- 1.04 MB
- 2022-04-22 11:28:04 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'课后答案网您最真诚的朋友www.hackshp.cn网团队竭诚为学生服务,免费提供各门课后答案,不用积分,甚至不用注册,旨在为广大学生提供自主学习的平台!课后答案网:www.hackshp.cn视频教程网:www.efanjy.comPPT课件网:www.ppthouse.com课后答案网www.hackshp.cn
RealAnalysisbyH.L.RoydenContents1SetTheorykhdaw.com11.1Introduction............................................11.2Functions.............................................11.3Unions,intersectionsandcomplements.............................11.4Algebrasofsets..........................................21.5Theaxiomofchoiceandinnitedirectproducts.......................21.6Countablesets..........................................31.7Relationsandequivalences....................................31.8Partialorderingsandthemaximalprinciple..........................31.9Wellorderingandthecountableordinals............................32TheRealNumberSystem52.1Axiomsfortherealnumbers...................................52.2Thenaturalandrationalnumbersassubsetsof课后答案网R.......................52.3Theextendedrealnumbers...................................52.4Sequencesofrealnumbers....................................52.5Openandclosedsetsofrealnumbers..............................72.6Continuousfunctions.......................................92.7Borelsets.............................................www.hackshp.cn133LebesgueMeasure133.1Introduction............................................133.2Outermeasure..........................................143.3MeasurablesetsandLebesguemeasure.............................143.4Anonmeasurableset.......................................153.5Measurablefunctions.......................................153.6Littlewood"sthreeprinciples...................................174TheLebesgueIntegral184.1TheRiemannintegral......................................184.2TheLebesgueintegralofaboundedfunctionoverasetofnitemeasure..........184.3Theintegralofanonnegativefunction.............................194.4ThegeneralLebesgueintegral..................................194.5Convergenceinmeasure.....................................khdaw.com21若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
5DierentiationandIntegration225.1Dierentiationofmonotonefunctions..............................225.2Functionsofboundedvariation.................................235.3Dierentiationofanintegral...................................245.4Absolutecontinuity........................................245.5Convexfunctions.........................................266TheClassicalBanachSpaces276.1TheLpspaces...........................................276.2TheMinkowskiandH•olderinequalities.............................276.3Convergenceandcompleteness.................................286.4ApproximationinLp.......................................296.5BoundedlinearfunctionalsontheLpspaces..........................307MetricSpaceskhdaw.com307.1Introduction............................................307.2Openandclosedsets.......................................317.3Continuousfunctionsandhomeomorphisms..........................317.4Convergenceandcompleteness.................................327.5Uniformcontinuityanduniformity...............................337.6Subspaces.............................................357.7Compactmetricspaces......................................357.8Bairecategory..........................................367.9AbsoluteG"s...........................................397.10TheAscoli-ArzelaTheorem...................................408TopologicalSpaces418.1Fundamentalnotions.......................................课后答案网418.2Basesandcountability......................................438.3Theseparationaxiomsandcontinuousreal-valuedfunctions.................448.4Connectedness..........................................478.5Productsanddirectunionsoftopologicalspaces.......................488.6Topologicalanduniformproperties...............................www.hackshp.cn508.7Nets................................................509CompactandLocallyCompactSpaces519.1Compactspaces..........................................519.2CountablecompactnessandtheBolzano-Weierstrassproperty................529.3Productsofcompactspaces...................................539.4Locallycompactspaces.....................................539.5-compactspaces.........................................569.6Paracompactspaces.......................................569.7Manifolds.............................................579.8TheStone-Cechcompactication................................579.9TheStone-WeierstrassTheorem.................................5810BanachSpaces60iikhdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
10.1Introduction............................................6010.2Linearoperators.........................................6110.3LinearfunctionalsandtheHahn-BanachTheorem......................6210.4TheClosedGraphTheorem...................................6310.5Topologicalvectorspaces....................................6410.6Weaktopologies.........................................6610.7Convexity.............................................6910.8Hilbertspace...........................................7111MeasureandIntegration7311.1Measurespaces..........................................7311.2Measurablefunctions.......................................7611.3Integration............................................7711.4Generalconvergencetheorems..................................khdaw.com7911.5Signedmeasures.........................................7911.6TheRadon-NikodymTheorem.................................8011.7TheLpspaces...........................................8212MeasureandOuterMeasure8312.1Outermeasureandmeasurability................................8312.2Theextensiontheorem......................................8412.3TheLebesgue-Stieltjesintegral.................................8512.4Productmeasures.........................................8612.5Integraloperators.........................................8912.6Innermeasure...........................................8912.7Extensionbysetsofmeasurezero................................9112.8Caratheodoryoutermeasure...................................课后答案网9112.9Hausdormeasures........................................9113MeasureandTopology9213.1BairesetsandBorelsets.....................................92www.hackshp.cniiikhdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
1SetTheory1.1Introduction1.Iffx:x6=xg6=;,thenthereexistsxsuchthatx6=x.Contradiction.2.;fgreen-eyedlionsg.3.X(YZ)=fhx;hy;ziig,(XY)Z=fhhx;yi;zig;hx;hy;zii$hhx;yi;zi$hx;y;zi.4.SupposeP(1)istrueandP(n))P(n+1)foralln.Supposethatfn2N:P(n)isfalseg6=;.Thenithasasmallestelementm.Inparticular,m>1andP(m)isfalse.ButP(1))P(2)))P(m).Contradiction.5.GivenanonemptysubsetSofnaturalnumbers,letP(n)bethepropositionthatifthereexistsm2Swithmn,thenShasasmallestelement.P(1)istruesince1willthenbethesmallestelementofS.SupposethatP(n)istrueandthatthereexistsm2Swithmn+1.Ifmn,thenShasasmallestelementbytheinductionhypothesis.Ifm=n+1,theneithermisthesmallestelementofSorthereexistsm02Swithm0