• 1.37 MB
  • 2022-04-22 11:41:01 发布

优化模型在生产计划制定中的应用毕业论文.doc

  • 50页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'17本科学生毕业论文(设计)题目(中文):优化模型在生产计划制定中的应用(英文):TheApplicationofOptimizationModelintheDraftofProductionPlan17 毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。作者签名:     日 期:     指导教师签名:     日  期:     使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。作者签名:     日 期:     26 湖南科技学院本科毕业论文(设计)诚信声明本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。本科毕业论文(设计)作者签名:二○一年月日26 毕业论文(设计)任务书课题名称:优化模型在生产计划制定中的应用学生姓名:王岩系别:数学与计算科学专业:信息与计算科学指导教师:吴清华2009年11月20日26 1、主题词、关键词: 生产计划;生产费用;生产率;变分法2、毕业论文(设计)内容要求:1)生产计划制定问题的提出背景及研究现状;2)生产计划制定问题模型建立与求解;3)模型分析与检验;论文要求:论点明确,计算、证明推导准确,所得结论正确;行文结构合理,层次分明,格式规范.3、文献查阅指引:中国期刊网上的相关资料、以及数学建模相关知识[1]姜启源,谢金星,叶俊.数学模型(第三版)[M].北京:高等教育出版社.2005.[2]朱晓明,谭永基.丁颂康.陈恩华.池洪.经济管理数学模型案例教程[M].上海:复旦大学出版社.2006.[3]李京文,钟学义.中国生产率分析前沿[M].北京:社会科学文献出版社,1998.[4]KamieMI,SchwartzNL.DynamicOptimization,TheCalculusandVariationsandOptimalControlinEconomicsandManagement[M].North2Holland:[s.n.],1981.[5]张恭庆.泛函分析讲义[M].北京:北京大学出版社,1987.4、毕业论文(设计)进度安排:(1)2009.11.16-2009.11.28下达任务书,学生开始进行资料查阅、完成论文提纲。(2)2009.12.25-2010.03.25撰写论文初稿。(3)2010.4.1-2010.04.13修改初稿,并定稿。(4)2010.04.19-2010.04.26进行毕业论文答辩。系意见:负责人签名:注:本任务书一式三份,由指导教师填写,经系审批后一份下达给学生,一份交指导教师,一份留系里存档。26 湖南科技学院本科毕业论文(设计)开题报告书论文(设计)题目优化模型在生产计划制定中的应用作者姓名王岩所属系、专业、年级数学系信息与计算科学专业06级01班指导教师姓名、职称吴清华讲师预计字数10000开题日期2009年12月22日选题的根据:1)说明本选题的理论、实际意义数学模型是对于一个现实对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学模型是将数学和现实生活联系起来的桥梁,在众多领域有着广泛的应用。而变分法作为数学问题中求极值的一种方法,正是优化模型在生产计划制定中的典型应用。所谓生产计划这里简单的看作是到每一刻为止的累积产量。变分法是处理函数的函数的数学领域,和处理数的函数的普通微积分相对。变分法的关键定理是欧拉-拉格朗日方程。它对应于泛函的临界点。在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。18世纪是变分法的草创时期,建立了极值应满足的欧拉方程并据此解决了大量具体问题。1964年,钱伟长教授明确提出了引进拉格朗日成子(Lagrangemultiplier)把有约束条件的变分原理化为较少(或没有)约束条件的变分原理的方法。日本的鹫津一郎教授、中国科学院院士钱伟长教授和刘高联教授等都是这方面的世界级大师。在生产计划制定中,如何选择使费用最省而经济利益最大,变分法是生产最优化最成功的方法。2)综述有关本选题的研究动态和自己的见解优化模型工作的一个很重要任务就是利用现有的条件规划出各种“最优”方案为现代生产计划和管理工作中的经济利益预估服务。这里通过变分法作出的求极限值的模型被称为优化模型。优化模型在现代企业管理中有很多的应用,如物流、生产计划、原材料采购、劳动力的分配、广告促销、运输、成本控制、项目择优、信贷投放、企业的资产负债情况等方面的问题都可以用线性规划来解决。基于优化模型在多方面的实际应用,我认为各个领域的人才尤其是企业生产管理者都应在这方面有着坚实的基础,因为它不仅提高我们自身的素质和逻辑思维能力,还能指导企业家提高企业的生产效率,使企业获得最大的利益以便更好的适应市场激烈的竞争。26 主要内容:(1)变分法和优化模型的概念及其相关内容;(2)论述变分法及优化模型的提出背景及应用领域;(3)根据生产计划制定中现有条件提出合理的假设,进而建立优化模型;(4)优化模型求解的计算机应用(用Matlab与Lindo求解);(5)论述优化模型在生产计划制定中的应用;(6)总结自己对优化模型的看法以及发展优化模型到其他领域的应用。研究方法:(1)通过查阅已有的文献资料,在原有的基础上对该问题进行研究和解答;(2)和做相近领域论文的同学进行讨论,对于讨论仍有疑难的问题请教指导老师;(3)在研究过程中采用分析与综合、比较与类比的方法;(4)对某些结论给出实例。完成期限和采取的主要措施:1.毕业论文进度安排:(1)2009年12月25日—2009年3月25日:进行资料查阅,深入研究相关文献,完成论文提纲,开始进入论文写作;(2)2010年2月—2010年4月:撰写毕业论文的初稿;(3)2010年4月1日—2010年4月14日:修改初稿,并定稿;(4)2010年4月15日—2010年4月18日:提交毕业论文,申请答辩;(5)2010年4月19日—2010年4月26日:进行毕业论文答辩。2、主要措施:为了能在规定的时间里出色地完成毕业论文,从严要求自己,多思考;与同学多交流,利用图书馆和中国学术期刊网查阅相关资料和文献,多请指导老师指导。26 主要参考资料:[1]姜启源,谢金星,叶俊.数学模型(第三版)[M].北京:高等教育出版社.2005.[2]朱晓明,谭永基.丁颂康.陈恩华.池洪.经济管理数学模型案例教程[M].上海:复旦大学出版社.2006.[3]李京文,钟学义.中国生产率分析前沿[M].北京:社会科学文献出版社,1998.[4]KamieMI,SchwartzNL.DynamicOptimization,TheCalculusandVariationsandOptimalControlinEconomicsandManagement[M].North2Holland:[s.n.],1981.[5]张恭庆.泛函分析讲义[M].北京:北京大学出版社,1987.[6]欧文.克雷斯齐格.泛函分析导论及其应用[M].北京:北京航天学院出版社,1987.指导教师意见:指导教师签名:系意见:签名:年月日26 开题报告会纪要时间地点与会人员姓名职务(职称)姓名职务(职称)姓名职务(职称)会议记录摘要:会议主持人:记录人:年月日指导小组意见负责人签名:年月日系部意见负责人签名:年月日注:此表由学生本人填写,一式三份,一份留系里存档,指导老师和本人各保存一份26 湖南科技学院毕业设计(论文)指导过程记录表毕业论文(设计)题目优化模型在生产计划制定中的应用学生姓名王岩学号200605002102专业班级信息与计算科学0601班指导教师吴清华职称讲师系(教研室)数学与计算科学指导过程记录指导内容记录(一)各阶段的任务安排,如何进行选题,分析课题的可行性,课题调研需要注意的问题,如何规范需求分析说明书以及查阅相关资料。学生签名:200年月日指导教师签名:200年月日指导内容记录(二)根据相关资料,了解相关的研究方法、领域和成果,并分析论文问题,提出自己的求解方法,并思考应用范围。学生签名:200年月日指导教师签名:200年月日指导内容记录(三)根据问题分析中的思路,进行论文的撰写,要注意论文的组成部分。绪论中应包含当前发展前景与论文相关内容研究的综述,还要注意论文各部分的衔接性与相关性。学生签名:200年月日指导教师签名:200年月日指导内容记录(四)论文总结中应包含对文中所用方法的分析与改进意见,摘要要指出论文的研究步骤和方法、主要内容及应用领域。方法的应用方面应该加以简单的阐述学生签名:200年月日指导教师签名:200年月日指导过程记录指导内容记录(五)注意论文主要包括的内容,顺序,格式。特别是有公式的段落,公式与文字要对齐,注意论文的排版,26 学生签名:200年月日指导教师签名:200年月日指导内容记录(六)修改论文的格式,有公式的段落,公式与文字要对齐,文中引文标注出现的顺序应为[1]、[2]、[3]……,后面的参考文献的顺序应与此一致,参考文献要有所参考内容的页号。自己再对照撰写规则仔细检查确保格式正确。学生签名:200年月日指导教师签名:200年月日答辩小组组长意见(对情况是否属实做出意见)组长(签名):200年月日湖南科技学院毕业论文(设计)答辩申请暨资格审查表26 学生姓名王岩学号200605002102系别数学与计算科学专业信息与计算科学班级0603班指导教师吴清华毕业论文(设计)题目:优化模型在生产计划中的应用内容综述26 (对毕业设计或论文的研究步骤和方法、主要内容及创新之处进行综述,提出答辩申请):本论文主要阐述了优化模型的建立及分析,并论述了优化模型在生产计划制定中的应用。优化模型是一种非常重要的数学模型,然而简单优化模型假设提供的原材料、生产环境以及人力资源都是静态的,且需求者要求的产量一定,但假设条件在现实的经济系统中不可能都是静态的,因此本文我们在分析了简单的优化模型后,又介绍了更加符合现实经济条件的动态优化模型,并对该模型进行了分析。本文除了给出了建立动态优化模型的两种方法,还对其进行了分析及应用,这对我们理解和运用优化模型都有一定的帮助。关于优化模型的应用方面,本文着重论述了其在生产计划制定中的应用。根据具体的实际问题,运用优化模型对生产计划的现有条件和客观要求进行分析,得出了最优的制定方案,并且提出了一些相关的改进建议,26 从而使企业获得最大的效益。经过几个月的努力,本人已经按相关要求完成了论文,现特向毕业论文工作领导小组提出答辩申请,希望给予准许。资格审查项目是否01工作量是否达到所规定要求0226 文档资料是否齐全(任务书、开题报告、答辩申请、定稿论文及其相关附件资料等)03文档是否符合规范化要求0426 是否按时向指导教师提交全部正式材料05是否剽窃他人成果或者直接照抄他人设计(论文)0626 是否为已公开发表的个人论著备选是否多人设计一个系统或者合作一个课题26 (多人设计一个系统或者合作一个课题)内容是否雷同系毕业论文(设计)工作领导小组意见:符合答辩资格,同意答辩□不符合答辩资格,不同意答辩□(公章)年月日注:此表为学生毕业论文(设计)定稿后申请答辩,及系领导小组对申请答辩学生进行资格审查时用;资格审查项目由指导教师填写。湖南科技学院本科毕业论文(设计)评审表论文题目优化模型在生产计划制定中的应用作者姓名王岩所属系、专业、年级数学与计算科学系信息与计算科学专业2006年级指导教师姓名、职称吴清华字数10000定稿日期2010-4-1526 中文摘要优化问题是在工程技术、生产计划、经济管理和科学研究等领域中最常遇到的一类问题.而优化模型作为数学模型中的一种常见模型,是数学建模在这些领域中的成功应用.本文在给出优化模型的一些定理和相关概念之后,介绍了优化问题的几种分类,如有约束的优化问题,无约束文化问题,线性优化问题,动态优化问题及其相关内容,并对优化模型做了简单的分析和说明.同时重点整理了动态优化问题的两种解法——多阶段转化和变分法,并分别对它们在动态优化中各自的应用范围和具体作用做了分析;接着根据对生产计划制定的研究,运用两种方法对其具体问题进行定量分析和模型建立;最后用优化模型解决了在生产计划中遇到的一些问题.关键词(3-5个)数学建模优化模型生产计划多阶段转化生产率变分法英文摘要Optimizationproblemsencounteredproblemsinengineeringtechnology,planofproduction,economicmanagementandscientificresearch.Butasakindofcommonmodelinmathematicmodel,itisappliedsuccessfullyintheseareas.Inthisarticle,aftersometheoremsweregivenoptimizationmodelandtherelevantconcepts,weintroducedseveralkindsofoptimizationclassification,suchasbindingunconstrainedoptimizationproblem,culturalproblems,linearoptimizationproblem,thedynamicoptimizationproblemandrelatedcontent.Wedidasimpleoptimizationmodelfortheanalysisandexplanation.Whilethispapersortedtwokindsofsolutionofthedynamicoptimizationproblem:multi-stagetransformationandthevariationalmethod,andanalyzedtheirapplicationscopeandconcreteaction.Thenaccordingtotheproductionplan,weusedtwokindsofmethodstocarryonquantitativeanalysisandmakemodelsforitsspecificproblems.Finallywesolvedsomeproblemsofoptimizationmodelinthedrafeofproductionplan.关键词(3-5个)MathematicalModelingOptimizationModelProgramProductionMultistageConversionProductivityTheVariationalMethod指导教师评定成绩评审基元评审要素评审内涵满分指导教师实评分选题质量25%目的明确符合要求选题符合专业培养目标,体现学科、专业特点和教学计划的基本要求,达到毕业论文(设计)综合训练的目的。10理论意义或实际价值符合本学科的理论发展,有一定的学术意义;对经济建设和社会发展的应用性研究中的某个理论或方法问题进行研究,具有一定的实际价值。1026 选题恰当题目规模适当,难易度适中;有一定的科学性。5能力水平40%查阅文献资料能力能独立查阅相关文献资料,归纳总结本论文所涉及的有关研究状况及成果。10综合运用知识能力能运用所学专业知识阐述问题;能对查阅的资料进行整理和运用;能对其科学论点进行论证。10研究方案的设计能力整体思路清晰;研究方案合理可行。5研究方法和手段的运用能力能运用本学科常规研究方法及相关研究手段(如计算机、实验仪器设备等)进行实验、实践并加工处理、总结信息。10外文应用能力能阅读、翻译一定量的本专业外文资料、外文摘要和外文参考书目(特殊专业除外)体现一定的外语水平。5论文质量35%文题相符较好地完成论文选题的目的要求。5写作水平论点鲜明;论据充分;条理清晰;语言流畅。15写作规范符合学术论文的基本要求。用语、格式、图表、数据、量和单位、各种资料引用规范化、符合标准。10论文篇幅10000字左右。5实评总分成绩等级指导教师评审意见:指导教师签名:说明:评定成绩分为优秀、良好、中等、及格、不及格五个等级,实评总分90—100分记为优秀,80—89分记为良好,70—79分记为中等,60—69分记为及格,60分以下记为不及格。评阅教师评定成绩评审基元评审要素评审内涵满分评阅教师实评分选题质量25%目的明确符合要求选题符合专业培养目标,体现学科、专业特点和教学计划的基本要求,达到毕业论文(设计)综合训练的目的。10理论意义或实际价值符合本学科的理论发展,有一定的学术意义;对经济建设和社会发展的应用性研究中的某个理论或方法问题进行研究,具有一定的实际价值。1026 选题恰当题目规模适当,难易度适中;有一定的科学性。5能力水平40%查阅文献资料能力能独立查阅相关文献资料,归纳总结本论文所涉及的有关研究状况及成果。10综合运用知识能力能运用所学专业知识阐述问题;能对查阅的资料进行整理和运用;能对其科学论点进行论证。10研究方案的设计能力整体思路清晰;研究方案合理可行。5研究方法和手段的运用能力能运用本学科常规研究方法及相关研究手段(如计算机、实验仪器设备等)进行实验、实践并加工处理、总结信息。10外文应用能力能阅读、翻译一定量的本专业外文资料、外文摘要和外文参考书目(特殊专业除外)体现一定的外语水平。5论文质量35%文题相符较好地完成论文选题的目的要求。5写作水平论点鲜明;论据充分;条理清晰;语言流畅。15写作规范符合学术论文的基本要求。用语、格式、图表、数据、量和单位、各种资料引用规范化、符合标准。10论文篇幅10000字左右。5实评总分成绩等级评阅教师评审意见:评阅教师签名:说明:评定成绩分为优秀、良好、中等、及格、不及格五个等级,实评总分90—100分记为优秀,80—89分记为良好,70—79分记为中等,60—69分记为及格,60分以下记为不及格。湖南科技学院本科毕业论文(设计)答辩记录表论文题目优化模型在生产计划制定中的应用作者姓名王岩所属系、专业、年级数学与计算科学系信息与计算科学2006级指导教师姓名、职称吴清华讲师答辩会纪要26 时间2010年4月22日地点理科综合楼D-510答辩小组成员姓名职务(职称)姓名职务(职称)姓名职务(职称)石循忠教授黄燕平讲师汤路金副教授吴清华讲师唐伟国副教授邓春红讲师答辩中提出的主要问题及回答的简要情况记录:会议主持人:记录人:年月日26 答辩小组意见评语:评定等级:负责人(签名):年月日系学位委员会意见评语:论文(设计)最终评定等级:负责人(签名):系部(公章)年月日校学位委员会意见评语:评定等级:负责人(签名):年月日26 26本科学生毕业论文(设计)题目(中文):优化模型在生产计划制定中的应用(英文):TheApplicationofOptimizationModelintheDraftofProductionPlan姓名王岩学号200605002102院(系)数学与计算科学系专业、年级信息与计算科学2006级指导教师吴清华2010年4月15日26 目录绪论11优化模型的提出背景及实际意义21.1优化模型的提出背景21.2优化模型的实际意义32优化模型的基本要素及分类42.1优化模型的基本要素42.1.1优化变量42.1.2目标函数42.1.3约束条件52.2优化模型的分类53生产计划制定及其求解方法63.1多阶段转化63.1.1多阶段转化动态规划的提出63.1.2最优化原则73.1.3多阶段转化对生产计划的应用83.2变分法143.2.1问题的提出153.2.2模型的假设153.2.3建模与求解163.2.4实 例19结束语20参考文献21致谢2226 优化模型在生产计划制定中的应用摘要优化问题是在工程技术、生产计划、经济管理和科学研究等领域中最常遇到的一类问题.而优化模型作为数学模型中的一种常见模型,是数学建模在这些领域中的成功应用.本文在给出优化模型的一些定理和相关概念之后,介绍了优化问题的几种分类,如有约束的优化问题,无约束优化问题,线性优化问题,动态优化问题及其相关内容,并对优化模型做了简单的分析和说明.同时重点整理了动态优化问题的两种解法——多阶段转化和变分法,并分别对它们在动态优化中各自的应用范围和具体作用做了分析;接着根据对生产计划制定的研究,运用两种方法对其具体问题进行定量分析;最后用优化模型解决了在生产计划中遇到的一些问题.【关键词】数学建模优化模型生产计划多阶段转化生产率变分法26 TheApplicationofOptimizationModelintheDraftofProductionPlan26 AbstractOptimizationproblemisaclassofproblemsmostcommonlyencounteredintheengineering,productionplanning,economicmanagementandscientificresearch.Theoptimizationmodelasacommonmodelofmathematicalmodelissuccessfulapplicationofmathematicalmodelingintheseareas.Thepaperintroducesseveralkindsofclassificationofoptimizationproblemsinthisarticle,suchasconstrainedoptimizationproblems,unconstrainedoptimizationproblems,linearoptimizationproblems,dynamicoptimizationproblemsandrelatedcontentaftersometheoremsandrelatedconceptsaregiven.Thepaperalsodoasimpleanalysisandexplanationfortheoptimizationmodelandaddresssortingtwosolutionsofthedynamicoptimizationproblems----multi-stagetransformationandthevariationalmethodatthesametime.What’smore,itrespectivelyanalyzestheirapplicatingrangeandspecificroleinthedynamicoptimization.Thenaccordingtotheresarchofproductingplan,itusestwokindsofmethodstoconductquantitativeanalysisforitsspecificissues.Finally,itsolvessomeproblemsofproductingplanthroughoptimizationmodel.【Keywords】MathematicalModelingOptimizationModelProgramProductionMultistageConversionProductivityTheVariationalMethod绪论26 一般地说,数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构[1].现实生活中运用数学建模来解决实际问题是十分常见的,可以说数学模型是将数学和现实生活联系起来的一座桥梁,而优化模型作为一种最常见且得到广泛应用的模型,正是数学建模在生产经济管理领域中的典型应用.优化问题是人们最常遇到的一类问题.设计师要在满足强度要求等条件下选择材料的尺寸,使结构总量最轻;公司经理要根据生产成本和市场需求确定产品价格,使所获利润最高;投资者要选择一些股票、债券“下注”,使收益最大,而风险最小.用数学建模的方法来处理优化问题,即建立和求解所谓优化模型.虽然由于建模时要做适当的简化,可能使得结果不一定完全可行或达到实际上的最优,但是它基于客观规律和数据,又不需要多大的费用.如果在建模的基础上再辅之以适当的经验和试验,就可以期望得到实际问题的一个比较圆满的回答.在决策科学化、定量化的呼声日益高涨的今天,这无疑是符合时代潮流和形势发展需要的.在市场经济中有关产品的效益是由生产的现实条件和需求者的需求量关系来决定的,由于产量与费用的这种波动关系,从而抽象出了优化模型.优化模型是在生产中是供应者在最节省能源的情况下获得最大的效益,对企业追求最大利润起到了相当重要的作用.它要求企业在生产中对原材料做到充分利用,正确把握产品产量和费用间的规律,最终又快又好的完成产量,使企业获得最大利润.优化模型是生产计划和经济管理中的一个经典模型,在对寻求最大效益方面的应用非常广泛.例如公司经理要根据生产成本和市场需求确定产品价格和生产计划,使利润达到最大;调度人员要在满足物质需求和装载条件下安排从各需求点的运量和路线,使运输总费用达到最低.然而简单优化模型假设提供的原材料、生产环境以及人力资源都是静态的,且需求者要求的产量一定,但假设条件在现实的经济系统中不可能都是静态的,因此本文我们在分析了简单的优化模型后,又介绍了更加符合现实经济条件的动态优化模型,并对该模型进行了分析.随着国内外对优化模型的不断研究和改进,其应用领域已不仅仅局限于单领域范围,也将其运用在石油开采、城市规划、人力资源分配等问题的分析上.当前全球经济正处于金融危机的严重影响下,如何在当前形势下制定出比较有利的生产计划对一个企业来说是非常重要的,本文我们将主要运用优化模型来研究生产计划的制定方案,并研究结果来确定比较合理的计划方案.1优化模型的提出背景及实际意义26 优化模型工作是利用现有的条件规划出各种“最优”方案为现代生产计划和管理工作中的经济利益预估服务.这里通过变分法作出的求极限值的模型被称为优化模型.优化模型在现代企业管理中有很多的应用,如物流、生产计划、原材料采购、劳动力的分配、广告促销、运输、成本控制、项目择优、信贷投放、企业的资产负债情况等方面的问题都可以用线性规划来解决.1.1优化模型的提出背景数学模型是对于一个现实对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构.数学模型是将数学和现实生活联系起来的桥梁,在众多领域有着广泛的应用.求解实际的最优化问题一般要进行两项工作.第一是将实际问题抽象地用数学模型来描述,包括选择优化变量,确定目标函数,给出约束条件;第二是对数学模型进行必要的简化,并采用适当的最优化方法求解数学模型.建立优化数学模型是求解优化问题的基础,有了正确、合理的模型,才能选择适当的方法来求解.数学模型的建立要求具备与实际问题有关的专业技术知识,确定优化追求的目标,并推导出相应的目标函数;分析影响目标函数的因素有哪些,它们之间的相互关系如何,选择哪些参数作为优化变量,同时又受到哪些约束条件的限制.优化变量、目标函数和约束条件是最优化问题数学模型的三个基本要素.这是优化模型简单的要素.针对生产计划制定中的具体要求,最常用的两种优化方法是多阶段转化和变分法.根据实际情况和两种方法的特点,对不同的生产计划采取不同的方法.多阶段转化是动态规划中解决多阶段决策过程最优化的一种方法.它把困难的多阶段决策问题变换成一系列互相联系比较容易的单阶段问题,解决了这一系列比较容易的单阶段问题,也就解决了这困难的多阶段决策问题.多阶段决策问题,是指这样一类活动的过程:在它的每个阶段都需要做出决策,并且一个阶段的决策确定以后,常影响下一个阶段的决策,从而影响整个过程决策的效果.多阶段转化就是使问题要在允许的各阶段的决策范围内,选择一个最优决策,使整个系统在预定的标准下达到最佳的效果.有时阶段可以用时间表示,在各个时间段,采用不同决策转化,它随时间而变动,这就有“动态”的含意.动态规划就是要在时间的推移过程中,在每个时间阶段选择适当的决策,以便整个系统达到最优.用动态规划可以解决管理中的最短路问题、装载问题、库存问题、资源分配、生产计划制定等最优化问题.而变分法作为数学问题中求极值的一种方法,是动态优化模型在生产计划制定中的典型应用.变分法是泛函分析(如果变量对应于某一函数类中的每一个函数都有一个确定的值,那么就称变量为函数的泛函,记为26 式中,为泛函,函数为泛函的宗量,为函数的自变量.)中的一种方法[4].如果连续泛函的改变量为式总可以表示为式中,是的线性形式;是的最大值.当上式中的时,,称为泛函的变分,记作,写成式中,是泛函对其宗量y的偏微分,.所谓生产计划这里简单的看作是到每一刻为止的累积产量.变分法是生产计划的制定进行建立模型的数学方法,使得在生产中获得最大的效益.变分法是处理函数的函数的数学领域,和处理数的函数的普通微积分相对.变分法的关键定理是欧拉-拉格朗日方程.它对应于泛函的临界点.在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似.18世纪是变分法的草创时期,建立了极值应满足的欧拉方程并据此解决了大量具体问题.1964年,钱伟长教授明确提出了引进拉格朗日成子(Lagrangemultiplier)把有约束条件的变分原理化为较少(或没有)约束条件的变分原理的方法.日本的鹫津一郎教授、中国科学院院士钱伟长教授和刘高联教授等都是这方面的世界级大师.在生产计划制定中,如何选择使费用最省而经济利益最大,变分法是生产最优化最成功的方法.1.2优化模型的实际意义优化模型工作的一个很重要任务就是利用现有的条件规划出各种“最优”方案为现代生产计划和管理工作中的经济利益预估服务.这里通过变分法作出的求极限值的模型被称为优化模型.优化模型在现代企业管理中有很多的应用,如物流、生产计划、原材料采购、劳动力的分配、广告促销、运输、成本控制、项目择优、信贷投放、企业的资产负债情况等方面的问题都可以用线性规划来解决.基于优化模型在多方面的实际应用,我认为各个领域的人才尤其是企业生产管理者都应在这方面有着坚实的基础,因为它不仅提高我们自身的素质和逻辑思维能力,还能指导企业家提高企业的生产效率,使企业获得最大的利益以便更好的适应市场激烈的竞争.2优化模型的基本要素及分类26 2.1优化模型的基本要素2.1.1优化变量一个实际的优化方案可以用一组参数(如几何参数、物理参数、工作性能参数等)来表示.在这些参数中,有些根据要求在优化过程中始终保持不变,这类参数称为常量.而另一些参量的取值则需要在优化过程中进行调整和优选,一直处于变化的状态,这类参数称为优化变量(或称为决策变量、设计变量).优化变量必须是独立的参数.例如,如果将举行的长和宽作为优化变量,则其面积就不是独立参数,不能再作为优化变量了.优化变量的全体可以用向量来表示.包含个优化变量的优化问题称为维优化问题,这些变量可以表示成一个维列向量,即中,表示第个优化变量.当的值都确定之后,向量就表示一个优化方案.2.1.2目标函数目标函数是用优化变量来表示的优化目标的数学表达式,是方案好坏的评价标准,故又称为评价函数[7].怒表函数通常表示为求解优化问题的实质,就是通过改变优化变量获得不同的目标函数值,通过目标函数值的大小来衡量方案的优劣,从而找出最优方案.目标函数的最优值可能是最大值,也可能是最小值,在建立优化问题的数学模型时,一般将目标函数的优化表示为极大或极小.目标函数的极小化可以表示为目标函数的极大化可以表示为求目标函数的极大化等效于求目标函数——的极小化.为规范起见,将求目标函数的极值统一表示为求其极小值.在优化问题中,如果只有一个目标函数,则其为单目标函数优化问题;如果有两个或两个以上目标函数,则其为多目标函数优化问题.目标函数越多,对优化的评价越周全,综合效果也越好,但是问题的求解也越复杂.一个优化向量确定维空间中的一个方案点,每一个方案点都有一个相应的目标函数值与其对应;但是对于目标函数值的某一定值,却可能有无穷多个方案点与其对应.目标函数值相等的所有方案点组成的集合称为目标函数的等值曲面.对于二维问题,这个点集为等值曲线;对于三维问题,这个点集为等值曲面;对于多维问题,这个点集为超平面.2.1.3约束条件26 约束条件是在优化中对优化变量取值的限制条件,可以是等式约束,也可以是不等式约束.等式约束的形式为不等式约束更为普遍,形式为式中,和分别表示等式约束和不等式约束的个数.其中,等式约束的个数必须小于优化变量的个数,如果相等,则该优化问题就成了没有优化余地的既定系统.等式约束也可以用两个不等式约束来代替.不等式约束可以用的等价形式代替.根据约束性质的不同,约束可以分为边界约束和性能约束两类.边界约束直接用来限制优化变量的取值范围,如长度变化的范围.性能约束则是根据某种性能指标要求推导出来的限制条件,如零件的强度条件.2.2优化模型的分类最优化问题的类别很多,可以从不同角度分类.以下是一些常见的分类和名称:(1)按照优化约束条件的有无,可分为无约束优化问题和有约束优化问题.(2)按照优化变量的个数,可分为一维优化问题和多维优化问题.(3)按照目标函数的数目,可分为单目标优化问题和多目标优化问题.(4)根据目标函数与约束条件线性与否,可分为线性规划问题和非线性规划问题.(5)当目标函数为优化变量的二次函数,均为线性函数时,则该优化问题称为二次规划问题.(6)当优化变量中有一个或一些只能取整数时,称为整数规划;如果只能取0或1,则称为0-1规划;如果只能取某些离散值,则称为离散规划.(7)当优化变量随机取值时,称为随机规划.(8)当目标函数为凸函数,可行域为凸集时,该优化问题为凸规划问题.(9)优化目标是一个数值,最优策略是函数,该优化问题为动态优化问题.3生产计划制定及其求解方法26 生产计划就是企业为了生产出符合市场需要或顾客要求的产品,所确定的在什么时候生产,在哪个车间生产以及如何生产的总体计划.企业的生产计划是根据销售计划制定的,它又是企业制定物资供应计划、设备管理计划和生产作业计划的主要依据.生产计划工作的主要内容包括:调查和预测社会对产品的需求、核定企业的生产能力、确定目标、制定策略、选择计划方法、正确制定生产计划、库存计划、生产进度计划和计划工作程序、以及计划的实施与控制工作.由上面优化变量、目标函数和约束条件三要素所组成的最优化问题的数学模型可以表述为:在满足约束条件的前提下,寻求一组优化变量,使目标函数达到最优值.一般约苏优化问题数学模型的表达方式为:式中,的缩写,表示“受约束于”或“满足于”的意思.当时即为不等式约束优化问题;当时即为等式约束优化问题;当,时便退化为无约束优化问题.根据生产计划制定的特点和实际情况,所以这里只提出针对它的两种求解方法——多阶段转化和变分法,并且利用这两种方法对具体问题进行分析与解决.3.1多阶段转化多阶段转化是指将动态优化的一种,它将多阶段决策问题转化成一系列简单的最优化问题.首先将复杂的问题分解成相互联系的若干阶段,每个阶段都是一个最优化子问题,然后逐阶段进行决策(确定于下端的关联),当所有阶段都确定了,整个阶段的决策也就确定了.3.1.1多阶段转化动态规划的提出令为表示系统状态的维列矢量,用描述在时刻的阶段系统状态.对阶段决策过程,系统状态由状态通过决策变换到另一个状态,在这一过程中产生的效益或损益统称为收益,记为;然后再由状态通过决策变换到状态,并产生效益……最后从状态通过决策变换到状态,并产生效益.要求选择该阶段中的个决策26 使下式的效益最大或最小(统称为最优效益):因为阶段过程的最优效益只是初始状态与阶段长度的函数,所以可以用表示式中,为初始状态;为阶段长度;是优化的意思,根据给定问题取最大值或最小值.使效益取极值的决策称为最优决策[7].3.1.2最优化原则一个过程的最优决策具有这样的性质,即无论其初始状态及其初始决策如何,其以后诸决策对以第一个决策所形成的状态作为初始状态都必须构成最优决策.最优化原则描述了最优控制决策的基本性质,它建立在不变嵌入原则的基本概念上.当求解一个特殊的最有决策问题时,可以把原来的问题嵌入一个较容易解的类似问题之中.如多阶段决策过程,可以将原来的多阶段最优化问题用求解一系列但各阶段决策问题来代替.根据最优化原则,阶段决策过程的总收益可以写成式中,第一阶段的收益,则代表初始状态的后个阶段的最优效益.利用上式最有效益的式子又可写成上式中右端的函数可以继续分解下去,它对阶段数的过程都成立.当阶段数为时,最优效益为所以也可以把N阶段决策过程的总效益写成从而最优效益可最终归结为26 并一步步展开.应用最优化原则,一个阶段决策过程就处理为一个个单阶段决策过程的序列,因此使这个最优化问题可以采用系统迭代的方式得到解决.前两个式子分别是动态优化中的逆序解法和顺序解法基本公式.3.1.3多阶段转化对生产计划的应用3.1.3.1问题的提出工厂制定生产计划,要考虑设备、市场容量和收益三方面因素某厂设备情况见表1.生产七种产品的单价收益和加工工时见表2,机床修理安排见表3.市场容量见表4.有如下限制:每种产品存货最多100件;存费每件每月0.5元;6月份末每种产品有50件存货;每天2班,每班8小时.盈利规定为收益减去存费,试安排1~6月份里各个月每种产品的产量,以使上半年盈利最多.讨论该厂设备结构的合理性,并作改进.表1设备情况机床磨床立式钻床卧式钻床镗床刨床台数42311表2单件产品收益和加工工时产品收益(元)106841193磨(小时)0.50.7000.30.20.5垂直钻孔0.10.200.300.60水平钻孔0.200.80000.6镗孔0.050.0300.070.100.08刨000.0100.0500.05表3停工维修安排(时间1个月)月份124567机床磨床卧式钻床镗床立式钻床磨床刨床26 立式钻床卧式钻床台数1211各1各1表4市场容量产品1月50010003003008002001002月60050020004003001503月300600005004001004月20030040050020001005月0100500100100030006月5005001003001100500603.1.3.2问题分析本问题的难点是同时考虑七种产品的优化产量,如果只有一种产品,运用动态规划可以方便地得出它的最优产量计划,于是我们先将系统分解成单种产品的子问题,再综合工时、收益进行局部调整以达产量整体最优.但分解决策思想没有充分把握整体关系,因此用动态规划处理才是最科学的,其实质是逆序推算.为判断设备结构是否合理,我们计算了按市场容量进行生产所需的工时,见表5.表5市场容量所需的工时数(小时)工序磨垂直钻孔水平钻孔镗孔刨1月1280520430161482月9053403709729.53月85039012091304月42023042082195月430230400110556月1170600296192.364.63.1.3.3基本假设1)不考虑排队等候加工问题.2)可同时维修的机器的种类和数目不受限制.3)在检修期间外,机床均能连续地正常工作.4)“市场需求”数据来自科学的预测,稳定可信.1至6月的产量安排是一个多阶段决策问题,设第月盈利为.26 其中为第种产品的单件收益,为该产品在月份的存贮量,需求3.1.3.4化模型的提出3.1.3.4.1模型I本问题变量和约束条件多达几十个,我们采用分解决策法.基本步骤是:(1)单独考虑产品PR,根据各月的市场容量,综合收益和存费,得出l~6月最优产量列,这一步动用动态规划.(2)把7个最优产量列合并起来,逐月检验各项工序的工时.遇到超时情况,衡量产品收益的大小和工时多少,一方面降低收益小、耗时大的产品产量,一方面把减少的该月产量尽可能推延到下一个月去完成.这一步是能否达到最优的关键.在步骤2中,把“减少的该月产量”变动到哪些月份中去,又是一个动态规划问题.为了计算的简便及存贮费小的目的,我们把它尽量推延到下一月,未必就是最优,但这个较优的结果与最优的目标很接近,而且实际的市场需求变动频繁.需要简单的方法与之适应,所以这种方法是可取的.第种产品在月内总盈利动态规划的逆推关系式为其中,是第种产品月后的总盈利(包括第月).边界条件是运用以上方法求出至七种产品各自的最优产量,见表6表6七种产品各自的最优产量产品26 1月5008003003008002001002月70060020005003002503月0000040004月20030040050020001005月010060010011003001006月550550035005500分析表61月的磨床、2月的卧式钻床工作超时.根据假设3,最优产量应尽量接近全月工时,即一月睹床11522时,二月卧式钻床384工时.以第一月为例.需要0.7小时,收益6元,需磨0.5小时,收益仅3元,自然以减少产量为宜.由此得出产量,,留到第二月的产量是件,件.得到上半年各产品的合理产量见表7.表7上半年生产计划产品1月50080030030080020002月70060020005003001403月0000040004月20030040050020001005月010060010011003001006月5505500350055003.1.3.4.2模型Ⅱ模型I实质是一种从局部到整体逐步探索优化的过程,模型Ⅱ提出了整体规划方案.根据动态优化原理,其中是第月的最优产量组合.若已知第月库容量,市场容量,可得第月第种产品最大库存量为:26 根据式(2),可得第月后的盈利与第月后盈利间的递推关系:并且满足约束条件:求解步骤:(1)对5月由3.1.3.4.2式(3)求最优,因为6月产量会约束5月的库存量,所以这—步确定了5月产量的限制条件.(2)对5月进行优化处理.(3)再对5、6月整体优化,以下工作以此类推.按以上步骤推算,我们发现5、6月的整体优化恰是3.1.3.4.2步骤(1)、(2)作出的结果向前推算到3月,这4个月的局部最优又共同达到了整体最优.对l、2月产量,用数学软件对3.1.3.4.2中式(3)进行计算,该结果与其后3至6月的优化产量能衔接起来.于是,我们用逆序算法较轻松地得出了六个月的最优安排.模型II的结果估于模型I相同,见表7,总盈利93648元.分析表7.3至6月充分达到了市场需求,2月和1月也是在工时约束下的最优结果,因此得到的确是考虑每月生产成品的最优产量安排.3.1.3.5模型分析生产计划随着下列因素变化:市场需求量、产品价格,设备结构和停工维修机床的日程安排.市场需求和产品价格变动必然带来生产计划的重新安排,求解模型就可得到不同形势下的最优生产计划.3至6月的生产计划并不受价格波动的影响.在设备所能提供的工时范围内,产量只随市场需求变动.价格因素的作用:以一月的优化为例,模型Ⅱ中用到的线性规划,即求下列问题:26 价格波动带来单位收益的变化,直接影响一月份的生产计划.作定性分析得:若产品的单件收益增大,则也变大.问题分析时,我们列出了表5.市场容量的工时要求,进一步算出按市场需求量生产所需机床台数.列于表8.表8按市场容量生产所需机床数机床磨竖钻平钻镗刨1月422112月311113月321114月212115月212116月42111分析表8可知该厂设备结构明显不合理.表现在(1)卧式钻床只需2台,可以减少一台.(2)镗床、刨床利用率不高(分别为32.3%和10.9%),但停工维修会导致多种成品不能生产.于是,我们对厂方有如下建议:(1)卖出一台卧式钻床.(2)如果每月只生产成品,重新安排检修时间,所有机床在四月集体大修,则其余五个月均能按市场容量生产,这样,总盈利达到109030元,增加了15382元.(3)提高镗、刨床的利用率,方法是生产半成品,在不考虑半成品存货限制情况下,重新作出停工检修安排如表926 表9重新安排后的维修日程月份机床月份机床1月卧钻一台4月立钻一台2月卧钻、磨各一台5月磨、立钻各一台3月镗床一台6月刨、卧钻各一台这样1月至6月均按市场需求量生产,此时,总盈利为116630元.(4)因为该厂的机床利用率都不超过60%很有潜力可挖,厂家应积极宣传促销,扩大市场需求量,以此获得更多的利益.3.1.3.6模型评价(1)模型I简化了问题的处理,是一种向最优化逼近的简便方法,但考虑的因素较多时,不一定能实现最优化.(2)模型Ⅱ为生产安排提供了科学思路,设计了逆序推算这一探索途径,但未能给出一般性的通用算法.(3)对设备结构和维修安排进行了改进,工厂的盈利和设备的利用率大大提高.(3)本模型没有对工序进行优化安排,不适于解决工序复杂,加工时间长的问题.3.2变分法最早的泛函 最简单的一类泛函表示为被积函数包含自变量,未知函数及导数.泛函的极值[3] 设,如果对于任意,当时,都有,则称泛函在取得极小值.类似可以定义极大值.极小值和极大值统称为极值.泛函的变分 函数在的增量记作称其为函数的变分,由它引起的泛函增量记作,如果可表示为,其中是的线性项,是的高阶项,称L为泛函在的变分,记作.同样可以定义泛函在的变分.若泛函在变分存在并且取到极值,则变分泛函极值的必要条件——欧拉方程[3]  讨论泛函在固定端点条件下取得极值的必要条件.泛函和端点条件表示为26 其中具有二阶连接偏导数.设3.2中泛函(3)在取得极值,满足3.2中式(4),则3.2中式(5)被称为欧拉方程[7].如果容许函数的一个端点如不固定,而是在一条给定的曲线上变动,于是端点条件表示为设3.2中泛函(3)在取得极值,满足上式(6),则3.2.1问题的提出工厂与客户签订了一项在某时刻提交一定数量产品的合同,在制定生产计划时要考虑生产和贮存2种费用.生产费用通常取决于生产率(单位时间的产量),生产率越高费用越大;贮存费用自然由已经生产出来的产品数量决定,数量越多费用越大.所谓生产计划这里简单的看作是到每一刻为止的累积产量.它与每单位时间(如每天)的产量可以互相推算.建模目的是寻求优化的生产计划,使完成合同所需的总费用(生产与贮存费用之和)最小或尽可能的小.在文献[1,2]中给出了数量且生产率无限制时的生产计划.讨论且生产率无限制时的生产计划,以及生产率有一个上界限制的情况下的优化生产计划.3.2.2模型的假设开始生产时刻记为,按照合同应在提交数量为的产品.到时刻为止的累积产量记作,即是生产计划.设单位时间生产的产量为生产率,记为,所以工厂单位时间的生产费用可以是生产率的函数,而单位时间的贮存费用则与产量有关,记为.于是从到时间段的总费用26 为了确定和的具体形式作如下假设:1)单位时间内生产率提高一个单位所需生产费用与此时生产率成正比.2)贮存费与贮存量(即累积产量)成正比.3)假定生产率的变化有一定的范围,比如生产率有一个上界,即是该工厂单位时间的最大生产能力.上述3.2.2中假设1)表明生产费用对生产率的变化率与成正比,于是由上面3.2.2中假设2)可得3.2.3建模与求解3.2.3.1生产率不作任何限制,寻求最优生产计划在3.2.2中假设1)和假设2)下,记,在文献[4]中可得到关于的二阶微分方程式(12)符合题意的解为   这就是使总费用达到最小的生产计划.易知对于式(13)应该满足由式(13)算出,则式(14)又可表示为    于是当式(15)成立时,式(13)确定的才是最优生产计划.当固定时,式(15)表明,在一定交货期内要完成的产量相当大,需要从就开始生产.但是,若成立时,如何求最优计划,不需要从零时刻开始生产.由于产量较小,生产较早会导致产品贮存费用的增加,所以为了节省贮存费用,到时刻才开始生产,横截条件为则制定最优生产计划转化为横截条件(16)下求,使取得最小值.26 可以用变分法求解,有得此时,由3.2中式(17)和式(18)决定的即是优化的生产计划.3.2.3.2限制生产率,寻求最优生产计划令生产率有上界,在3.2.2中假设1)、2)、3)下,由于在实际生产中,生产率一定存在一个上确界,在此假设生产率的上确界为.在上述模型中得到1、当时,,此时生产率是随着的增大而增大的,而当时,生产率达到最大,其值是.(1)如果,那么也就是说上述模型的生产过程还没有超出生产率的上界3.1中讨论的模型照样可行.(2)如果,是与2点连线的斜率,显然,此时就算一直以最大生产率进行生产,工厂仍不能完成任务,此时不要接合同.(3)如果,此时一直以的生产率生产时才能刚好完成合同.(4)如果,可如下讨论:为了节省贮存费用,由于生产率是越来越高的,可以假设在某一时刻开始,都以的生产率进行生产,最后刚好完成任务,那么只需优化时间段上的生产计划即可,运用这种思想得到的生产计划是较优的计划.如果单位时间的生产费用和单位时间的贮存费用仍然记作和,则总费用仍为3.2中式(9).注意到,当时,.将3.2中式(10)和式(11)代入式(9),可得费用为  类似3.2.3.1中的求解过程,当时,也可得式(12),则由端点条件  26 从式(20)和式(21)得令式(22)等于,可得解将式(23)代入式(22)得于是优化的生产计划为为了计算式(24)的费用,将式(22)代入式(19)得再将式(23)代入可得模型式(24)的费用.综上,当生产数量较大,生产率上界满足的条件下,要以式(24)的为生产计划.2、当时,根据3.2.3.1的研究,生产时间越早,所需的贮存费用就越高,为了节省贮存费用,可以从(包括)开始生产,由3.2.2中的假设3)得生产率有上界,此时分2种情况加以讨论.(1)如果式(17)的满足,那么3.2.3.1中式(17)照样可行;(2)如果式(17)的满足,那么可以提前生产,寻找使得.如果提前到时开始生产,但仍有,那么就同上述3.2.3.2中1的26 情况类似了,可作类似的讨论.3.2.4实 例某一军火商与一军工厂签订了一份合同,要求工厂30天内提交240UF03枚型导弹.已知工厂日生产UF03型导弹的最大能力是10枚,单位时间内生产率提高一个单位所需的生产费用与此时的生产率成正比的比例系数为2万元,单位数量产品单位时间的贮存费为1万元,试给工厂制定一个优化的生产计划.解:由于,经验证知该题属于3.2.3.2中1所讨论的情况,故由式(23)得    将代入式(24)可得故是该问题优化的生产计划,以代入得总费用约3823万元.26 结束语优化模型是一种非常重要的数学模型,然而简单的优化模型存在着一定的缺陷和适用范围.在现实的经济系统中,随着各种条件的变化,使简单的优化模型不能做到效益最优.因此我们在论述了简单的优化模型的建立并对其进行分析后,又进一步论述了动态优化模型.并利用动态优化的两种方法多阶段转化和变分法建立更加符合现实情况的优化模型.关于优化模型,除了对其进行了模型建立外,还以基本要素和优化问题的分类及其相应的定义定理做出了详细的介绍,从而更加加深了我们对优化模型的掌握,这对我们理解和运用优化模型在解决实际问题时提供了扎实的理论基础,这样才能理论联系实际,从而做出最优方案.在优化模型的应用方面就是利用现有的条件规划出各种“最优”方案为现代生产计划和管理工作中的经济利益预估服务.作出的求极限值的模型被称为优化模型.优化模型在现代企业管理中有很多的应用,如物流、生产计划、原材料采购、劳动力的分配、广告促销、运输、成本控制、项目择优、信贷投放、企业的资产负债情况等方面的问题都可以用优化模型来解决.相信这对在当前经济形势下,制定出符合实际的优化模型对对社会的各项事业的发展都是有帮助的.26 参考文献[1]姜启源,谢金星,叶俊.数学模型(第三版)[M].北京:高等教育出版社.2005.[2]KamieMI,SchwartzNL.DynamicOptimization,TheCalculusandVariationsandOptimalControlinEconomicsandMan2agement[M].North2Holland:[s.n.],1981.[3]张恭庆.泛函分析讲义[M].北京:北京大学出版社,1987.[4]欧 文.克雷斯齐格.泛函分析导论及其应用[M].北京:北京航天学院出版社,1987.[5]李京文,钟学义.中国生产率分析前沿[M].北京:社会科学文献出版社,1998.[6]李京文,钟学义.中国生产率分析前沿[M].北京:社会科学文献出版社,1998.[7]黄平,孟永钢.最优化理论与方法[M].北京:清华大学出版社,2009.致谢26 本文是在吴清华老师的精心指导和大力支持下完成的.吴清华老师以其严谨求实的治学态度、高度的敬业精神、兢兢业业、孜孜以求的工作作风和大胆创新的进取精神对我产生重要影响.他渊博的知识、开阔的视野和敏锐的思维给了我深深的启迪.在论文的写作过程中,吴清华老师给予了我很大的帮助,为论文的写作提出了许多的建议.可以说没有吴老师帮助,我的论文是无法顺利完成的.吴老师对工作的一丝不苟,让我非常的敬佩.感谢吴老师在论文写作过程中对我认真负责的指导,在此致以最诚挚的感谢.同时还要感谢所有教导过、帮助过我的老师们,感谢他们四年来的谆谆教导.另外还要感谢同学对我的帮助.在论文的写作过程中,他们与我交流了对本论文的一些看法和见解,使我受益匪浅,同时也数次帮我参考论文的内容.在此对所有在论文写作过程中帮助过我的老师和同学致以最诚挚的感谢.26'