由进水、反应、沉淀、出水和闲置五个基本过程组成,从污水流入到闲置结束构成一个周期,在每个周期里上述过程都是在一个设有曝气或搅拌装置的反应器内依次进行的。\n86(1)工艺系统组成简单,不设二沉池,曝气池兼具二沉池的功能,无污泥回流设备;(2)耐冲击负荷,在一般情况下(包括工业污水处理)无需设置调节池;(3)反应推动力大,易于得到优于连续流系统的出水水质;(4)运行操作灵活,通过适当调节各单元操作的状态可达到脱氮除磷的效果;(5)污泥沉淀性能好,SVI值较低,能有效地防止丝状菌膨胀;(6)该工艺的各操作阶段及各项运行指标可通过计算机加以控制,便于自控运行,易于维护管理。序批式活性污泥法(SBR法)SBR工艺与连续流活性污泥工艺相比的优点\n87(1)容积利用率低;(2)水头损失大;(3)出水不连续;(4)峰值需氧量高;(5)设备利用率低;(6)运行控制复杂;(7)不适用于大水量。序批式活性污泥法(SBR法)SBR工艺的缺点\n88第四节气体传递原理和曝设备\n89活性污泥法的三个要素构成活性污泥:引起吸附和氧化分解作用;有机物:是处理对象,也是微生物的食料;溶解氧:没有充足的溶解氧,好氧微生物既不能生存,也不能发挥氧化分解作用。\n90一、气体传递原理双膜理论①认为在气液界面存在着二层做层流流动的膜:气膜和液膜。②传质阻力仅存于这两层膜。气液界面达到平衡态,无阻力。③传质推动力气膜:氧分压差液膜:氧浓度差④氧的传质阻力主要在液膜上,故液膜内的氧的传质是控制步骤。\n91在废水生物处理系统中,氧的传递速率可用下式表示:式中:dM/dt——氧传递率;M——氧的质量;D——液膜中氧的扩散系数;A——气液接触面的面积;cs——氧在溶液中的饱和浓度;c——溶液中溶解氧的浓度。而dM=Vdc,V为液相主体体积,则上式可改写成:为液膜中氧分子的传质系数。表示氧分子的总传质系数。为氧转移速率——液相中溶解氧浓度变化速率氧传递率:单位时间通过气液界面的氧的质量\n92由此上式变为:将上式进行积分,可求得总的传质系数:KLa值受污水水质的影响,把用于清水测出的值用于污水,要采用修正系数α,同样清水的cs值要用于污水要乘以系数β,因而上式变为:式中:c1,c2——t1,t2时溶液中氧的浓度。\n9393提高氧转移速率的措施提高KLa值提高紊流程度,降低液膜厚度;加速气液界面的更新;微孔曝气,增大气液接触面积。2.提高cs值提高气相氧分压,如采用纯氧曝气、深井曝气。\n94二、氧气转移影响因素(1)污水水质污水中的杂质对氧气的转移以及溶解度有一定影响,如表面活性物质会形成一层膜,增加楚地阻力所以引入小于1的修正系α数,则有:\n95(2)水温水温上升,水的粘度降低,液膜厚度减小,Kla值增高;氧气在水中的溶解度随温度上升而降低。温度对氧气转移有二种相反的影响,但不能相互抵消,总体上,低温有利于氧气的转移。\n96(3)氧分压氧分压越高,越有利于氧气的转移。\n97曝气的作用与曝气方式曝气方式:1.鼓风曝气系统2.机械曝气装置:纵轴表面曝气机、横轴表面曝气器3.鼓风+机械曝气系统4.其他:富氧曝气、纯氧曝气\n9898常用鼓风机形式\n99微孔曝气设备圆盘式微孔扩散器管式微孔扩散器\n100微孔曝气盘\n101101微孔曝气管\n102102微孔曝气管\n103微孔曝气设备测试\n104104微孔曝气设备安装\n105105微孔曝气设备的运行状况\n106可变微孔曝气器安装\n107五龙口二期\n108机械曝气:表面曝气机\n109机械曝气:表面曝气机曝气的效率取决于:曝气机的性能曝气池的池形倒伞形平板形泵形这类曝气机的转动轴与水面平行,主要用于氧化沟。竖式曝气机卧式曝气刷\n110110曝气转刷\n111\n112112测试中的曝气转碟\n113第五节去除有机污染物的活性污泥法过程设计\n114114活性污泥系统工艺设计主要设计内容:根据进出水质的要求确定以下内容(1)工艺流程选择;(2)曝气池容积和构筑物尺寸的确定;(3)二沉池澄清区、污泥区的工艺设计;(4)供氧系统设计:供氧量、曝气设备选择;(5)污泥回流设备设计:剩余污泥量。主要依据:水质水量资料生活污水或生活污水为主的城市污水:成熟设计经验工业废水:试验研究设计参数\n115污泥泥龄法一、曝气池容积的设计计算:纯经验方法有机物负荷法由于当前两种形式的曝气池实际效果差不多,因而完全混合的计算模式也可用于推流式曝气池的计算。\n116有机物负荷的两种表示方法活性污泥负荷LS(简称污泥负荷)曝气区容积负荷LV(简称容积负荷)\n1171.有机负荷法\n118定义:指单位质量活性污泥(干重)在单位时间内所能够接受,并将其降解到某一规定额数的BOD5量,即:式中:Ls——污泥负荷率,kgBOD5/(kgMLVSS·d);Q——与曝气时间相当的平均进水流量,m3/d;S0——曝气池进水的平均BOD5值,mg/L;X——曝气池中的污泥浓度,MLSS或MLVSS,mg/L1)污泥负荷(污泥负荷率)\n119(1)含义:对于一定量的基质,达到一定处理效率所需要的微生物的量;对于一定进水浓度的污水(S0)只有合理选择污泥浓度(X)和恰当的污泥负荷Ls才能达到指定的处理效率;污泥负荷决定活性污泥的生长阶段;Ls决定活性污泥的凝聚、沉降和系统的处理效率。【1】污泥负荷\n120(2)曝气池容积计算①由Ls的定义式②按《室外排水规范》的规定式中:Se——曝气池出水的平均BOD5值,mg/L;X——曝气池中的污泥浓度,MLSS或MLVSS,mg/L\n121指曝气池的单位容积,在单位时间内所能够接受,并将其降解到某一规定额数的BOD5的质量,即:式中:Lv——容积负荷,kg(BOD5)/(m3·d)。【2】容积负荷实际计算:对于某些工业污水,试验确定X、Ls、Lv污泥负荷法应用方便,但需要一定的经验。\n第七节活性污泥法系统设计方法的深化122\n水质特征的表征1、污水中C成分分析2、污水中N的组成3、污水中固体颗粒组成活性污泥法模型123\n124第九节活性污泥法系统设计、运行与管理\n125水力负荷有机负荷微生物浓度曝气时间微生物平均停留时间(MCRT)氧传递速率回流污泥浓度污泥回流比曝气池的构造pH和碱度溶解氧浓度污泥膨胀及其控制\n126流向污水厂的流量变化一、水力负荷一天内的流量变化随季节的流量变化雨水造成的流量变化泵的选择不当造成的流量变化\n127水力负荷的变化影响活性污泥法系统的曝气池和二次沉淀池。当流量增大时,污水在曝气池内的停留时间缩短,影响出水质量,同时影响曝气池的水位。若为机械表面曝气机,由于水面的变化,它的运行就变得不稳定。对二次沉淀池造成水力冲击影响。一、水力负荷\n128二、有机负荷率N污泥负荷率N和MLSS的设计值采用得大一些,曝气池所需的体积可以小一些。但出水水质要降低,而且使剩余污泥量增多,增加了污泥处置的费用和困难,同时,整个处理系统较不耐冲击,造成运行中的困难。为避免剩余污泥处置上的困难和保持污水处理系统的稳定可靠,可以采用低的污泥负荷率(<0.1),把曝气池建得很大,这就是延时曝气法。曝气区容积的计算,设计中要考虑的主要问题是如何确定污泥负荷率N和MLSS的设计值。\n129129三、微生物浓度在设计中采用高的MLSS并不能提高效益,原因如下:其一,污泥量并不就是微生物的活细胞量。曝气池污泥量的增加意味着泥龄的增加,泥龄的增加就使污泥中活细胞的比例减小。其二,过高的微生物浓度使污泥在后续的沉淀池中难以沉淀,影响出水水质。其三,曝气池污泥的增加,就要求曝气池中有更高的氧传递速率,否则,微生物就受到抑制,处理效率降低。采用一定的曝气设备系统,实际上只能够采用相应的污泥浓度,MLSS的提高是有限度的。\n130四、曝气时间在通常情况下,城市污水的最短曝气时间为3h,这与满足曝气池需氧速率有关。当曝气池做得较小时,曝气设备是按系统的负荷峰值控制设计的。这样,在非高峰时间,供氧量过大,造成浪费,设备的能力不能得到充分利用。若曝气池做得大些,可降低需氧速率,同时由于负荷率的降低,曝气设备可以减小,曝气设备的利用率得到提高。\n131五、微生物平均停留时间(MCRT)(又称泥龄)微生物平均停留时间至少等于水力停留时间,此时,曝气池内的微生物浓度很低,大部分微生物是充分分散的。微生物的停留时间应足够长,促使微生物能很好地絮凝,以便重力分离,但不能过长,过长反而会使絮凝条件变差。微生物平均停留时间还有助于说明活性污泥中微生物的组成。世代时间长于微生物平均停留时间的那些微生物几乎不可能在该活性污泥中繁殖。\n132六、氧传递速率氧传递速率要考虑二个过程要提高氧的传递速率氧传递到水中氧真正传递到微生物的膜表面必须有充足的氧量必须使混合液中的悬浮固体保持悬浮状态和紊动条件\n133七、回流污泥浓度回流污泥浓度是活性污泥沉降特性和回流污泥回流速率的函数。按右图进行物料衡算,可推得下列关系式:式中:X——曝气池中的MLSS,mg/L;XR——回流污泥的悬浮固体浓度,mg/L;R——污泥回流比。根据上式可知,曝气池中的MLSS不可能高于回流污泥浓度,两者愈接近,回流比愈大。限制MLSS值的主要因素是回流污泥的浓度。\n134134衡量活性污泥的沉降浓缩特性的指标,它是指曝气池混合液沉淀30min后,每单位质量干泥形成的湿泥的体积,常用单位是mL/g。(1)在曝气池出口处取混合液试样;(2)测定MLSS(g/L);(3)把试样放在一个1000mL的量筒中沉淀30min,读出活性污泥的体积(mL);(4)按下式计算:活性污泥体积指数SVISVI的测定七、回流污泥浓度\n135八、污泥回流率高的污泥回流率增大了进入沉淀池的污泥流量,增加了二沉池的负荷,缩短了沉淀池的沉淀时间,降低了沉淀效率,使未被沉淀的固体随出流带走。活性污泥回流率的设计应有弹性,并应操作在可能的最低流量。这为沉淀池提供了最大稳定性。\n136九、曝气池的构造推流式曝气池完全混合式曝气池示踪剂的研究表明:推流式曝气池的纵向混合很严重氧消耗率的数据表明:氧的传递受到限制处理量小时,只配有一个机械曝气机,很容易围绕曝气机形成混合区处理量大时,曝气池也相应增大,曝气池不是充分完全混合的\n137十、pH和碱度活性污泥pH通常为6.5~8.5。pH之所以能保持在这个范围,是由于污水中的蛋白质代谢后产生碳酸铵碱度和从天然水中带来的碱度所致。工业污水中经常缺少蛋白质,因而产生pH过低的问题。工业废水中的有机酸通常在进入曝气池前进行中和。生活污水中有足够的碱度使pH保持在较好的水平。\n138十一、溶解氧浓度通常溶解氧浓度不是一个关键因素,除非溶解氧浓度跌落到接近于零。只要细菌能获得所需要的溶解氧来进行代谢,其代谢速率就不受溶解氧的影响。一般认为混合液中溶解氧浓度应保持在0.5~2mg/L,以保证活性污泥系统的正常运行。过分的曝气使氧浓度得到提高,但由于紊动过于剧烈,导致絮状体破裂,使出水浊度升高。特别是对于好氧速度不快而泥龄偏长的系统,强烈混合使破碎的絮状体不能很好地再凝聚。\n139十二、污泥膨胀及其控制正常的活性污泥沉降性能良好,其污泥体积指数SVI在50~150之间;当活性污泥不正常时,污泥不易沉淀,反映在SVI值升高。混合液在1000mL量筒中沉淀30min后,污泥体积膨胀,上层澄清液减少,这种现象称为活性污泥膨胀。活性污泥膨胀可分为污泥中丝状菌大量繁殖导致的丝状菌性膨胀并无大量丝状菌存在的非丝状菌性膨胀\n140丝状菌性膨胀絮花状物质,其骨干是菌胶团正常的活性污泥丝状菌大量出现,主要是有鞘细菌和硫细菌不正常的情况下当污泥中有大量丝状菌时,大量有一定强度的丝状体相互支撑、交错,大大恶化了污泥的沉降、压缩性能,形成了污泥膨胀。\n141丝状菌性膨胀的主要因素污水水质运行条件工艺方法污水水质是造成污泥膨胀的最主要因素。含溶解性碳水化合物多的污水往往发生由浮游球衣细菌引起的丝状膨胀。含硫化物多的污水往往发生由硫细菌引起的丝状膨胀。水温低于15℃时,一般不会发生膨胀。pH低时,容易产生膨胀。\n142丝状菌性膨胀的主要因素污水水质运行条件工艺方法\n143143丝状菌性膨胀的主要因素污水水质运行条件工艺方法\n144非丝状菌性膨胀非丝状菌性膨胀主要发生在污水水温较低而污泥负荷太高时。微生物的负荷高,细菌吸收了大量的营养物,但由于温度低,代谢速度较慢,就积贮起大量高黏性的多糖类物质。这些多糖类物质的积贮,使活性污泥的表面附着水大大增加,使污泥形成污泥膨胀。发生污泥非丝状菌性膨胀时,处理效率仍很高,上清液也清澈。\n145在运行中,如发生污泥膨胀,针对膨胀的类型和丝状菌的特性,可采取的抑制措施:(5)城市污水厂的污水在经过沉砂池后,跳跃初沉池,直接进入曝气池。\n146146在设计时,对于容易发生污泥膨胀的污水,可以采用以下一些方法: