- 1.93 MB
- 2022-04-22 11:27:49 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'课后答案网,用心为你服务!大学答案---中学答案---考研答案---考试答案最全最多的课后习题参考答案,尽在课后答案网(www.khdaw.com)!Khdaw团队一直秉承用心为大家服务的宗旨,以关注学生的学习生活为出发点,旨在为广大学生朋友的自主学习提供一个分享和交流的平台。爱校园(www.aixiaoyuan.com)课后答案网(www.khdaw.com)淘答案(www.taodaan.com)
Chapter1DataandStatisticsLearningObjectives1.Obtainanappreciationforthebreadthofstatisticalapplicationsinbusinessandeconomics.2.Understandthemeaningofthetermselements,variables,andobservationsastheyareusedinstatistics.3.Obtainanunderstandingofthedifferencebetweenqualitative,quantitative,crossectionalandtimeseriesdata.4.Learnaboutthesourcesofdataforstatisticalanalysisbothinternalandexternaltothefirm.5.Beawareofhowerrorscanariseindata.6.Knowthemeaningofdescriptivestatisticsandstatisticalinference.7.Beabletodistinguishbetweenapopulationandasample.8.Understandtheroleasampleplaysinmakingstatisticalinferencesaboutthepopulation.2-1
Solutions:1.Statisticscanbereferredtoasnumericalfacts.Inabroadersense,statisticsisthefieldofstudydealingwiththecollection,analysis,presentationandinterpretationofdata.2.a.9b.4c.Countryandroomratearequalitativevariables;numberofroomsandtheoverallscorearequantitativevariables.d.Countryisnominal;roomrateisordinal;numberofroomsandoverallscoreareratio.3.a.Averagenumberofrooms=808/9=89.78orapproximately90roomsb.2of9arelocatedinEngland;approximately22%c.4of9havearoomrateof$$;approximately44%4.a.10b.Fortune500largestU.S.industrialcorporationsc.Averagerevenue=$142,275.9/10=$14,227.59milliond.Usingthesampleaverage,statisticalinferencewouldletusestimatetheaveragerevenueforthepopulationof500corporationsas$14,227.59million.5.a.3b.Industrycodeisqualitative;revenuesandprofitarequantitative.c.Averageprofit=10,652.1/10=$1065.21milliond.8of10hadaprofitover$100million;80%e.1of10hadanindustrycodeof3;10%6.Questionsa,c,anddarequantitative.Questionsbandearequalitative.7.a.Thedataarenumericandthevariableisqualitative.b.Nominal8.a.2,013b.Qualitativec.Percentagessincewehavequalitativedata2-2
d.(0.28)(2013)=563.64Musthavebeen563or564.9.a.Qualitativeb.30of71;42.3%10.a.Quantitative;ratiob.Qualitative;nominalc.Qualitative(Note:Rankisanumericlabelthatidentifiesthepositionofastudentintheclass.Rankdoesnotindicatehowmuchorhowmanyandisnotquantitative.);ordinald.Qualitative;nominale.Quantitative;ratio11.a.Quantitative;ratiob.Qualitative;ordinalc.Qualitative;ordinal(assumingemployeescanberankedbyclassification)d.Quantitative;ratioe.Qualitative;nominal12.a.ThepopulationisallvisitorscomingtothestateofHawaii.b.Sinceairlineflightscarrythevastmajorityofvisitorstothestate,theuseofquestionnairesforpassengersduringincomingflightsisagoodwaytoreachthispopulation.Thequestionnaireactuallyappearsonthebackofamandatoryplantsandanimalsdeclarationformthatpassengersmustcompleteduringtheincomingflight.Alargepercentageofpassengerscompletethevisitorinformationquestionnaire.c.Questions1and4providequantitativedataindicatingthenumberofvisitsandthenumberofdaysinHawaii.Questions2and3providequalitativedataindicatingthecategoriesofreasonforthetripandwherethevisitorplanstostay.13.a.Quantitativeb.Timeserieswith7observationsc.Numberofriverboatcasinos.d.Timeseriesshowsarapidincrease;anincreasewouldbeexpectedin1998,butitappearsthattherateofincreaseisslowing.14.a.4b.Allfourvariablesarequantitative.c.Timeseriesdatafor1993to1996.2-3
15.Crossectionaldata.Itisbasedonthe1996performancedatathatwasavailableApril1997.16.a.Wewouldliketoseedatafromproducttastetestsandtestmarketingtheproduct.b.Suchdatawouldbeobtainedfromspeciallydesignedstatisticalstudies.17.Internaldataonsalariesofotheremployeescanbeobtainedfromthepersonneldepartment.ExternaldatamightbeobtainedfromtheDepartmentofLabororindustryassociations.18.a.(48/120)100%=40%inthesamplediedfromsomeformofheartdisease.Thiscanbeusedasanestimateofthepercentageofallmales60orolderwhodieofheartdisease.b.Thedataoncauseofdeathisqualitative.19.a.AllsubscribersofBusinessWeekatthetimethe1996surveywasconducted.b.Quantitativec.Qualitative(yesorno)d.Crossectional-1996wasthetimeofthesurvey.e.Usingthesampleresults,wecouldinferorestimate59%ofthepopulationofsubscribershaveanannualincomeof$75,000ormoreand50%ofthepopulationofsubscribershaveanAmericanExpresscreditcard.20.a.56%ofmarketbelongedtoA.C.Nielsen$387,325istheaverageamountspentpercategoryb.3.73c.$387,32521.a.ThetwopopulationsarethepopulationofwomenwhosemotherstookthedrugDESduringpregnancyandthepopulationofwomenwhosemothersdidnottakethedrugDESduringpregnancy.b.Itwasasurvey.c.63/3.980=15.8womenoutofeach1000developedtissueabnormalities.d.Thearticlereported“twice”asmanyabnormalitiesinthewomenwhosemothershadtakenDESduringpregnancy.Thus,aroughestimatewouldbe15.8/2=7.9abnormalitiesper1000womenwhosemothershadnottakenDESduringpregnancy.e.Inmanysituations,diseaseoccurrencesarerareandaffectonlyasmallportionofthepopulation.Largesamplesareneededtocollectdataonareasonablenumberofcaseswherethediseaseexists.22.a.AlladultviewersreachedbytheDenver,Coloradotelevisionstation.b.Theviewerscontactedinthetelephonesurvey.c.Asample.Itwouldclearlybetoocostlyandtimeconsumingtotrytocontactallviewers.2-4
23.a.Percentoftelevisionsetsthatweretunedtoaparticulartelevisionshowand/ortotalviewingaudience.b.AlltelevisionsetsintheUnitedStateswhichareavailablefortheviewingaudience.Notethiswouldnotincludetelevisionsetsinstoredisplays.c.Aportionofthesetelevisionsets.Generally,individualhouseholdswouldbecontactedtodeterminewhichprogramswerebeingviewed.d.Thecancellationofprograms,theschedulingofprograms,andadvertisingcostrates.24.a.Thisisastatisticallycorrectdescriptivestatisticforthesample.b.Anincorrectgeneralizationsincethedatawasnotcollectedfortheentirepopulation.c.Anacceptablestatisticalinferencebasedontheuseoftheword“estimate.”d.Whilethisstatementistrueforthesample,itisnotajustifiableconclusionfortheentirepopulation.e.Thisstatementisnotstatisticallysupportable.Whileitistruefortheparticularsampleobserved,itisentirelypossibleandevenverylikelythatatleastsomestudentswillbeoutsidethe65to90rangeofgrades.Chapter2DescriptiveStatistics:TabularandGraphicalMethodsLearningObjectives1.Learnhowtoconstructandinterpretsummarizationproceduresforqualitativedatasuchas:frequencyandrelativefrequencydistributions,bargraphsandpiecharts.2.Learnhowtoconstructandinterprettabularsummarizationproceduresforquantitativedatasuchas:frequencyandrelativefrequencydistributions,cumulativefrequencyandcumulativerelativefrequencydistributions.3.Learnhowtoconstructadotplot,ahistogram,andanogiveasgraphicalsummariesofquantitativedata.4.Beabletouseandinterprettheexploratorydataanalysistechniqueofastem-and-leafdisplay.5.Learnhowtoconstructandinterpretcrosstabulationsandscatterdiagramsofbivariatedata.2-5
Solutions:1.ClassFrequencyRelativeFrequencyA6060/120=0.50B2424/120=0.20C3636/120=0.301201.002.a.1-(.22+.18+.40)=.20b..20(200)=40c/dClassFrequencyPercentFrequencyA.22(200)=4422B.18(200)=3618C.40(200)=8040D.20(200)=4020Total2001003.a.360°x58/120=174°b.360°x42/120=126°c.NoOpinion16.7%Yes48.3%No35%2-6
d.7060504030Frequency20100YesNoNoOpinionResponse4.a.Thedataarequalitative.b.PercentTVShowFrequencyFrequencyMillionaire2448Frasier1530ChicagoHope714Charmed48Total:501004-7
c.30252015Frequency1050MillionaireFrasierChicagoCharmedTVShowCharmed8%Chicago14%Millionaire48%Frasier30%d.Millionairehasthelargestmarketshare.Frasierissecond.5.a.MajorRelativeFrequencyPercentFrequencyManagement55/216=0.2525Accounting51/216=0.2424Finance28/216=0.1313Marketing82/216=0.3838Total1.001004-8
b.90807060y5040Frequenc3020100ManagementAccountingFinanceMarketingMajorc.PieChartManagementAccounting25%24%Finance13%Marketing38%6.a.BookFrequencyPercentFrequency7Habits1016.66Millionaire1626.67Motley915.00Dad1321.67WSJGuide610.004-9
Other610.00Total:60100.00TheErnst&YoungTaxGuide2000withafrequencyof3,InvestingforDummieswithafrequencyof2,andWhatColorisYourParachute?2000withafrequencyof1aregroupedinthe"Other"category.b.Therankorderfromfirsttofifthis:Millionaire,Dad,7Habits,Motley,andWSJGuide.c.ThepercentofsalesrepresentedbyTheMillionaireNextDoorandRichDad,PoorDadis48.33%.7.RatingFrequencyRelativeFrequencyOutstanding190.38VeryGood130.26Good100.20Average60.12Poor20.04501.00Managementshouldbepleasedwiththeseresults.64%oftheratingsareverygoodtooutstanding.84%oftheratingsaregoodorbetter.Comparingtheseratingswithpreviousresultswillshowwhetherornottherestaurantismakingimprovementsinitsratingsoffoodquality.8.a.PositionFrequencyRelativeFrequencyPitcher170.309Catcher40.0731stBase50.0912ndBase40.0733rdBase20.036Shortstop50.091LeftField60.109CenterField50.091RightField70.127551.000b.Pitchers(Almost31%)c.3rdBase(3-4%)d.RightField(Almost13%)e.Infielders(16or29.1%)toOutfielders(18or32.7%)9.a/b.StartingTimeFrequencyPercentFrequency7:003157:304208:004208:307359:00210201004-10
c.BarGraph876y54Frequenc32107:007:308:008:309:00StartingTimed.9:007:0010%15%7:3020%8:3035%8:0020%e.Themostpreferredstartingtimeis8:30a.m..Startingtimesof7:30and8:00a.m.arenext.10.a.Thedatarefertoqualitylevelsofpoor,fair,good,verygoodandexcellent.b.RatingFrequencyRelativeFrequencyPoor20.03Fair40.07Good120.20VeryGood240.40Excellent180.30601.004-11
c.BarGraph3025y2015Frequenc1050PoorFairGoodVeryGoodExcellentRatingPieChartGoodFair20%7%Poor3%ExcellentVeryGood30%40%d.Thecourseevaluationdataindicateahighqualitycourse.Themostcommonratingisverygoodwiththesecondmostcommonbeingexcellent.11.ClassFrequencyRelativeFrequencyPercentFrequency12-1420.0505.015-1780.20020.018-20110.27527.521-23100.25025.524-2690.22522.54-12
Total401.000100.012.ClassCumulativeFrequencyCumulativeRelativeFrequencylessthanorequalto1910.20lessthanorequalto2924.48lessthanorequalto3941.82lessthanorequalto4948.96lessthanorequalto59501.0013.18161412y108Frequenc642010-1920-2930-3940-4950-591.0.8.6.4.201020304050604-13
14.a.b/c.ClassFrequencyPercentFrequency6.0-7.94208.0-9.921010.0-11.984012.0-13.931514.0-15.93152010015.a/b.WaitingTimeFrequencyRelativeFrequency0-440.205-980.4010-1450.2515-1920.1020-2410.05Totals201.00c/d.WaitingTimeCumulativeFrequencyCumulativeRelativeFrequencyLessthanorequalto440.20Lessthanorequalto9120.60Lessthanorequalto14170.85Lessthanorequalto19190.95Lessthanorequalto24201.00e.12/20=0.6016.a.RelativePercentStockPrice($)FrequencyFrequencyFrequency10.00-19.99100.404020.00-29.9940.161630.00-39.9960.242440.00-49.9920.08850.00-59.9910.04460.00-69.9920.088Total251.001004-14
12108y6Frequenc42010.00-20.00-30.00-40.00-50.00-60.00-19.9929.9939.9949.9959.9969.99StockPriceManyofthesearelowpricedstockswiththegreatestfrequencyinthe$10.00to$19.99range.b.EarningsperRelativePercentShare($)FrequencyFrequencyFrequency-3.00to-2.0120.088-2.00to-1.0100.000-1.00to-0.0120.0880.00to0.9990.36361.00to1.9990.36362.00to2.9930.1212Total251.001004-15
10987654Frequency3210-3.00to-2.00to-1.00to0.00to1.00to2.00to-2.01-1.01-0.010.991.992.99EarningsperShareThemajorityofcompanieshadearningsinthe$0.00to$2.00range.Fourofthecompanieslostmoney.17.CallDurationFrequencyRelativeFrequency2-3.950.254-5.990.456-7.940.208-9.900.0010-11.920.10Totals201.00Histogram10987y65Frequenc432102.0-3.94.0-5.96.0-7.98.0-9.910.0-11.9CallDuration4-16
18.a.Lowestsalary:$93,000Highestsalary:$178,000b.SalaryRelativePercent($1000s)FrequencyFrequencyFrequency91-10540.088106-12050.1010121-135110.2222136-150180.3636151-16590.1818166-18030.066Total501.00100c.Proportion$135,000orless:20/50.d.Percentagemorethan$150,000:24%2018161412108Frequency642091-105106-120121-135136-150151-165166-180Salary($1000s)e.19.a/b.NumberFrequencyRelativeFrequency140-14920.10150-15970.35160-16930.15170-17960.30180-18910.05190-19910.05Totals201.004-17
c/d.NumberCumulativeFrequencyCumulativeRelativeFrequencyLessthanorequalto14920.10Lessthanorequalto15990.45Lessthanorequalto169120.60Lessthanorequalto179180.90Lessthanorequalto189190.95Lessthanorequalto199201.00e.2015Frequency10514016018020020.a.Thepercentageofpeople34orlessis20.0+5.7+9.6+13.6=48.9.b.Thepercentageofthepopulationthatisbetween25and54yearsoldinclusivelyis13.6+16.3+13.5=43.4c.Thepercentageofthepopulationover34yearsoldis16.3+13.5+8.7+12.6=51.1d.Thepercentagelessthan25yearsoldis20.0+5.7+9.6=35.3.Sothereare(.353)(275)=97.075millionpeoplelessthan25yearsold.e.Anestimateofthenumberofretiredpeopleis(.5)(.087)(275)+(.126)(275)=46.6125million.21.a/b.ComputerRelativeUsage(Hours)FrequencyFrequency0.0-2.950.103.0-5.9280.566.0-8.980.169.0-11.960.1212.0-14.930.06Total501.004-18
c.3025y2015Frequenc10500.0-2.93.0-5.96.0-8.99.0-11.912.0-14.9ComputerUsage(Hours)d.60504030Frequency201003691215ComputerUsage(Hours)e.Themajorityofthecomputerusersareinthe3to6hourrange.Usageissomewhatskewedtowardtherightwith3usersinthe12to15hourrange.4-19
22.5786458702255688023523.LeafUnit=0.1637557813489361004511324.LeafUnit=101161202130671422715516028170234-20
25.98910246611457889122457131214415126.LeafUnit=0.104789911292001355683494856714-21
27.41366750038960114457799700013445566678880113445778990227or413466750035896011446577997000134475566678880113448577899022974-22
28.a.058111334415678992233355268336779404785560b.2000P/EPercentForecastFrequencyFrequency5-926.710-14620.015-19620.020-24620.025-2926.730-3400.035-39413.340-4413.345-4926.750-5400.055-5900.060-6413.3Total30100.029.a.4-23
y12TotalA505xB11213C21012Total181230b.y12TotalA100.00.0100.0xB84.615.4100.0C16.783.3100.0c.y12A27.80.0xB61.116.7C11.183.3Total100.0100.0d.CategoryAvaluesforxarealwaysassociatedwithcategory1valuesfory.CategoryBvaluesforxareusuallyassociatedwithcategory1valuesfory.CategoryCvaluesforxareusuallyassociatedwithcategory2valuesfory.30.a.4-24
564024y8-8-24-40-40-30-20-10010203040xb.Thereisanegativerelationshipbetweenxandy;ydecreasesasxincreases.31.MealPrice($)QualityRating10-1920-2930-3940-49Good53.833.92.70.0VeryGood43.654.260.521.4Excellent2.611.936.878.6Total100.0100.0100.0100.0Asthemealpricegoesup,thepercentageofhighqualityratingsgoesup.Apositiverelationshipbetweenmealpriceandqualityisobserved.32.a.EPSRatingSales/Margins/ROE0-1920-3940-5960-7980-100TotalA189B145212C11237D3115E213Total44691336b.EPSRatingSales/Margins/ROE0-1920-3940-5960-7980-100TotalA11.1188.89100B8.3333.3341.6716.67100C14.2914.2928.5742.86100D60.0020.0020.00100E66.6733.33100HigherEPSratingsseemtobeassociatedwithhigherratingsonSales/Margins/ROE.Ofthosecompanieswithan"A"ratingonSales/Margins/ROE,88.89%ofthemhadanEPSRatingof80or4-25
higher.Ofthe8companieswitha"D"or"E"ratingonSales/Margins/ROE,only1hadanEPSratingabove60.33.a.IndustryGroupRelativeStrengthSales/Margins/ROEABCDETotalA12249B1523112C13217D11125E123Total411710436b/c.ThefrequencydistributionsfortheSales/Margins/ROEdataisintherightmostcolumnofthecrosstabulation.ThefrequencydistributionfortheIndustryGroupRelativeStrengthdataisinthebottomrowofthecrosstabulation.d.Oncethecrosstabulationiscomplete,theindividualfrequencydistributionsareavailableinthemargins.34.a.807060504030RelativePriceStrength20100020406080100120EPSRatingb.OnemightexpectstockswithhigherEPSratingstoshowgreaterrelativepricestrength.However,thescatterdiagramusingthisdatadoesnotsupportsucharelationship.Thescatterdiagramappearssimilartotheoneshowing"NoApparentRelationship"inFigure2.19.35.a.4-26
900.0800.0700.0600.0500.0400.0GamingRevenue300.0200.0100.00.00.0100.0200.0300.0400.0500.0600.0700.0800.0HotelRevenueb.Thereappearstobeapositiverelationshipbetweenhotelrevenueandgamingrevenue.Highervaluesofhotelrevenueareassociatedwithhighervaluesofgamingrevenue.36.a.VehicleFrequencyPercentFrequencyF-Series1734Silverado1224Taurus816Camry714Accord612Total50100b.ThetwotopsellingvehiclesaretheFordF-SeriesPickupandtheChevroletSilverado.4-27
Accord12%F-SeriesCamry34%14%Taurus16%Silverado24%c.37.a/b.IndustryFrequencyPercentFrequencyBeverage210Chemicals315Electronics630Food735Aerospace210Totals:201004-28
87654Frequency3210BeverageChemicalsElectronicsFoodAerospaceIndustryc.38.a.MovieFrequencyPercentFrequencyBlairWitchProject15936.0PhantomMenace8920.2Beloved8519.3PrimaryColors5712.9TrumanShow5111.6Total441100.0b.Truman12%ColorsWitch13%36%Beloved19%Phantom20%4-29
c.Thepercentofmailpertainingto1999coverstoriesis36.0+20.2=56.2%39.a-d.CumulativeRelativeCumulativeRelativeSalesFrequencyFrequencyFrequencyFrequency0-499130.65130.65500-99930.15160.801000-149900.00160.801500-199930.15190.952000-249910.05201.00Total201.00e.141210y86Frequenc4200-499500-9991000-14991500-19992000-2499Sales40.a.ClosingPriceFrequencyRelativeFrequency0-97/890.22510-197/8100.25020-297/850.12530-397/8110.27540-497/820.05050-597/820.05060-697/800.00070-797/810.025Totals401.0004-30
b.ClosingPriceCumulativeFrequencyCumulativeRelativeFrequencyLessthanorequalto97/890.225Lessthanorequalto197/8190.475Lessthanorequalto297/8240.600Lessthanorequalto397/8350.875Lessthanorequalto497/8370.925Lessthanorequalto597/8390.975Lessthanorequalto697/8390.975Lessthanorequalto797/8401.000c.1210y86Frequenc420515253545556575ClosingPriced.Over87%ofcommonstockstradeforlessthan$40ashareand60%tradeforlessthan$30pershare.41.a.RelativeExchangeFrequencyFrequencyAmerican30.15NewYork20.10OvertheCounter150.75201.00b.EarningsPerRelativeShareFrequencyFrequency0.00-0.1970.350.20-0.3970.350.40-0.5910.050.60-0.7930.154-31
0.80-0.9920.10201.00Seventypercentoftheshadowstockshaveearningspersharelessthan$0.40.ItlookslikelowEPSshouldbeexpectedforshadowstocks.Price-EarningRelativeRatioFrequencyFrequency0.00-9.930.1510.0-19.970.3520.0-29.940.2030.0-39.930.1540.0-49.920.1050.0-59.910.05201.00P-ERatiosvaryconsiderably,butthereisasignificantclusterinthe10-19.9range.42.RelativeIncome($)FrequencyFrequency18,000-21,999130.25522,000-25,999200.39226,000-29,999120.23530,000-33,99940.07834,000-37,99920.039Total511.000252015Frequency105018,000-21,99922,000-25,99926,000-29,99930,000-33,99934,000-37,999PerCapitaIncome4-32
43.a.0891022234441556666778888999201222344425683013b/c/d.NumberAnsweredRelativeCumulativeCorrectlyFrequencyFrequencyFrequency5-920.050210-1480.2001015-19150.3752520-2490.2253425-2930.0753730-3430.07540Totals401.000e.Relativelyfewofthestudents(25%)wereabletoanswer1/2ormoreofthequestionscorrectly.ThedataseemtosupporttheJointCouncilonEconomicEducation’sclaim.However,thedegreeofdifficultyofthequestionsneedstobetakenintoaccountbeforereachingafinalaconclusion.44.a/b.HighTemperatureLowTemperature339443685750002445579614444686187357972455801146890239c.Itisclearthattherangeoflowtemperaturesisbelowtherangeofhightemperatures.Lookingatthestem-and-leafdisplayssidebyside,itappearsthattherangeoflowtemperaturesisabout20degreesbelowtherangeofhightemperatures.d.Therearetwostemsshowinghightemperaturesof80degreesorhigher.Theyshow8citieswithhightemperaturesof80degreesorhigher.4-33
e.FrequencyTemperatureHighTemp.Low.Temp.30-390140-490350-5911060-697270-794480-895090-9930Total202045.a.8075e706560555045LowTemperatur403530405060708090100HighTemperatureb.Thereisclearlyapositiverelationshipbetweenhighandlowtemperatureforcities.Asonegoesupsodoestheother.46.a.SatisfactionScoreOccupation30-3940-4950-5960-6970-7980-89TotalCabinetmaker243110Lawyer1521110PhysicalTherapist521210SystemsAnalyst214310Total1710118340b.SatisfactionScoreOccupation30-3940-4950-5960-6970-7980-89Total4-34
Cabinetmaker20403010100Lawyer1050201010100PhysicalTherapist50201020100SystemsAnalyst20104030100c.Eachrowofthepercentcrosstabulationshowsapercentfrequencydistributionforanoccupation.Cabinetmakersseemtohavethehigherjobsatisfactionscoreswhilelawyersseemtohavethelowest.Fiftypercentofthephysicaltherapistshavemediocrescoresbuttherestareratherhigh.47.a.40,00035,00030,00025,00020,000Revenue$mil15,00010,0005,0000010,00020,00030,00040,00050,00060,00070,00080,00090,000100,000Employeesb.Thereappearstobeapositiverelationshipbetweennumberofemployeesandrevenue.Asthenumberofemployeesincreases,annualrevenueincreases.48.a.FuelTypeYearConstructedElecNat.GasOilPropaneOtherTotal1973orbefore4018312572471974-19792426220541980-19863738106821987-19914870201121Total14931717714504b.YearConstructedFrequencyFuelTypeFrequency1973orbefore247Electricity1491974-197954Nat.Gas3171980-198682Oil171987-1991121Propane7Total504Other14Total5044-35
c.CrosstabulationofColumnPercentagesFuelTypeYearConstructedElecNat.GasOilPropaneOther1973orbefore26.957.770.571.450.01974-197916.18.211.828.60.01980-198624.812.05.90.042.91987-199132.222.111.80.07.1Total100.0100.0100.0100.0100.0d.Crosstabulationofrowpercentages.FuelTypeYearConstructedElecNat.GasOilPropaneOtherTotal1973orbefore16.274.14.92.02.8100.01974-197944.548.13.73.70.0100.01980-198645.146.41.20.07.3100.01987-199139.757.81.70.00.8100.0e.ObservationsfromthecolumnpercentagescrosstabulationForthosebuildingsusingelectricity,thepercentagehasnotchangedgreatlyovertheyears.Forthebuildingsusingnaturalgas,themajoritywereconstructedin1973orbefore;thesecondlargestpercentagewasconstructedin1987-1991.Mostofthebuildingsusingoilwereconstructedin1973orbefore.Allofthebuildingsusingpropaneareolder.ObservationsfromtherowpercentagescrosstabulationMostofthebuildingsintheCG&Eserviceareauseelectricityornaturalgas.Intheperiod1973orbeforemostusednaturalgas.From1974-1986,itisfairlyevenlydividedbetweenelectricityandnaturalgas.Since1987almostallnewbuildingsareusingelectricityornaturalgaswithnaturalgasbeingtheclearleader.49.a.Crosstabulationforstockholder"sequityandprofit.Profits($000)Stockholders"Equity($000)0-200200-400400-600600-800800-10001000-1200Total0-12001011121200-24004102162400-3600433111133600-48001234800-60002316Total1816624450b.CrosstabulationofRowPercentages.Profits($000)Stockholders"Equity($1000s)0-200200-400400-600600-800800-10001000-1200Total4-36
0-120083.338.330.000.000.008.331001200-240025.0062.500.000.0012.500.001002400-360030.7723.0823.087.697.697.691003600-48000.000.000.0033.3366.671004800-60000.0033.3350.0016.670.000.00100c.Stockholder"sequityandprofitseemtoberelated.Asprofitgoesup,stockholder"sequitygoesup.Therelationship,however,isnotverystrong.50.a.Crosstabulationofmarketvalueandprofit.Profit($1000s)MarketValue($1000s)0-300300-600600-900900-1200Total0-8000234278000-1600044221216000-24000211424000-32000121432000-40000213Total27136450b.CrosstabulationofRowPercentages.Profit($1000s)MarketValue($1000s)0-300300-600600-900900-1200Total0-800085.1914.810.000.001008000-1600033.3333.3316.6716.6710016000-240000.0050.0025.0025.0010024000-320000.0025.0050.0025.0010032000-400000.0066.6733.330.00100c.ThereappearstobeapositiverelationshipbetweenProfitandMarketValue.Asprofitgoesup,MarketValuegoesup.51.a.ScatterdiagramofProfitvs.Stockholder"sEquity.4-37
1400.01200.01000.0800.0600.0Profit($1000s)400.0200.00.00.01000.02000.03000.04000.05000.06000.07000.0Stockholder"sEquity($1000s)b.ProfitandStockholder"sEquityappeartobepositivelyrelated.52.a.ScatterdiagramofMarketValueandStockholder"sEquity.4-38
45000.040000.035000.030000.025000.020000.015000.0MarketValue($1000s)10000.05000.00.00.01000.02000.03000.04000.05000.06000.07000.0Stockholder"sEquity($1000s)b.ThereisapositiverelationshipbetweenMarketValueandStockholder"sEquity.Chapter3DescriptiveStatistics:NumericalMethodsLearningObjectives1.Understandthepurposeofmeasuresoflocation.2.Beabletocomputethemean,median,mode,quartiles,andvariouspercentiles.3.Understandthepurposeofmeasuresofvariability.4.Beabletocomputetherange,interquartilerange,variance,standarddeviation,andcoefficientofvariation.5.Understandhowzscoresarecomputedandhowtheyareusedasameasureofrelativelocationofadatavalue.4-39
6.KnowhowChebyshev’stheoremandtheempiricalrulecanbeusedtodeterminethepercentageofthedatawithinaspecifiednumberofstandarddeviationsfromthemean.7.Learnhowtoconstructa5-numbersummaryandaboxplot.8.Beabletocomputeandinterpretcovarianceandcorrelationasmeasuresofassociationbetweentwovariables.9.Beabletocomputeaweightedmean.Solutions:x75i1.x15n510,12,16,17,20Median=16(middlevalue)x96i2.x16n610,12,16,17,20,211617Median=16.523.15,20,25,25,27,28,30,3220i(8)1.62ndposition=201004-40
252025i(8)222.5100265i(8)5.26thposition=28100752830i(8)6291002x657i4.Mean59727.n11Median=576thitemMode=53Itappears3timesx1106.4i5.a.x36.88n30b.Thereareanevennumberofitems.Thus,themedianistheaverageofthe15thand16thitemsafterthedatahavebeenplacedinrankorder.36.636.7Median=36.652c.Mode=36.4Thisvalueappears4timesF25Id.FirstQuartileiHGKJ3075.100Roundingup,weseethatQ1isatthe8thposition.Q1=36.2F75Ie.ThirdQuartileiHGKJ30225.100Roundingup,weseethatQ3isatthe23rdposition.Q3=37.9x1845i6.a.x92.25n20Medianisaverageof10thand11thvaluesafterarranginginascendingorder.6695Median80.52Dataaremultimodal4-41
x1334ib.x66.7n206670Median682Mode=70(4brokerscharge$70)c.Comparingallthreemeasuresofcentrallocation(mean,medianandmode),weconcludethatitcostsmore,onaverage,totrade500sharesat$50pershare.d.Yes,trading500sharesat$50pershareisatransactionvalueof$25,000whereastrading1000sharesat$5pershareisatransactionvalueof$5000.x1380i7.a.x46n30b.Yes,themeanhereis46minutes.Thenewspaperreportedonaverageof45minutes.45529.c.Median4895.2d.Q1=7(valueof8thiteminrankedorder)Q3=70.4(valueof23rditeminrankedlist)40e.Findpositioni3012;40thpercentileisaverageofvaluesin12thand13thpositions.10040thpercentile=28.8+29.1=28.9528.a.x=775ix775ix3875.n20Themodalageis29;itappears3times.b.Medianisaverageof10thand11thitems.3740Median385.2Datasuggestat-homeworkersareslightlyyounger.c.ForQ1,25i2051004-42
Sinceiisinteger,2930Q29.512ForQ3,75i2015100Sinceiisinteger,4649Q47.53232d.i206.4100Sinceiisnotaninteger,werounduptothe7thposition.32ndpercentile=31x270,377i9.a.x10,815.08Median(Position13)=8296n25b.Medianwouldbebetterbecauseoflargedatavalues.c.i=(25/100)25=6.25Q1(Position7)=5984i=(75/100)25=18.75Q3(Position19)=14,330d.i=(85/100)25=21.2585thpercentile(position22)=15,593.Approximately85%ofthewebsiteshavelessthan15,593uniquevisitors.10.a.xi=435x435ix4833.n9Datainascendingorder:2842454849505558604-43
Median=49Donotreportamode;eachdatavalueoccursonce.Theindexcouldbeconsideredgoodsinceboththemeanandmedianarelessthan50.25b.i92.25100Q1(3rdposition)=4575i96.75100Q3(7thposition)=5552611.x26.3201516181920212222242426262727303133333458Median=25Donotreportamodesincefivevaluesappeartwice.ForQ1,25i2051002021Q20.512ForQ3,75i20151003031Q30.53212.Usingthemeanwegetx=15.58,x=18.92citycountryForthesamplesweseethatthemeanmileageisbetterinthecountrythaninthecity.City13.214.415.215.315.315.315.91616.116.216.216.716.84-44
MedianMode:15.3Country17.217.418.318.518.618.618.719.019.219.419.420.621.1MedianMode:18.6,19.4Themedianandmodalmileagesarealsobetterinthecountrythaninthecity.13.a.Mean=261/15=17.4141515151616171818181819202121MedianModeis18(occurs4times)Interpretation:theaveragenumberofcredithourstakenwas17.4.Atleast50%ofthestudentstook18ormorehours;atleast50%ofthestudentstook18orfewerhours.Themostfrequentlyoccurringnumberofcredithourstakenwas18.b.ForQ1,25i153.75100Q1(4thposition)=15ForQ3,75i1511.25100Q3(12thposition)=19c.Forthe70thpercentile,70i1510.5100Roundingupweseethe70thpercentileisinposition11.70thpercentile=184-45
x12,780i14.a.x$639n20x1976ib.x98.8picturesn20x2204ic.x110.2minutesn20d.Thisisnotaneasychoicebecauseitisamulticriteriaproblem.Ifpricewastheonlycriterion,thelowestpricecamera(FujifilmDX-10)wouldbepreferred.Ifmaximumpicturecapacitywastheonlycriterion,themaximumpicturecapacitycamera(KodakDC280Zoom)wouldbepreferred.But,ifbatterylifewastheonlycriterion,themaximumbatterylifecamera(FujifilmDX10)wouldbepreferred.Therearemanyapproachesusedtoselectthebestchoiceinamulticriteriasituation.Theseapproachesarediscussedinmorespecializedbooksondecisionanalysis.15.Range20-10=1010,12,16,17,2025i(5)1.25100Q1(2ndposition)=1275i(5)3.75100Q3(4thposition)=17IQR=Q3-Q1=17-12=5x75i16.x15n52()xx642is16n14s16417.15,20,25,25,27,28,30,34Range=34-15=19252025i(8)2Q22.511002752830i(8)6Q29110024-46
IQR=Q3-Q1=29-22.5=6.5x204ix255.n82()xx2422is3457.n17s3457..58818.a.Range=190-168=222b.(xx)376i2s=376=75.25c.s752..8678.67d.CoefficientofVariation1004.8717819.Range=92-67=25IQR=Q3-Q1=80-77=3x=78.46672xxi411.733322xxi411.7333s29.4095n114s29.40955.423120.a.Range=60-28=32IQR=Q3-Q1=55-45=10435b.x4833.92(xx)742i22()xxi742s92.75n18s92.759.634-47
c.Theaverageairqualityisaboutthesame.But,thevariabilityisgreaterinAnaheim.200021.x4005xxxx()xx2iii4104001010042040020400390400-1010040040000380400-204002000100022()xxi1000s250n14s25015.8122.DawsonSupply:Range=11-9=24.1s0.679J.C.Clark:Range=15-7=860.1s2.58923.a.WinterRange=21-12=9IQR=Q3-Q1=20-16=4SummerRange=38-18=20IQR=Q3-Q1=29-18=11b.VarianceStandardDeviationWinter8.23332.8694Summer44.48896.6700c.Winters2.8694CoefficientofVariation=10010016.21x17.7Summers6.6700CoefficientofVariation=10010026.05x25.64-48
d.Morevariabilityinthesummermonths.24.a.500Sharesat$50MinValue=34MaxValue=195Range=195-34=1614550140140QQ47.51401322Interquartilerange=140-47.5=92.51000Sharesat$5MinValue=34MaxValue=90Range=90-34=566060.579.580QQ60.2579.751322Interquartilerange=79.75-60.25=19.5b.500Sharesat$5022()xxi51,402.25s2705.3816n119s2705.381652.011000Sharesat$522()xxi5526.2s290.8526n119s290.852617.05c.500Sharesat$50s52.01CoefficientofVariation=(100)(100)56.38x92.251000Sharesat$5s17.05CoefficientofVariation=(100)(100)25.56x66.70d.Thevariabilityisgreaterforthetradeof500sharesat$50pershare.Thisistruewhetherweusethestandarddeviationorthecoefficientofvariationasameasure.225.s=0.0021Productionshouldnotbeshutdownsincethevarianceislessthan.005.4-49
26.Quartermilerss=0.0564CoefficientofVariation=(s/x)100=(0.0564/0.966)100=5.8Milerss=0.1295CoefficientofVariation=(s/x)100=(0.1295/4.534)100=2.9Yes;thecoefficientofvariationshowsthatasapercentageofthemeanthequartermilers’timesshowmorevariability.4030127.a.z210.75Atleast75%25245301b.z310.89Atleast89%25338301c.z1.610.61Atleast61%251.642301d.z2.410.83Atleast83%252.448301e.z3.610.92Atleast92%253.628.a.Approximately95%b.Almostallc.Approximately68%x75i29.x15n52()xx642is4n14101510z1.254201520z1.254121512z0.7544-50
171517z.504161516z.25452050030.z.20100650500z1.50100500500z0.00100450500z0.50100280500z2.2010031.a.Thisisfrom2standarddeviationsbelowthemeanto2standarddeviationsabovethemean.Withz=2,Chebyshev’stheoremgives:111311122z244Therefore,atleast75%ofadultssleepbetween4.5and9.3hoursperday.b.Thisisfrom2.5standarddeviationsbelowthemeanto2.5standarddeviationsabovethemean.Withz=2.5,Chebyshev’stheoremgives:111111.8422z2.56.25Therefore,atleast84%ofadultssleepbetween3.9and9.9hoursperday.c.Withz=2,theempiricalrulesuggeststhat95%ofadultssleepbetween4.5and9.3hoursperday.TheprobabilityobtainedusingtheempiricalruleisgreaterthantheprobabilityobtainedusingChebyshev’stheorem.32.a.2hoursis1standarddeviationbelowthemean.Thus,theempiricalrulesuggeststhat68%ofthekidswatchtelevisionbetween2and4hoursperday.Sinceabell-shapeddistributionissymmetric,approximately,34%ofthekidswatchtelevisionbetween2and3hoursperday.b.1houris2standarddeviationsbelowthemean.Thus,theempiricalrulesuggeststhat95%ofthekidswatchtelevisionbetween1and5hoursperday.Sinceabell-shapeddistributionissymmetric,approximately,47.5%ofthekidswatchtelevisionbetween1and3hoursperday.Inpart(a)weconcludedthatapproximately34%ofthekidswatchtelevisionbetween2and3hoursperday;thus,4-51
approximately34%ofthekidswatchtelevisionbetween3and4hoursperday.Hence,approximately47.5%+34%=81.5%ofkidswatchtelevisionbetween1and4hoursperday.c.Since34%ofthekidswatchtelevisionbetween3and4hoursperday,50%-34%=16%ofthekidswatchtelevisionmorethan4hoursperday.33.a.Approximately68%ofscoresarewithin1standarddeviationfromthemean.b.Approximately95%ofscoresarewithin2standarddeviationsfromthemean.c.Approximately(100%-95%)/2=2.5%ofscoresareover130.d.Yes,almostallIQscoresarelessthan145.71.0090.0634.a.z0.952016890.06b.z3.9020c.Thez-scoreinpartaindicatesthatthevalueis0.95standarddeviationsbelowthemean.Thez-scoreinpartbindicatesthatthevalueis3.90standarddeviationsabovethemean.Thelaborcostinpartbisanoutlierandshouldbereviewedforaccuracy.35.a.xisapproximately63or$63,000,andsis4or$4000b.Thisisfrom2standarddeviationsbelowthemeanto2standarddeviationsabovethemean.Withz=2,Chebyshev’stheoremgives:111311122z244Therefore,atleast75%ofbenefitsmanagershaveanannualsalarybetween$55,000and$71,000.c.Thehistogramofthesalarydataisshownbelow:4-52
987654Frequency321056-5858-6060-6262-6464-6666-6868-7070-7272-74SalaryAlthoughthedistributionisnotperfectlybellshaped,itdoesappearreasonabletoassumethatthedistributionofannualsalarycanbeapproximatedbyabell-shapeddistribution.d.Withz=2,theempiricalrulesuggeststhat95%ofbenefitsmanagershaveanannualsalarybetween$55,000and$71,000.TheprobabilityismuchhigherthanobtainedusingChebyshev’stheorem,butrequirestheassumptionthatthedistributionofannualsalaryisbellshaped.e.Therearenooutliersbecausealltheobservationsarewithin3standarddeviationsofthemean.36.a.xis100andsis13.88orapproximately14b.Ifthedistributionisbellshapedwithameanof100points,thepercentageofNBAgamesinwhichthewinningteamscoresmorethan100pointsis50%.Ascoreof114pointsisz=1standarddeviationabovethemean.Thus,theempiricalrulesuggeststhat68%ofthewinningteamswillscorebetween86and114points.Inotherwords,32%ofthewinningteamswillscorelessthan86pointsormorethan114points.Becauseabell-shapeddistributionissymmetric,approximately16%ofthewinningteamswillscoremorethan114points.c.Forthewinningmargin,xis11.1andsis10.77.Toseeifthereareanyoutliers,wewillfirstcomputethez-scoreforthewinningmarginthatisfarthestfromthesamplemeanof11.1,awinningmarginof32points.xx3211.1z1.94s10.77Thus,awinningmarginof32pointsisnotanoutlier(z=1.94<3).Becauseawinningmarginof32pointsisfarthestfromthemean,noneoftheotherdatavaluescanhaveaz-scorethatislessthan3orgreaterthan3andhenceweconcludethattherearenooutliersx7986.i37.a.x399.n204-53
4.174.20Median=4.185(averageof10thand11thvalues)2b.Q1=4.00(averageof5thand6thvalues)Q3=4.50(averageof15thand16thvalues)2()xx125080.ic.s08114.n119412399..d.AllisonOne:z016.08114.232399..OmniAudioSA12.3:z206.08114.e.ThelowestratingisfortheBose501Series.It’sz-scoreis:214399..z228.08114.Thisisnotanoutliersotherearenooutliers.38.15,20,25,25,27,28,30,34Smallest=15252025i()82Q225.110022527Median262752830i()88Q2931002Largest=3439.152025303540.5,6,8,10,10,12,15,16,18Smallest=525i(9)2.25Q1=8(3rdposition)1004-54
Median=1075i(9)6.75Q3=15(7thposition)100Largest=18510152041.IQR=50-42=8LowerLimit:Q1-1.5IQR=42-12=30UpperLimit:Q3+1.5IQR=50+12=6268isanoutlier42.a.Fivenumbersummary:59.614.519.252.7b.IQR=Q3-Q1=19.2-9.6=9.6LowerLimit:Q1-1.5(IQR)=9.6-1.5(9.6)=-4.8UpperLimit:Q3+1.5(IQR)=19.2+1.5(9.6)=33.6c.Thedatavalue41.6isanoutlier(largerthantheupperlimit)andsoisthedatavalue52.7.Thefinancialanalystshouldfirstverifythatthesevaluesarecorrect.Perhapsatypingerrorhascaused25.7tobetypedas52.7(or14.6tobetypedas41.6).Iftheoutliersarecorrect,theanalystmightconsiderthesecompanieswithanunusuallylargereturnonequityasgoodinvestmentcandidates.d.**-1052035506543.a.Median(11thposition)401925i(21)5.25100Q1(6thposition)=187275i(21)15.75100Q3(16thposition)=8305608,1872,4019,8305,141384-55
b.Limits:IQR=Q3-Q1=8305-1872=6433LowerLimit:Q1-1.5(IQR)=-7777UpperLimit:Q3+1.5(IQR)=17955c.Therearenooutliers,alldataarewithinthelimits.d.Yes,ifthefirsttwodigitsinJohnsonandJohnson"ssalesweretransposedto41,138,saleswouldhaveshownupasanoutlier.Areviewofthedatawouldhaveenabledthecorrectionofthedata.e.03,0006,0009,00012,00015,00044.a.Mean=105.7933Median=52.7b.Q1=15.7Q3=78.3c.IQR=Q3-Q1=78.3-15.7=62.6Lowerlimitforboxplot=Q1-1.5(IQR)=15.7-1.5(62.6)=-78.2Upperlimitforboxplot=Q3+1.5(IQR)=78.3+1.5(62.6)=172.2Note:Becausethenumberofsharescoveredbyoptionsgrantscannotbenegative,thelowerlimitfortheboxplotissetat0.This,outliersarevalueinthedatasetgreaterthan172.2.Outliers:SiliconGraphics(188.8)andToysRUs(247.6)d.Meanpercentage=26.73.Thecurrentpercentageismuchgreater.45.a.FiveNumberSummary(Midsize)5171.581.596.5128FiveNumberSummary(Small)73101108.5121140b.BoxPlotsMidsize4-56
5060708090100110120130SmallSize5060708090100110120130140150c.Themidsizecarsappeartobesaferthanthesmallcars.46.a.x=37.48Median=23.67b.Q1=7.91Q3=51.92c.IQR=51.92-7.91=44.01LowerLimit:Q1-1.5(IQR)=7.91-1.5(44.01)=-58.11UpperLimit:Q3+1.5(IQR)=51.92+1.5(44.01)=117.94Russia,withapercentchangeof125.89,isanoutlier.Turkey,withapercentchangeof254.45isanotheroutlier.d.Withapercentchangeof22.64,theUnitedStatesisjustbelowthe50thpercentile-themedian.47.a.70605040y302010005101520xb.Negativerelationship4-57
40230c/d.xx408yy23046ii5522()xxyy()240()xx118()yy520iiii()xxyy()240iis60xyn1512()xx118is5.4314xn1512()yy520is11.4018yn151sxy60r0.969xyss(5.4314)(11.4018)xyThereisastrongnegativelinearrelationship.48.a.1816141210y86420051015202530xb.Positiverelationship8050c/d.xx8016yy5010ii5522()xxyy()106()xx272()yy86iiii()xxyy()106iis26.5xyn1514-58
2()xx272is8.2462xn1512()yy86is4.6368yn151sxy26.5r0.693xyss(8.2462)(4.6368)xyApositivelinearrelationship49.a.750700650600550y=SAT5004504002.62.833.23.43.63.8x=GPAb.Positiverelationship198.3540c/d.xx198.33.yy3540590ii6622()xxyy()143().(),xx074yy36400iiii()xxyy()143iis28.6xyn1612()xx0.74is0.3847xn1612()yy36,400is85.3229yn161sxy28.6r0.8713xyss(0.3847)(85.3229)xyApositivelinearrelationship4-59
50.Letx=drivingspeedandy=mileage420270xx42042yy27027ii101022(xxyy)()475(xx)1660(yy)164iiii()xxyy()475iis52.7778xyn11012()xx1660is13.5810xn11012()yy164is4.2687yn1101sxy52.7778r.91xyss(13.5810)(4.2687)xyAstrongnegativelinearrelationship51.a.Thesamplecorrelationcoefficientis.78.b.Thereisapositivelinearrelationshipbetweentheperformancescoreandtheoverallrating.52.a.Thesamplecorrelationcoefficientis.92.b.Thereisastrongpositivelinearrelationshipbetweenthetwovariables.53.Thesamplecorrelationcoefficientis.88.Thisindicatesastrongpositivelinearrelationshipbetweenthedailyhighandlowtemperatures.wx6323222585(.)()(.)()702.ii54.a.x369.w632819i322255...127b.3175.4455.fiMifiMi45207107091513552010025325fM325iix13n254-60
fiMiMx()Mx2f()Mx2iiii45-864256710-3963915+2436520+74924560022fMxii()600s25n124s25556.a.GradexiWeightWi4(A)93(B)152(C)331(D)30(F)060CreditHourswx9415333231()()()()150iix250.w91533360ib.Yes;satisfiesthe2.5gradepointaveragerequirement57.Weusetheweightedmeanformulawiththeweightsbeingtheamountsinvested.wx=37,830(0.00)+27,667(2.98)+31,037(2.77)+27,336(2.65)+37,553(1.58)ii+17,812(0.57)+32,660(2.00)+17,775(0.00)=375,667.1w=37,830+27,667+···+17,775i=229,670wx3756671,.iix164.w229670,i58.MififiMiMix()Mx2f()Mx2iii742148-8.74264776.4338775,656.106919271,344-3.74264714.0074072,689.4221280123,3601.2573531.580937442.6622105171,7856.25735339.1544674,111.2190232250611.257353126.7280002,914.743962716216.257353264.3015301,585.80926807,30517,399.9630Estimateoftotalgallonssold:(10.74)(120)=1288.87305x10.746804-61
217,399.9630s25.63679s5.0659.a.ClassfiMifiMi015001101102402803853255435041400Totals5001745fM1745iix349.n500b.Mx()Mx22iifMxii()-3.4912.18182.70-2.496.2062.00-1.492.2288.80-0.490.2420.41+0.510.2691.04Total444.952()Mxf44495.2iis08917..s0891709443.n1499x3463i60.a.x13852.n25Median=129(13thvalue)Mode=0(2times)b.ItappearsthatthisgroupofyoungadultseatsoutmuchmorethantheaverageAmerican.Themeanandmedianaremuchhigherthantheaverageof$65.88reportedinthenewspaper.c.Q1=95(7thvalue)Q3=169(19thvalue)d.Min=0Max=467Range=467-0=467IQR=Q3-Q1=169-95=742e.s=9271.01s=96.294-62
f.Thez-scoreforthelargestvalueis:46713852.z341.9629.Itistheonlyoutlierandshouldbecheckedforaccuracy.61.a.xi=760x760ix38n20Medianisaverageof10thand11thitems.3636Median362Themodalcashretaineris40;itappears4times.b.ForQ1,c.25i205100Sinceiisinteger,2830Q2912ForQ3,75i2015100Sinceiisinteger,4050Q4532cRange=64–15=49Interquartilerange=45–29=1622xxi3318d.s174.6316n12012ss174.631613.2148s13.2148e.Coefficientofvariation=10010034.8x384-63
x260i62.a.x1857.n14Median=16.5(Averageof7thand8thvalues)2b.s=53.49s=7.31c.Quantexhasthebestrecord:11Days271857.d.z115.731.Packard-Bellis1.15standarddeviationsslowerthanthemean.121857.e.z090.731.IBMis0.9standarddeviationsfasterthanthemean.f.CheckToshiba:371857.z252.731.Onthebasisofz-scores,Toshibaisnotanoutlier,butitis2.52standarddeviationsslowerthanthemean.63.x=1890.2/30=63Median(15thand16thpositions)is(63+63.5)/2=63.25Mode:60.5and63.5bothoccurtwiceb.i=(25/100)30=7.5(8thposition)Q1=55.9i=(75/100)30=22.5(23rdposition)Q3=69.064.Samplemean=7195.5Median=7019(averageofpositions5and6)Samplevariance=7,165,941Samplestandarddeviation=2676.9365.a.Thesamplemeanis83.135andthesamplestandarddeviationis16.173.b.Withz=2,Chebyshev’stheoremgives:4-64
111311122z244Therefore,atleast75%ofhouseholdincomesarewithin2standarddeviationsofthemean.Usingthesamplemeanandsamplestandarddeviationcomputedinpart(a),therangewithin75%ofhouseholdincomesmustfallis83.1352(16.173)=83.13532.346;thus,75%ofhouseholdincomesmustfallbetween50.789and115.481,or$50,789to$115,481.c.Withz=2,theempiricalrulesuggeststhat95%ofhouseholdincomesmustfallbetween$50,789to$115,481.Forthesamerange,theprobabilityobtainedusingtheempiricalruleisgreaterthantheprobabilityobtainedusingChebyshev’stheorem.d.Thez-scoreforDanbury,CTis3.04;thus,theDanbury,CTobservationisanoutlier.32066.a.PublicTransportation:x3210320Automobile:x3210b.PublicTransportation:s=4.64Automobile:s=1.83c.Prefertheautomobile.Themeantimesarethesame,buttheautohaslessvariability.d.Datainascendingorder:Public:25282929323233343741Auto:29303131323233333435FivenumberSummariesPublic:2529323441Auto:2931323335BoxPlots:Public:2428323640Auto:4-65
2428323640Theboxplotsdoshowlowervariabilitywithautomobiletransportationandsupporttheconclusioninpartc.67.Datainascendingorder:42445356586162627576777879828484858889899395969798a.FiveNumberSummary4262798998b.BoxPlot40506070809010068.Datainascendingorder:40045151157659665271174480982085290794197197510231112117412511278i=(25/100)20=5i=(75/100)20=15i=(50/100)20=10596652Q624129751023Q99932820852Median=8362a.FiveNumberSummary4-66
4006248369991278b.4005006007008009001000110012001300c.Therearenovaluesoutsidethelimits.Thusnooutliersareidentified.Lowerlimit=624-1.5(999-624)=61.5Upperlimit=999+1.5(999-624)=1561.569.a.Thesamplecovarianceis477.5365.Becausethesamplecovarianceispositive,thereisapositivelinearrelationshipbetweenincomeandhomeprice.b.Thesamplecorrelationcoefficientis.933;thisindicatesastronglinearrelationshipbetweenincomeandhomeprice.70.a.Thescatterdiagramindicatesapositiverelationshipb.xy79811,688xy1,058,019iiii22xy71,30616,058,736iixyiixyii/n1,058,019(798)(11,688)/9r.9856xy222222xxnyynii//ii71,306(798)/916,058,736(11,688)/9Strongpositiverelationship71.Letxi=commissionon500sharestradeforbrokeriyi=commissionon1000sharestradeforbrokeri18291326xx182991.45yy132666.3ii202022(xxyy)()11,853.3(xx)48,370.95(yy)8506.2iiii()xxyy()11,853.3iis623.8579xyn119Thecovarianceshowsthereisapositiverelationship.2()xx48,370.95is50.4563xn1194-67
2()yy8506.2is21.1588yn119sxy623.8579r0.5844xyss(50.4563)(21.1588)xyThecorrelationcoefficientshowsthatwhiletherelationshipispositive,itisnotrealstrong.NotethatMaxUlechargesmorethanSchwabforthe500sharetrade($195vs.$155)butlessforthe1000sharetrade($70vs.$90).72.a.Thescatterdiagramisshownbelow:3.532.52Earnings1.510.50051015202530BookValueb.Thesamplecorrelationcoefficientis.75;thisindicatesalinearrelationshipbetweenbookvalueandearnings.wx20(20)30(12)10(7)15(5)10(6)965ii73.x11.4daysw203010151085i74.a.(800+750+900)/3=817b.MonthJanuaryFebruaryMarchWeight123wx1800()()()275039005000iix833w1236i75.fiMifiMiMxi()Mx2fMx()2iii4-68
45.522.0-6.846.24184.9659.547.5-2.87.8439.20713.594.51.21.4410.08217.535.05.227.0454.08121.521.59.284.6484.64125.525.513.2174.24174.2420246.0547.20246x12.3202547.20s28.819s=5.3776.fiMifiMiMxi()Mx2fMx()2iii229.559.0-22484968639.5237.0-12144864449.5198.0-2416459.5238.0864256269.5139.018324648279.5159.0287841568201,030.043201030x51.5204320s227.3719s=15.0877.fiMifiMiMxi()Mx2fMx()2iii1047470-13.68187.14241871.4240522080-8.6875.34243013.70150578550-3.6813..54242031.361756210850+1.321.7424304.9275675025+6.3239.94242995.6815721080+11.32128.14241922.141077770+16.32266.34242663.4247528,82514,802.6428,825a.x60.68475214,802.64b.s31.23474s31.235.594-69
Chapter4IntroductiontoProbabilityLearningObjectives1.Obtainanappreciationoftheroleprobabilityinformationplaysinthedecisionmakingprocess.2.Understandprobabilityasanumericalmeasureofthelikelihoodofoccurrence.3.Knowthethreemethodscommonlyusedforassigningprobabilitiesandunderstandwhentheyshouldbeused.4.Knowhowtousethelawsthatareavailableforcomputingtheprobabilitiesofevents.5.Understandhownewinformationcanbeusedtoreviseinitial(prior)probabilityestimatesusingBayes’theorem.4-70
Solutions:1.NumberofexperimentalOutcomes=(3)(2)(4)=24F6I6!6543212.20HG3KJ33!!(321321)()ABCACEBCDBEFABDACFBCECDEABEADEBCFCDFABFADFBDECEFACDAEFBDFDEF66!3.P()()()6541203()63!BDFBFDDBFDFBFBDFDB4.a.1stToss2ndToss3rdTossH(H,H,H)TH(H,H,T)TH(H,T,H)HT(H,T,T)TH(T,H,H)TH(T,H,T)TH(T,T,H)T(T,T,T)b.Let:HbeheadandTbetail(H,H,H)(T,H,H)(H,H,T)(T,H,T)(H,T,H)(T,T,H)(H,T,T)(T,T,T)c.Theoutcomesareequallylikely,sotheprobabilityofeachoutcomesis1/8.5.P(Ei)=1/5fori=1,2,3,4,5P(Ei)0fori=1,2,3,4,5P(E1)+P(E2)+P(E3)+P(E4)+P(E5)=1/5+1/5+1/5+1/5+1/5=1Theclassicalmethodwasused.13-71
6.P(E1)=.40,P(E2)=.26,P(E3)=.34Therelativefrequencymethodwasused.7.No.Requirement(4.3)isnotsatisfied;theprobabilitiesdonotsumto1.P(E1)+P(E2)+P(E3)+P(E4)=.10+.15+.40+.20=.858.a.Therearefouroutcomespossibleforthis2-stepexperiment;planningcommissionpositive-councilapproves;planningcommissionpositive-councildisapproves;planningcommissionnegative-councilapproves;planningcommissionnegative-councildisapproves.b.Letp=positive,n=negative,a=approves,andd=disapprovesPlanningCommissionCouncil(p,a)adp(p,d).n(n,a)ad(n,d)F50I50!504948479.230300,HG4KJ446!!432110.a.Usetherelativefrequencyapproach:P(California)=1,434/2,374=.60b.Numbernotfrom4states=2,374-1,434-390-217-112=221P(Notfrom4States)=221/2,374=.09c.P(NotinEarlyStages)=1-.22=.78d.EstimateofnumberofMassachusettscompaniesinearlystageofdevelopment-(.22)3908613-72
e.Ifweassumethesizeoftheawardsdidnotdifferbystates,wecanmultiplytheprobabilityanawardwenttoColoradobythetotalventurefundsdisbursedtogetanestimate.EstimateofColoradofunds=(112/2374)($32.4)=$1.53billionAuthors"Note:TheactualamountgoingtoColoradowas$1.74billion.11.a.No,theprobabilitiesdonotsumtoone.Theysumto.85.b.Ownermustrevisetheprobabilitiessotheysumto1.00.12.a.Usethecountingruleforcombinations:F49I49!()4948474645()()()()1906884,,HG5KJ544!!()()()()()54321b.Verysmall:1/1,906,884=0.0000005c.Multiplytheanswertopart(a)by42togetthenumberofchoicesforthesixnumbers.No.ofChoices=(1,906,884)(42)=80,089,128ProbabilityofWinning=1/80,089,128=0.000000012513.Initiallyaprobabilityof.20wouldbeassignedifselectionisequallylikely.Datadoesnotappeartoconfirmthebeliefofequalconsumerpreference.Forexampleusingtherelativefrequencymethodwewouldassignaprobabilityof5/100=.05tothedesign1outcome,.15todesign2,.30todesign3,.40todesign4,and.10todesign5.14.a.P(E2)=1/4b.P(any2outcomes)=1/4+1/4=1/2c.P(any3outcomes)=1/4+1/4+1/4=3/415.a.S={aceofclubs,aceofdiamonds,aceofhearts,aceofspades}b.S={2ofclubs,3ofclubs,...,10ofclubs,Jofclubs,Qofclubs,Kofclubs,Aofclubs}c.Thereare12;jack,queen,orkingineachofthefoursuits.d.Fora:4/52=1/13=.08Forb:13/52=1/4=.25Forc:12/52=.2313-73
16.a.(6)(6)=36samplepointsb.Die212345612345672345678TotalforBoth.3456789Die1456789105678910116789101112c.6/36=1/6d.10/36=5/18e.No.P(odd)=18/36=P(even)=18/36or1/2forboth.f.Classical.Aprobabilityof1/36isassignedtoeachexperimentaloutcome.17.a.(4,6),(4,7),(4,8)b..05+.10+.15=.30c.(2,8),(3,8),(4,8)d..05+.05+.15=.25e..1518.a.0;probabilityis.05b.4,5;probabilityis.10+.10=.20c.0,1,2;probabilityis.05+.15+.35=.5519.a.Yes,theprobabilitiesareallgreaterthanorequaltozeroandtheysumtoone.b.P(A)=P(0)+P(1)+P(2)=.08+.18+.32=.5813-74
c.P(B)=P(4)=.1220.a.P(N)=56/500=.112b.P(T)=43/500=.086c.Totalin6states=56+53+43+37+28+28=245P(B)=245/500=.49AlmosthalftheFortune500companiesareheadquarteredinthesestates.21.a.P(A)=P(1)+P(2)+P(3)+P(4)+P(5)2012631=5050505050=.40+.24+.12+.06+.02=.84b.P(B)=P(3)+P(4)+P(5)=.12+.06+.02=.20c.P(2)=12/50=.2422.a.P(A)=.40,P(B)=.40,P(C)=.60b.P(AB)=P(E1,E2,E3,E4)=.80.YesP(AB)=P(A)+P(B).ccccc.A={E3,E4,E5}C={E1,E4}P(A)=.60P(C)=.40ccd.AB={E1,E2,E5}P(AB)=.60e.P(BC)=P(E2,E3,E4,E5)=.8023.a.P(A)=P(E1)+P(E4)+P(E6)=.05+.25+.10=.40P(B)=P(E2)+P(E4)+P(E7)=.20+.25+.05=.50P(C)=P(E2)+P(E3)+P(E5)+P(E7)=.20+.20+.15+.05=.60b.AB={E1,E2,E4,E6,E7}P(AB)=P(E1)+P(E2)+P(E4)+P(E6)+P(E7)=.05+.20+.25+.10+.05=.65c.AB={E4}P(AB)=P(E4)=.2513-75
d.Yes,theyaremutuallyexclusive.cce.B={E1,E3,E5,E6};P(B)=P(E1)+P(E3)+P(E5)+P(E6)=.05+.20+.15+.10=.5024.P(CrashNotLikely)=1-.14-.43=.4325.LetY=highone-yearreturnM=highfive-yearreturna.P(Y)=15/30=.50P(M)=12/30=.40P(YM)=6/30=.20b.P(YM)=P(Y)+P(M)-P(YM)=.50+.40-.20=.70c.1-P(YM)=1-.70=.3026.LetY=highone-yearreturnM=highfive-yearreturna.P(Y)=9/30=.30P(M)=7/30=.23b.P(YM)=5/30=.17c.P(YM)=.30+.23-.17=.36P(Neither)=1-.36=.6427.Let:D=consumesorservesdomesticwineI=consumesorservesimportedwineWearegivenP(D)=0.57,P(I)=0.33,P(DI)=0.63P(DI)=P(D)+P(I)-P(DI)=0.57+0.33-0.63=0.2728.Let:B=rentedacarforbusinessreasonsP=rentedacarforpersonalreasonsa.P(BP)=P(B)+P(P)-P(BP)=.54+.458-.30=.698b.P(Neither)=1-.698=.30213-76
725790,29.a.P(H)0299.2425000,,537390,P(C)0222.2425000,,159877,P(S)0066.2425000,,b.Apersoncanhaveonlyoneprimarycauseofdeathlistedonadeathcertificate.So,theyaremutuallyexclusive.c.P(HC)=0.299+0.222=0.521d.P(CS)=0.222+0.066=0.288e.1-0.299-0.222-0.066=0.413P(AB).4030.a.P(AB).6667P(B).60P(AB).40b.P(BA).80P(A).50c.NobecauseP(A|B)P(A)31.a.P(AB)=0P(AB)0b.P(AB)0P(B).4c.No.P(A|B)P(A);theevents,althoughmutuallyexclusive,arenotindependent.d.Mutuallyexclusiveeventsaredependent.32.a.SingleMarriedTotalUnder30.55.10.6530orover.20.15.35Total.75.251.00b.65%ofthecustomersareunder30.c.Themajorityofcustomersaresingle:P(single)=.75.13-77
d..55e.Let:A=eventunder30B=eventsingleP(AB).55P(BA).8462P(A).65f.P(AB)=.55P(A)P(B)=(.65)(.75)=.49SinceP(AB)P(A)P(B),theycannotbeindependentevents;or,sinceP(A|B)P(B),theycannotbeindependent.33.a.ReasonforApplyingQualityCost/ConvenienceOtherTotalFullTime.218.204.039.461PartTime.208.307.024.539.426.511.0631.00b.Itismostlikelyastudentwillcitecostorconvenienceasthefirstreason-probability=.511.Schoolqualityisthefirstreasoncitedbythesecondlargestnumberofstudents-probability=.426.c.P(Quality|fulltime)=.218/.461=.473d.P(Quality|parttime)=.208/.539=.386e.Forindependence,wemusthaveP(A)P(B)=P(AB).Fromthetable,P(AB)=.218,P(A)=.461,P(B)=.426P(A)P(B)=(.461)(.426)=.196SinceP(A)P(B)P(AB),theeventsarenotindependent.34.a.P(O)=0.38+0.06=0.44b.P(Rh-)=0.06+0.02+0.01+0.06=0.15c.P(bothRh-)=P(Rh-)P(Rh-)=(0.15)(0.15)=0.022513-78
d.P(bothAB)=P(AB)P(AB)=(0.05)(0.05)=0.0025P(Rh-O).06e.P(Rh-O).136P(O).44f.P(Rh+)=1-P(Rh-)=1-0.15=0.85P(BRh+).09P(BRh+).106P(Rh+).8535.a.P(UpforJanuary)=31/48=0.646b.P(UpforYear)=36/48=0.75c.P(UpforYearUpforJanuary)=29/48=0.604P(UpforYear|UpforJanuary)=0.604/0.646=0.935d.TheyarenotindependentsinceP(UpforYear)P(UpforYear|UpforJanuary)0.750.93536.a.SatisfactionScoreOccupationUnder5050-5960-6970-7980-89TotalCabinetmaker.000.050.100.075.025.250Lawyer.150.050.025.025.000.250PhysicalTherapist.000.125.050.025.050.250SystemsAnalyst.050.025.100.075.000.250Total.200.250.275.200.0751.000b.P(80s)=.075(amarginalprobability)c.P(80s|PT)=.050/.250=.20(aconditionalprobability)d.P(L)=.250(amarginalprobability)e.P(LUnder50)=.150(ajointprobability)f.P(Under50|L)=.150/.250=.60(aconditionalprobability)g.P(70orhigher)=.275(Sumofmarginalprobabilities)37.a.P(AB)=P(A)P(B)=(.55)(.35)=.19b.P(AB)=P(A)+P(B)-P(AB)=.55+.35-.19=.71c.P(shutdown)=1-P(AB)=1-.71=.2913-79
5238.a.P(Telephone)0.2737190b.Thisisanintersectionoftwoevents.Itseemsreasonabletoassumethenexttwomessageswillbeindependent;weusethemultiplicationruleforindependentevents.3015P(E-mailFax)=P(E-mail)P(Fax)=0.0125190190c.Thisisaunionoftwomutuallyexclusiveevents.P(TelephoneInterofficeMail)=P(Telephone)+P(InterofficeMail)521870=0.736819019019039.a.Yes,sinceP(A1A2)=0b.P(A1B)=P(A1)P(B|A1)=.40(.20)=.08P(A2B)=P(A2)P(B|A2)=.60(.05)=.03c.P(B)=P(A1B)+P(A2B)=.08+.03=.11.08d.P(AB).72731.11.03P(AB).27272.1140.a.P(BA1)=P(A1)P(B|A1)=(.20)(.50)=.10P(BA2)=P(A2)P(B|A2)=(.50)(.40)=.20P(BA3)=P(A3)P(B|A3)=(.30)(.30)=.09.20b.P(AB).512.10.20.09c.EventsP(Ai)P(B|Ai)P(AiB)P(Ai|B)A1.20.50.10.26A2.50.40.20.51A3.30.30.09.231.00.391.0041.S1=successful,S2=notsuccessfulandB=requestreceivedforadditionalinformation.a.P(S1)=.50b.P(B|S1)=.7513-80
(.50)(.75).375c.P(SB).651(.50)(.75)(.50)(.40).57542.M=missedpaymentD1=customerdefaultsD2=customerdoesnotdefaultP(D1)=.05P(D2)=.95P(M|D2)=.2P(M|D1)=1P(D)P(MD)(.05)(1).0511a.P(DM).211P(D)P(MD)P(D)P(MD)(.05)(1)(.95)(.2).241122b.Yes,theprobabilityofdefaultisgreaterthan.20.43.Let:S=smallcarcS=othertypeofvehicleF=accidentleadstofatalityforvehicleoccupantccWehaveP(S)=.18,soP(S)=.82.AlsoP(F|S)=.128andP(F|S)=.05.UsingthetabularformofBayesTheoremprovides:PriorConditionalJointPosteriorEventsProbabilitiesProbabilitiesProbabilitiesProbabilitiesS.18.128.023.36cS.82.050.041.641.00.0641.00Fromtheposteriorprobabilitycolumn,wehaveP(S|F)=.36.So,ifanaccidentleadstoafatality,theprobabilityasmallcarwasinvolvedis.36.44.LetA1=StoryaboutBasketballTeamA2=StoryaboutHockeyTeamW="WeWin"headlineP(A1)=.60P(W|A1)=.641P(A2)=.40P(W|A2)=.462AiP(Ai)P(W|A1)P(WAi)P(Ai|M)A1.60.641.3846.3846/.5694=.6754A2.40.462.1848.1848/.5694=.3246.56941.0000Theprobabilitythestoryisaboutthebasketballteamis.6754.45.a.EventsP(Di)P(S1|Di)P(DiS1)P(Di|S1)D1.60.15.090.2195D2.40.80.320.78051.00P(S1)=.4101.000P(D1|S1)=.219513-81
P(D2|S1)=.7805b.EventsP(Di)P(S2|Di)P(DiS2)P(Di|S2)D1.60.10.060.500D2.40.15.060.5001.00P(S2)=.1201.000P(D1|S2)=.50P(D2|S2)=.50c.EventsP(Di)P(S3|Di)P(DiS3)P(Di|S3)D1.60.15.090.8824D2.40.03.012.11761.00P(S3)=.1021.0000P(D1|S3)=.8824P(D2|S3)=.1176d.Usetheposteriorprobabilitiesfrompart(a)asthepriorprobabilitieshere.EventsP(Di)P(S2|Di)P(DiS2)P(Di|S2)D1.2195.10.0220.1582D2.7805.15.1171.84181.0000.13911.0000P(D1|S1andS2)=.1582P(D2|S1andS2)=.841846.a.P(Excellent)=.18P(PrettyGood)=.50P(PrettyGoodExcellent)=.18+.50=.68Note:Eventsaremutuallyexclusivesinceapersonmayonlychooseonerating.b.1035(.05)=51.75Weestimate52respondentsratedUScompaniespoor.c.1035(.01)=10.35Weestimate10respondentsdidnotknowordidnotanswer.47.a.(2)(2)=4b.Lets=successfulu=unsuccessful13-82
OilBondsE1susE2uE3suE4c.O={E1,E2}M={E1,E3}d.OM={E1,E2,E3}e.OM={E1}f.No;sinceOMhasasamplepoint.48.a.P(satisfied)=0.61b.The18-34yearoldgroup(64%satisfied)andthe65andovergroup(70%satisfied).c.P(notsatisfied)=0.26+0.04=0.3049.LetI=treatment-causedinjuryD=deathfrominjuryN=injurycausedbynegligenceM=malpracticeclaimfiled$=paymentmadeinclaimWearegivenP(I)=0.04,P(N|I)=0.25,P(D|I)=1/7,P(M|N)=1/7.5=0.1333,andP($|M)=0.50cca.P(N)=P(N|I)P(I)+P(N|I)P(I)=(0.25)(0.04)+(0)(0.96)=0.0113-83
ccb.P(D)=P(D|I)P(I)+P(D|I)P(I)=(1/7)(0.04)+(0)(0.96)=0.006ccc.P(M)=P(M|N)P(N)+P(M|N)P(N)=(0.1333)(0.01)+(0)(0.99)=0.001333ccP($)=P($|M)P(M)+P($|M)P(M)=(0.5)(0.001333)+(0)(0.9987)=0.0006750.a.Probabilityoftheevent=P(average)+P(aboveaverage)+P(excellent)111413=505050=.22+.28+.26=.76b.Probabilityoftheevent=P(poor)+P(belowaverage)48=.24505051.a.P(leases1)=168/932=0.18b.P(2orfewer)=401/932+242/932+65/932=708/932=0.76c.P(3ormore)=186/932+112/932=298/932=0.32d.P(nocars)=19/932=0.0252.a.13-84
YesNoTotal23andUnder.1026.0996.202224-26.1482.1878.336027-30.0917.1328.224531-35.0327.0956.128336andOver.0253.0837.1090Total.4005.59951.0000.b..2022c..2245+.1283+.1090=.4618d..400553.a.P(24to26|Yes)=.1482/.4005=.3700b.P(Yes|36andover)=.0253/.1090=.2321c..1026+.1482+.1878+.0917+.0327+.0253=.5883d.P(31ormore|No)=(.0956+.0837)/.5995=.2991e.No,becausetheconditionalprobabilitiesdonotallequalthemarginalprobabilities.Forinstance,P(24to26|Yes)=.3700P(24to26)=.336054.LetI=importantorveryimportantM=maleF=femalea.P(I)=.49(amarginalprobability)b.P(I|M)=.22/.50=.44(aconditionalprobability)c.P(I|F)=.27/.50=.54(aconditionalprobability)d.ItisnotindependentP(I)=.49P(I|M)=.44andP(I)=.49P(I|F)=.5413-85
e.Sincelevelofimportanceisdependentongender,weconcludethatmaleandfemalerespondentshavedifferentattitudestowardrisk.P(BS).1255.a.P(BS).30P(S).40WehaveP(B|S)>P(B).Yes,continuetheadsinceitincreasestheprobabilityofapurchase.b.Estimatethecompany’smarketshareat20%.ContinuingtheadvertisementshouldincreasethemarketsharesinceP(B|S)=.30.P(BS).10c.P(BS).333P(S).30Thesecondadhasabiggereffect.56.a.P(A)=200/800=.25b.P(B)=100/800=.125c.P(AB)=10/800=.0125d.P(A|B)=P(AB)/P(B)=.0125/.125=.10e.No,P(A|B)P(A)=.2557.LetA=losttimeaccidentincurrentyearB=losttimeaccidentpreviousyearGiven:P(B)=.06,P(A)=.05,P(A|B)=.15a.P(AB)=P(A|B)P(B)=.15(.06)=.009b.P(AB)=P(A)+P(B)-P(AB)=.06+.05-.009=.101or10.1%58.Let:A=returnisfraudulentB=exceedsIRSstandardfordeductionscGiven:P(A|B)=.20,P(A|B)=.02,P(B)=.08,findP(A)=.3.cNoteP(B)=1-P(B)=.92cP(A)=P(AB)+P(AB)cc=P(B)P(A|B)+P(B)P(A|B)=(.08)(.20)+(.92)(.02)=.0344Weestimate3.44%willbefraudulent.59.a.P(Oil)=.50+.20=.70b.LetS=Soiltestresults13-86
EventsP(Ai)P(S|Ai)P(AiS)P(Ai|S)HighQuality(A1).50.20.10.31MediumQuality(A2).20.80.16.50NoOil(A3).30.20.06.191.00P(S)=.321.00P(Oil)=.81whichisgood;however,probabilitiesnowfavormediumqualityratherthanhighqualityoil.60.a.A1=fieldwillproduceoilA2=fieldwillnotproduceoilW=wellproducesoilcccEventsP(Ai)P(W|Ai)P(WAi)P(Ai|W)OilinField.25.20.05.0625NoOilinField.751.00.75.93751.00.801.0000Theprobabilitythefieldwillproduceoilgivenawellcomesupdryis.0625.b.cccEventsP(Ai)P(W|Ai)P(WAi)P(Ai|W)OilinField.0625.20.0125.0132NoOilinField.93751.00.9375.98681.0000.95001.0000Theprobabilitythewellwillproduceoildropsfurtherto.0132.c.Supposeathirdwellcomesupdry.Theprobabilitiesarerevisedasfollows:cccEventsP(Ai)P(W|Ai)P(WAi)P(Ai|W)OilinField.0132.20.0026.0026IncorrectAdjustment.98681.00.9868.99741.0000.98941.0000Stopdrillingandabandonfieldifthreeconsecutivewellscomeupdry.Chapter5DiscreteProbabilityDistributionsLearningObjectives1.Understandtheconceptsofarandomvariableandaprobabilitydistribution.2.Beabletodistinguishbetweendiscreteandcontinuousrandomvariables.13-87
3.Beabletocomputeandinterprettheexpectedvalue,variance,andstandarddeviationforadiscreterandomvariable.4.Beabletocomputeandworkwithprobabilitiesinvolvingabinomialprobabilitydistribution.5.BeabletocomputeandworkwithprobabilitiesinvolvingaPoissonprobabilitydistribution.6.Knowwhenandhowtousethehypergeometricprobabilitydistribution.Solutions:1.a.Head,Head(H,H)Head,Tail(H,T)Tail,Head(T,H)Tail,Tail(T,T)b.x=numberofheadsontwocointossesc.OutcomeValuesofx(H,H)2(H,T)1(T,H)113-88
(T,T)0d.Discrete.Itmayassume3values:0,1,and2.2.a.Letx=time(inminutes)toassembletheproduct.b.Itmayassumeanypositivevalue:x>0.c.Continuous3.LetY=positionisofferedN=positionisnotoffereda.S={(Y,Y,Y),(Y,Y,N),(Y,N,Y),(Y,N,N),(N,Y,Y),(N,Y,N),(N,N,Y),(N,N,N)}b.LetN=numberofoffersmade;Nisadiscreterandomvariable.c.ExperimentalOutcome(Y,Y,Y)(Y,Y,N)(Y,N,Y)(Y,N,N)(N,Y,Y)(N,Y,N)(N,N,Y)(N,N,N)ValueofN322121104.x=0,1,2,...,12.5.a.S={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)}b.ExperimentalOutcome(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)NumberofStepsRequired2343456.a.values:0,1,2,...,20discreteb.values:0,1,2,...discretec.values:0,1,2,...,50discreted.values:0x8continuouse.values:x>0continuous7.a.f(x)0forallvaluesofx.f(x)=1Therefore,itisaproperprobabilitydistribution.b.Probabilityx=30isf(30)=.25c.Probabilityx25isf(20)+f(25)=.20+.15=.35d.Probabilityx>30isf(35)=.4013-89
8.a.xf(x)13/20=.1525/20=.2538/20=.4044/20=.20Total1.00b.f(x).4.3.2.1x1234c.f(x)0forx=1,2,3,4.f(x)=19.a.xf(x)115/462=0.032232/462=0.069384/462=0.1824300/462=0.650531/462=0.067b.13-90
f(x)0.600.450.300.15x012345c.Allf(x)0f(x)=0.032+0.069+0.182+0.650+0.067=1.00010.a.xf(x)10.0520.0930.0340.4250.411.00b.xf(x)10.0420.1030.1240.4650.281.00c.P(4or5)=f(4)+f(5)=0.42+0.41=0.83d.Probabilityofverysatisfied:0.28e.Seniorexecutivesappeartobemoresatisfiedthanmiddlemanagers.83%ofseniorexecutiveshaveascoreof4or5with41%reportinga5.Only28%ofmiddlemanagersreportbeingverysatisfied.11.a.DurationofCallxf(x)10.2520.2530.2540.251.0013-91
b.f(x)0.300.200.10x01234c.f(x)0andf(1)+f(2)+f(3)+f(4)=0.25+0.25+0.25+0.25=1.00d.f(3)=0.25e.P(overtime)=f(3)+f(4)=0.25+0.25=0.5012.a.Yes;f(x)0forallxandf(x)=.15+.20+.30+.25+.10=1b.P(1200orless)=f(1000)+f(1100)+f(1200)=.15+.20+.30=.6513.a.Yes,sincef(x)0forx=1,2,3andf(x)=f(1)+f(2)+f(3)=1/6+2/6+3/6=1b.f(2)=2/6=.333c.f(2)+f(3)=2/6+3/6=.83314.a.f(200)=1-f(-100)-f(0)-f(50)-f(100)-f(150)=1-.95=.05ThisistheprobabilityMRAwillhavea$200,000profit.b.P(Profit)=f(50)+f(100)+f(150)+f(200)=.30+.25+.10+.05=.70c.P(atleast100)=f(100)+f(150)+f(200)=.25+.10+.05=.4015.a.xf(x)xf(x)3.25.756.503.009.252.251.006.00E(x)==6.0013-92
b.xx-(x-)2f(x)(x-)2f(x)3-39.252.25600.500.00939.252.254.502Var(x)==4.50c.=4.50=2.1216.a.yf(y)yf(y)2.20.404.301.207.402.808.10.801.005.20E(y)==5.20b.yy-(y-)2f(y)(y-)2f(y)2-3.2010.24.202.0484-1.201.44.30.43271.803.24.401.29682.807.84.10.7844.560Var()y456.456..21417.a/b.xf(x)xf(x)x-(x-)22(x-)f(x)0.10.00-2.456.0025.6002501.15.15-1.452.1025.3153752.30.60-.45.2025.0607503.20.60.55.3025.0605004.15.601.552.4025.3603755.10.502.556.5025.6502502.452.047500E(x)==2.452=2.0475=1.430918.a/b.xf(x)xf(x)x-(x-)22(x-)f(x)0.010-2.35.290.05291.23.23-1.31.690.38872.41.82-0.30.090.03693.20.600.70.490.0984.10.401.72.890.2895.05.252.77.290.364513-93
2.31.23E(x)=2.3Var(x)=1.231.231.11Theexpectedvalue,E(x)=2.3,oftheprobabilitydistributionisthesameasthatreportedinthe1997StatisticalAbstractoftheUnitedStates.19.a.E(x)=xf(x)=0(.50)+2(.50)=1.00b.E(x)=xf(x)=0(.61)+3(.39)=1.17c.Theexpectedvalueofa3-pointshotishigher.So,iftheseprobabilitiesholdup,theteamwillmakemorepointsinthelongrunwiththe3-pointshot.20.a.xf(x)xf(x)0.900.00400.0416.001000.0330.002000.0120.004000.0140.006000.0160.001.00166.00E(x)=166.Ifthecompanychargedapremiumof$166.00theywouldbreakeven.b.GaintoPolicyHolderf(Gain)(Gain)f(Gain)-260.00.90-234.00140.00.045.60740.00.0322.201,740.00.0117.403,740.00.0137.405,740.00.0157.40-94.00E(gain)=-94.00.Thepolicyholderismoreconcernedthatthebigaccidentwillbreakhimthanwiththeexpectedannuallossof$94.00.21.a.E(x)=xf(x)=0.05(1)+0.09(2)+0.03(3)+0.42(4)+0.41(5)=4.05b.E(x)=xf(x)=0.04(1)+0.10(2)+0.12(3)+0.46(4)+0.28(5)=3.8422c.Executives:=(x-)f(x)=1.247522MiddleManagers:=(x-)f(x)=1.1344d.Executives:=1.1169MiddleManagers:=1.065113-94
e.Theseniorexecutiveshaveahigheraveragescore:4.05vs.3.84forthemiddlemanagers.Theexecutivesalsohaveaslightlyhigherstandarddeviation.22.a.E(x)=xf(x)=300(.20)+400(.30)+500(.35)+600(.15)=445Themonthlyorderquantityshouldbe445units.b.Cost:445@$50=$22,250Revenue:300@$70=21,000$1,250Loss23.a.Laptop:E(x)=.47(0)+.45(1)+.06(2)+.02(3)=.63Desktop:E(x)=.06(0)+.56(1)+.28(2)+.10(3)=1.422222b.Laptop:Var(x)=.47(-.63)+.45(.37)+.06(1.37)+.02(2.37)=.47312222Desktop:Var(x)=.06(-1.42)+.56(-.42)+.28(.58)+.10(1.58)=.5636c.Fromtheexpectedvaluesinpart(a),itisclearthatthetypicalsubscriberhasmoredesktopcomputersthanlaptops.Thereisnotmuchdifferenceinthevariancesforthetwotypesofcomputers.24.a.MediumE(x)=xf(x)=50(.20)+150(.50)+200(.30)=145Large:E(x)=xf(x)=0(.20)+100(.50)+300(.30)=140Mediumpreferred.b.Mediumxf(x)x-(x-)22(x-)f(x)50.20-9590251805.0150.5052512.5200.30553025907.52=2725.0Largeyf(y)y-(y-)22(y-)f(y)0.20-140196003920100.50-401600800300.301602560076802=12,400Mediumpreferredduetolessvariance.13-95
25.a.SSFFSF22!11b.f(1)(.4)(.6)(.4)(.6).4811!1!22!02c.f(0)(.4)(.6)(1)(.36).3600!2!22!20d.f(2)(.4)(.6)(.16)(1).1622!0!e.P(x1)=f(1)+f(2)=.48+.16=.64f.E(x)=np=2(.4)=.8Var(x)=np(1-p)=2(.4)(.6)=.48=.48=.692826.a.f(0)=.3487b.f(2)=.1937c.P(x2)=f(0)+f(1)+f(2)=.3487+.3874+.1937=.9298d.P(x1)=1-f(0)=1-.3487=.6513e.E(x)=np=10(.1)=1f.Var(x)=np(1-p)=10(.1)(.9)=.9=.9=.948727.a.f(12)=.1144b.f(16)=.130413-96
c.P(x16)=f(16)+f(17)+f(18)+f(19)+f(20)=.1304+.0716+.0278+.0068+.0008=.2374d.P(x15)=1-P(x16)=1-.2374=.7626e.E(x)=np=20(.7)=14f.Var(x)=np(1-p)=20(.7)(.3)=4.2=4.2=2.049462428.a.f(2)(.33)(.67).32922b.P(atleast2)=1-f(0)-f(1)660615=1(.33)(.67)(.33)(.67)01=1-.0905-.2673=.642210010c.f(10)(.33)(.67).0182029.P(AtLeast5)=1-f(0)-f(1)-f(2)-f(3)-f(4)=1-.0000-.0005-.0031-.0123-.0350=.949130.a.Probabilityofadefectivepartbeingproducedmustbe.03foreachtrial;trialsmustbeindependent.b.Let:D=defectiveG=notdefectiveExperimentalNumber1stpart2ndpartOutcomeDefectiveD(D,D)2DG(D,G)1.GD(G,D)1G(G,G)0c.2outcomesresultinexactlyonedefect.d.P(nodefects)=(.97)(.97)=.9409P(1defect)=2(.03)(.97)=.058213-97
P(2defects)=(.03)(.03)=.000931.Binomialn=10andp=.0510!xx10fx()(.)(.)0595xx!(10)!a.Yes.Sincetheyareselectedrandomly,pisthesamefromtrialtotrialandthetrialsareindependent.b.f(2)=.0746c.f(0)=.5987d.P(Atleast1)=1-f(0)=1-.5987=.401332.a..90b.P(atleast1)=f(1)+f(2)2!11f(1)=(.9)(.1)1!1!=2(.9)(.1)=.182!20f(2)=(.9)(.1)2!0!=1(.81)(1)=.81P(atleast1)=.18+.81=.99AlternativelyP(atleast1)=1-f(0)2!02f(0)=(.9)(.1)=.010!2!Therefore,P(atleast1)=1-.01=.99c.P(atleast1)=1-f(0)3!03f(0)=(.9)(.1)=.0010!3!Therefore,P(atleast1)=1-.001=.999d.Yes;P(atleast1)becomesverycloseto1withmultiplesystemsandtheinabilitytodetectanattackwouldbecatastrophic.33.a.Usingthebinomialformulaorthetableofbinomialprobabilitieswithp=.5andn=20,wefind:xf(x)120.1201130.0739140.0370150.0148160.004613-98
170.0011180.0002190.0000200.00000.2517Theprobability12ormorewillsendrepresentativesis0.2517.b.Usingthebinomialformulaorthetables,wefind:xf(x)00.000010.000020.000230.001140.004650.01480.0207c.E(x)=np=20(0.5)=102d.=np(1-p)=20(0.5)(0.5)=5=5=2.236134.a.f(3)=.0634(fromtables)b.Theanswerhereisthesameaspart(a).Theprobabilityof12failureswithp=.60isthesameastheprobabilityof3successeswithp=.40.c.f(3)+f(4)+···+f(15)=1-f(0)-f(1)-f(2)=1-.0005-.0047-.0219=.972935.a.f(0)+f(1)+f(2)=.0115+.0576+.1369=.2060b.f(4)=.2182c.1-[f(0)+f(1)+f(2)+f(3)]=1-.2060-.2054=.5886d.=np=20(.20)=436.xf(x)x-(x-)22(x-)f(x)0.343-.9.81.277831.441.1.01.004412.1891.11.21.228693.0272.14.41.1190721.000=.6300037.E(x)=np=30(0.29)=8.72=np(1-p)=30(0.29)(0.71)=6.17713-99
=6.177=2.485x33e38.a.fx()x!233e9(.0498)b.f(2).22412!2133ec.f(1)3(.0498).14941!d.P(x2)=1-f(0)-f(1)=1-.0498-.1494=.8008x22e39.a.fx()x!b.=6for3timeperiodsx66ec.fx()x!222e4(.1353)d.f(2).27062!2666ee.f(6).16066!544ef.f(5).15635!40.a.=48(5/60)=43-44e(64)(.0183)f(3)===.19523!6b.=48(15/60)=1210-1212ef(10)==.104810!c.=48(5/60)=4Iexpect4callerstobewaitingafter5minutes.0-44ef(0)==.01830!Theprobabilitynonewillbewaitingafter5minutesis.0183.d.=48(3/60)=2.413-100
0-2.42.4ef(0)==.09070!Theprobabilityofnointerruptionsin3minutesis.0907.41.a.30perhourb.=1(5/2)=5/23(5/2)(5/2)ef(3).21383!0(5/2)(5/2)e(5/2)c.fe(0).08210!e42.a.fx()x!244e16(0.0183)f(2)8(0.0183)0.14652!2b.Fora3-monthperiod:=1c.Fora6-monthperiod:022e2fe(0)0.13530!Theprobabilityof1ormoreflights=1-f(0)=1-0.1353=0.864701010e1043.a.fe(0).0000450!b.f(0)+f(1)+f(2)+f(3)f(0)=.000045(parta)11010ef(1).000451!Similarly,f(2)=.00225,f(3)=.0075andf(0)+f(1)+f(2)+f(3)=.010245c.2.5arrivals/15sec.periodUse=2.502.52.5ef(0).08210!13-101
d.1-f(0)=1-.0821=.917944.Poissondistributionappliesa.=1.25permonth01.251.25eb.f(0)0.28650!11.251.25ec.f(1)0.35811!d.P(Morethan1)=1-f(0)-f(1)=1-0.2865-0.3581=0.355445.a.For1week,=450/52=8.6518.658.65e8.65b.fe(0)0.00020!c.Fora1-dayperiod:=450/365=1.230–1.231.23e–1.23f(0)==e=0.29230!1–1.231.23ef(1)==1.23(0.2923)=0.35951Probabilityof2ormoredeaths=1-f(0)-f(1)=1-0.2923-0.3595=0.348231033!7!1411!2!3!4!(3)(35)46.a.f(1).501010!21044!6!3103222(3)(1)b.f(2).067104523103020(1)(21)c.f(0).46671045213-102
3103242(3)(21)d.f(2).3010210441543103(4)(330)47.f(3).43961530031048.HypergeometricwithN=10andr=66421(15)(4)a.f(2).50101203b.Mustbe0or1preferCokeClassic.6412(6)(6)f(1).301012036403(1)(4)f(0).0333101203P(MajorityPepsi)=f(1)+f(0)=.333349.Partsa,b&cinvolvethehypergeometricdistributionwithN=52andn=2a.r=20,x=2203220(190)(1)f(2).14335213262b.r=4,x=244820(6)(1)f(2).0045521326213-103
c.r=16,x=2163620(120)(1)f(2).09055213262d.Part(a)providestheprobabilityofblackjackplustheprobabilityof2acesplustheprobabilityoftwo10s.Tofindtheprobabilityofblackjackwesubtracttheprobabilitiesin(b)and(c)fromtheprobabilityin(a).P(blackjack)=.1433-.0045-.0905=.048350.N=60n=10a.r=20x=0F20IF40IF40!Ibg1HG0KJHG10KJHG10!30!KJF40!IF10!50!If(0)=F60I60!HG10!30!KJHG60!KJHG10KJ10!50!40393837363534333231=60595857565554535251.01b.r=20x=1F20IF40IHG1KJHG9KJF40!IF10!50!If(0)=20KJF60IHG931!!KJHG60!HG10KJ.07c.1-f(0)-f(1)=1-.08=.92d.SameastheprobabilityonewillbefromHawaii.Inpartbthatwasfoundtoequalapproximately.07.111423(55)(364)51.a.f(2).37682553,130513-104
141123(91)(165)b.f(2).28262553,1305141150(2002)(1)c.f(5).03772553,1305141105(1)(462)d.f(0).00872553,130552.HypergeometricwithN=10andr=2.Focusontheprobabilityof0defectives,thentheprobabilityofrejectingtheshipmentis1-f(0).a.n=3,x=0280356f(0).4667101203P(Reject)=1-.4667=.5333b.n=4,x=0280470f(0).3333102104P(Reject)=1-.3333=.6667c.n=5,x=0280556f(0).2222102525P(Reject)=1-.2222=.7778d.Continuetheprocess.n=7wouldberequiredwiththeprobabilityofrejecting=.933313-105
53.a.,b.andc.xf(x)xf(x)x-(x-)22(x-)f(x)10.180.18-2.305.290.952220.180.36-1.301.690.608430.030.09-0.300.090.008140.381.520.700.490.744850.231.151.702.893.32351.003.305.63702E(x)==3.30=5.6370=5.6370=2.374254.a.andb.xf(x)xf(x)x-(x-)22(x-)f(x)10.020.02-2.646.96960.13939220.060.12-1.642.68960.16137630.280.84-0.640.40960.11468840.542.160.360.12960.06998450.100.501.361.84960.1849601.003.640.670400f(x)0andf(x)=1E(x)==3.642Var(x)==0.6704c.Peopledoappeartobelievethestockmarketisovervalued.Theaverageresponseisslightlyoverhalfwaybetween“fairlyvalued”and“somewhatovervalued.”55.a.xf(x)9.3010.2011.2512.0513.20b.E(x)=xf(x)=9(.30)+10(.20)+11(.25)+12(.05)+13(.20)=10.65Expectedvalueofexpenses:$10.65million2c.Var(x)=(x-)f(x)222=(9-10.65)(.30)+(10-10.65)(.20)+(11-10.65)(.25)22+(12-10.65)(.05)+(13-10.65)(.20)13-106
=2.1275d.LooksGood:E(Profit)=12-10.65=1.35millionHowever,thereisa.20probabilitythatexpenseswillequal$13millionandthecollegewillrunadeficit.56.a.n=20andx=320317f(3)(0.04)(0.04)0.03643b.n=20andx=020020f(0)(0.04)(0.96)0.44200c.E(x)=np=1200(0.04)=48Theexpectednumberofappealsis48.d.=np(1-p)=1200(0.04)(0.96)=46.08=46.08=6.788257.a.WemusthaveE(x)=np10Withp=.4,thisleadsto:n(.4)10n25b.Withp=.12,thisleadsto:n(.12)10n83.33So,wemustcontact84peopleinthisagegrouptohaveanexpectednumberofinternetusersofatleast10.c.25(.4)(.6)2.45d.25(.12)(.88)1.6258.Sincetheshipmentislargewecanassumethattheprobabilitiesdonotchangefromtrialtotrialandusethebinomialprobabilitydistribution.a.n=5505f(0)(0.01)(0.99)0.9510013-107
514b.f(1)(0.01)(0.99)0.04801c.1-f(0)=1-.9510=.0490d.No,theprobabilityoffindingoneormoreitemsinthesampledefectivewhenonly1%oftheitemsinthepopulationaredefectiveissmall(only.0490).Iwouldconsideritlikelythatmorethan1%oftheitemsaredefective.59.a.E(x)=np=100(.041)=4.1b.Var(x)=np(1-p)=100(.041)(.959)=3.93193.93191.982960.a.E(x)=800(.41)=328b.np(1p)800(.41)(.59)13.91c.Forthisonep=.59and(1-p)=.41,buttheansweristhesameasinpart(b).Forabinomialprobabilitydistribution,thevarianceforthenumberofsuccessesisthesameasthevarianceforthenumberoffailures.Ofcourse,thisalsoholdstrueforthestandarddeviation.61.=15probof20ormorearrivals=f(20)+f(21)+···=.0418+.0299+.0204+.0133+.0083+.0050+.0029+.0016+.0009+.0004+.0002+.0001+.0001=.124962.=1.5probof3ormorebreakdownsis1-[f(0)+f(1)+f(2)].1-[f(0)+f(1)+f(2)]=1-[.2231+.3347+.2510]=1-.8088=.191263.=10f(4)=.0189333e64.a.f()302240.3!b.f(3)+f(4)+···=1-[f(0)+f(1)+f(2)]0-33e-3f(0)==e=.04980!13-108
Similarly,f(1)=.1494,f(2)=.22401-[.0498+.1494+.2241]=.576765.HypergeometricN=52,n=5andr=4.F4IF48IHG2KJHG3KJ617296()a..0399F52I2598960,,HG5KJF4IF48IHG1KJHG4KJ4194580()b..2995F52I2598960,,HG5KJF4IF48IHG0KJHG5KJ1712304,,c..6588F52I2598960,,HG5KJd.1-f(0)=1-.6588=.341266.UsetheHypergeometricprobabilitydistributionwithN=10,n=2,andr=4.F4IF6IHG1KJHG1KJ()()46a.f()1.5333F10I45HG2KJF4IF6IHG2KJHG0KJ()()61b.f()2.1333F10I45HG2KJF4IF6IHG0KJHG2KJ()()115c.f()0.3333F10I45HG2KJChapter6ContinuousProbabilityDistributions13-109
LearningObjectives1.Understandthedifferencebetweenhowprobabilitiesarecomputedfordiscreteandcontinuousrandomvariables.2.Knowhowtocomputeprobabilityvaluesforacontinuousuniformprobabilitydistributionandbeabletocomputetheexpectedvalueandvarianceforsuchadistribution.3.Beabletocomputeprobabilitiesusinganormalprobabilitydistribution.Understandtheroleofthestandardnormaldistributioninthisprocess.4.Beabletocomputeprobabilitiesusinganexponentialprobabilitydistribution.5.UnderstandtherelationshipbetweenthePoissonandexponentialprobabilitydistributions.Solutions:1.a.13-110
f(x)321x.501.01.52.0b.P(x=1.25)=0.Theprobabilityofanysinglepointiszerosincetheareaunderthecurveaboveanysinglepointiszero.c.P(1.0x1.25)=2(.25)=.50d.P(1.20135)=(1/20)(140-135)=0.25120140d.Ex()130minutes24.a.f(x)1.51.0.5x0123b.P(.25.60)=1(.40)=.405.a.LengthofInterval=261.2-238.9=22.31for238.9x261.2fx()22.30elsewhereb.Note:1/22.3=0.045P(x<250)=(0.045)(250-238.9)=0.4995Almosthalfdrivetheballlessthan250yards.c.P(x255)=(0.045)(261.2-255)=0.279d.P(245x260)=(0.045)(260-245)=0.67513-112
e.P(x250)=1-P(x<250)=1-0.4995=0.5005Theprobabilityofanyonedrivingit250yardsormoreis0.5005.With60players,theexpectednumberdrivingit250yardsormoreis(60)(0.5005)=30.03.Rounding,Iwouldexpect30ofthesewomentodrivetheball250yardsormore.6.a.P(12x12.05)=.05(8)=.40b.P(x12.02)=.08(8)=.64c.(Px11.98)Px(12.02).005(8).04.64.08(8)Therefore,theprobabilityis.04+.64=.687.a.P(10,000x<12,000)=2000(1/5000)=.40Theprobabilityyourcompetitorwillbidlowerthanyou,andyougetthebid,is.40.b.P(10,000x<14,000)=4000(1/5000)=.80c.Abidof$15,000givesaprobabilityof1ofgettingtheproperty.d.Yes,thebidthatmaximizesexpectedprofitis$13,000.Theprobabilityofgettingthepropertywithabidof$13,000isP(10,000x<13,000)=3000(1/5000)=.60.Theprobabilityofnotgettingthepropertywithabidof$13,000is.40.Theprofityouwillmakeifyougetthepropertywithabidof$13,000is$3000=$16,000-13,000.Soyourexpectedprofitwithabidof$13,000isEP($13,000)=.6($3000)+.4(0)=$1800.Ifyoubid$15,000theprobabilityofgettingthebidis1,buttheprofitifyoudogetthebidisonly$1000=$16,000-15,000.Soyourexpectedprofitwithabidof$15,000isEP($15,000)=1($1000)+0(0)=$1,000.13-113
8.=107080901001101201309.a.=535404550556065b..6826since45and55arewithinplusorminus1standarddeviationfromthemeanof50.c..9544since40and60arewithinplusorminus2standarddeviationsfromthemeanof50.10.-3-2-10+1+2+3a..3413b..4332c..4772d..493813-114
11.a..3413Theseprobabilityvaluesarereaddirectlyfromthetableofareasforthestandardb..4332normalprobabilitydistribution.SeeTable1inAppendixB.c..4772d..4938e..498612.a..2967b..4418c..5000-.1700=.3300d..0910+.5000=.5910e..3849+.5000=.8849f..5000-.2612=.238813.a..6879-.0239=.6640b..8888-.6985=.1903c..9599-.8508=.109114.a.Usingthetableofareasforthestandardnormalprobabilitydistribution,theareaof.4750correspondstoz=1.96.b.Usingthetable,theareaof.2291correspondstoz=.61.c.Lookinthetableforanareaof.5000-.1314=.3686.Thisprovidesz=1.12.d.Lookinthetableforanareaof.6700-.5000=.1700.Thisprovidesz=.44.15.a.Lookinthetableforanareaof.5000-.2119=.2881.Sincethevalueweareseekingisbelowthemean,thezvaluemustbenegative.Thus,foranareaof.2881,z=-.80.b.Lookinthetableforanareaof.9030/2=.4515;z=1.66.c.Lookinthetableforanareaof.2052/2=.1026;z=.26.d.Lookinthetableforanareaof.4948;z=2.56.e.Lookinthetableforanareaof.1915.Sincethevalueweareseekingisbelowthemean,thezvaluemustbenegative.Thus,z=-.50.16.a.Lookinthetableforanareaof.5000-.0100=.4900.Theareavalueinthetableclosestto.4900providesthevaluez=2.33.b.Lookinthetableforanareaof.5000-.0250=.4750.Thiscorrespondstoz=1.96.13-115
c.Lookinthetableforanareaof.5000-.0500=.4500.Since.4500isexactlyhalfwaybetween.4495(z=1.64)and.4505(z=1.65),weselectz=1.645.However,z=1.64orz=1.65arealsoacceptableanswers.d.Lookinthetableforanareaof.5000-.1000=.4000.Theareavalueinthetableclosestto.4000providesthevaluez=1.28.17.Convertmeantoinches:=69a.Atx=72z=72-69=13P(x72)=0.5000+0.3413=0.8413P(x>72)=1-0.8413=0.1587b.Atx=60z=60-69=–33P(x60)=0.5000+0.4986=0.9986P(x<60)=1-0.9986=0.0014c.Atx=70z=70-69=0.333P(x70)=0.5000+0.1293=0.6293Atx=66z=66-69=–13P(x66)=0.5000-0.3413=0.1587P(66x70)=P(x70)-P(x66)=0.6293-0.1587=0.4706d.P(x72)=1-P(x>72)=1-0.1587=0.841318.a.FindP(x60)Atx=60z=60-49=0.6916P(x<60)=0.5000+0.2549=0.7549P(x60)=1-P(x<60)=0.2451b.FindP(x30)Atx=30z=30-49=–1.1916P(x30)=0.5000-0.3830=0.1170c.Findz-scoresothatP(zz-score)=0.10z-score=1.28cutsoff10%inuppertail13-116
Now,solveforcorrespondingvalueofx.x49128.16x=49+(16)(1.28)=69.48So,10%ofsubscribersspend69.48minutesormorereadingTheWallStreetJournal.19.Wehave=3.5and=.8.5.03.5a.z1.88.8P(x>5.0)=P(z>1.88)=1-P(z<1.88)=1-.9699=.0301Therainfallexceeds5inchesin3.01%oftheAprils.33.5b.z.63.8P(x<3.0)=P(z<-.63)=P(z>.63)=1-P(z<.63)=1-.7357=.2643Therainfallislessthan3inchesin26.43%oftheAprils.c.z=1.28cutsoffapproximately.10intheuppertailofanormaldistribution.x=3.5+1.28(.8)=4.524Ifitrains4.524inchesormore,Aprilwillbeclassifiedasextremelywet.20.Weuse=27and=81127a.z28P(x11)=P(z-2)=.5000-.4772=.0228Theprobabilityarandomlyselectedsubscriberspendslessthan11hoursonthecomputeris.025.4027b.z1.638P(x>40)=P(z>1.63)=1-P(z1.63)=1-.9484=.05165.16%ofsubscribersspendover40hoursperweekusingthecomputer.c.Az-valueof.84cutsoffanareaof.20intheuppertail.x=27+.84(8)=33.72Asubscriberwhousesthecomputer33.72hoursormorewouldbeclassifiedasaheavyuser.13-117
21.Fromthenormalprobabilitytables,az-valueof2.05cutsoffanareaofapproximately.02intheuppertailofthedistribution.x=+z=100+2.05(15)=130.75Ascoreof131orbettershouldqualifyapersonformembershipinMensa.22.Use=441.84and=90a.At400400441.84z.4690At500500441.84z.6590P(0z<.65)=.2422P(-.46z<0)=.1772P(400z500)=.1772+.2422=.4194Theprobabilityaworkerearnsbetween$400and$500is.4194.b.Mustfindthez-valuethatcutsoffanareaof.20intheuppertail.Usingthenormaltables,wefindz=.84cutsoffapproximately.20intheuppertail.So,x=+z=441.84+.84(90)=517.44Weeklyearningsof$517.44orabovewillputaproductionworkerinthetop20%.250441.84c.At250,z2.1390P(x250)=P(z-2.13)=.5000-.4834=.0166Theprobabilityarandomlyselectedproductionworkerearnslessthan$250perweekis.0166.608023.a.z2Areatoleftis.5000-.4772=.022810b.Atx=606080z2Areatoleftis.022810Atx=757580z.5Areatoleftis.308510P(60x75)=.3085-.0228=.285713-118
9080c.z1Area=.5000-.3413=.158710Therefore15.87%ofstudentswillnotcompleteontime.(60)(.1587)=9.522Wewouldexpect9.522studentstobeunabletocompletetheexamintime.xi24.a.x902.75n2()xxis114.185n1Wewillusexasanestimateofandsasanestimateofinparts(b)-(d)below.b.Rememberthedataareinthousandsofshares.At800800902.75z.90114.185P(x800)=P(z-.90)=1-P(z.90)=1-.8159=.1841Theprobabilitytradingvolumewillbelessthan800millionsharesis.1841c.At10001000902.75z.85114.185P(x1000)=P(z.85)=1-P(z.85)=1-.8023=.1977Theprobabilitytradingvolumewillexceed1billionsharesis.1977d.Az-valueof1.645cutsoffanareaof.05intheuppertailx=+z=902.75+1.645(114.185)=1,090.584Theyshouldissueapressreleaseanytimesharevolumeexceeds1,091million.25.a.FindP(x>100)Atx=100z=100-110=–0.520P(x>100)=P(z.5)=0.6915b.FindP(x90)Atx=9013-119
z=90-110=–120P(x90)=.5000-.3413=0.1587c.FindP(80x130)Atx=130z=130-110=120P(x130)=0.8413Atx=8080110z1.5Areatoleftis.066820P(80x130)=.8413-.0668=.7745-6/826.a.P(x6)=1-e=1-.4724=.5276-4/8b.P(x4)=1-e=1-.6065=.3935c.P(x6)=1-P(x6)=1-.5276=.4724d.P(4x6)=P(x6)-P(x4)=.5276-.3935=.1341Pxx()1ex0/327.a.0-2/3b.P(x2)=1-e=1-.5134=.486633/-1c.P(x3)=1-P(x3)=1-(1-e)=e=.3679-5/3d.P(x5)=1-e=1-.1889=.8111e.P(2x5)=P(x5)-P(x2)=.8111-.4866=.3245-10/2028.a.P(x10)=1-e=.3935b.P(x30)=1-P(x30)=1-(1-e-30/20)=e-30/20=.2231c.P(10x30)=P(x30)-P(x10)=(1-e-30/20)-(1-e-10/20)=e-10/20-e-30/20=.6065-.2231=.383413-120
29.a.f(x).09.08.07.06.05.04.03.02.01x6121824-12/12b.P(x12)=1-e=1-.3679=.6321-6/12c.P(x6)=1-e=1-.6065=.3935d.P(x30)=1-P(x<30)-30/12=1-(1-e)=.082130.a.50hours-25/50b.P(x25)=1-e=1-.6065=.3935-100/50c.P(x100)=1-(1-e)=.1353-2/2.7831.a.P(x2)=1-e=.5130-5/2.78-5/2.78b.P(x5)=1-P(x5)=1-(1-e)=e=.1655-2.78/2.78-1c.P(x2.78)=1-P(x2.78)=1-(1-e)=e=.3679Thismayseemsurprisingsincethemeanis2.78minutes.But,fortheexponentialdistribution,theprobabilityofavaluegreaterthanthemeanissignificantlylessthantheprobabilityofavaluelessthanthemean.13-121
32.a.IftheaveragenumberoftransactionsperyearfollowsthePoissondistribution,thetimebetweentransactionsfollowstheexponentialdistribution.So,1=ofayear3011and301/30-30xthenf(x)=30eb.Amonthis1/12ofayearso,1130/1230/12Px1Px1(1e)e.08211212TheprobabilityofnotransactionduringJanuaryisthesameastheprobabilityofnotransactionduringanymonth:.0821c.Since1/2monthis1/24ofayear,wecompute,130/24Px1e1.2865.71352433.a.Letx=salesprice($1000s)1for200x225fx()250elsewhereb.P(x215)=(1/25)(225-215)=0.40c.P(x<210)=(1/25)(210-200)=0.40d.E(x)=(200+225)/2=212,500Ifshewaits,herexpectedsalepricewillbe$2,500higherthanifshesellsitbacktohercompanynow.However,thereisa0.40probabilitythatshewillgetless.It’saclosecall.But,theexpectedvalueapproachtodecisionmakingwouldsuggestsheshouldwait.34.a.Foranormaldistribution,themeanandthemedianareequal.63,000b.Findthez-scorethatcutsoff10%inthelowertail.z-score=-1.28Solvingforx,–1.28=x–63,00015,00013-122
x=63,000-1.28(15000)=43,800Thelower10%ofmortgagedebtis$43,800orless.c.FindP(x>80,000)Atx=80,000z=80,000–63,000=1.1315,000P(x>80,000)=1.0000-.8708=0.1292d.Findthez-scorethatcutsoff5%intheuppertail.z-score=1.645.Solveforx.1.645=x–63,00015,000x=63,000+1.645(15,000)=87,675Theupper5%ofmortgagedebtisinexcessof$87,675.35.a.P(defect)=1-P(9.85x10.15)=1-P(-1z1)=1-.6826=.3174Expectednumberofdefects=1000(.3174)=317.4b.P(defect)=1-P(9.85x10.15)=1-P(-3z3)=1-.9972=.0028Expectednumberofdefects=1000(.0028)=2.8c.Reducingtheprocessstandarddeviationcausesasubstantialreductioninthenumberofdefects.36.a.At11%,z=-1.2313-123
–1.23=x–1800–2071=1800–2071Therefore,==$220.33–1.2320002071b.z.32Areatoleftis.5000-.3255=.3745220.3325002071z1.95Areatoleftis.9744220.33P(2000x2500)=.9744-.3745=.5999c.z=-1.88x=2071-1.88(220.33)=$1656.7837.=10,000=1500a.Atx=12,00012,00010,000z1.33Areatoleftis.90821500P(x>12,000)=1.0000-.9082=.0918b.At.95x-10,000z=1.645=1500Therefore,x=10,000+1.645(1500)=12,468.95%0.0510,00012,46812,468tubesshouldbeproduced.38.a.Atx=200200150z2Area=.477225P(x>200)=.5-.4772=.0228b.ExpectedProfit=ExpectedRevenue-ExpectedCost13-124
=200-150=$5039.a.FindP(80,000x150,000)Atx=150,000z=150,000–126,681=0.7830,000P(x150,000)=0.7823Atx=80,000z=80,000–126,681=–1.5630,000P(x80,000)=.5000-.4406=0.0594P(80,000x150,000)=0.7823-0.0594=0.7229b.FindP(x<50,000)Atx=50,000z=50,000–126,681=–2.5630,000P(x<50,000)=.5000-.4948=0.0052c.Findthez-scorecuttingoff95%inthelefttail.z-score=1.645.Solveforx.1.645=x–126,68130,000x=126,681+1.645(30,000)=176,031Theprobabilityis0.95thatthenumberoflostjobswillnotexceed176,031.40.a.At400,400450z.500100Areatoleftis.3085At500,500450z.500100Areatoleftis.6915P(400x500)=.6915-.3085=.383038.3%willscorebetween400and500.b.At630,13-125
630450z1.8010096.41%doworseand3.59%dobetter.c.At480,480450z.30100Areatoleftis.617938.21%areacceptable.41.a.At75,00075,00067,000z1.147,000P(x>75,000)=P(z>1.14)=1-P(z1.14)=1-.8729=.1271Theprobabilityofawomanreceivingasalaryinexcessof$75,000is.1271b.At75,00075,00065,500z1.367,000P(x>75,000)=P(z>1.36)=1-P(z1.36)=1-.9131=.0869Theprobabilityofamanreceivingasalaryinexcessof$75,000is.0869c.Atx=50,00050,00067,000z2.437,000P(x<50,000)=P(z<-2.43)=1-P(z<2.43)=1-.9925=.0075Theprobabilityofawomanreceivingasalarybelow$50,000isverysmall:.0075d.Theanswertothisisthemalecopywritersalarythatcutsoffanareaof.01intheuppertailofthedistributionformalecopywriters.Usez=2.33x=65,500+2.33(7,000)=81,810Awomanwhomakes$81,810ormorewillearnmorethan99%ofhermalecounterparts.42.=.6At2%z=-2.05x=18x18z2.05.613-126
=18+2.05(.6)=19.23oz.0.0218=19.23Themeanfillingweightmustbe19.23oz.-15/3643.a.P(x15)=1-e=1-.6592=.3408-45/36b.P(x45)=1-e=1-.2865=.7135ThereforeP(15x45)=.7135-.3408=.3727c.P(x60)=1-P(x<60)-60/36=1-(1-e)=.188944.a.4hours-x/4b.f(x)=(1/4)eforx0-1/4c.P(x1)=1-P(x<1)=1-(1-e)=.7788-8/4d.P(x>8)=1-P(x8)=e=.13531x/1.245.a.fx()eforx01.2-1/1.2-.5/1.2b.P(.5x1.0)=P(x1.0)-P(x.5)=(1-e)-(1-e)=.5654-.3408=.2246c.P(x>1)=1-P(x1)=1-.5654=.4346146.a.05.therefore=2minutes=meantimebetweentelephonecallsb.Note:30seconds=.5minutes-.5/2P(x.5)=1-e=1-.7788=.2212-1/2c.P(x1)=1-e=1-.6065=.3935-5/2d.P(x5)=1-P(x<5)=1-(1-e)=.082113-127
Chapter7SamplingandSamplingDistributionsLearningObjectives1.Understandtheimportanceofsamplingandhowresultsfromsamplescanbeusedtoprovideestimatesofpopulationcharacteristicssuchasthepopulationmean,thepopulationstandarddeviationand/orthepopulationproportion.2.Knowwhatsimplerandomsamplingisandhowsimplerandomsamplesareselected.3.Understandtheconceptofasamplingdistribution.4.Knowthecentrallimittheoremandtheimportantroleitplaysinsampling.5.Specificallyknowthecharacteristicsofthesamplingdistributionofthesamplemean(x)andthesamplingdistributionofthesampleproportion(p).6.Becomeawareofthepropertiesofpointestimatorsincludingunbiasedness,consistency,andefficiency.7.Learnaboutavarietyofsamplingmethodsincludingstratifiedrandomsampling,clustersampling,systematicsampling,conveniencesamplingandjudgmentsampling.8.Knowthedefinitionofthefollowingterms:simplerandomsamplingfinitepopulationcorrectionfactorsamplingwithreplacementstandarderrorsamplingwithoutreplacementunbiasednesssamplingdistributionconsistencypointestimatorefficiency13-128
Solutions:1.a.AB,AC,AD,AE,BC,BD,BE,CD,CE,DEb.With10samples,eachhasa1/10probability.c.EandCbecause8and0donotapply.;5identifiesE;7doesnotapply;5isskippedsinceEisalreadyinthesample;3identifiesC;2isnotneededsincethesampleofsize2iscomplete.2.Usingthelast3-digitsofeach5-digitgroupingprovidestherandomnumbers:601,022,448,147,229,553,147,289,209Numbersgreaterthan350donotapplyandthe147canonlybeusedonce.Thus,thesimplerandomsampleoffourincludes22,147,229,and289.3.459,147,385,113,340,401,215,2,33,3484.a.6,8,5,4,1IBM,Microsoft,Intel,GeneralElectric,AT&TN!10!3,628,500b.252nNn!()!5!(105)!(120)(120)5.283,610,39,254,568,353,602,421,638,1646.2782,493,825,1807,2897.108,290,201,292,322,9,244,249,226,125,(continuingatthetopofcolumn9)147,and113.8.13,8,23,25,18,5Thesecondoccurrencesofrandomnumbers13and25areignored.Washington,Clemson,Oklahoma,Colorado,USCandWisconsin9.511,791,99,671,152,584,45,783,301,568,754,75010.finite,infinite,infinite,infinite,finite5411.a.xxn/9i62()xxib.sn12222222()xx=(-4)+(-1)+1(-2)+1+5=48i48s=31.6113-129
12.a.p=75/150=.50b.p=55/150=.366746513.a.xxn/93i5b.x()xx()xx2iii94+11100+74985-86494+1192-11Totals46501162()xx116is539.n1414.a.149/784=.19b.251/784=.32c.Totalreceivingcash=149+219+251=619619/784=.7970015.a.xxn/7yearsi102()xx20.2ib.s1.5yearsn110116.p=1117/1400=.8017.a.595/1008=.59b.332/1008=.33c.81/1008=.0818.a.Ex()200b.//n501005xc.NormalwithE(x)=200and=5xd.Itshowstheprobabilitydistributionofallpossiblesamplemeansthatcanbeobservedwithrandomsamplesofsize100.Thisdistributioncanbeusedtocomputetheprobabilitythatxiswithinaspecifiedfrom13-130
19.a.ThesamplingdistributionisnormalwithE(x)==200//n501005xFor5,(x-)=5x5z15xArea=.3413x2.6826b.For10,(x-)=10x10z25xArea=.4772x2.954420./nx25/.50354x25/.100250x25/.150204x25/.200177xThestandarderrorofthemeandecreasesasthesamplesizeincreases.21.a.//.n1050141xb.n/N=50/50,000=.001Use//.n1050141xc.n/N=50/5000=.01Use//.n1050141xd.n/N=50/500=.10Nn5005010Use134.UsexN1n500150Note:Onlycase(d)wheren/N=.10requirestheuseofthefinitepopulationcorrectionfactor.Notethatisapproximatelythesameeventhoughthepopulationsizevariesfrominfiniteto500.x13-131
22.a.Usingthecentrallimittheorem,wecanapproximatethesamplingdistributionofxwithanormalprobabilitydistributionprovidedn30.b.n=30//.n5030913xx400n=40//.n5040791x40023.a.//.n1650226xFor2,()x2x2z088.226.xArea=.3106xx2.621216b.160.x100x2z125.160.xArea=.3944x2.788816c.113.x200x2z177.113.xArea=.4616x2.923213-132
16d.080.x400x2z250.080.xArea=.4938x2.9876e.Thelargersampleprovidesahigherprobabilitythatthesamplemeanwillbewithin2of.24.a.//.n40006051640xx51,800E(x)ThenormaldistributionisbasedontheCentralLimitTheorem.b.Forn=120,E(x)remains$51,800andthesamplingdistributionofxcanstillbeapproximatedbyanormaldistribution.However,isreducedto4000/120=365.15.xc.Asthesamplesizeisincreased,thestandarderrorofthemean,,isreduced.Thisappearslogicalxfromthepointofviewthatlargersamplesshouldtendtoprovidesamplemeansthatareclosertothepopulationmean.Thus,thevariabilityinthesamplemean,measuredintermsof,shouldxdecreaseasthesamplesizeisincreased.//.n40006051640x51,30051,80052,30025.a.13-133x
52,300-51,800z==+.97516.40Area=.3340x2.6680b.//.n400012036515x52,300-51,800z==+1.37365.15Area.4147x2.829426.a.AnormaldistributionEx().120/.n010/.500014x122120..b.z141.Area=0.42070014.118120..z141.Area=0.42070014.probability=0.4207+0.4207=0.8414121120..c.z071.Area=0.26120014.119120..z071.Area=0.26120014.probability=0.2612+0.2612=0.522427.a.E(x)=1017//.n100751155x10271017b.z0.87Area=0.307811.5510071017z0.87Area=0.307811.55probability=0.3078+0.3078=0.615610371017c.z1.73Area=0.458211.559971017z1.73Area=0.458211.5513-134
probability=0.4582+0.4582=0.9164x34,00028.a.z/nError=x-34,000=250250n=30z==.68.2518x2=.50362000/30250n=50z==.88.3106x2=.62122000/50250n=100z==1.25.3944x2=.78882000/100250n=200z==1.77.4616x2=.92322000/200250n=400z==2.50.4938x2=.98762000/400b.Alargersampleincreasestheprobabilitythatthesamplemeanwillbewithinaspecifieddistancefromthepopulationmean.Inthesalaryexample,theprobabilityofbeingwithin250ofrangesfrom.5036forasampleofsize30to.9876forasampleofsize400.29.a.E(x)=982/n210/4033.2xx100z3.01/n210/40.4987x2=.9974x25b.z.75/n210/40.2734x2=.5468c.Thesamplewithn=40hasaveryhighprobability(.9974)ofprovidingasamplemeanwithin$100.However,thesamplewithn=40onlyhasa.5468ofprovidingasamplemeanwithin$25.Alargersamplesizeisdesirableifthe$25isneeded.30.a.Normaldistribution,E(x)=166,500/,n42000/1004200xx10000,b.z238.(.4913x2)=.9826/n4200,13-135
c.$5000z=5000/4200=1.19(.3830x2)=.7660$2500z=2500/4200=.60(.2257x2)=.4514$1000z=1000/4200=.24(.0948x2)=.1896d.Increasesamplesizetoimproveprecisionoftheestimate.Samplesizeof100onlyhasa.4514probabilityofbeingwithin$2,500.31.a.//.n52003094939x1000z105.Area=0.353194939.Probability=0.3531x2=0.7062b.//.n52005073539x1000z136.Area=0.413173539.Probability=0.4131x2=0.8262c.//n5200100520x1000z192.Area=0.4726520Probability=0.4726x2=0.9452d.Recommendn=10032.a.n/N=40/4000=.01<.05;therefore,thefinitepopulationcorrectionfactorisnotnecessary.b.WiththefinitepopulationcorrectionfactorNn40004082.129.xN1n4000140Withoutthefinitepopulationcorrectionfactor/.n130xIncludingthefinitepopulationcorrectionfactorprovidesonlyaslightlydifferentvalueforthanxwhenthecorrectionfactorisnotused.c.x2z154.130..130Area.438213-136
x2.876433.a.E(p)=p=.40pp().(10400.)60b.00490.pn100c.NormaldistributionwithE(p)=.40and=.0490pd.Itshowstheprobabilitydistributionforthesampleproportionp.34.a.E(p)=.40pp().(10400.)6000346.pn200pp003.z087.00346.pArea.3078x2.6156b.pp005.z145.00346.pArea.4265x2.8530pp()135.pn(.)(.)05504500497.p100(.)(.)05504500352.p200(.)(.)05504500222.p500(.)(.)05504500157.p1000decreasesasnincreasesp(.)(.)03007036.a.00458.p10013-137
pp004.z087.00458.pArea=0.3078x2=0.6156(.)(.)030070b.00324.p200pp004.z123.00324.pArea=0.3907x2=0.7814(.)(.)030070c.00205.p500pp004.z195.00205.pArea=0.4744x2=0.9488(.)(.)030070d.00145.p1000pp004.z276.00145.pArea=0.4971x2=0.9942e.Withalargersample,thereisahigherprobabilitypwillbewithin.04ofthepopulationproportionp.37.a.pp().(10300.)7000458.pn100p0.3013-138
Thenormaldistributionisappropriatebecausenp=100(.30)=30andn(1-p)=100(.70)=70arebothgreaterthan5.b.P(.20p.40)=?.40-.30z==2.18.0458Area.4854x2.9708c.P(.25p.35)=?.35-.30z==1.09.0458Area.3621x2.724238.a.E(p)=.76pp().(.)1076107600214.pn400079076..b.z140.Area=0.419200214.073076..z140.Area=0.419200214.probability=0.4192+0.4192=0.8384pp().(.)10761076c.00156.pn750079076..z192.Area=0.472600156.073076..z192.Area=0.472600156.probability=0.4726+0.4726=0.945239.a.NormaldistributionE(p)=.50pp(1)(.50)(1.50).0206pn58913-139
pp.04b.z1.94.0206p.4738x2=.9476pp.03c.z1.46.0206p.4279x2=.8558pp.02d.z.97.0206p.3340x2=.668040.a.NormaldistributionE(p)=0.25pp()(10.25)(0.75)00306.pn200003.b.z098.Area=0.336500306.probability=0.3365x2=0.6730005.c.z163.Area=0.448400306.probability=0.4484x2=0.896841.a.E(p)=0.37pp()(10371037.)(.)00153.pn1000040037..b.z196.Area=0.475000153.034037..z196.Area=0.475000153.probability=0.4750+0.4750=0.9500pp()(10371037.)(.)c.00216.pn50013-140
040037..z139.Area=0.417700216.034037..z139.Area=0.417700216.probability=0.4177+0.4177=0.835442.a.pp().1015(0.85)00505.pn50p0.15b.P(.12p.18)=?.18-.15z==.59.0505Area.2224x2.4448c.P(p.10)=?.10-.15z==-.99.0505Area.3389+.5000.838943.a.E(p)=0.17pp()(10171017.)(.)001328.pn800019017..b.z151.Area=0.4345001328.034037..z151.Area=0.4345001328.13-141
probability=0.4345+0.4345=0.8690pp()(10171017.)(.)c.00094.pn1600019017..z213.Area=0.483400094.015017..z213.Area=0.483400094.probability=0.4834+0.4834=0.966844.112,145,73,324,293,875,318,61845.a.NormaldistributionE(x)=31.2.17xn50x.25b.z1.47/1n.2/50.4292x2=.858446.a.NormaldistributionE(x)=31.512170.xn501b.z059.Area=0.2224170.probability=0.2224x2=0.44483c.z177.Area=0.4616170.probability=0.4616x2=0.923247.a.E(x)=$24.07480.044.xn12013-142
050.z114.Area=0.3729044.probability=0.3729x2=0.7458100.b.z228.Area=0.4887044.probability=0.4887x2=0.97746048.a.849.xn50b.z=(115-115)/8.49=0Area=.5000c.z=5/8.49=.59Area=.2224z=-5/8.49=-.59Area=.2224probability=.2224+.2224=.444860d.6xn100z=5/6=.83Area=.2967z=-5/6=-.83Area=.2967probability=.2967+.2967=.5934Nn49.a.xN1nN=20002000501442011.x2000150N=50005000501442026.x5000150N=10,0001000050,1442031.x100001,50Note:Withn/N.05forallthreecases,commonstatisticalpracticewouldbetoignore144thefinitepopulationcorrectionfactoranduse2036.foreachcase.x50b.N=200013-143
25z==1.2420.11Area.3925x2.7850N=500025z123.2026.Area.3907x2.7814N=10,00025z==1.2320.31Area.3907x2.7814Allprobabilitiesareapproximately.7850050.a.20xnn2n500/20=25andn=(25)=625b.For25,25z==1.2520Area.3944x2.788851.Samplingdistributionofxxn300.050.05x1.92.113-144
1.9+2.1==22Theareabetween=2and2.1mustbe.45.Anareaof.45inthestandardnormaltableshowsz=1.645.Thus,2120..1645./30Solvefor(.)0130033.1645.52.a.E(p)=0.74pp()(10741074.)(.)0031.pn200b.z=.04/.031=1.29Area=.4015z=-.04/.031=-1.29Area=.4015probability=.4015+.4015=.8030c.z=.02/.031=.64Area=.2389z=-.02/.031=-.64Area=.2389probability=.2389+.2389=.4778pp()(10.)40(0.)6053.00245.pn400P(p.375)=?.375-.40z==-1.02.0245Area.3461P(p.375)=.3461+.5000=.8461pp(1)(.71)(1.71)54.a..0243pn350pp.05z2.06.0243p.4803x2=.960613-145
pp.75.71b.z1.65.0243pArea=.4505P(p.75)=.5000-.4505=.049555.a.NormaldistributionwithE(p)=.15andpp()(10.15)(0.85)00292.pn150b.P(.12p.18)=?.18-.15z==1.03.0292Area.3485x2.6970pp(12).(.)57556.a..0625pnnSolveforn.(.)2575n482(.0625)b.NormaldistributionwithE(p)=.25and=.0625xc.P(p.30)=?.30.25z.80.0625Area.2881ThusP(.25p.30)=.2881andP(p.30)=.5000-.2881=.2119Chapter8IntervalEstimationLearningObjectives13-146
1.Knowhowtoconstructandinterpretanintervalestimateofapopulationmeanand/orapopulationproportion.2.Understandtheconceptofasamplingerror.3.Beabletouseknowledgeofasamplingdistributiontomakeprobabilitystatementsaboutthesamplingerror.4.Understandandbeabletocomputethemarginoferror.5.Learnaboutthetdistributionanditsuseinconstructinganintervalestimateforapopulationmean.6.Beabletodeterminethesizeofasimplerandomsamplenecessarytoestimateapopulationmeanand/orapopulationproportionwithaspecifiedlevelofprecision.7.Knowthedefinitionofthefollowingterms:confidenceintervalprecisionconfidencecoefficientsamplingerrorconfidencelevelmarginoferrordegreesoffreedomSolutions:1.a.//.n540079xb.At95%,zn/.1965(/)40155.2.a.321.645(/650)13-147
321.4(30.6to33.4)b.321.96(/650)321.66(30.34to33.66)c.322.576(/650)322.19(29.81to34.19)3.a.801.96(/)1560803.8(76.2to83.8)b.801.96(/15120)802.68(77.32to82.68)c.Largersampleprovidesasmallermarginoferror.4.1261.96(/)sn16.071.964n1.96(16.07)n7.8744n625.a.1.96/n1.96(5.00/49)1.40b.24.801.40or(23.40to26.20)6.x1.96(/)sn3691.96(/50250)3696.20(362.80to375.20)7.xz(/)n.0253.371.96(.28/120)3.37.05(3.32to3.42)13-148
8.a.xz/2n12,0001.645(2,200/245)12,000231(11,769to12,231)b.12,0001.96(2,200/245)12,000275(11,725to12,275)c.12,0002.576(2,200/245)12,000362(11,638to12,362)d.Intervalwidthmustincreasesincewewanttomakeastatementaboutwithgreaterconfidence.9.a.Usingacomputer,x=$12.41b.Usingacomputer,s=3.64c.x1.96(/)sn12.411.96(./36460)12.410.92(11.49to13.33)s10.xz.025n3.457.751.961807.75.50(7.25to8.25)11.UsingMinitabweobtainedasamplestandarddeviationof2.163.Theconfidenceintervaloutputisshownbelow:THEASSUMEDSIGMA=2.16NMEANSTDEVSEMEAN95.0PERCENTC.I.Miami506.3402.1630.306(5.740,6.940)The95%confidenceintervalestimateis5.74to6.94.x114i12.a.x3.8minutesn302()xxib.s2.26minutesn113-149
s2.26MarginofError=z1.96.81minutes.025n30sc.xz.025n3.8.81(2.99to4.61)13.a..95b..90c..01d..05e..95f..8514.a.1.734b.-1.321c.3.365d.-1.761and+1.761e.-2.048and+2.0488015.a.xxn/10i82()xx84ib.s3464.n181c.With7degreesoffreedom,t.025=2.365xt.025(/)sn102.365(.3464/8)102.90(7.10to12.90)16.a.17.251.729(./3320)17.251.28(15.97to18.53)b.17.252.09(./3320)13-150
17.251.54(15.71to18.79)c.17.252.861(./3320)17.252.11(15.14to19.36)17.At90%,80t.05(/)snwithdf=17t.05=1.740801.740(/)1018804.10(75.90to84.10)At95%,802.11(/)1018withdf=17t.05=2.110804.97(75.03to84.97)x18.96i18.a.x$1.58n122()xx.239ib.s.1474n1121c.t.025=2.201xt.025(/)sn1.582.201(.1474/12)1.58.09(1.49to1.67)19.xxn/.653minutesi2()xxis054minutes.n1xt.025(/)sn6.532.093(./05420)6.53.25(6.28to6.78)20.a.22.41.96(/561)22.41.25(21.15to23.65)b.Withdf=60,t.025=2.00013-151
22.42(/561)22.41.28(21.12to23.68)c.xt.025(/)snConfidenceintervalsareessentiallythesameregardlessofwhetherzortisused.x864i21.x$108n82()xx654is9.6658n181t.025=2.365xt.025(/)sn1082.365(9.6658/8)1088.08(99.92to116.08)22.a.Usingacomputer,x=6.86s=0.78b.xt.025(/)snt.025=2.064df=246.862.064(./07825)6.860.32(6.54to7.18)2222z(.)()19625.02523.n9604.Usen9722E524.a.Planningvalueof=Range/4=36/4=92222z(.)()1969.025b.n3457.Usen3522E322(.)()1969c.nn7779.Use782222(.)(.)19668225.nn7941.Use802(.)1522(.1645)(.)682nn3147.Use322213-152
2222z(1.96)(9400)26.a.n339.44Use34022E(1000)22(1.96)(9400)b.n1357.78Use13582(500)22(1.96)(9400)c.n8486.09Use848720022(.)(,1962000)27.a.nn6147.Use622()50022(.)(,1962000)b.nn38416.Use3852()20022(.)(,1962000)c.nn153664.Use15372()1002222z(1.645)(220)28.a.n52.39Use5322E(50)22(1.96)(220)b.n74.37Use752(50)22(2.576)(220)c.n128.47Use1292(50)d.Mustincreasesamplesizetoincreaseconfidence.22(.)(.)19662529.a.nn3752.Use382222(.)(.)196625b.nn15006.Use1512122(.)(.)1967830.nn5843.Use592231.a.p=100/400=0.25pp(10).(.)25075b.00217.n40013-153
pp()1c.pz.025n.251.96(.0217).25.0424(.2076to.2924)070030.(.)32.a..701.645800.70.0267(.6733to.7267)070030.(.)b..701.96800.70.0318(.6682to.7318)22zpp()1(.)(.)(.)196035065.02533.n34959.Usen35022E(.)00534.Useplanningvaluep=.502(.)(.)(.)196050050nn106711.Use10682(.)00335.a.p=562/814=0.6904pp()106904106904.(.)b.1645.1645.00267.n814c.0.69040.0267(0.6637to0.7171)36.a.p=152/346=.4393pp(1).4393(1.4393)b..0267pn346pz.025p.43931.96(.0267).4393.0523(.3870to.4916)pp()137.p196.n182p.2865013-154
(.)(.)028072.281.966500.280.0345(0.2455to0.3145)pp()1(.)(.)02607438.a.196.196.00430.n400b.0.260.0430(0.2170to0.3030)2196026074.(.)(.)c.nn82125.Use8222(.)00322zpp(1)(1.96)(.33)(1.33).02539.a.n943.75Use94422E(.03)22zpp(1)(2.576)(.33)(1.33).005b.n1630.19Use163122E(.03)40.a.p=255/1018=0.2505(.02505102505)(.)b.1.96=0.02661018pp(1).16(1.16)41..0102pn1285MarginofError=1.96=1.96(.0102)=.02p.161.96p.16.02(.14to.18)pp(1).50(1.50)42.a..0226pn491z=1.96(.0226)=.0442.025p2zpp(1).025b.n2E21.96(.50)(1.50)Septembern600.25Use6012.0421.96(.50)(1.50)Octobern1067.11Use10682.0313-155
21.96(.50)(1.50)Novembern24012.0221.96(.50)(1.50)Pre-Electionn96042.01219605105.(.)(.)43.a.nn60025.Use6012(.)004b.p=445/601=0.7404(.0740402596)(.)c.0.74041.966010.74040.0350(0.7054to0.7755)s20,50044.a.z1.962009.025n400b.xz.025(/)sn50,0002009(47,991to52,009)45.a.xz.025(/)sn252.451.96(./745064)252.4518.25or$234.20to$270.70b.Yes.thelowerlimitforthepopulationmeanatNiagaraFallsis$234.20whichisgreaterthan$215.60.46.a.Usingacomputer,x=49.8minutesb.Usingacomputer,s=15.99minutesc.x1.96(/)sn49.81.96(./1599200)49.82.22(47.58to52.02)47.a.Usingacomputer,x=16.8ands=4.25With19degreesoffreedom,t.025=2.093x2.093(/)sn13-156
16.82.093(./42520)16.81.99(14.81to18.79)b.Usingacomputer,x=24.1ands=6.2124.12.093(./62120)24.12.90(21.2to27.0)c.16.8/24.1=0.697or69.7%orapproximately70%13248.a.xxn/.132i102()xx5476.ib.s78.n19c.Withdf=9,t.025=2.262xt.025(/)sn13.22.262(./7810)13.25.58(7.62to18.78)d.The5.58showspoorprecision.Alargersamplesizeisdesired.2196045.(.)49.nn7779.Use7821022(.)(.)2332650.nn367.Use372122(.)()196851.nn6147.Use622222(.)()25768nn10617.Use1072222(.)(196675)52.nn17503.Use1762100pp()153.a.p196.n13-157
(.)(.)0470530.471.964500.470.0461(0.4239to0.5161)(.)(.)047053b.0.472.5764500.470.0606(0.4094to0.5306)c.Themarginoferrorbecomeslarger.54.a.p=200/369=0.5420pp()1(.0542004580)(.)b.196.196.00508.n369c.0.54200.0508(0.4912to0.5928)55.a.p=504/1400=.36(.)(.)036064b.196.00251.14002(.)(.)(.)23307003056.a.nn126674.Use12672(.)0032(.)(.)(.)233050050b.nn150803.Use15092(.)00357.a.p=110/200=0.55(.)(.)0550450.551.96200.55.0689(.4811to.6189)2(.)(.)(.)196055045b.nn38032.Use3812(.)00558.a.p=340/500=.68pp(1).68(1.68)b..0209pn500pz.025p.681.96(.0209)13-158
.68.0409(.6391to.7209)2(.)(.)(.)196030759.a.nn201684.Use20172(.)002b.p=520/2017=0.2578pp()1c.p196.n(.0257807422)(.)0.25781.9620170.25780.0191(0.2387to0.2769)60.a.p=618/1993=.3101pp()1b.p196.1993(.0310106899)(.)0.31011.961993.3101.0203(.2898to.3304)2zp()1pc.n2E2(.)(.1960310106899)(.)zn821864.Use82192(.)001No;thesampleappearsunnecessarilylarge.The.02marginoferrorreportedinpart(b)shouldprovideadequateprecision.Chapter9HypothesisTestingLearningObjectives1.Learnhowtoformulateandtesthypothesesaboutapopulationmeanand/orapopulationproportion.2.Understandthetypesoferrorspossiblewhenconductingahypothesistest.13-159
3.Beabletodeterminetheprobabilityofmakingvariouserrorsinhypothesistests.4.Knowhowtocomputeandinterpretp-values.5.Beabletodeterminethesizeofasimplerandomsamplenecessarytokeeptheprobabilityofhypothesistestingerrorswithinacceptablelimits.6.Knowthedefinitionofthefollowingterms:nullhypothesisone-tailedtestalternativehypothesistwo-tailedtesttypeIerrorp-valuetypeIIerroroperatingcharacteristiccurvecriticalvaluepowercurvelevelofsignificanceSolutions:1.a.H0:600Manager’sclaim.Ha:>600b.Wearenotabletoconcludethatthemanager’sclaimiswrong.c.Themanager’sclaimcanberejected.Wecanconcludethat>400.2.a.H0:14Ha:>14Researchhypothesis13-160
b.Thereisnostatisticalevidencethatthenewbonusplanincreasessalesvolume.c.Theresearchhypothesisthat>14issupported.Wecanconcludethatthenewbonusplanincreasesthemeansalesvolume.3.a.H0:=32SpecifiedfillingweightHa:32Overfillingorunderfillingexistsb.Thereisnoevidencethattheproductionlineisnotoperatingproperly.Allowtheproductionprocesstocontinue.c.Conclude32andthatoverfillingorunderfillingexists.Shutdownandadjusttheproductionline.4.a.H0:220Ha:<220Researchhypothesistoseeifmeancostislessthan$220.b.Weareunabletoconcludethatthenewmethodreducescosts.c.Conclude<220.Considerimplementingthenewmethodbasedontheconclusionthatitlowersthemeancostperhour.5.a.TheTypeIerrorisrejectingH0whenitistrue.Inthiscase,thiserroroccursiftheresearcherconcludesthatthemeannewspaper-readingtimeforindividualsinmanagementpositionsisgreaterthanthenationalaverageof8.6minuteswheninfactitisnot.b.TheTypeIIerrorisacceptingH0whenitisfalse.Inthiscase,thiserroroccursiftheresearcherconcludesthatthemeannewspaper-readingtimeforindividualsinmanagementpositionsislessthanorequaltothenationalaverageof8.6minuteswheninfactitisgreaterthan8.6minutes.6.a.H0:1Thelabelclaimorassumption.Ha:>1b.Claiming>1whenitisnot.Thisistheerrorofrejectingtheproduct’sclaimwhentheclaimistrue.c.Concluding1whenitisnot.Inthiscase,wemissthefactthattheproductisnotmeetingitslabelspecification.7.a.H0:8000Ha:>8000Researchhypothesistoseeiftheplanincreasesaveragesales.b.Claiming>8000whentheplandoesnotincreasesales.Amistakecouldbeimplementingtheplanwhenitdoesnothelp.c.Concluding8000whentheplanreallywouldincreasesales.Thiscouldleadtonotimplementingaplanthatwouldincreasesales.8.a.H0:220Ha:<22013-161
b.Claiming<220whenthenewmethoddoesnotlowercosts.Amistakecouldbeimplementingthemethodwhenitdoesnothelp.c.Concluding220whenthemethodreallywouldlowercosts.Thiscouldleadtonotimplementingamethodthatwouldlowercosts.9.a.z=-1.645RejectH0ifz<-1.645x9.4610b.z1.91sn/2/50RejectH0;concludeHaistrue.10.a.z=2.05RejectH0ifz>2.05x16.515b.z1.36sn/7/40c.Areafromz=0toz=1.36is.4131p-value=.5000-.4131=.0869d.DonotrejectH011.RejectH0ifz<-1.645x2225a.z2.50RejectH0/n12/1002425b.z.83DonotrejectH012/10023.525c.z1.25DonotrejectH012/10022.825d.z1.83RejectH012/10012.a.p-value=.5000-.4656=.0344RejectH0b.p-value=.5000-.1736=.3264DonotrejectH0c.p-value=.5000-.4332=.0668DonotrejectH0d.z=3.09isthelargesttablevaluewith.5000-.4990=.001areaintail.Forz=3.30,thep-valueislessthan.001orapproximately0.RejectH0.13-162
e.Sincezistotheleftofthemeanandtherejectionregionisintheuppertail,p-value=.5000+.3413=.8413.DonotrejectH0.13.a.H0:1056Ha:<1056b.RejectH0ifz<-1.645x91010560c.z1.83sn/1600/400d.RejectH0andconcludethatthemeanrefundof“lastminute”filersislessthan$1056.e.p-value=.5000-.4664=.033614.a.z.01=2.33RejectH0ifz>2.33x7.256.70b.z3.11sn/2.5/200c.RejectH0;concludethemeantelevisionviewingtimeperdayisgreaterthan6.70.15.a.z.05=1.645RejectH0ifz<-1.645x930010,192b.z1.98sn/4500/100c.RejectH0;concludethatthemeansalespriceofusedcarsislessthanthenationalaverage.16.a.H0:Ha:<13b.z.01=2.33RejectH0ifz<-2.33x10.813c.z2.88sn/9.2/145d.RejectH0;concludeCanadianmeaninternetusageislessthan13hourspermonth.Note:p-value=.00217.a.H0:15Ha:>1513-163
x1715b.z2.96sn/4/35c.p-value=.5000-.4985=.0015d.RejectH0;thepremiumrateshouldbecharged.18.a.H0:5.72Ha:>5.72x5.985.72b.z2.12sn/1.24/102c.p-value=.5000-.4830=.0170d.p-value<;rejectH0.ConcludeteensinChicagohaveameanexpendituregreaterthan5.72.19.a.H0:181,900Ha:<181,900x166,400181,900b.z2.93sn/33,500/40c.p-value=.5000-.4983=.0017d.p-value<;rejectH0.ConcludemeansellingpriceinSouthislessthanthenationalmeansellingprice.20.a.H0:37,000Ha:>37,000x38,10037,000b.z1.47sn/5200/48c.p-value=.5000-.4292=.0708d.p-value>;donotrejectH0.CannotconcludepopulationmeansalaryhasincreasedinJune2001.21.a.RejectH0ifz<-1.96orz>1.96x10810.b.z240.sn/25./36RejectH0;concludeHaistrue.22.a.RejectH0ifz<-2.33orz>2.3313-164
x14215.b.z113.sn/55/0c.p-value=(2)(.5000-.3708)=.2584d.DonotrejectH023.RejectH0ifz<-1.96orz>1.962225a.z2.68RejectH010/802725b.z1.79DonotrejectH010/8023.525c.z1.34DonotrejectH010/802825d.z2.68RejectH010/8024.a.p-value=2(.5000-.4641)=.0718DonotrejectH0b.p-value=2(.5000-.1736)=.6528DonotrejectH0c.p-value=2(.5000-.4798)=.0404RejectH0d.approximately0RejectH0e.p-value=2(.5000-.3413)=.3174DonotrejectH025.a.z.025=1.96RejectH0ifz<-1.96orz>1.96x38.539.2b.z1.54sn/4.8/112c.DonotrejectH0.Cannotconcludeachangeinthepopulationmeanhasoccurred.d.p-value=2(.5000-.4382)=.123626.a.H0:=8Ha:8RejectH0ifz<-1.96orifz>1.96x758.0b.z171.sn/32./120c.DonotrejectH0;cannotconcludethemeanwaitingtimediffersfromeightminutes.27.a.H0:=16Continueproduction13-165
Ha:16ShutdownRejectH0ifz<-1.96orifz>1.96x16.32160b.z2.19/.n8/30RejectH0andshutdownforadjustment.x15.82160c.z1.23/.n8/30DonotrejectH0;continuetorun.d.Forx=16.32,p-value=2(.5000-.4857)=.0286Forx=15.82,p-value=2(.5000-.3907)=.218628.a.H0:=1075Ha:1075x11601075b.z1.43sn/840/200c.p-value=2(.5000-.4236)=.1528d.DonotrejectH0.Cannotconcludeachangeinmeanamountofcharitablegiving.29.a.H0:=15.20Ha:15.20x14301520..0z106.sn/53/5b.p-value=2(.5000-.3554)=.2892c.DonotrejectH0;thesampledoesnotprovideevidencetoconcludethattherehasbeenachange.30.a.H0:=26,133Ha:26,133x25,45726,133b.z2.09sn/7600/410c.p-value=2(.5000-.4817)=.0366d.p-value<;rejectH0.ConcludepopulationmeanwageinCollierCountydiffersfromthestatemeanwage.13-166
31.a.xz.025n1809351.9620093525or910to960Since900isnotintheinterval,rejectH0andconclude900.b.RejectH0ifz<-1.96orifz>1.96x9359000z2.75/n180/200RejectH0c.p-value=2(.5000-.4970)=.006032.a.Theupper95%confidencelimitiscomputedasfollows:sxz.05n.6014.501.64514.6636Thus,weare95%confidentthatis$14.66perhourorless.b.Since$15.00isnotintheinterval$14.66perhourorless,werejectH0.Concludethatthemeanwagerateislessthan$15.00.33.a.With15degreesoffreedom,t.05=1.753RejectH0ift>1.753x11100b.t133.DonotrejectH0sn//31634.a.xx/n=108/6=18i()xx10ib.s1.414n161c.RejectH0ift<-2.571ort>2.571x18200d.t346.sn/.1414/6e.RejectH0;concludeHaistrue.13-167
35.RejectH0ift<-1.7211315a.t117.DonotrejectH082/211515.b.t205.RejectH082/21515c.t0DonotrejectH082/21915d.t235.DonotrejectH082/236.Usethetdistributionwith15degreesoffreedoma.p-value=.01RejectH0b.p-value=.10DonotrejectH0c.p-valueisbetween.025and.05RejectH0d.p-valueisgreaterthan.10DonotrejectH0e.p-valueisapproximately0RejectH037.a.H0:3.00Ha:3.00b.t.025=2.262RejectH0ift<-2.262orift>2.262x28ic.x2.80n102()xx.44id.s.70n1101x2.803.00e.t.90sn/.70/10f.DonotrejectH0;cannotconcludethepopulationmeansearningpersharehaschanged.g.t.10=1.383p-valueisgreaterthan.10x2=.2013-168
Actualp-value=.391638.a.t.025=2.06424degreesoffreedomRejectH0ift<-2.064orift>2.064x84.5090b.t1.90sn/14.50/25c.DonotrejectH0;cannotconcludethemeanexpenditureinCorningdiffersfromtheU.S.meanexpenditure.39.a.t.05=1.8957degreesoffreedomx475ib.x59.375n82()xx123.87ic.s4.21n181x59.3855d.t2.94sn/4.21/8c.RejectH0;concludethatthemeannumberofhoursworkedexceeds55.40.a.H0:4000Ha:4000b.t.05=2.16013degreesoffreedomRejectH0ift<-2.160orift>2.160x41204000c.t1.63sn/275/14d.DonotrejectH0;CannotconcludethatthemeancostinNewCitydiffersfrom$4000.e.With13degreesoffreedomt.05=1.771t.10=1.3501.63isbetween1.350and1.771.Thereforethep-valueisbetween.10and.20.41.a.H0:280Ha:>28013-169
b.286.9-280=6.9yardsc.t.05=1.860with8degreesoffreedomx286.9280d.t2.07sn/10/9e.RejectH0;ThepopulationmeandistanceofthenewdriverisgreaterthantheUSGAapproveddriver..f.t.05=1.860t.025=2.306p-valueisbetween.025and.05Actualp-value=.036142.a.H0:2Ha:>2b.With9degreesoffreedom,rejectH0ift>1.833c.xx/n=24/10=2.4i2()xx2.40id.s.516n19x2.420e.t2.45sn/.516/10f.RejectH0andclaimisgreaterthan2hours.Forcostestimatingpurposes,considerusingmorethan2hoursoflabortime.g.t.025=2.262,t.01=2.821p-valueisbetween.025and.01.43.a.RejectH0ifz>1.645.(.)5050b..0354p200pp..5750z198Reject.H0.0354p44.a.RejectH0ifz<-1.96orz>1.9613-170
.(.)2080b..02p400pp..17520z125..02pc.p-value=2(.5000-.3944)=.2122d.DonotrejectH0.45.RejectH0ifz<-1.645.(.)7525a..0250p300pp..6875z280..025pp-value=.5000-.4974=.0026RejectH0.pp..7275b.z120..025pp-value=.5000-.3849=.1151DonotrejectH0.pp..7075c.z200..025pp-value=.5000-.4772=.0228RejectH0.pp..7775d.z.80.025pp-value=.5000+.2881=.7881DonotrejectH0.46.a.H0:p.40Ha:p>.40b.RejectH0ifz>1.645c.p=188/420=.447613-171
pp(1).40(1.40).0239pn420pp.4476.40z1.99.0239pd.RejectH0.Concludethattherehasbeenanincreaseintheproportionofusersreceivingmorethantene-mailsperday.47.a.z.05=1.645RejectH0ifz<-1.645b.p=52/100=.52pp(1).64(1.64).0480pn100pp.52.64z2.50.0480pc.RejectH0.Concludelessthan64%ofshoppersbelievesupermarketketchupisasgoodasthenationalbrand.d.p-value=.5000-.4938=.006248.a.p=285/500=.57pp(1).50(1.50)b..0224pn500pp.57.50z3.13.0224pc.z=3.13isnotinthetable.Closestvalueisz=3.09.Thus,p-valueisapproximately.5000-.4990=.001d.p-value<.01,RejectH0.Over50%preferBurgerKingfries.e.Yes;thestatisticalevidenceshowsBurgerKingfriesarepreferred.Thegive-awaywasagoodwaytogetpotentialcustomerstotrythenewfries.49.a.H0:p=.48Ha:p.48b.z.025=1.96RejectH0ifz<-1.96orifz>1.9613-172
c.p=368/800=.45pp(1).48(1.48)d..0177pn800pp.45.48z1.70.0177pd.DonotrejectH0.Cannotconcludetheproportionofdriverswhodonotstophaschanged.50.a.p=67/105=.6381(about64%)pp(1).50(1.50)b..0488pn105pp.6381.50z2.83.0488pc.p-value=2(.5000-.4977)=.0046d.p-value<.01,rejectH0.Concludepreferenceisforthefourten-hourdayschedule.51.a.H0:p=.44Ha:p.44b.p=205/500=.41pp(1).44(1.44).0222pn500pp.41.44z1.35.0222pp-value=2(.5-.4115)=.1770DonotrejectH0.Cannotconcludethattherehasbeenachangeintheproportionofrepeatcustomers.c.p=245/500=.49pp.49.44z2.25.0222pp-value=2(.5-.4878)=.0244RejectH0.concludethattheproportionofrepeatcustomershaschanged.Thepointestimateofthepercentageofrepeatcustomersisnow49%.13-173
pp(1).75(1.75)52.a..025pn300pp.72.75z1.20.025pb.p-value=.5000-.3849=.1151c.DonotrejectH0.Cannotconcludethemanager"sclaimiswrongbasedonthissampleevidence.53.H0:p.15Ha:p>.15RejectH0ifz>2.33pp(1).15(.85).0160pn500p=88/500=.176pp.176.150z1.63.0160pDonotrejectH0;p.15cannotberejected.Thusthespecialoffershouldnotbeinitiated.p-value=.5000-.4484=.051654.a.H0:p.047Ha:p<.047b.p=35/1182=.0296.047(1.047)c..0062p1182pp.0296.047z2.82.0062pd.p-value=.5000-.4976=.0024e.p-value<,rejectH0.TheerrorrateforBrooksRobinsonislessthantheoverallerrorrate.55.H0:p.20Ha:p<.20RejectH0ifz<-1.64513-174
p=83/596=.1393pp(1).20(1.20).0164pn596pp.1393.20z3.71.0164pp-value0RejectH0;concludethatlessthan20%ofworkerswouldworkforlesspayinordertohavemorepersonalandleisuretime.556..46xn120cHa:<10H0:10.05x10c=10-1.645(5/120)=9.25RejectH0ifx<9.25a.When=9,9.259z.555/120Prob(H0)=(.5000-.2088)=.2912b.TypeIIerrorc.When=8,9.258z2.745/120=(.5000-.4969)=.003113-175
57.RejectH0ifz<-1.96orifz>1.9610.71xn200Ha:20H0:=20Ha:20.025.025xxc120c2c1=20-1.96(10/200)=18.61c2=20+1.96(10/200)=21.39a.=1818.6118z.8610/200=.5000-.3051=.1949b.=22.521.3922.5z1.5710/200=.5000-.4418=.0582c.=2121.3921z.5510/200=.5000+.2088=.708858.a.H0:1513-176
Ha:>15Concluding15whenthisisnottrue.Fowlewouldnotchargethepremiumrateeventhoughtherateshouldbecharged.b.RejectH0ifz>2.33xx150z2.33/4n/35Solveforx=16.58DecisionRule:AcceptH0ifx16.58RejectH0ifx>16.58For=17,16.5817z.624/35=.5000-.2324=.2676c.For=18,16.5818z2.104/35=.5000-.4821=.017959.a.H0:25Ha:<25RejectH0ifz<-2.05xx250z2.05/3n/30Solveforx=23.88DecisionRule:AcceptH0ifx23.88RejectH0ifx<23.8813-177
b.For=23,23.8823z1.613/30=.5000-.4463=.0537c.For=24,23.8824z.223/30=.5000+.0871=.5871d.TheTypeIIerrorcannotbemadeinthiscase.Notethatwhen=25.5,H0istrue.TheTypeIIerrorcanonlybemadewhenH0isfalse.60.a.AcceptingH0andconcludingthemeanaverageagewas28yearswhenitwasnot.b.RejectH0ifz<-1.96orifz>1.96xx280z/n6/100Solvingforx,wefindatz=-1.96,x=26.82atz=+1.96,x=29.18DecisionRule:AcceptH0if26.82x29.18RejectH0ifx<26.82orifx>29.18At=26,26.8226z1.376/100=.5000+.4147=.0853At=27,26.8227z.306/100=.5000+.1179=.617913-178
At=29,29.1829z.306/100=.5000+.1179=.6179At=30,29.1830z1.376/100=.5000-.4147=.0853c.Power=1-at=26,Power=1-.0853=.9147When=26,thereisa.9147probabilitythatthetestwillcorrectlyrejectthenullhypothesisthat=28.61.a.AcceptingH0andlettingtheprocesscontinuetorunwhenactuallyover-fillingorunder-fillingexists.b.DecisionRule:RejectH0ifz<-1.96orifz>1.96indicatesAcceptH0if15.71x16.29RejectH0ifx<15.71orifx>16.29For=16.516.2916.5z1.44.8/30=.5000-.4251=.074913-179
cx16.2916.5c.Power=1-.0749=.9251d.ThepowercurveshowstheprobabilityofrejectingH0forvariouspossiblevaluesof.Inparticular,itshowstheprobabilityofstoppingandadjustingthemachineunderavarietyofunderfillingandoverfillingsituations.Thegeneralshapeofthepowercurveforthiscaseis1.00.75Power.50.25.0015.615.816.016.216.4PossibleValuesofu462.cz152.3316.320.01n5016.3217Atz1.204/50=.5000-.3849=.115116.3218Atz2.974/50=.5000-.4985=.0015IncreasingthesamplesizereducestheprobabilityofmakingaTypeIIerror.13-180
63.a.Accept100whenitisfalse.b.Criticalvaluefortest:75cz1001.645119.510.05n40119.51120Atz.0475/40=.5000-.0160=.4840119.51130c.Atz.8875/40.5000-.3106=.1894d.Criticalvaluefortest:75cz1001.645113.790.05n80113.79120Atz.7475/80=.5000-.2704=.2296113.79130Atz1.9375/80=.5000-.4732=.0268Increasingthesamplesizefrom40to80reducestheprobabilityofmakingaTypeIIerror.2222()zz(1.6451.28)(5)64.n21422()(109)0a2222()zz(1.961.645)(10)65.n32522()(2022)0a66.At0=3,=.01.z.01=2.33Ata=2.9375,=.10.z.10=1.28=.182222()zz(2.331.28)(.18)n108.09Use10922()(32.9375)0a13-181
67.At0=400,=.02.z.02=2.05Ata=385,=.10.z.10=1.28=302222()zz(2.051.28)(30)n44.4Use4522()(400385)0a68.At0=28,=.05.Notehoweverforthistwo-tailedtest,z/2=z.025=1.96Ata=29,=.15.z.15=1.04=62222()zz(1.961.04)(6)/2n32422()(2829)0a69.At0=25,=.02.z.02=2.05Ata=24,=.20.z.20=.84=32222()zz(2.05.84)(3)n75.2Use7622()(2524)0a70.a.H0:45,250Ha:>45,250x47,00045,250b.z2.71sn/6300/95c.p-value=.5000-.4966=.0034d.p-value<;rejectH0.NewYorkCityschoolteachersmusthaveahighermeanannualsalary.71.H0:30Ha:<30RejectH0ifz<–2.33x29.5300z1.96sn/1.8/50p-value=.5000-.4750=.025013-182
DonotrejectH0;thesampleevidencedoesnotsupporttheconclusionthattheFordTaurusprovideslessthan30milespergallon.72.H0:25,000Ha:>25,000RejectH0ifz>1.645x26,00025,0000z2.26sn/2,500/32p-value=.5000-.4881=.0119RejectH0;theclaimshouldberejected.Themeancostisgreaterthan$25,000.73.H0:=120Ha:120Withn=10,useatdistributionwith9degreesoffreedom.RejectH0ift<-2.262oroft>2.262xix118.9n2()xxis4.93n1x118.91200t.71sn/4.93/10DonotrejectH0;theresultsdonotpermitrejectionoftheassumptionthat=120.74.a.H0:=550Ha:550RejectH0ifz<-1.96orifz>1.96x5625500z180.sn//4036DonotrejectH0;theclaimof$550permonthcannotberejected.b.p-value=2(.5000-.4641)=.071875.a.H0:75Ha:>7513-183
RejectH0ifz>1.645x82.5075.000b.z1.58sn/30/40DonotrejectH0;thereisnoevidencetoconcludeanincreaseinmaintenancecostexists.c.p-value=.5000-.4429=.0571Since.0571>.05,donotrejectH0.76.a.H0:72Ha:>72x728072z219.sn//2030p-value=.5000-.4857=.0143b.Sincep-value<.05,rejectH0;themeanidletimeexceeds72minutesperday.77.a.H0:p.60Ha:p>.60RejectH0ifz>1.645pp(1).60(.40).0775pn40p=27/40=.675pp.675.60z.97.0775pDonotrejectH0;thesampleresultsdonotjustifytheconclusionthatp>.60forMidwesterners.b.p-value=.5000-.3340=.166078.a.p=355/546=.6502pp(1).67(1.67)b..0201pn546pp.6502.67z.98.0201pc.p-value=2(.5000-.3365)=.3270d.p-value,donotrejectH0.Theassumptionoftwo-thirdscannotberejected.13-184
79.H0:p.79Ha:p<.79RejectH0ifz<-1.645p=360/500=.72pp..72790z384.p(.7921)(.)500RejectH0;concludethattheproportionislessthan.79in1995.80.a.Theresearchisattemptingtoseeifitcanbeconcludedthatlessthan50%oftheworkingpopulationholdjobsthattheyplannedtohold..(.)5050b..0136p1350..4150z662..0136p-value0RejectH0ifz<-2.33RejectH0;itcanbeconcludedthatlessthan50%oftheworkingpopulationholdjobsthattheyplannedtohold.Themajorityholdjobsduetochance,lackofchoice,orsomeotherunplannedreason..(.)752581..0229p356p=313/356=.88..8875z568..0229p-value0RejectH0;concludep.75.Datasuggestthat88%ofwomenwearshoesthatareatleastonesizetoosmall.82.a.p=330/400=.825pp(1).78(1.78)b..0207pn40013-185
pp.825.78z2.17.0207pc.p-value=2(.5000-.4850)=.03d.p-value<,rejectH0.Arrivalratehaschangedfrom78%.Serviceappearstobeimproving.83.H0:p.90Ha:p<.90RejectH0ifz<-1.645.90(.10).0394p58p=49/58=.845pp.845.90z1.40.0394pp-value=.5000-.4192=.0808DonotrejectH0;thestation’sclaimcannotberejected84.a.p=44/125=.352pp(1).47(1.47)b..0446pn125pp.352.47z2.64.0446pc.p-value=.5000-.4959=.0041d.RejectH0;concludethattheproportionoffoodsamplecontainingpesticideresidueshasbeenreduced.85.a.H0:72Ha:>72RejectH0ifz>1.645xx720z1.645/2n0/30Solveforx=7813-186
DecisionRule:AcceptH0ifx78RejectH0ifx>78For=807880z.5520/30=.5000-.2088=.2912b.For=75,7875z.8220/30=.5000+.2939=.7939c.For=70,H0istrue.InthiscasetheTypeIIerrorcannotbemade.d.Power=1-1.0.8Po.6wer.4.272747678808284PossibleValuesofHoFalse86.H0:15,000Ha:<15,000At0=15,000,=.02.z.02=2.05Ata=14,000,=.05.z.10=1.6452222()zz(2.051.645)(4,000)n218.5Use21922()(15,00014,000)0a87.H0:=12013-187
Ha:120At0=120,=.05.Withatwo-tailedtest,z/2=z.025=1.96Ata=117,=.02.z.02=2.052222()zz(1.962.05)(5)/2n44.7Use4522()(120117)0ab.Examplecalculationfor=118.RejectH0ifz<-1.96orifz>1.96xx1200z/5n/45Solveforx.Atz=-1.96,x=118.54Atz=+1.96,x=121.46DecisionRule:AcceptH0if118.54x121.46RejectH0ifx<118.54orifx>121.46For=118,118.54118z.725/45=.5000+.2642=.2358OtherResults:Ifisz1172.07.0192118.72.2358119-.62.7291121+.62.7291122+.72.2358123-2.07.0192Chapter10StatisticalInferenceaboutMeansandProportionswithTwoPopulations13-188
LearningObjectives1.Beabletodevelopintervalestimatesandconducthypothesistestsaboutthedifferencebetweenthemeansoftwopopulations.2.Knowthepropertiesofthesamplingdistributionofthedifferencebetweentwomeansxx.123.Beabletousethetdistributiontoconductstatisticalinferencesaboutthedifferencebetweenthemeansoftwonormalpopulationswithequalvariances.4.Understandtheconceptanduseofapooledvarianceestimate.5.Learnhowtoanalyzethedifferencebetweenthemeansoftwopopulationswhenthesamplesareindependentandwhenthesamplesarematched.6.Beabletodevelopintervalestimatesandconducthypothesistestsaboutthedifferencebetweentheproportionsoftwopopulations.7.Knowthepropertiesofthesamplingdistributionofthedifferencebetweentwoproportionspp12.Solutions:1.a.xx=13.6-11.6=21213-189
2222ss(.)22()312b.s0595.xx12nn50351221.645(.595)2.98(1.02to2.98)c.21.96(.595)21.17(0.83to3.17)2.a.xx=22.5-20.1=2.41222222()()(nsns111122925.)(72)b.s527.nn21082122F11IF11Ic.ss527..109xx12HGKJHGnn12KJ10816degreesoffreedom,t.025=2.122.42.12(1.09)2.42.31(.09to4.71)3.a.xx//n54691ixx//n42672i2()xx18i1b.s1.901n16112()xx16i2s1.792n1612c.xx=9-7=21222222()()nsns1111225190(.)5179(.)d.s341.nn266212e.With10degreesoffreedom,t.025=2.2282F11IF11Iss341..107xx12HGKJHGnn12KJ6622.228(1.07)22.37(-0.37to4.37)13-190
4.a.xx=1.58-0.98=$0.60122222ss.12.0812b.s.021xx12nn504212x12xz.025sx12x.60±1.96(.021).60±.04(.56to.64)5.a.22.5-18.6=3.9milesperdayb.x12xz/2sx12x2222ss(8.4)(7.4)12s1.58xx12nn50501222.5-18.61.96(1.58)3.93.1or0.6to7.06.LAMiamix6.726.34s2.3742.163xxzs12/2xx122222ss(.)2374(.)216312s0454.xx12nn5050126.72-6.341.96(.454).38.89or-.51to1.277.a.xx=14.9-10.3=4.6years122222ss5.23.812b.s.66xx12nn1008512z.025sxx=1.96(.66)=1.312c.x12xz.025sx12x13-191
4.61.3(3.3to5.9)8.a.xx=15,700-14,500=1,20012b.Pooledvariance2227(700)11(850)s632,0831811s632,083362.88xx12812With18degreesoffreedomt.025=2.10112002.101(362.88)1200762(438to1962)c.Populationsarenormallydistributedwithequalvariances.9.a.n1=10n2=8x=21.2x=22.812s1=2.70s2=3.55xx=21.2-22.8=-1.612Kitchensarelessexpensiveby$1,600.b.x12xz/2sx12xDegreesoffreedom=n1+n2-2=16t.05=1.7462229(2.70)7(3.55)s9.63108211s9.631.47xx12108-1.61.746(1.47)-1.62.57(-4.17to+.97)10.a.x=17.54x=15.3612xx=17.54-15.36=$2.18perhourgreaterforunionworkers.1213-192
22222()()nsns11112214224(.)(19199.)b.s441.nn21520212c.xxts122/xx1211s4.410.72xx12152017.5415.36t(.72)/22.18t(.72)/2Note:Valuesfort.025arenotlistedfor33degreesoffreedom;for30d.f.t.025=2.042andfor40d.f.t.025=2.021.Wewillusethemoreconservativevalueof2.042asanapproximation.2.182.042(.72)2.181.47or0.71to3.652222ss(5.)2()61211.a.s118.xx12nn405012(25.222.8)z2.031.18RejectH0ifz>1.645RejectH0;concludeHaistrueand>0.b.p-value=.5000-.4788=.02122222ss(8.)4(.)761212.a.s131.xx12nn807012()xx()(104106)01212z153.s131.xx12RejectH0ifz<-1.96orz>1.96DonotrejectH0b.p-value=2(.5000-.4370)=.126013.a.xx=1.4–1.0=0.41222222()()(nsns11112274.)(66.)s02523.nn28721213-193
11s0.25230.26xx1287With13degreesoffreedom.t.025=2.16RejectH0ift<-2.16ort>2.16()xx().041212t154.s026.xx12DonotrejectH014.a.H0:µ1-µ2=0Ha:0b.RejectH0ifz<-1.96orifz>1.962222ss16.815.212c.s1.79xx12nn15017512xx12039.335.40z2.18s1.79xx12d.RejectH0;concludethepopulationmeansdiffer.e.p-value=2(.5000-.4854)=.029215.H0:µ1-µ2=0Ha:0RejectH0ifz<-1.96orifz>1.96()xx0(4035)12z2.412222(9)(10)12nn364912RejectH0;customersatthetwostoresdifferintermsofmeanages.p-value=2(.5000-.4920)=.016016.H0:0Ha:>0RejectH0ifz>2.0513-194
xx1212(547525)0z4.992222837812nn56285212RejectH0;concludethatthefemaleshaveahighermeanverbalscore.p-value017.Population1issupplierA.Population2issupplierB.H0:0StaywithsupplierAHa:>0ChangetosupplierBRejectH0ifz>1.645()xx()(1412.5)01212z2.682222(3)(2)12nn503012p-value=.5000-.4963=.0037RejectH0;changetosupplierB.18.a.H0:0Ha:022222.52.512.36xx12nn1128412xx12069.9569.56z1.08.36xx12b.p-value=2(.5000-.3599)=.2802c.DonorejectH0.Cannotconcludethatthereisadifferencebetweenthepopulationmeanscoresforthetwogolfers.19.a.H0:0Ha:0b.t.025=2.021df=n1+n2-2=22+20-2=40RejectH0ift<-2.021orift>2.02113-195
22222nsns112211(221)(.8)(201)(1.1)c.s.9108nn2222021221111ss.9108.2948xx12nn122220xx1202.52.1t1.36s.2948xx12d.DonotrejectH0.Cannotconcludethatadifferencebetweenpopulationmeanexists.e.Withdf=40,t.05=1.684andt.10=1.303Withtwotails,p-valueisbetween.10and.20.20.a.H0:0Ha:>0b.t.05=1.711df=n1+n2-2=16+10-2=24RejectH0ift>1.71122222nsns112211(161)(.64)(101)(.75)c.s.4669nn2161021221111ss.4669.2755xx12nn121610xx1206.826.25t2.07s.2755xx12d.RejectH0.Concludethattheconsultantwiththemoreexperiencehasthehigherpopulationmeanrating.e.With24df,t.025=2.064p-valueisapproximately.02521.a.1,2,0,0,2b.dd//n551i2()dd4ic.s1dn151d.With4degreesoffreedom,t.05=2.132RejectH0ift>2.13213-196
d10dt224.sn//15dp-valueisbetween.025and.05RejectH0;concluded>0.22.a.3,-1,3,5,3,0,1b.dd//n1472i2()dd26ic.s2082.dn171d.d=2e.With6degreesoffreedomt.025=2.44722.4472.082/721.93(.07to3.93)23.Difference=ratingafter-ratingbeforeH0:d0Ha:d>0With7degreesoffreedom,rejectH0ift>1.895d=.625ands=1.3025dd.6250dt136.sn/13025./8dp-valueisgreaterthan.10DonotrejectH0;wecannotconcludethatseeingthecommercialimprovesthemeanpotentialtopurchase.24.Differences:.20,.29,.39,.02,.24,.20,.20,.52,.29,.20dd/n2.55/10.255i2()ddis.1327dn1Withdf=9,t.025=2.26213-197
sddt.025n.1327.2552.26210.255.095(.16to.35)25.Differences:8,9.5,6,10.5,15,9,11,7.5,12,5d=93.5/10=9.35ands=2.954dt.025=2.26293522622954.../ej10935211..Intervalestimateis7.24to11.4626.H0:d=0Ha:d0RejectH0ift<-2.365orift>2.365df=7Differences-.01,.03,-.06,.16,.21,.17,-.09,.11dd/n.52/8.065i2()ddis.1131dn1d0.065t1.63s.1131dn8DonotrejectH0.Cannotconcludethatthepopulationmeansdiffer.27.Usingmatchedsamples,thedifferencesareasfollows:4,-2,8,8,5,6,-4,-2,-3,0,11,-5,5,9,5H0:d0Ha:d>0d=3ands=5.21dd30dt223.sn/.521/15dp-valueisbetween.01and.02513-198
With14degreesoffreedom,rejectH0ift>1.761RejectH0.Concludethatthepopulationofreadersspendsmoretime,onaverage,watchingtelevisionthanreading.28.a.H0:1-2=0Ha:1-20Withdf=11,t.025=2.201RejectH0ift<-2.201orift>2.201Calculatethedifference,di,foreachstock.dd//.n8512708i2()ddis334.dn1xt7.34sn/dp-value0RejectH0;adecreaseinP/Eratiosisbeingprojectedfor1998.sdb.dt.025n3.347.082.201127.082.12(4.96to9.21)29.a.Difference=Pricedeluxe-PriceStandardH0:d=10Ha:d10With6degreesoffreedom,rejectH0ift<-2.447orift>2.447d=8.86ands=2.61dd88610.dt116.sn/261./7dp-valueisgreaterthan.2013-199
DonotrejectH0;wecannotrejectthehypothesisthata$10pricedifferentialexists.sdb.dt/2n2.618.862.44778.862.41(6.45to11.27)30.a.()pp=.48-.36=.1212pp()()11pp048052.(.).(.)0360641122b.s00373.pp12nn400300120.121.645(0.0373)0.120.0614(0.0586to0.1814)c.0.121.96(0.0373)0.120.0731(0.0469to0.1931)npnp200022(.)300016(.)112231.a.p0184.nn20030012F11Is(.)(.)0184081600354.pp12HGKJ200300RejectH0ifz>1.645(.22.16)0z1.69.0354RejectH0b.p-value=(.5000-.4545)=.045532.p=220/400=0.551p=192/400=0.482055045.(.).(.)048052s00353.pp1240040013-200
pp±1.96s12pp120.55-0.481.96(0.0353)0.070.0691(0.0009to0.1391)7%moreexecutivesarepredictinganincreaseinfull-timejobs.Theconfidenceintervalshowsthedifferencemaybefrom0%to14%.33.ppzs122/pp12pp()()11pp(.)(.)025075(.)(.)0160841122s0025.pp12nn496505120.25-0.16±1.96(0.25)0.09±0.05or0.04to0.1434.a.p=682/1082=.6303(63%)1p=413/1008=.4097(41%)2pp=.6303-.4097=.2206(22%)12pppp(1)(1).6303(1.6303).4097(1.4097)1122b..0213pp12nn1082100812pp1.9612p12p.22061.96(.0213).2206.0418(.1788to.2624)35.a.p=279/300=0.931p=255/300=0.852b.H0:p1-p2=0Ha:p1-p20RejectH0ifz<-1.96orifz>1.96279255p089.300300F11Is(.)(.)08901100255.pp12HGKJ300300pp0093085..12z313.s00255.pp1213-201
p-valueislessthan.001RejectH0;womenandmendifferonthisquestion.c.pp196.s12pp12(.)(.)(.)(.)093007085015s00253.pp123003000.93-0.851.96(0.0253)0.080.05(0.03to0.13)95%confident,3%to13%morewomenthanmenagreewiththisstatement.36.H0:p1p2Ha:p1>p2()pppp12b12gzspp12npnp15450675(.)16910608(.)1122p064.nn1545169112F11IF11Isp()1p(064036.)(.)0017.pp12HGKJHGnn12KJ15451691(.06750608.)0z394.0017.Since3.94>z.05=1.645,werejectH0p-value0Conclusion:Theproportionofmenthatfeelthatthedivisionofhouseworkisfairisgreaterthantheproportionofwomenthatfeelthatthedivisionofhouseworkisfair.37.H0:p1-p2=0Ha:p1-p20RejectH0ifz<-1.96orifz>1.9613-202
6360p03514.150200F11Is(.0351406486)(.)00516.pp12HGKJ150200pp63150/.04260200/.03012()pppp12bg12(.042030.)0z233.s00516.pp12p-value=2(.5000-.4901)=.0198RejectH0;thereisadifferencebetweentherecallratesforthetwocommercials.04258.().(.)030070b.(.042030.).196150200.12.10(.02to.22)npnp232(.815)210(.724)112238.p.7718nn232210121111sp(1p)(.7718)(17718).04pp12nn12232210pp120.815.724z2.28s.04pp12p-value=2(.5-.4887)=.0226p-value<.05,rejectH0.Thepopulationproportionsdiffer.NYSEisshowingagreaterproportionofstocksbelowtheir1997highs.39.H0:p1-p20Ha:p1-p20npnp240(.40)250(.32)1122p.3592nn240250121111sp(1p)(.3592)(1.3592).0434pp12nn12240250pp120.40.32z1.85s.0434pp12p-value=.5000-.4678=.032213-203
p-value<.05,rejectH0.TheproportionofusersatworkisgreaterinWashingtonD.C.22ss1240.xxz120.5nn1222(2500)(2000)40,00035,0001.64560805000646(4354to5646)41.H0:1-2=0Ha:1-20RejectH0ifz<-1.96orifz>1.96()xx()(4.13.3)01212z3.192222(2.2)(1.5)12nn12010012RejectH0;adifferenceexistswithsystemBhavingthelowermeancheckouttime.42.a.H0:1-20Ha:1-2>0RejectH0ifz>1.645b.Usingthecomputer,n1=30n2=30x=16.23x=15.7012s1=3.52s2=3.3122(3.52)(3.31)s0.88xx123030()xx0(.16231570.)12z059.s088.xx12DonotrejectH0;cannotconcludethatthemutualfundswithaloadhaveagreatermeanrateofreturn.Loadfunds16.23%;noloadfunds15.7%13-204
c.Atz=0.59,Area=0.2224p-value=0.5000-0.2224=0.277643.H0:1-2=0Ha:1-20Use25degreesoffreedom.RejectH0ift<-2.06orift>2.0622211(8)14(10)s84.1625xx121272780t1.691111284.16snn121512p-valueisbetween.10and.20DonotrejectH0;cannotconcludeadifferenceexists.44.Difference=before-afterH0:d0Ha:d>0With5degreesoffreedom,rejectH0ift>2.015d=6.167ands=6.585dd61670.dt229.sn/6585./6dp-valueisbetween.05and.10RejectH0;concludethattheprogramprovidesweightloss.45.a.Population1-1996Population2-1997H0:1-20Ha:1-2>0b.dd/./.n17414012i2()ddis033.dn113-205
Degreesoffreedom=13;t.05=1.771RejectH0ift>1.771d00.12t142.sn/033./14dp-valueisbetween.05and.10DonotrejectH0.Thesampleof14companiesshowsearningsaredowninthefourthquarterbyameanof0.12pershare.However,datadoesnotsupporttheconclusionthatmeanearningsforallcompaniesaredownin1997.46.a.H0:p1-p20Ha:p1-p2>0b.p=704/1035=.6802(68%)1p=582/1004=.5797(58%)2pp=.6802-.5797=.100512npnp1035(0.6802)1004(0.5797)1122p.6307nn10351004121111sp(1p)(.6307)(1.6307).0214pp12nn1210351004()pp0.6802.579712z4.70s.0214pp12p-value0c.RejectH0;proportionindicatinggood/excellentincreased.47.a.H0:p1-p2=0Ha:p1-p20RejectH0ifz<-1.96orifz>1.9613-206
7690p01277.400900F11Is(.0127708723)(.)002.pp12HGKJ400900pp76400/.01990900/.01012()pppp()(.019010.)01212z450.s002.pp12p-value0RejectH0;thereisadifferencebetweenclaimrates.019081.(.).(.)010090b.009196..400900.09.0432(.0468to.1332)951448.p00341.142268410F11Is(.0034109659)(.)00188.pp12HGKJ142268pp9142/.006345268/.0018712pp0063400187...0044712004470.z238.00188.p-value=2(0.5000-0.4913)=0.0174RejectH0;Thereisasignificantdifferenceindrugresistancebetweenthetwostates.NewJerseyhasthehigherdrugresistancerate.Chapter11InferencesAboutPopulationVariancesLearningObjectives1.Understandtheimportanceofvarianceinadecision-makingsituation.13-207
2Understandtheroleofstatisticalinferenceindevelopingconclusionsaboutthevarianceofasinglepopulation.223.Knowthesamplingdistributionof(n-1)s/hasachi-squaredistributionandbeabletousethisresult2todevelopaconfidenceintervalestimateof.24.Knowhowtotesthypothesesinvolving.5.Understandtheroleofstatisticalinferenceindevelopingconclusionsaboutthevariancesoftwopopulations.226.Knowthatthesamplingdistributionofs/shasanFdistributionandbeabletousethisresulttotest12hypothesesinvolvingthevariancesoftwopopulations.Solutions:1.a.11.0705b.27.4884c.9.59083d.23.2093e.9.3904613-208
22.s=2522a.With19degreesoffreedom=30.1435and=10.1170.05.9519(25)219(25)30.143510.1170215.7646.9522b.With19degreesoffreedom=32.8523and=8.90655.025.97519(25)219(25)32.85238.90655214.4653.332c.3.87.323.With15degreesoffreedom=24.9958.052RejectH0if>24.9958222(1ns)(161)(8)19.2250DonotrejectH04.a.n=182s=.3622=27.5871=8.67176(17degreesoffreedom).05.9517(.36)217(.36)27.58718.671762.22.71b..47.8422()xx25.a.s31.07n1s31.075.5722b.=16.0128=1.68987.025.975(81)(31.07)2(81)(31.07)16.01281.6898713-209
213.58128.71c.3.6911.3422()xxi6.a.s176.96n1s176.9613.3022b.=11.1433=0.484419.025.975(51)(176.96)2(51)(176.96)11.14330.484419263.521461.217.9738.2322()xxi7.a.s2.62n1s2.621.6222b.=16.0128=1.68987.025.095(81)(2.62)2(81)(2.62)16.01281.6898721.1410.85c.1.073.2922()xxi.09298.a.s.00845n1121b.s.00845.0919c.11degreesoffreedom22=21.92=3.81575.025.97522(1ns)2(1ns)22.025.975(121).008452(121).0084521.923.8157513-210
2.0042.0244d..0651.156129.H0:.00042Ha:.0004n=302=42.5569(29degreesoffreedom).052(29)(.0005)36.25.0004DonotrejectH0;theproductspecificationdoesnotappeartobeviolated.210.H0:.752Ha:.752=42.5569(29degreesoffreedom).05222(ns1)(29)(2)206.2222(.75)02Since=206.22>42.5569,rejectH0ThestandarddeviationfortelevisionsetsisgreaterthanthestandarddeviationforVCR’s.11.19degreesoffreedom22=8.90655=32.8523.975.02522RejectH0if<8.90655orif>32.8523222(ns1)(201)(.114)26.792.009216DonotrejectH0.Cannotconcludethevarianceininterestrateshaschanged.22()xxi12.s.8106n12H0:.942Ha:.9422(ns1)(11)(.8106)9.492.94013-211
2222With11degreesoffreedom,rejectif<=3.81575or>=21.92..975.0252Since=9.49isnotintherejectionregion,wecannotrejectH0.13.a.F.05=2.91b.F.025=2.76c.F.01=4.5011d.F.29.975F3.42.025,20,10RemembertoreversethedegreesoffreedomintheF.025above.14.F.05,15,19=2.23RejectH0ifF>2.232s5.81F2.422s2.4222RejectH0:conclude1215.Werecommendplacingthelargersamplevarianceinthenumerator.With=.05,F.025,20,24=2.33.RejectifF>2.33.F=8.2/4.0=2.05DonotrejectH0OrifwehadthelowertailFvalue,11F.41.025,20,24F2.41.025,24,20F=4.0/8.2=.49F>.41DonotrejectH02216.H:01222H:a12F.01,24,29=2.49RejectH0ifF>2.4922s941F2.6322s582RejectH0;Concludeadultshaveagreatervarianceinonlinetimesthanteens.217.a.Let=varianceinrepaircosts(4yearoldautomobiles)113-212
2=varianceinrepaircosts(2yearoldautomobiles)222H:01222H:a1222b.s=(170)=28,900122s=(100)=10,00022s28,9001F2.892s10,0002F.01,24,24=2.66RejectH;concludethat4yearoldautomobileshavealargervarianceinannualrepaircostscomparedto20yearoldautomobiles.Thisisexpectedduetothefactthatolderautomobilesaremorelikelytohavesomeveryexpensiverepairswhichleadtogreatervarianceintheannualrepaircosts.2218.H:01222H:a12F/2=F.025,9,6=5.5222s4.271F3.5422s2.272DonotrejectH;Cannotconcludeanydifferencebetweenvariancesofthetwoindustries.02219.H:01222H:a12F.025=2.37(Degreesoffreedomare24numerator,21denominator)UsingMinitab,Machine1:n1=25s1=.2211x1=3.328Machine1:n1=22s1=.0768x1=3.27822s(.2211)1F8.2922s(.0768)213-213
RejectH;theprocessvariancesaresignificantlydifferent.Machine1offersthebestopportunityfor0processqualityimprovements.Notethatthesamplemeansaresimilarwiththemeanbagweightsofapproximately3.3grams.However,theprocessvariancesaresignificantlydifferent.2220.H:01222H:a12F.025=2.37(Degreesoffreedomare24numerator,24denominator)With11.1thelargersamplevariance,wehaveF=11.1/2.1=5.29RejectH;thevariancesarenotequalforseniorsandmanagers.022()xix21.a.sn122s=9663.57s=19,237.73NovDec22b.H:0NovDec22H:aNovDec2s19,237.73DecF1.992s9663.57NovF.05,9,9=3.18SinceF=1.99<3.18,donotrejectH0Thereisnoevidencethatthepopulationvariancesdiffer.2222.H:0wetdry22H:awetdry2222s321024s16256wetdryF.05=2.402s1024wetF42s256drySinceF=4>2.40,rejectHandconcludethatthereisgreatervariabilityinstoppingdistancesonwet0pavement.13-214
b.Drivecarefullyonwetpavementbecauseoftheuncertaintyinstoppingdistances.2223.a.s=(30)=90022b.=30.1435and=10.1170(19degreesoffreedom).05.95(19)(900)2(19)(900)30.143510.11702567.291690.22c.23.8241.1124.With12degreesoffreedom,22=23.3367=4.40379.025.97522(12)(14.95)2(12)(14.95)23.33674.403792114.93609.0310.7224.68xi25.a.x$260.16n22()xxib.s4996.79n1s4996.7970.6922c.=32.8523=8.90655.025.975(201)(4996.78)2(201)(4996.78)32.85238.9065522889.8710,659.4553.76103.24226.a.H0:.00012Ha:.00012=21.0642(14degreesoffreedom).1013-215
22(14)(.014)27.44.00012RejectH;exceedsmaximumvariancerequirement.022b.=23.6848and=6.57063(14degreesoffreedom).05.9522(14)(.014)2(14)(.014)23.68486.570632.00012.00042227.H0:.022Ha:.022=55.7585(40degreesoffreedom).0522(40)(.16)51.2.02DonotrejectH;thevariancedoesnotappeartobeexceedingthestandard.0228.n=22s=1.52H0:2Ha:2=29.6151(21degreesoffreedom).102(21)(1.5)31.512RejectH;concludethat>1.022()xxi101.5629.s12.69n1912H:=1002Ha:1022(ns1)(8)(12.69)10.162100With8degreesoffreedom,rejectif2222<=2.73264or>=15.5073.95.0513-216
2Since=10.16isnotintherejectionregion,wecannotrejectH0.30.a.Tryn=1522=26.1190=5.62872(14degreesoffreedom).025.975(14)(64)2(14)(64)26.11905.62872234.30159.185.8612.62Asamplesizeof15wasused.b.n=25;expectedthewidthoftheintervaltobesmaller.22=39.3641=12.4011(24degreesoffreedom).05.97522(24)(8)2(24)(8)39.364112.4011239.02126.866.2511.132231.H:01222H:a12F/2=F.05,9,9=3.1822s15.81F422s7.92RejectH.ConcludethevariancesdifferwithNASDAQstocksshowingthegreatervariance.02232.H:01222H:a12F.025=1.46622s.9401F1.3922s.7972DonotrejectH;Wearenotabletoconcludestudentswhocompletethecourseandstudentswhodropout0havedifferentvariancesofgradepointaverages.13-217
233.n=16s=5.4112n=16s=2.32222H:01222H:a12F.05=2.40(Degreesoffreedomare15numerator,15denominator)2s5.41F2.352s2.32DonotrejectH;datadoesnotindicateadifferencebetweenthepopulationvariances.02234.H:01222H:a12F.05=1.94(30numeratorand24denominatordegreesoffreedom)2s251F2.082s122RejectH;concludethatthevariancesofassemblytimesarenotequal.0Chapter12TestsofGoodnessofFitandIndependenceLearningObjectives1.Knowhowtoconductagoodnessoffittest.2.Knowhowtousesampledatatotestforindependenceoftwovariables.3.Understandtheroleofthechi-squaredistributioninconductingtestsofgoodnessoffitandindependence.4.Beabletoconductagoodnessoffittestforcaseswherethepopulationishypothesizedtohaveeitheramultinomial,aPoisson,oranormalprobabilitydistribution.13-218
5.Foratestofindependence,beabletosetupacontingencytable,determinetheobservedandexpectedfrequencies,anddetermineifthetwovariablesareindependent.Solutions:1.Expectedfrequencies:e1=200(.40)=80,e2=200(.40)=80e3=200(.20)=40Actualfrequencies:f1=60,f2=120,f3=20(60-80)2(120-80)2(20-40)22=++8080404001600400=++808040=5+20+10=352=9.21034withk-1=3-1=2degreesoffreedom.012Since=35>9.21034rejectthenullhypothesis.Thepopulationproportionsarenotasstatedinthenullhypothesis.13-219
2.Expectedfrequencies:e1=300(.25)=75,e2=300(.25)=75e3=300(.25)=75,e4=300(.25)=75Actualfrequencies:f1=85,f2=95,f3=50,f4=70(85-75)2(95-75)2(50-75)2(70-75)22=+++7575757510040062525=+++757575751150=75=15.332=7.81473withk-1=4-1=3degreesoffreedom.052Since=15.33>7.81473rejectH0Weconcludethattheproportionsarenotallequal.3.H0=pABC=.29,pCBS=.28,pNBC=.25,pIND=.18Ha=TheproportionsarenotpABC=.29,pCBS=.28,pNBC=.25,pIND=.18Expectedfrequencies:300(.29)=87,300(.28)=84300(.25)=75,300(.18)=54e1=87,e2=84,e3=75,e4=54Actualfrequencies:f1=95,f2=70,f3=89,f4=462=7.81(3degreesoffreedom).0522222(95-87)(70-84)(89-75)(46-54)=+++87847554=6.87DonotrejectH0;thereisnosignificantchangeintheviewingaudienceproportions.4.ObservedExpectedHypothesizedFrequencyFrequency2CategoryProportion(fi)(ei)(fi-ei)/ei13-220
Brown0.30177151.84.18Yellow0.20135101.211.29Red0.2079101.24.87Orange0.104150.61.82Green0.103650.64.21Blue0.103850.63.14Totals:50629.512=11.07(5degreesoffreedom).05Since29.51>11.07,weconcludethatthepercentagefiguresreportedbythecompanyhavechanged.5.ObservedExpectedHypothesizedFrequencyFrequency2CategoryProportion(fi)(ei)(fi-ei)/eiFullService1/3264249.330.86Discount1/3255249.330.13Both1/3229249.331.66Totals:7482.652=4.61(2degreesoffreedom).10Since2.65<4.61,thereisnosignificantdifferenceinpreferenceamongthethreeservicechoices.6.ObservedExpectedHypothesizedFrequencyFrequency2CategoryProportion(fi)(ei)(fi-ei)/eiNewsandOpinion1/62019.17.04GeneralEditorial1/61519.17.91FamilyOriented1/63019.176.12Business/Financial1/62219.17.42FemaleOriented1/61619.17.52African-American1/61219.172.68Totals:11510.692=9.24(5degreesoffreedom).10Since10.69>9.24,weconcludethatthereisadifferenceintheproportionofadswithguiltappealsamongthesixtypesofmagazines.7.Expectedfrequencies:ei=(1/3)(135)=452222(43-45)(53-45)(39-45)=++=2.3145454513-221
2With2degreesoffreedom,=5.99.05DonotrejectH0;thereisnojustificationforconcludingadifferenceinpreferenceexists.8.H0:p1=.03,p2=.28,p3=.45,p4=.242df=3=11.34.012RejectH0if>11.342RatingObservedExpected(fi-ei)/eiExcellent24.03(400)=1212.00Good124.28(400)=1121.29Fair172.45(400)=180.36Poor80.24(400)=962.674004002=16.31RejectH0;concludethattheratingsdiffer.Acomparisonofobservedandexpectedfrequenciesshowtelephoneserviceisslightlybetterwithmoreexcellentandgoodratings.9.H0=ThecolumnvariableisindependentoftherowvariableHa=ThecolumnvariableisnotindependentoftherowvariableExpectedFrequencies:ABCP28.539.945.6Q21.530.134.42222222(20-28.5)(44-39.9)(50-45.6)(30-21.5)(26-30.1)(30-34.4)=+++++28.539.945.621.530.134.4=7.862=7.37776with(2-1)(3-1)=2degreesoffreedom.0252Since=7.86>7.37776RejectH0Concludethatthecolumnvariableisnotindependentoftherowvariable.10.H0=ThecolumnvariableisindependentoftherowvariableHa=ThecolumnvariableisnotindependentoftherowvariableExpectedFrequencies:ABCP17.500030.625021.8750Q28.750050.312535.9375R13.750024.062517.187513-222
2222(20-17.5000)(30-30.6250)(30-17.1875)=+++17.500030.625017.1875=19.782=9.48773with(3-1)(3-1)=4degreesoffreedom.052Since=19.78>9.48773RejectH0Concludethatthecolumnvariableisnotindependentofftherowvariable.11.H0:TypeofticketpurchasedisindependentofthetypeofflightHa:Typeofticketpurchasedisnotindependentofthetypeofflight.ExpectedFrequencies:e11=35.59e12=15.41e21=150.73e22=65.27e31=455.68e32=197.32ObservedExpectedFrequencyFrequency2TicketFlight(fi)(ei)(fi-ei)/eiFirstDomestic2935.591.22FirstInternational2215.412.82BusinessDomestic95150.7320.61BusinessInternational12165.2747.59FullFareDomestic518455.688.52FullFareInternational135197.3219.68Totals:920100.432=5.99with(3-1)(2-1)=2degreesoffreedom.05Since100.43>5.99,weconcludethatthetypeofticketpurchasedisnotindependentofthetypeofflight.12.a.ObservedFrequency(fij)DomesticEuropeanAsianTotalSame1255568248Different140105107352Total265160175600ExpectedFrequency(eij)DomesticEuropeanAsianTotalSame109.5366.1372.33248Different155.4793.87102.67352Total2651601756002ChiSquare(fij-eij)/eijDomesticEuropeanAsianTotalSame2.181.870.264.32Different1.541.320.183.0413-223
2=7.362Degreesoffreedom=2=5.99.05RejectH0;concludebrandloyaltyisnotindependentofmanufacturer.b.BrandLoyaltyDomestic125/265=.472(47.2%)HighestEuropean55/160=.344(34.4%)Asian68/175=.389(38.9%)13.IndustryMajorOilChemicalElectricalComputerBusiness3022.517.530Engineering3022.517.530Note:Valuesshownabovearetheexpectedfrequencies.2=11.3449(3degreesoffreedom:1x3=3).012=12.39RejectH0;concludethatmajorandindustrynotindependent.14.ExpectedFrequencies:e11=31.0e12=31.0e21=29.5e22=29.5e31=13.0e32=13.0e41=5.5e42=5.5e51=7.0e52=7.0e61=14.0e62=14.0ObservedExpectedFrequencyFrequency2MostDifficultGender(fi)(ei)(fi-ei)/eiSpouseMen3731.01.16SpouseWomen2531.01.16ParentsMen2829.50.08ParentsWomen3129.50.08ChildrenMen713.02.77ChildrenWomen1913.02.77SiblingsMen85.51.14SiblingsWomen35.51.14In-LawsMen47.01.2913-224
In-LawsWomen107.01.29OtherRelativesMen1614.00.29OtherRelativesWomen1214.00.29Totals:20013.432=11.0705with(6-1)(2-1)=5degreesoffreedom.05Since13.43>11.0705.weconcludethatgenderisnotindependentofthemostdifficultpersontobuyfor.15.ExpectedFrequencies:e11=17.16e12=12.84e21=14.88e22=11.12e31=28.03e32=20.97e41=22.31e42=16.69e51=17.16e52=12.84e61=15.45e62=11.55ObservedExpectedFrequencyFrequency2MagazineAppeal(fi)(ei)(fi-ei)/eiNewsGuilt2017.160.47NewsFear1012.840.63GeneralGuilt1514.880.00GeneralFear1111.120.00FamilyGuilt3028.030.14FamilyFear1920.970.18BusinessGuilt2222.310.00BusinessFear1716.690.01FemaleGuilt1617.160.08FemaleFear1412.840.11African-AmericanGuilt1215.450.77African-AmericanFear1511.551.03Totals:2013.412=15.09with(6-1)(2-1)=5degreesoffreedom.01Since3.41<15.09,thehypothesisofindependencecannotberejected.34.a.ObservedFrequency(fij)PharmConsumerComputerTelecomTotalCorrect207136151178672Incorrect3491228Total210140160190700ExpectedFrequency(eij)PharmConsumerComputerTelecomTotalCorrect201.6134.4153.6182.4672Incorrect8.45.66.47.628Total2101401601907002ChiSquare(fij-eij)/eij13-225
PharmConsumerComputerTelecomTotalCorrect.14.02.04.11.31Incorrect3.47.461.062.557.532=7.852Degreesoffreedom=3=7.81473.05DonotrejectH0;concludeorderfulfillmentisnotindependentofindustry.b.Thepharmaceuticalindustryisdoingthebestwith207of210(98.6%)correctlyfilledorders.17.ExpectedFrequencies:PartQualitySupplierGoodMinorDefectMajorDefectA88.766.075.14B173.0911.8310.08C133.159.107.752=7.962=9.48773(4degreesoffreedom:2x2=4).05DonotrejectH0;concludethattheassumptionofindependencecannotberejected18.ExpectedFrequencies:PartyAffiliationEducationLevelDemocraticRepublicanIndependentDidnotcompletehighschool282814Highschooldegree323216Collegedegree4040202=13.422=13.2767(4degreesoffreedom:2x2=4).01RejectH0;concludethatpartyaffiliationisnotindependentofeducationlevel.19.ExpectedFrequencies:e11=11.81e12=8.44e13=24.75e21=8.40e22=6.00e23=17.60e31=21.79e32=15.56e33=45.65ObservedExpectedFrequencyFrequency2SiskelEbert(fi)(ei)(fi-ei)/eiConCon2411.8112.57ConMixed88.440.02ConPro1324.755.58MixedCon88.400.02MixedMixed136.008.17MixedPro1117.602.48ProCon1021.796.3813-226
ProMixed915.562.77ProPro6445.657.38Totals:16045.362=13.28with(3-1)(3-1)=4degreesoffreedom.01Since45.36>13.28,weconcludethattheratingsarenotindependent.20.Firstestimatefromthesampledata.Samplesize=120.0(39)1(30)2(30)3(18)4(3)1561.3120120Therefore,weusePoissonprobabilitieswith=1.3tocomputeexpectedfrequencies.ObservedPoissonExpectedDifferencexFrequencyProbabilityFrequency(fi-ei)039.272532.7006.300130.354342.516-12.516230.230327.6362.364318.099811.9766.0244ormore3.04305.160-2.160222222(6.300)(-12.516)(2.364)(6.024)(-2.160)=++++32.70042.51627.63611.9765.160=9.03482=7.81473with5-1-1=3degreesoffreedom.052Since=9.0348>7.81473RejectH0ConcludethatthedatadonotfollowaPoissonprobabilitydistribution.221.Withn=30wewillusesixclasseswith16/3%oftheprobabilityassociatedwitheachclass.x=22.80s=6.2665Thezvaluesthatcreate6intervals,eachwithprobability.1667are-.98,-.43,0,.43,.98zCutoffvalueofx-.9822.8-.98(6.2665)=16.66-.4322.8-.43(6.2665)=20.11022.8+0(6.2665)=22.80.4322.8+.43(6.2665)=25.49.9822.8+.98(6.2665)=28.94ObservedExpectedIntervalFrequencyFrequencyDifferencelessthan16.6635-213-227
16.66-20.1175220.11-22.8055022.80-25.4975225.49-28.9435-228.94andup5502222222(2)(2)(0)(2)(2)(0)163.2055555552=9.34840with6-2-1=3degreesoffreedom.0252Since=3.209.34840DonotrejectH0Theclaimthatthedatacomesfromanormaldistributioncannotberejected.0(34)1(25)2(11)3(7)4(3)22.180UsePoissonprobabilitieswith=1.PoissonxObservedProbabilitiesExpected034.367929.432125.367929.432211.183914.71237.06134.904combineinto143.01531.224categoryof3or}moretomake5ormore-.0037.296ei5.2=4.302=5.99147(2degreesoffreedom).05DonotrejectH0;theassumptionofaPoissondistributioncannotberejected.0(15)1(31)2(20)3(15)4(13)5(4)6(2)23.2100PoissonxObservedProbabilitiesExpected015.135313.53131.270727.07220.270727.07315.180418.04413.09029.0213-228
5ormore6.05275.272=4.982=7.77944(4degreesoffreedom).10DonotrejectH0;theassumptionofaPoissondistributioncannotberejected.24.x=24.5s=3n=30Use6classesObservedExpectedIntervalFrequencyFrequencylessthan21.565521.56-23.214523.21-24.503524.50-25.797525.79-27.447527.41up452=2.82=6.25139(3degreesoffreedom:6-2-1=3).10DonotrejectH0;theassumptionofanormaldistributioncannotberejected.25.x=71s=17n=25Use5classesObservedExpectedIntervalFrequencyFrequencylessthan56.77556.7-66.57566.5-74.61574.6-84.51584.5up952=11.22=9.21034(2degreesoffreedom).01RejectH0;concludethedistributionisnotanormaldistribution.26.Observed60455936Expected505050502=8.042=7.81473(3degreesoffreedom).05RejectH0;concludethattheorderpotentialsarenotthesameineachsalesterritory.27.Observed48323791663Expected37.03306.82126.9621.1637.0313-229
2222(48–37.03)(323–306.82)(63–37.03)=+++37.03306.8237.03=41.692=13.2767(4degreesoffreedom).01Since41.69>13.2767,rejectH0.Mutualfundinvestors"attitudestowardcorporatebondsdifferfromtheirattitudestowardcorporatestock.28.Observed20204060Expected3535353522222(20–35)(20–35)(40–35)(60–35)=+++35353535=31.432=7.81473(3degreesoffreedom).05Since31.43>7.81473,rejectH0.Theparkmanagershouldnotplanonthesamenumberattendingeachday.PlanonalargerstaffforSundaysandholidays.29.Observed1316281716Expected18181818182=7.442=9.48773.05DonotrejectH0;theassumptionthatthenumberofridersisuniformlydistributedcannotberejected.30.ObservedExpectedHypothesizedFrequencyFrequency2CategoryProportion(fi)(ei)(fi-ei)/eiVerySatisfied0.281051408.75SomewhatSatisfied0.462352300.11Neither0.1255600.42SomewhatDissatisfied0.10905032.00VeryDissatisfied0.0415201.25Totals:50042.532=9.49(4degreesoffreedom).05Since42.53>9.49,weconcludethatthejobsatisfactionforcomputerprogrammersisdifferentthanthejobsatisfactionforISmanagers.13-230
31.ExpectedFrequencies:QualityShiftGoodDefective1st368.4431.562nd276.3323.673rd184.2215.782=8.112=5.99147(2degreesoffreedom).05RejectH0;concludethatshiftandqualityarenotindependent.32.ExpectedFrequencies:e11=1046.19e12=632.81e21=28.66e22=17.34e31=258.59e32=156.41e41=516.55e42=312.45ObservedExpectedFrequencyFrequency2EmploymentRegion(fi)(ei)(fi-ei)/eiFull-TimeEastern11051046.193.31Full-timeWestern574632.815.46Part-TimeEastern3128.660.19Part-TimeWestern1517.340.32Self-EmployedEastern229258.593.39Self-EmployedWestern186156.415.60NotEmployedEastern485516.551.93NotEmployedWestern344312.453.19Totals:296923.372=7.81with(4-1)(2-1)=3degreesoffreedom.05Since23.37>7.81,weconcludethatemploymentstatusisnotindependentofregion.33.Expectedfrequencies:LoanApprovalDecisionLoanOfficesApprovedRejectedMiller24.8615.14McMahon18.6411.36Games31.0718.93Runk12.437.572=2.212=7.81473(3degreesoffreedom).05DonotrejectH0;theloandecisiondoesnotappeartobedependentontheofficer.13-231
34.a.ObservedFrequency(fij)NeverMarriedMarriedDivorcedTotalMen23410610350Women21616816400Total45027426750ExpectedFrequency(eij)NeverMarriedMarriedDivorcedTotalMen210127.8712.13350Women240146.1313.87400Total450274267502ChiSquare(fij-eij)/eijNeverMarriedMarriedDivorcedTotalMen2.743.74.386.86Women2.403.27.336.002=12.862Degreesoffreedom=2=9.21.01RejectH0;concludemartialstatusisnotindependentofgender.b.MartialStatusNeverMarriedMarriedDivorcedMen66.9%30.3%2.9%Women54.0%42.0%4.0%Men100-66.9=33.1%havebeenmarriedWomen100-54.0=46.0%havebeenmarried35.ExpectedFrequencies:(50)(18)(50)(24)(50)(12)ee9,12,,e61112251001001002222(49)(1012)(46)9.7691262=9.48773(4degreesoffreedom).05Since9.76<9.48773,rejectH0.BankingtendstohavelowerP/Eratios.WecanconcludethatindustrytypeandP/Eratioarerelated.36.ExpectedFrequencies:DaysoftheWeekCountySunMonTuesWedThurFriSatTotalUrban56.747.655.156.760.172.644.2393Rural11.39.410.911.311.914.48.87813-232
Total685766687287534712=6.202=12.5916(6degreesoffreedom).05DonotrejectH0;theassumptionofindependencecannotberejected.37.x=76.83s=12.43ObservedExpectedIntervalFrequencyFrequencylessthan62.545562.54-68.503568.50-72.856572.85-76.835576.83-80.815580.81-85.167585.16-91.124591.12up552=22=11.0705(5degreesoffreedom).05DonotrejectH0;theassumptionofanormaldistributioncannotberejected.38.ExpectedFrequencies:LosAngelesSanDiegoSanFranciscoSanJoseTotalOccupied165.7124.3186.4165.7642Vacant34.325.738.634.3133Total200.0150.0225.0200.07752222(160-165.7)(116-124.3)(26-34.3)=+++165.7124.334.3=7.782=7.81473with3degreesoffreedom.052Since=7.787.81473DonotrejectH0.Wecannotconcludethatofficevacanciesaredependentonmetropolitanarea,butitisclose:thep-valueisslightlylargerthan.05.39.a.ObservedBinomialProb.ExpectedxFrequenciesn=4,p=.30Frequencies030.240124.01132.411641.16225.264626.46310.07567.5613-233
43.0081.81100100.00Theexpectedfrequencyofx=4is.81.Combinex=3andx=4intoonecategorysothatallexpectedfrequenciesare5ormore.ObservedExpectedxFrequenciesFrequencies03024.0113241.1622526.463or4138.37100100.0022b.With3degreesoffreedom,.05=7.81473.RejectH0if>7.81473.22feii6.17eiDonotrejectH0;concludethattheassumptionofabinomialdistributioncannotberejected.Chapter13AnalysisofVarianceandExperimentalDesignLearningObjectives1.Understandhowtheanalysisofvarianceprocedurecanbeusedtodetermineifthemeansofmorethantwopopulationsareequal.2.Knowtheassumptionsnecessarytousetheanalysisofvarianceprocedure.3.UnderstandtheuseoftheFdistributioninperformingtheanalysisofvarianceprocedure.4.KnowhowtosetupanANOVAtableandinterprettheentriesinthetable.5.Beabletouseoutputfromcomputersoftwarepackagestosolveanalysisofvarianceproblems.6.KnowhowtouseFisher’sleastsignificantdifference(LSD)procedureandFisher’sLSDwiththeBonferroniadjustmenttoconductstatisticalcomparisonsbetweenpairsofpopulationsmeans.7.Understandthedifferencebetweenacompletelyrandomizeddesign,arandomizedblockdesign,andfactorialexperiments.8.Knowthedefinitionofthefollowingterms:comparisonwiseTypeIerrorratepartitioning13-234
experimentwiseTypeIerrorrateblockingfactormaineffectlevelinteractiontreatmentreplication13-235
Solutions:1.a.x=(30+45+36)/3=37k2222SSTRnxxjj=5(30-37)+5(45-37)+5(36-37)=570j1MSTR=SSTR/(k-1)=570/2=285k2b.SSE(nsjj1)=4(6)+4(4)+4(6.5)=66j1MSE=SSE/(nT-k)=66/(15-3)=5.5c.F=MSTR/MSE=285/5.5=51.82F.05=3.89(2degreesoffreedomnumeratorand12denominator)SinceF=51.82>F.05=3.89,werejectthenullhypothesisthatthemeansofthethreepopulationsareequal.d.SourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatments570228551.82Error66125.5Total636142.a.x=(153+169+158)/3=160k2222SSTRnxxjj=4(153-160)+4(169-160)+4(158-160)=536j1MSTR=SSTR/(k-1)=536/2=268k2b.SSE(nsjj1)=3(96.67)+3(97.33)+3(82.00)=828.00j1MSE=SSE/(nT-k)=828.00/(12-3)=92.00c.F=MSTR/MSE=268/92=2.91F.05=4.26(2degreesoffreedomnumeratorand9denominator)SinceF=2.91F.05=3.89werejectthenullhypothesisthatthemeansofthethreepopulationsareequal.d.SourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatments1020251013.36Error4581238.17Total1478144.a.SourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatments1200340080Error300605Total150063b.F.05=2.76(3degreesoffreedomnumeratorand60denominator)SinceF=80>F.05=2.76werejectthenullhypothesisthatthemeansofthe4populationsareequal.5.a.SourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatments12026020Error216723Total33674b.F.05=3.15(2numeratordegreesoffreedomand60denominator)F.05=3.07(2numeratordegreesoffreedomand120denominator)Thecriticalvalueisbetween3.07and3.15SinceF=20mustexceedthecriticalvalue,nomatterwhatitsactualvalue,werejectthenullhypothesisthatthe3populationmeansareequal.15-237
6.Manufacturer1Manufacturer2Manufacturer3SampleMean232821SampleVariance6.674.673.33x=(23+28+21)/3=24k2222SSTRnxxjj=4(23-24)+4(28-24)+4(21-24)=104j1MSTR=SSTR/(k-1)=104/2=52k2SSE(nsjj1)=3(6.67)+3(4.67)+3(3.33)=44.01j1MSE=SSE/(nT-k)=44.01/(12-3)=4.89F=MSTR/MSE=52/4.89=10.63F.05=4.26(2degreesoffreedomnumeratorand9denominator)SinceF=10.63>F.05=4.26werejectthenullhypothesisthatthemeantimeneededtomixabatchofmaterialisthesameforeachmanufacturer.7.SuperiorPeerSubordinateSampleMean5.755.55.25SampleVariance1.642.001.93x=(5.75+5.5+5.25)/3=5.5k2222SSTRnxxjj=8(5.75-5.5)+8(5.5-5.5)+8(5.25-5.5)=1j1MSTR=SSTR/(k-1)=1/2=.5k2SSE(nsjj1)=7(1.64)+7(2.00)+7(1.93)=38.99j1MSE=SSE/(nT-k)=38.99/21=1.86F=MSTR/MSE=0.5/1.86=0.27F.05=3.47(2degreesoffreedomnumeratorand21denominator)SinceF=0.27F.05=3.68,werejectthenullhypothesisthatthemeanperceptionscoreisthesameforthethreegroupsofspecialists.9.RealEstateAgentArchitectStockbrokerSampleMean67.7361.1365.80SampleVariance117.72180.10137.12x=(67.73+61.13+65.80)/3=64.89k2222SSTRnxxjj=15(67.73-64.89)+15(61.13-64.89)+15(65.80-64.89)=345.47j1MSTR=SSTR/(k-1)=345.47/2=172.74k2SSE(nsjj1)=14(117.72)+14(180.10)+14(137.12)=6089.16j1MSE=SSE/(nT-k)=6089.16/(45-3)=144.98F=MSTR/MSE=172.74/144.98=1.19F.05=3.22(2degreesoffreedomnumeratorand42denominator)Note:Table4doesnotshowavaluefor2degreesoffreedomnumeratorand42denominator.However,thevalueof3.23correspondingto2degreesoffreedomnumeratorand40denominatorcanbeusedasanapproximation.15-239
SinceF=1.19=0.05,wecannotrejectthenullhypothesisthatthatthemeanprice/earningsratioisthesameforthesethreegroupsoffirms.111111.aLSDttMSE5.52.1792.23.23/2.025nnij55xx304515LSD;significantdifference12xx30366LSD;significantdifference13xx45369LSD;significantdifference2311b.xxtMSE12/2nn1211(3045)2.1795.5nn12-153.23=-18.23to-11.7712.a.Sample1Sample2Sample3SampleMean517758SampleVariance96.6797.3481.99x=(51+77+58)/3=62k2222SSTRnxxjj=4(51-62)+4(77-62)+4(58-62)=1,448j115-240
MSTR=SSTR/(k-1)=1,448/2=724k2SSE(nsjj1)=3(96.67)+3(97.34)+3(81.99)=828j1MSE=SSE/(nT-k)=828/(12-3)=92F=MSTR/MSE=724/92=7.87F.05=4.26(2degreesoffreedomnumeratorand9denominator)SinceF=7.87>F.05=4.26,werejectthenullhypothesisthatthemeansofthethreepopulationsareequal.1111b.LSDttMSE922.2624615.34/2.025nnij44xx517726LSD;significantdifference12xx51587LSD;nosignificantdifference13xx775819LSD;significantdifference23111113.LSDttMSE4.892.2622.453.54/2.025nn1344Sincexx232123.54,theredoesnotappeartobeanysignificantdifferencebetween13themeansofpopulation1andpopulation3.14.xxLSD1223-283.54-53.54=-8.54to-1.4615.Sincethereareonly3possiblepairwisecomparisonswewillusetheBonferroniadjustment.=.05/3=.017t.017/2=t.0085whichisapproximatelyt.01=2.6021111BSD2.602MSE2.602.51.06nnij66xx54.5.51.06;nosignificantdifference12xx5611.06;nosignificantdifference1315-241
xx4.561.51.06;significantdifference2316.a.Machine1Machine2Machine3Machine4SampleMean7.19.19.911.4SampleVariance1.21.93.701.02x=(7.1+9.1+9.9+11.4)/4=9.38k22222SSTRnxxjj=6(7.1-9.38)+6(9.1-9.38)+6(9.9-9.38)+6(11.4-9.38)=57.77j1MSTR=SSTR/(k-1)=57.77/3=19.26k2SSE(nsjj1)=5(1.21)+5(.93)+5(.70)+5(1.02)=19.30j1MSE=SSE/(nT-k)=19.30/(24-4)=.97F=MSTR/MSE=19.26/.97=19.86F.05=3.10(3degreesoffreedomnumeratorand20denominator)SinceF=19.86>F.05=3.10,werejectthenullhypothesisthatthemeantimebetweenbreakdownsisthesameforthefourmachines.b.Note:t/2isbasedupon20degreesoffreedom1111LSDttMSE0.972.086.32331.19/2.025nnij66xx9.111.42.3LSD;significantdifference2417.C=6[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]=.05/6=.008and/2=.004Sincethesmallestvaluefor/2inthettableis.005,wewilluset.005=2.845asanapproximationfort.004(20degreesoffreedom)11BSD2.8450.971.6266Thus,iftheabsolutevalueofthedifferencebetweenanytwosamplemeansexceeds1.62,thereissufficientevidencetorejectthehypothesisthatthecorrespondingpopulationmeansareequal.Means(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)|Difference|22.84.30.82.31.5Significant?YesYesYesNoYesNo15-242
18.n1=12n2=8n3=10t/2isbasedupon27degreesoffreedomComparing1and211LSDt132.0522.70833.38.0251289.9514.754.8LSD;significantdifferenceComparing1and311LSD2.052132.0522.38333.171210|9.95-13.5|=3.55>LSD;significantdifferenceComparing2and311LSD2.052132.0522.92503.51810|14.75-13.5|=1.25F.05=3.68,werejectthehypothesisthatthemeansforthethreetreatmentsareequal.20.a.SourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatments148827445.50Error203015135.3Total3518171111b.LSDtMSE2.131135.314.31/2nnij66|156-142|=14<14.31;nosignificantdifference|156-134|=22>14.31;significantdifference|142-134|=8<14.31;nosignificantdifference21.SourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatments30047514.07Error160305.33Total4603422.a.H0:u1=u2=u3=u4=u5Ha:Notallthepopulationmeansareequalb.F.05=2.69(4degreesoffreedomnumeratorand30denominator)SinceF=14.07>2.69werejectH023.SourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatments1502754.80Error2501615.63Total40018F.05=3.63(2degreesoffreedomnumeratorand16denominator)SinceF=4.80>F.05=3.63,werejectthenullhypothesisthatthemeansofthethreetreatmentsareequal.15-244
24.SourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatments1200260043.99Error6004413.64Total180046F.05=3.23(2degreesoffreedomnumeratorand40denominator)F.05=3.15(2degreesoffreedomnumeratorand60denominator)ThecriticalFvalueisbetween3.15and3.23.SinceF=43.99exceedsthecriticalvalue,werejectthehypothesisthatthetreatmentmeansareequal.25.ABCSampleMean119107100SampleVariance146.8996.43173.788(119)10(107)10(100)x107.9328k2222SSTRnxxjj=8(119-107.93)+10(107-107.93)+10(100-107.93)=1617.9j1MSTR=SSTR/(k-1)=1617.9/2=809.95k2SSE(nsjj1)=7(146.86)+9(96.44)+9(173.78)=3,460j1MSE=SSE/(nT-k)=3,460/(28-3)=138.4F=MSTR/MSE=809.95/138.4=5.85F.05=3.39(2degreesoffreedomnumeratorand25denominator)SinceF=5.85>F.05=3.39,werejectthenullhypothesisthatthemeansofthethreetreatmentsareequal.26.a.SourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatments4560222809.87Error624027231.11Total1080029b.F.05=3.35(2degreesoffreedomnumeratorand27denominator)SinceF=9.87>F.05=3.35,werejectthenullhypothesisthatthemeansofthethreeassemblymethodsareequal.15-245
27.SourceofVariationSumofSquaresDegreesofFreedomMeanSquareFBetween61.64320.5517.56Error23.41201.17Total85.0523F.05=3.10(3degreesoffreedomnumeratorand20denominator)SinceF=17.56>F.05=3.10,werejectthenullhypothesisthatthemeanbreakingstrengthofthefourcablesisthesame.28.506070SampleMean332928SampleVariance3217.59.5x=(33+29+28)/3=30k2222SSTRnxxjj=5(33-30)+5(29-30)+5(28-30)=70j1MSTR=SSTR/(k-1)=70/2=35k2SSE(nsjj1)=4(32)+4(17.5)+4(9.5)=236j1MSE=SSE/(nT-k)=236/(15-3)=19.67F=MSTR/MSE=35/19.67=1.78F.05=3.89(2degreesoffreedomnumeratorand12denominator)SinceF=1.78F.05=3.55,werejectthenullhypothesisthatthemeansforthethreegroupsareequal.30.Paint1Paint2Paint3Paint4SampleMean13.3139136144SampleVariance47.5.502154.5x=(133+139+136+144)/3=138k22222SSTRnxxjj=5(133-138)+5(139-138)+5(136-138)+5(144-138)=330j1MSTR=SSTR/(k-1)=330/3=110k2SSE(nsjj1)=4(47.5)+4(50)+4(21)+4(54.5)=692j1MSE=SSE/(nT-k)=692/(20-4)=43.25F=MSTR/MSE=110/43.25=2.54F.05=3.24(3degreesoffreedomnumeratorand16denominator)SinceF=2.54F.05=3.89,werejectthenullhypothesisthatthemeanmilespergallonratingsarethesameforthethreeautomobiles.32.Note:degreesoffreedomfort/2are181111LSDttMSE5.092.1011.45432.53/2.025nnij77xx17.020.43.42.53;significantdifference12xx17.025.082.53;significantdifference13xx20.4254.62.53;significantdifference2333.Note:degreesoffreedomfort/2are121111LSDttMSE22.179.81.95/2.025nnij55xx202111.95;nosignificantdifference12xx202551.95;significantdifference13xx212541.95;significantdifference2334.TreatmentMeans:x=13.6x=11.0x=10.6 1 2 3BlockMeans:x=9x=7.67x=15.67x=18.67x=7.671 2 3 4 5 OverallMean:x=176/15=11.7315-248
Step12222SSTxijx=(10-11.73)+(9-11.73)+···+(8-11.73)=354.93ijStep22222SSTRbxx j=5[(13.6-11.73)+(11.0-11.73)+(10.6-11.73)]=26.53jStep32222SSBLkxxi =3[(9-11.73)+(7.67-11.73)+(15.67-11.73)+i22(18.67-11.73)+(7.67-11.73)]=312.32Step4SSE=SST-SSTR-SSBL=354.93-26.53-312.32=16.08SourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatments26.53213.276.60Blocks312.32478.08Error16.0882.01Total354.9314F.05=4.46(2degreesoffreedomnumeratorand8denominator)SinceF=6.60>F.05=4.46,werejectthenullhypothesisthatthemeansofthethreetreatmentsareequal.35.SourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatments310477.517.69Blocks85242.5Error3584.38Total43014F.05=3.84(4degreesoffreedomnumeratorand8denominator)SinceF=17.69>F.05=3.84,werejectthenullhypothesisthatthemeansofthetreatmentsareequal.36.SourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatments900330012.60Blocks400757.14Error5002123.81Total180031F.05=3.07(3degreesoffreedomnumeratorand21denominator)15-249
SinceF=12.60>F.05=3.07,werejectthenullhypothesisthatthemeansofthetreatmentsareequal.37.TreatmentMeans:x=56x=44 1 2BlockMeans:x=46x=49.5x=54.51 2 3 OverallMean:x=300/6=50Step12222SSTxijx=(50-50)+(42-50)+···+(46-50)=310ijStep2222SSTRbxx j=3[(56-50)+(44-50)]=216jStep32222SSBLkxxi =2[(46-50)+(49.5-50)+(54.5-50)]=73iStep4SSE=SST-SSTR-SSBL=310-216-73=21SourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatments216121620.57Blocks73236.5Error21210.5Total3105F.05=18.51(1degreeoffreedomnumeratorand2denominator)SinceF=20.57>F.05=18.51,werejectthenullhypothesisthatthemeantuneuptimesarethesameforbothanalyzers.38.SourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatments45411.257.12Blocks36312Error19121.58Total1001915-250
F.05=3.26(4degreesoffreedomnumeratorand12denominator)SinceF=7.12>F.05=3.26,werejectthenullhypothesisthatthemeantotalaudittimesforthefiveauditingproceduresareequal.39.TreatmentMeans:x=16x=15x=21 1 2 3BlockMeans:x=18.67x=19.33x=15.33x=14.33x=191 2 3 4 5 OverallMean:x=260/15=17.33Step12222SSTxijx=(16-17.33)+(16-17.33)+···+(22-17.33)=175.33ijStep22222SSTRbxx j=5[(16-17.33)+(15-17.33)+(21-17.33)]=103.33jStep32222SSBLkxxi =3[(18.67-17.33)+(19.33-17.33)+···+(19-17.33)]=64.75iStep4SSE=SST-SSTR-SSBL=175.33-103.33-64.75=7.25SourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatments100.33251.6756.78Blocks64.75416.19Error7.258.91Total175.3314F.05=4.46(2degreesoffreedomnumeratorand8denominator)SinceF=56.78>F.05=4.46,werejectthenullhypothesisthatthemeantimesforthethreesystemsareequal.15-251
40.TheMinitaboutputforthesedataisshownbelow:ANALYSISOFVARIANCEBPMSOURCEDFSSMSBlock92796311Treat3198056602ERROR277949294TOTAL3930550Individual95%CITreatMean----+---------+---------+---------+-------1178.0(-----*-----)2171.0(-----*----)3175.0(-----*----)4123.6(-----*----)----+---------+---------+---------+-------120.0140.0160.0180.0F.05=2.96(3degreesoffreedomnumeratorand27denominator)SinceF=6602/294=22.46>2.96,werejectthenullhypothesesthatthemeanheartrateforthefourmethodsareequal.41.FactorBFactorALevel1Level2Level3MeansLevel1x=150x=78x=84x=1041112131 FactorALevel2x=110x=116x=128x=1182122232 FactorBMeansx 1=130x 2=97x 3=106x=111Step12222SSTxijkx=(135-111)+(165-111)+···+(136-111)=9,028ijkStep2222SSAbrxj x=3(2)[(104-111)+(118-111)]=588i15-252
Step32222SSBarx jx=2(2)[(130-111)+(97-111)+(106-111)]=2,328jStep4222SSABrxijxi xjx=2[(150-104-130+111)+(78-104-97+111)+ij2···+(128-118-106+111)]=4,392Step5SSE=SST-SSA-SSB-SSAB=9,028-588-2,328-4,392=1,720SourceofVariationSumofSquaresDegreesofFreedomMeanSquareFFactorA58815882.05FactorB2328211644.06Interaction4392221967.66Error17206286.67Total902811F.05=5.99(1degreeoffreedomnumeratorand6denominator)F.05=5.14(2degreesoffreedomnumeratorand6denominator)SinceF=2.05F.05=5.14,Interactionissignificant.42.SourceofVariationSumofSquaresDegreesofFreedomMeanSquareFFactorA2638.673.72FactorB23211.504.94Interaction175629.1712.52Error56242.33Total28035F.05=3.01(3degreesoffreedomnumeratorand24denominator)SinceF=3.72>F.05=3.01,FactorAissignificant.F.05=3.40(2degreesoffreedomnumeratorand24denominator)SinceF=4.94>F.05=3.40,FactorBissignificant.F.05=2.51(6degreesoffreedomnumeratorand24denominator)SinceF=12.52>F.05=2.51,Interactionissignificant15-253
43.FactorBFactorBSmallLargeMeansAx=10x=10x=1011121 FactorABx=18x=28x=2321222 Cx=14x=16x=1531323 FactorBMeansx 1=14x 2=18x=16Step122222SSTxijkx=(8-16)+(12-16)+(12-16)+···+(14-16)=544ijkStep22222SSAbrxi x=2(2)[(10-16)+(23-16)+(15-16)]=344iStep3222SSBarx jx=3(2)[(14-16)+(18-16)]=48jStep4222SSABrxijxi xjx=2[(10-10-14+16)+···+(16-15-18+16)]=56ijStep5SSE=SST-SSA-SSB-SSAB=544-344-48-56=96SourceofVariationSumofSquaresDegreesofFreedomMeanSquareFFactorA3442172172/16=10.75FactorB4814848/16=3.00Interaction5622828/16=1.75Error96616Total54411F.05=5.14(2degreesoffreedomnumeratorand6denominator)15-254
SinceF=10.75>F.05=5.14,FactorAissignificant,thereisadifferenceduetothetypeofadvertisementdesign.F.05=5.99(1degreeoffreedomnumeratorand6denominator)SinceF=3