- 5.54 MB
- 2022-04-22 13:37:50 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'AnIntroductiontoUrbanWaterandWastewaterTreatmentTechnologies
Contents1.ContaminantsinWater2.ContaminantSourcesandTreatability3.BestAvailableTechnologies4.TrendofDevelopment2
1.ContaminantsinWater1.1TargetofWaterQualityControlWastewaterDischargeRegulationKeypoint:Protectionofhumanhealth3
1.2CapacityofWaterEnvironmentAsimplecalculationCi:ConcentrationofcontaminantiMi:MassofcontaminantiinwaterV:WatervolumeMi0:MassofcontaminantireceivedMir:Massofcontaminantiassimilated(removed)bythewaterbodyitself(selfpurification)4
1.2CapacityofWaterEnvironmentWaterqualitycriteriaThisisequivalenttoMirisameasureoftheenvironmentalcapacityCis:StandardforcontaminantiMis:Maximumpermissiblemassofcontaminantiinwater5
1.3WaterEnvironmentalStandardAmericanstandard:CleanWaterAct(CWA)AmbientWaterQualityCriteriafortheProtectionofHumanHealthAquaticLifeCriteriaNutrientCriteria6
1.3WaterEnvironmentalStandardAmericanstandard:CleanWaterAct(CWA)TheNRWQC2002includesCriteriaforprioritytoxicpollutants:120items(15forinorganic,105fororganicpollutants)Criteriafornonprioritypollutants:45itemsCriteriafororganoleptic(tasteandodor)effects:23itemsDownloadableathttp://www.epa.gov/waterscience/criteria/wqcriteria.html7
1.3WaterEnvironmentalStandardChinesestandard:EnvironmentalQualityStandardsforSurfaceWater(GB3838-2002)Fundamentalparameters(地表水环境质量标准基本项目标准限值):24itemsSupplementalparametersforsourcewaterforcommunitywatersupply(集中式生活饮用水地表水源地补充项目标准限值):5itemsSpecificparametersforsourcewaterforcommunitywatersupply(集中式生活饮用水地表水源地特定项目标准限值):80items8
表1地表水环境质量标准基本项目标准限值(单位:mg/L)9
表1地表水环境质量标准基本项目标准限值(单位:mg/L)10
表1地表水环境质量标准基本项目标准限值(单位:mg/L)11
表2集中式生活饮用水地表水源地补充项目标准限值(单位:mg/L)12
表3集中式生活饮用水地表水源地特定项目标准限值(单位:mg/L)13
表3集中式生活饮用水地表水源地特定项目标准限值(单位:mg/L)14
表3集中式生活饮用水地表水源地特定项目标准限值(单位:mg/L)15
1.4PollutantsofPublicConcernIndicativeparametersSuspendedsolids:SSDissolvedsolids:TDS(salinity)Organicsubstances:COD,BOD,TOC,UV…Dissolvedoxygen:DOAcidity:pHNutrientsNitrogen:TN,NH3-N,NO3-N,NO2-N…Phosphorous:TP,Portho,Ppoly,Poranic…16
1.4PollutantsofPublicConcernSyntheticorganicchemicals(SOCs)IndustrialproductssuchasPCBs(Polychlorinatedbiphenyls)IndustrialbyproductssuchasDioxinPesticidesandherbicidesDBPprecursorsNaturalorganicmatter(NOM)suchashumicacidsetc.Persistentorganicpollutants(POPs)DDT,PCBs,PAHs,Hexachlorobenzene,Dioxins,Furans…17
1.4PollutantsofPublicConcernEndocrinedisruptivechemicals(EDCs)HeavymetalssuchasCr,Pbetc.PCBs,hormones,dioxinsOrgano-chlorinatedpesticidesMicroorganismsGiardiaCryptosporidiumVirusesandbacteria18
2.ContaminantSourcesandTreatability2.1ContaminantSourcesPointsources:Sourcesofpollutantsfromadiscretelocationsuchasapipe,tank,pit,orditch.Non-pointsources:Sourceofpollutantsfromanumberofpointsthatarespreadoutanddifficulttoidentifyandcontrol.Non-pointsourcesattributeagreatdealtowaterpollution:Nutrients,pesticides,NOMCertainPOPsandEDCs19
2.2TreatabilityofPollutantsThetreatabilityofpollutantsdependsontheirSizeSuspendedColloidalSolubleChemicalpropertiesOrganicInorganicBiodegradabilityBiodegradableBio-non-degradable20
Waterqualityandtreatabilitymatrix21
DomesticwastewaterasanexampleMethodsofpollutantsclassificationSuspendedandsoluble:usinga0.45mmfilterSettleableandnon-settleable:plainsettlingfor2hoursCoagulableandnon-coagulable:coagulationandsettlingSecondarytreatment:activatedsludgeprocess(oxidationditch)22
23
2.3LimitationofConventionalTreatmentConventionaltreatmentTypicalprocessforwatertreatment:Coagulation–sedimentation–filtration–chlorinationTypicalprocessforwastewatertreatment(activatedsludgeprocess):Screening–primarysettling–biologicalunit–secondarysettling–chlorination24
2.3LimitationofConventionalTreatmentPollutantsthatcanberemovedSuspendedsolidsColloidalmatterBiodegradableorganicmatterBacteriaandvirusesPollutantsthatcannotberemovedMostofthedissolvedsolidsBio-non-degradableorganicmatterChlorinepersistentmicroorganisms(e.g.Cryptosporidium)25
3.BestAvailableTechnologies3.1StrategicConsiderationsontheSelectionofAvailableTechnologiesConventionaltechnologiesarefundamentaltechnologiesandtheirenhancementshouldbethefirstchoiceConversionofthepropertyofpollutantsissometimesmoreimportantthanacompleteremovalofthepollutantsCombinationofdifferenttechnologiesisthekeyforeffectiveremovalofpollutants26
3.2EnhancementofConventionalTechnologiesEnhancedcoagulationFortheremovalofNOMindrinkingwatertreatmentFortheenhancementofprimarytreatmentinwastewatertreatmentTakingNOMremovalasanexample–USEPAEnhancedCoagulationRule27
3.2EnhancementofConventionalTechnologiesEnhancedcoagulationRequirementsforenhancedcoagulation:EnhancedcoagulationrequiredasTOC>2mg/LStep1:percentremovalrequirements28
Step2:0.3/10slope29
pHadjustmentisthekeypoint30
3.2EnhancementofConventionalTechnologiesEnhancedfiltrationForthesafeguardofdrinkingwaterqualityespeciallythecontrolofGiardiaandCryptosporidiumGiardialamblia:cystsize8-12mmx7-10mmCryptosporidiumparvum:oosystsize4.5-5mmFortertiarywastewatertreatmenttoacquirehighqualityeffluent31
3.2EnhancementofConventionalTechnologiesEnhancedfiltrationRelationshipbetweenturbidityandparticlesize32
ExampleofturbidityandCryptosporidiumoocystdata33
3.2EnhancementofConventionalTechnologiesEnhancedfiltrationIronoxide-coatedmediaforNOMsorptionandparticulatefiltrationIronandaluminumhydroxide-coatedmediafortheremovalofCryptosporidium34
BreakthroughcurvesforNOMsorptionontocoatedsand35
Zetapotentialofuncoatedsandandsandcoatedwithironandaluminumhydroxide36
ImprovementoftheremovalofCryptosporidiumoocystsinsandfilters37
3.2EnhancementofConventionalTechnologiesEnhancementofbiologicalprocessFluidizedpelletbed(FPB)bioreactorasanexamplethroughacombinationofphysicochemicalprocessandbiologicalprocessHRTreducedtolessthan1hourPrimarysettlingandsecondarysettlingomittedOrganicremovalequivalenttoactivatedsludgeprocessHighTPremovalachieved38
FlowdiagramoftheFPBbioreactor39
Pellets(granulesludge)formedinthebioreactorSEMimageofmicrobesonthesurfaceofthepellets40
Distributionofaerobicandanaerobicbacteria41
RemovalofSS,COD,TPandTNbythebioreactor42
3.3OzoneandAdvancedOxidationProcessesReactivityofozoneinaqueoussolutionInanaqueoussolution,ozonemayactonvariouscompoundsbyDirectreactionwiththemolecularozoneIndirectreactionwiththeradicalspeciesthatareformedwhenozonedecomposesinwaterAdvancedoxidationOxidationbyfreeradicalreaction43
PathwaysofozonationPseudofirst-orderkineticequationofozonedecomposition44
Ozonedecompositionprocess45
Initiators,promotors,andinhibitorsoffree-radicalreactionsInitiators:thecompoundscapableofinducingtheformationofasuperoxideionO2-fromanozonemoleculePromotors:allorganicandinorganicmoleculescapableofregeneratingtheO2-superoxideanionfromthehydroxylradicalInhibitors:compoundscapableofconsumingOHradicalswithoutregeneratingthesuperoxideanionO2-46
Mechanismofozonedecomposition47
Ozonedecompositionprocessbyhydroperoxideions48
OzonedecompositionprocessbyUVradiation49
3.3OzoneandAdvancedOxidationProcessesOzonationofsyntheticorganicchemicalsTwoozonolysispathwaysofozonation:DirectattackbyelectrophilicordipolarcycloadditionIndirectattackbyfreeradicalsproducedbyreactionwithwaterandwaterconstituents50
KineticsofozonationofdissolvedorganicmicropollutantsOzonationpathwaysLet51
TheOHradicalsaregeneratedbyozoneattackonorganicandinorganicinitiators,andthereexistsarelationasThetotaloxidationrateoftheparticularsubstrateicanbewrittenas52
CharacteristicsofozonationoforganiccompoundsDecreaseofaromaticityUnsaturatedstructuretosaturatedstructureGenerationofintermediateproductsTotaldegradationoftenneedsveryhighozonedoseandtakeslongertime53
Example:Ozonationofaromaticcompounds54
3.3OzoneandAdvancedOxidationProcessesOzonationofnaturalorganicmatter(NOM)Aquatichumicsubstances(AHS):Isolationmethod:microfiltrationofthewaterandadsorptionoforganicsonXAD-8resinatpH=2,followedbyNaOHelutionandseparationbyprecipitationatpH=1.Twomaingroups:Humicacid–precipitatedfractionFulvicacid–remainingpartinthesolution55
Possiblereactionofzoneconsumptioninanaturalaquaticenvironmentd–inhibitorsi–initiatorsp–promotorss-scavengers56
OzoneactiononAHS57
TheeffectsofozonationonAHSFormationofhydroxyl,carbonylandcarboxylgroups;Increaseofpolarityandhydrophilicity;Lossofdoublebondsandaromaticity;Shiftinthemolecularweightdistributiontowardlower-molecular-weightcompounds.58
Py-GC-MSanalysisresults59
THMsandHPLCanalysisresults60
SpecificUVadsorption(SUVA)asaparametershowingthebiodegradabilityofAHSTOCorDOC:totalamountoforganiccarbonUV254:concentrationoforganicswithunsaturatedstructureSUVA:UV-to-TOCratiowhichrepresentsthefractionofunsaturatedfunctionalgroupsinunitconcentrationoforganicmatterHighSUVAvalue:lessbiodegradableLowSUVAvalue:morebiodegradable61
3.4MembraneTechnologiesSpectrumofimpuritiesinwaterandapplicablefiltrationprocesses62
3.4MembraneTechnologiesMembraneoperation63
3.4MembraneTechnologiesPressure-drivenmembraneoperationRO:atleasttwicetheosmoticpressuremustbeexerted–5to8MPaforseawaterNF:osmoticbackpressuremuchlowerthanRO–typically0.5to1.5MPaUF:operatingpressure50to500kPaMF:operatingpressuresimilartoUF64
3.4MembraneTechnologiesPermeationbehaviorDarcy’slawToaccountfortheeffectsofosmoticpressure65
3.4MembraneTechnologiesReductioninPermeateFluxRc:resistanceofconcentrationboundarylayerRcp:resistanceofconcentration-polarizationlayerD:diffusivity66
3.4MembraneTechnologiesReductioninPermeateFluxTheaccumulationofmaterialson,in,andnearamembraneinthepresenceofacrossflowReductionsinpermeatefluxovertime67
3.4MembraneTechnologiesMechanismofmembranefoulingCakeformationPoreblockageAdsorptivefoulingBiofoulingSEMimageofabiofilmformedonamembrane68
ConventionalUForMFprocess69
ConventionalNForROprocess70
3.4MembraneTechnologiesMembranebioreactor(MBR)PrincipleofMBR(a)MBR(b)Membranefortertiarytreatment71
3.4MembraneTechnologiesMembranebioreactor(MBR)MBRconfiguration(a)RecirculatedMBR(b)IntegratedMBR72
3.4MembraneTechnologiesMembranebioreactor(MBR)AdvantagesofMBRGreaterbiomassconcentrationandgreaterloadsHighremovalefficiencyLesssludgeproductionGreaterreliabilityandflexibilityofapplicationAbilitytoabsorbvariationsandfluctuationsintheappliedhydraulicandorganicloadCompletecontrolofthesludgeagetoallowthedevelopmentofslow-growingmicroorganisms(suchasnitrifyingbacteria)73
4.TrendofDevelopment4.1IntegrationofWaterandWastewaterSystemFundamentalconsiderationsWatersupplyandwastewatersystemsaresubsystemsintheseriesofurbanmetabolicsystemofwaterWatersupplyaccordingtothepurposesofuseregardingbothquantityandqualityDesignofwaterandwastewatersystemsasonecomprehensivewatersystem74
Futureurbanwatersystemwithapplicationofmembranetechnology75
4.2DecentralizedSystemsforWastewaterTreatmentandReusePhilosophyofdecentralizationNon-mixingGreywater:Largevolumes,CODdiluted,littlenutrients,pathogens,nopharmaceuticals,personalcareproductsBlackwater:Littlevolumes,possibilitiestominimisethemevenfurther,highCODandnutrients,pathogens,pharmaceuticalsandhormonesSeparatetreatmentTreatment–dependsontheobjectiveRecoveryofusefulresourcesWater,energy,fertilizer76
4.3ControlofMicropollutantsinWaterandWastewaterTreatmentControlofpollutantsourceUtilizationofhybridprocessAdvancedoxidationandcarbonadsorptionUtilizationofhybridmembraneprocessMembrane-powderedactivatedcarbonreactorIonexchangemembranereactor……77'