• 2.39 MB
  • 2022-04-22 11:29:37 发布

数学分析 第三版 下册 (欧阳光中 朱学研 著) 高等教育出版社 课后答案

  • 144页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'课后答案网www.khdaw.com1n?êØ1Ü©ê?êÚ2ÂÈ©1ÊÙê?ê§1.ý£µþ4Úe41.y²µ(1)lim(xn+yn)6limxn+limynn→∞n→∞n→∞(2)lim(xn+yn)>limxn+limynn→∞n→∞n→∞y²µ(1)limxn,limynþkê§K{xn},{yn}þk..n→∞n→∞-αk=sup{xn},βk=sup{yn}"u´§n>k§kxn+yn6αk+βkn>kn>klsup{xn+yn}6αk+βkn>klim(xn+yn)=limsup{xn+yn}6limαk+limβk=limxn+limynn→∞k→∞n>kk→∞k→∞n→∞n→∞5µelimxn,limyn+∞.~Xµlimxn=+∞§¦"Xªm>{$k¿Â§KlimynØn→∞n→∞n→∞n→∞−∞.ù{xn}Ãþ.§{xn+yn}½Ãþ.§þã"Xªw,¤á¶elimxn=−∞§¦"Xªn→∞m>{$k¿Â§KlimynØ+∞.u´{yn}þk.§llim(xn+yn)=−∞§þã"Xªn→∞n→∞w,¤á.(2)Ïxn>inf{xn},yn>inf{yn}§xn+yn>inf{xn}+inf{yn}âe(.e.¥§Kinf{xn+yn}>inf{xn}+inf{yn}§linf{xn+yn}>inf{xn}+inf{yn}n>kn>kn>kKliminf{xn+yn}>liminf{xn}+inf{yn}=liminf{xn}+liminf{yn}k→∞n>kk→∞n>kn>kk→∞n>kk→∞n>k=lim(xn+yn)>limxn+limyn.n→∞n→∞n→∞2.xn>0,yn>0§y²µ(1)limxnyn6limxn·limynn→∞n→∞n→∞(2)limxnyn>limxn·limynn→∞n→∞n→∞y²µ(1)Ï06xn6sup{xn},06yn6sup{yn}§K06xnyn6sup{xn}·sup{yn}âþ(.´þ.¥§Kk06sup{xn·yn}6sup{xn}·sup{yn}l06sup{xn·yn}6sup{xn}·sup{yn}n>kn>kn>kKlimsup{xn·yn}6limsup{xn}·sup{yn}=limsup{xn}·limsup{yn}k→∞n>kk→∞n>kn>kk→∞n>kk→∞n>k=limxnyn6limxn·limyn.n→∞n→∞n→∞(2)Ïxn>inf{xn}>0,yn>inf{yn}>0§Kxnyn>inf{xn}·inf{yn}>0âe(.´e.¥§Kkinf{xn·yn}>inf{xn}·inf{yn}>0linf{xn·yn}>inf{xn}·inf{yn}>0n>kn>kn>kKliminf{xn·yn}>liminf{xn}·inf{yn}=liminf{xn}·liminf{yn}k→∞n>kk→∞n>kn>kk→∞n>kk→∞n>k=limxnyn>limxn·limynn→∞n→∞n→∞3.elimxn3§Ké?Ûê{yn}¤áµn→∞(1)lim(xn+yn)=limxn+limynn→∞n→∞n→∞ 课后答案网www.khdaw.com143(2)lim(xn·yn)=limxn·limyn§elimxn>0n→∞n→∞n→∞n→∞y²µlimxn=αn→∞elimyn=+∞(½−∞)§K(1)w,¤á.Ïα>0§K(2)w,¤á.n→∞Ølimyn=βkên→∞Ïlimyn=β§3{yn}f{yn}§¦limyn=ββ¤kÂñf4¥ö.kkn→∞k→∞qlimxn=α§Klimxn=α§lim(xn+yn)=α+β,lim(xn·yn)=αβkkkkkn→∞k→∞k→∞k→∞eyα+β{xn+yn}Âñf4¥ö(^y{)b{xn+yn}Âñf{xn+yn}§¦limxn+yn=γ>α+βk0k0k0→∞k0k0Klimyn=limxn+yn−limxn=γ−α>βk0→∞k0k0→∞k0k0k0→∞k0ùβ{yn}¤kÂñf4¥gñ.u´α+βÒ´{xn+yn}¤kÂñf4.Óny§α>0§α+β{xn+yn}Âñf4¥.llim(xn+yn)=α+β=limxn+limynn→∞n→∞n→∞lim(xn·yn)=αβ=limxn·limyn§elimxn>0n→∞n→∞n→∞n→∞4.¦eêþ4e4µ1(1)an=(n=1,2,···)2−n+(−1)n!1n(2)an=(−1)1+(n=1,2,···)nn(−1)(3)an=(n=1,2···)nnπ(4)an=sin(n=1,2,···)5)µ(1)§küä4fêµa2k→1,a2k+1→−1(k→∞)(k=1,2,3···)u´liman=1,liman=−1.n→∞n→∞(2)§küä4fêµa2k→1,a2k+1→−1(k→∞)(k=1,2,3···)u´liman=1,liman=−1.n→∞n→∞(3)Ïliman=0§liman=0,liman=0.n→∞n→∞n→∞2nπ2(4)−sinπ6sin6sinπ5552n=10k+2(k=1,2,···)§a10k+2→sinπ(k→∞)52n=10k−2(k=1,2,···)§a10k−2→−sinπ(k→∞)522u´liman=sinπ,liman=−sinπ.n→∞5n→∞5pp5.elimn|ann|=α§Klim|ak|=α0+nn→∞n→∞d?k0´?¿½ê.y²k0111n(1)Ï|ak|n=|ak|k0+n|ak|k0+n0+n0+n0+npk0k011nk0+n|ak0+nk0+nqlimk|=α§α>0§limln|ak|=0§lim|ak|=10+n0+n0+nn→∞pn→∞nn→∞d12K(1)§limn|ak|6α0+nn→∞p1nn(2)Ïlim|an|=α§3f{an}§¦lim|an|k=α§kkn→∞k→∞k0111nk−k0α>0§klim|an|nk−k0=lim|an|nk·lim|an|nk=αkkkk→∞k→∞k→∞ 课后答案网www.khdaw.compllimn|ak|>α0+nn→∞nÜ(1)(2)§α>0§(ؤá.ppk0+n1n(3)eα=0§Kw,klimn|ank0+nn|=0§llim|ak|=lim|ak|=00+n0+nn→∞n→∞n→∞u´d(Ø(.6.eliman=aN§kanN§kan1(n=1,2,···)n→∞ 课后答案网www.khdaw.com145§2.?êÂñ59ÙÄ51.?Øe?êñÑ5µ111(1)++···++···1·66·11(5n−4)(5n+1)23n(2)1+++···++···352n−1!!!111111(3)++++···+++···2322322n3n111(4)++···++···1·44·7(3n−2)(3n+1)πππ(5)cos+cos+cos+···345)µ"#!11111111111(1)ÏSn=++···+=1−+−+···+−=1−1·66·11(5n−4)(5n+1)566115n−45n+155n+1!111KlimSn=lim1−=n→∞n→∞55n+15111u´â½Â§?ê++···++···Âñ.1·66·11(5n−4)(5n+1)n1(2)Ïlim=6=0§?êuÑ.n→∞2n−12X∞1X∞1(3)duþÂñAÛ?ê§2n3nn=1n=1!X∞11X∞1X∞113dê?ê52§+=+=1+=2n3n2n2n22n=1n=1n=1"#!11111111111(4)ÏSn=++···+=1−+−+···+−=1−1·44·7(3n−2)(3n+1)34473n−23n+133n+1!111KlimSn=lim1−=n→∞n→∞33n+13111u´â½Â§?ê++···++···Âñ.1·44·7(3n−2)(3n+1)π(5)Ïlimcos=16=0§?êuÑ.n→∞n+22.|^ÜÂñnOe?ê´Âñ´uÑ.2n(1)a0+a1q+a2q+···+anq+···,|q|<1,|an|6A,(n=0,1,2,···)11111(2)1+−++−+···23456y²µ(1)Ïé?Ûg,êp§|Sn+p−Sn|=an+an+1qn+1+···+an+p−1qn+p−16a|qn|+aqn+1+···+aqn+p−16nqnn+1n+p−1p1−|q|nA|q|1−|q|n|q|pq|q|<1§K0<1−|q|<1§u´|Sn+p−Sn|0§N=ln/ln|q|§n>N§é?Ûp=1,2,3,···§Ao¤á|Sn+p−Sn|<ε2nUÂñn§?êa0+a1q+a2q+···+anq+···Âñ. 课后答案网www.khdaw.com!X∞111(2)d?ê+−3n+13n+23n+3n=010<ε0<§ØØnõ§e-p=n§Kk611111111|Sn+p−Sn|=|S2n−Sn|=+−+···++−>+−3n+13n+23n+36n−26n−16n3n+33n+3!1111111111111+···++−=++···+>++···+=>ε03n+36n6n6n3n+1n+22n32n2n2n6|{z}!nX∞111Ïd?ê+−uÑ.3n+13n+23n+3n=0X∞X∞3.k?êan(=zan>0)§Áy²eéÙ)Ò¤|¤?êÂñ§Kan½Âñ.n=1n=1X∞X∞y²µanÜ©Úê{Sn}§)Ò¤|¤?êAnn=1n=1X∞Ù¥An=ai+ai+···+ai§w,AnE?ê.n−1+1n−1+2nn=100ÙÜ©Úê{Sn}§Ù¥Sn=(a1+a2+···+ai)+(ai+···+ai)+···+(ai+···+ai)11+12n−1+1n0w,Sn>SnX∞000qAnÂñ§dĽn§{Sn}kþ.§=3M>0§¦Sn6M§lSn6Sn6M§`n=1²{Sn}kþ.X∞KdĽn§anÂñ.n=14.(½¦e?êÂñx.X∞1(1)(1+x)nn=0X∞n(2)(lnx)n=1)µ11(1)d?ê´ú""?ê§<1?êÂñ1+x1+xlÂñx<−2½x>0.(2)d?ê´ú"lnx"?ê§|lnx|<1?êÂñ1lÂñ1)1+ann=1X∞1(6)√n·nnn=1!nX∞1(7)2n+1n=1X∞1(8)[ln(n+1)]nn=1X∞2+(−1)n(9)2nn=1X∞πn(10)2sin3nn=1X∞nn(11)n!n=1X∞xn(12),(x>0)(1+x)(1+x2)···(1+xn)n=1!nX∞b(13)§Ù¥an→a,an,b,aê§a6=0ann=1)µ1√X∞n2+nn1(1)Ïlim=lim√=1§?ê´uÑn→∞1n→∞n2+nnn=1nX∞1Kd"O{§?ê√½uÑ.n2+nn=11un+1(2n+1)22n+12n−11(2)Ïlim=lim=lim=<1n→∞unn→∞1n→∞4(2n+1)4(2n−1)22n−1X∞1KdKO{§?êÂñ.(2n−1)·22n−1n=1√∞√n−n1Xn−n(3)Ïlim=90§?êuÑ.n→∞2n−122n−1n=1ππX∞πX∞π(4)Ïsin6§Âñ§?êsinÂñ.2n2n2n2nn=1n=1 课后答案网www.khdaw.com!n!n11X∞1X∞1(5)Ï6§Âñ§?êÂñ.1+anaa1+ann=1n=1!1nxlimxlnx11(6)Ïlimxx=limelnx=limexlnx=ex→+0=1§lim√=lim=1x→+0x→+0x→+0n→∞nnn→∞n1√∞n·nn1X1qlim=lim√=1§?ê´uÑn→∞1n→∞nnnn=1nX∞1Kd"O{§?ê√uÑ.n·nnn=1vu!n!nu11X∞1(7)Ïlimtn=lim=0<1§?êÂñ.n→∞2n+1n→∞2n+12n+1n=1s11X∞1n(8)Ïlim=lim=0<1§?êÂñ.n→∞[ln(n+1)]nn→∞ln(n+1)[ln(n+1)]nn=12+(−1)n3X∞3(9)Ï6?êÂñ2n2n2nn=1X∞2+(−1)nKâ"O{§?êÂñ.2nn=1!n!nπ2X∞2n(10)Ï0<2sin6π?êÂñ3n33n=1X∞πnKâ"O{§?ê2sinÂñ.3nn=1n+1(n+1)!nX∞nun+1(n+1)!1n(11)Ïlim=lim=lim1+=e>1§?êuÑ.nn→∞unn→∞nn→∞nn!n=1n!n+12nn+10<1,x>1½x=0un+1x/[(1+x)(1+x)···(1+x)(1+x)]x1(12)Ïlim=lim=lim=<1,x=1n→∞unn→∞xn/[(1+x)(1+x2)···(1+xn)]n→∞1+xn+12x<1,01=b>a§?êuѶaann=1!n!nbX∞1X∞1X∞1=1=b=a§I?Úä"~Xµ?ê√=uѶ?ê√=annnnn2n=1n=1n=1X∞1Âñ.n2n=1X∞X∞22.e?êunÂñ§y²unÂñ§Ù_XÛºn=1n=1X∞y²µÏunÂñ§Klimun=0n→∞n=12ε0=1§K3êN§n>N§k|un|<ε0=1=06un<1§u´06unN)§ 课后答案网www.khdaw.com149X∞2ld"O{§unÂñ.n=1X∞1X∞1X∞1X∞1Ù_Øý.~µÂñ§uѶÂñ§Âñ.n2nn4n2n=1n=1n=1n=1X∞X∞unX∞X∞X∞X∞3.unÚvnü?ê§lim=0§y²µvnÂñ§unÂñ.qevnuѧunXn→∞vnn=1n=1n=1n=1n=1n=1unX∞X∞Ûºelim=∞§@ounÚvnñÑ5mko"Xºn→∞vnn=1n=1y²µunX∞X∞(1)Ïlim=0§unÚvnü?ên→∞vnn=1n=1ununε0=1§K3êN§n>N§k<ε0=1=06<1§u´unN)vnvnX∞X∞qvnÂñ§Kd"O{§unÂñn=1n=1X∞X∞evnuѧKunUÂñ§UuÑn=1n=11X∞1X∞1n2~µuѧlim=0§Âñ¶nn→∞1n2n=1n=1n1X∞1X∞1√uѧlimn=0§uÑ.nn→∞1nn=1√n=1nunX∞X∞(2)Ïlim=∞§unÚvnü?ên→∞vnn=1n=1unG0=1§K3êN§n>N§k>G0=1§u´un>vn(n>N)vnX∞X∞X∞X∞X∞X∞eunÂñ§Kd"O{§vnÂñ¶evnuѧKunuѶeunuѧKvnñn=1n=1n=1n=1n=1n=1Ñ5ؽ.X∞X∞X∞X∞4.eü?êunÚvnuѧmax(un,vn)§min(un,vn)ü?êXÛºn=1n=1n=1n=1X∞X∞)µÏü?êunÚvnuѧun6max(un,vn)n=1n=1X∞Kd"O{§max(un,vn)uÑ.n=1X∞éumin(un,vn)ñÑ5ؽ.n=1!X∞1X∞1X∞11X∞1~µ§Ñuѧmin,=uѶn2nn2n2nn=1n=1n=1n=1!X∞1+(−1)nX∞1−(−1)nX∞1+(−1)n1−(−1)n§Ñuѧmin,=0+0+···+0+···%Âñ.2222n=1n=1n=15.|^?êÂñ7^y²µnn(1)lim=0n→∞(n!)2(2n)!(2)lim=0(a>1)n→∞an!y²µ 课后答案网www.khdaw.comX∞X∞nn(1)un=(n!)2n=1n=1n+1(n+1)!nun+1[(n+1)!]211Ïlim=lim=lim1+=0<1nn→∞unn→∞nn→∞n+1n(n!)2X∞nnnnKâKO{4/ª§Âñ§ld?êÂñ7^§lim=0(n!)2n→∞(n!)2n=1X∞X∞(2n)!(2)un=an!n=1n=1[2(n+1)]!2un+1a(n+1)!(2n+2)(2n+1)4(n+1)Ï0<==<(a>1)un2(n−1)!n+1n(2n)!aaan!k2n4(n+1)un+1lim=0(a>1,k∈N)§u´lim=0§llim=0n→∞ann→∞an+1n→∞unX∞(2n)!(2n)!KâKO{4/ª§Âñ§ld?êÂñ7^§lim=0an!n→∞an!n=16.?Øe?êÂñ5µX∞1(1)n·(lnn)pn=1X∞1(2)n·lnn·lnlnnn=1X∞1(3)n·(lnn)1+σlnlnnn=1X∞1(4)n·(lnn)p(lnlnn)qn=1)µ1(1)duØØpÛê§x¿©§¼êf(x)=Ñ´K4~§x(lnx)pZndx11−p(ln2),p>1limp=p−1n→∞2x(lnx)∞,p61p>1§?êÂñ¶p61§?êuÑ.1(2)f(x)=§f(x)x>3´4~¼ê.ZxlnxlnlnxndxX∞1lim=lim(lnlnlnn−lnlnln2)=∞§K?êuÑ.n→∞3xlnxlnlnxn→∞n·lnn·lnlnnn=1Z!ndx1111(3)Ïlim=lim−=(σ>0)n→∞2x(lnx)1+σn→∞σ(ln2)σ(lnn)σσ(ln2)σX∞1?êÂñ.n(lnn)1+σn=211X∞1q6§Kd"O{§?êÂñ.n·(lnn)1+σlnlnnn(lnn)1+σn·(lnn)1+σlnlnnn=11(4)-f(x)=§n63´4~¼ê.x(lnx)p(lnlnx)qZZ+∞dx+∞dtqÏ=3x(lnx)p(lnlnx)qlnln3e(p−1)ttqé?Ûq§p−1>0§È©Âñ§p−1<0§È©uѶp=1§eq>1§È©Âñ§eq61§È©uÑ. 课后答案网www.khdaw.com151dÜÈ©O{§?êñÑ5È©ñÑ5^K?êp>1Âñ¶p<1uѶp=1§q>1?êÂñ¶q61?êuÑ.X∞7.eun´Âñ?꧿ê{un}üNeü§y²limnun=0.n→∞n=1X∞X∞Xny²µÏunÂñ§S=un§Sn=ukn=1n=1k=1KlimSn=S=limS2n§u´lim(S2n−Sn)=0n→∞n→∞n→∞q{un}üNeü§KS2n−Sn=un+1+un+2+···+u2n>u2n+u2n+···+u2n=nu2nqun>0§K06nu2n6S2n−Sn§u´limnu2n=0§llim(2n)u2n=0n→∞n→∞2n+1qÏu2n+16u2n,un>0§K06(2n+1)u2n+16(2n+1)u2n=(2nu2n)→0(n→∞)2nu´lim(2n+1)u2n+1=0§llimnun=0n→∞n→∞8.y²KO{9Ù4/ª.y²µ(1)KO{µun+1uN+2uN+3uN+k+1Ïn>N§k6q<1§K6q,uN+26quN+1;6q,uN+36quN+2;···;6unuN+1uN+2uN+kKq,uN+k+16quN+k6···6quN+1X∞X∞kkÏq<1§KqÂñ§u´dÂñ?ê51§quN+1Âñ§ld"O{§k=1k=1X∞uN+kÂñk=2X∞2dÂñ?ê55§Vku1,u2,···,uN+1#?êunÂñ.n=1un+1uN+1en>N§>1§K>1,uN+1>uN§ù`²{uN}´üNOunuNX∞qun>0§Kun90(n→∞)§u´unuÑ.n=1(2)KO{4/ªµun(i)elim=¯r<1n→∞un−1d¢êÈ573ε0>0(§¦r<)r¯+ε0<1un+1dþ4½n1y²¥§kkur¯+ε0§u´½3êN(unun+1k¥eIN=)§¦n>N§k1n→∞un−1d¢êÈ573ε0>0(§¦r>r¯)−ε0>1un+1dþ4½n2y²¥§kkur+ε0§u´½3êN(unun+1k¥eIN=)§¦n>N§k>r+ε0>1§dKO{un?êuÑ.X∞X∞1un+1un+1X∞X∞1(iii)Þ~`²µun=§lim=lim=1§un=uѶnn→∞unn→∞unnn=1n=1n=1n=1X∞X∞1un+1un+1X∞X∞1un=§lim=lim=1§un=Âñ.n2n→∞unn→∞unn2n=1n=1n=1n=1 课后答案网www.khdaw.com§4.?¿?ê1.?Øe?êÂñ5£)^Âñ½ýéÂñ¤µ131313(1)−+−+−+···21022103231051111(2)1−+−+−···23!45!X∞lnnn−1(3)(−1)nn=2X∞n3n−1(4)(−1)2nn=1X∞nn+1(5)(−1)(n+1)2n=1X∞xn(6)(−1)sin(x6=0)nn=1111111(7)√−√+√−√+···+√−√+···2−12+13−13+1n−1n+1)µX∞1X∞1X∞3(1)ÏÂñ§Âñ§KÂñ2n102n−1102n−1n=1n=1n=1X∞1X∞1131313u´+Âñ§=++++++···Âñ§l?êýéÂñ.2n102n−12102210323105n=1n=1!X∞1X∞1(2)ÏuѧK−uÑn2nn=1n=1X∞1qé?ê(2n−1)!n=11X∞(2n+1)!11Ïlim=lim=0<1§KdKO{4/ª§?êÂñ1n→∞n→∞2n(2n+1)(2n1)!(2n−1)!n=1u´?êuÑ.X∞lnnX∞lnnn−1(3)Ï(−1)=nnn=2n=2lnnX∞1X∞lnnnqlim=limlnn=+∞uѧKd"O{§uÑ1n→∞n→∞nnnn=1!n=20lnxlnx1−lnxlnx0qf(x)=(x>3)§Kf(x)==<0(x>3)§u´f(x)=üNeü§lxxx2x()lnn3n>3üNeünlnx1lnnqlim=lim=0§Klim=0x→+∞xx→+∞xn→∞nX∞lnnn−1u´â4ÙZ[½n§(−1)^Âñ.nn=2X∞n3X∞n3n−1(4)(−1)=2n2nn=1n=13!3(n+1)1n+11X∞n32n+1Ïlim=lim=<1§KâKO{§Âñn→∞n3n→∞2n22n2nn=1X∞n3n−1l(−1)ýéÂñ.2nn=1 课后答案网www.khdaw.com153X∞nX∞nn+1(5)(−1)=(n+1)2(n+1)2n=1n=1n2X∞X∞(n+1)2n1nÏlim=lim=1uѧKuÑn→∞1n→∞(n+1)2n(n+1)2nn=1n=1x1−x0f(x)=(x>2)§Kf(x)=<0(x>2)§u´x>2§f(x)üNeü§l((x)+1)2(x+1)3nn>2üNeü(n+1)2nX∞nn+1qlim=0§Kâ4ÙZ[½n§(−1)Âñn→∞(n+1)2(n+1)2n=1X∞nn+1l(−1)^Âñ.(n+1)2n=1X∞xX∞xn(6)(−1)sin=sinnnn=1n=1sinxX∞1X∞xnÏ→|x|6=0(n→∞)uѧKsinuÑ1nnnn=1n=1xxπ+qé∀x∈R,x6=0§Ï→0(n→∞)§K3N∈Z§n>N§k0<<§u´n>nn2xxX∞xnN§sinxkÓÎÒsinnO~0§Kd4ÙZ[O{§(−1)sinÂnnnn=1ñX∞xnl(−1)sin^Âñ.nn=1!nX+111nX+12Xn1(7)Ü©Úê{Sn}§KS2n=√−√==2k−1k+1k−1kk=2k=2k=1u´limS2n=+∞§Kd?ê)Òuѧl?êuÑ.n→∞2.y²µe?ê)Ò¤¤?êÂñ§¿3Ó)ÒSÎÒÓ§@"K)Ò§d?√X∞(−1)[n]ê½Âñ¶¿d?êÂñ5.nn=1y²:X∞0(1)®#?êun=(u1+···+un1)+(un1+1+···+un2)+···+(unk−1+1+···+unk)+···Âñn=13Ó)ÒSÎÒÓXnXn00000uk=Sn,uk=Sn§KS1=Sn1,S2=Sn2,···,Sk=Snk,···k=1k=1X∞?êeInlnk−1nk§unÜ©ÚüNCz§=n=100un,···,unþ§kSk−1=SnSn>Sn=Skk−1+1kk−1kX∞X∞0Âñ§=limS0000®unk=limSk−1=S§KlimSn=S§u´unÂñ.k→∞k→∞n→∞n=1n=1√X∞(−1)[n](2)Änn=1111X∞222kn=k,k+1,···,k+2k(k=1,2,···)§ÃanÓÒ.PAk=++···+§(−1)Ak´k2k2+1k2+2kk=1?êZk2+2kZ(k+1)222dx111dxk+2k(k+1)Ï6++···+6=ln6Ak6ln§lk2−1xk2k2+1k2+2kk2xk2−1k2k→∞§Ak→0 课后答案网www.khdaw.comk2+2k(k+2)2k2+kX∞kqAk−Ak+1>ln−ln=ln>0§Kd4ÙZ[O{(−1)AkÂk2−1(k+1)2k2+k−2k=1ñ§l?êÂñ.3.?Øe?ê´ÄýéÂñ½^ÂñµX∞(−1)n(1)n+xn=1X∞sin(2nx)(2)n!n=1X∞sinnx(3),(00§üN~§lim=0§Kd4ÙZ[½n§Âñn+xn→∞n+xn+xn=1+x<0ØKê§Ïx½ê§Kn¿©§=3N∈Z§n>N§kn+x>X∞(−1)n11X∞(−1)n0§u´´?ê§düN~9lim=0§KÂñ§ln+xn+xn→∞n+xn+xn=N+1n=N+1X∞(−1)nÂñn+xn=1KxØKê§d?ê^Âñ.sin(2nx)111X∞1(n+1)!(2)Ï6§lim=lim=0<1§KdKO{§Âñ1n!n!n→∞n→∞n+1n!n!n=1X∞sin(2nx)X∞sin(2nx)2â"O{§Âñ§lýéÂñ.n!n!n=1n=1()Xncosx−cos2n+1x11(3)Ïsinkx=226êüNªu02sinxsinxnk=122X∞sinnxKd)á4O{§Âñ.nn=1()sinnxsin2nx1cos2nxXnsinx−sin(2n+1)x11q>=−cos2kx=69êünn2n2n2sinx|sinx|2nk=1Nªu0X∞cos2nxKd)á4O{§Âñ.nn=1!X∞1X∞1X∞1cos2nxX∞sinnxquѧKuѧu´−uѧluÑn2n2n2nnn=1n=1n=1n=1X∞sinnxK?ê(01§Ï6p>1Âñ§K?ê(0=+dfây²Âñ.npnp2np2np(2n)pn=1X∞cos2nxX∞cos2nxp−1K·2Âñ§=Âñ(2n)p2npn=1n=1!X∞1X∞1X∞1cos2nxq0x0Âñ.nx0nxn=1n=11!x−x0!x−x0(n+1)x−x0n111y²µÏx>x0§K==1−<1§K<1n+1n+1(n+1)x−x0nx−x0nx−x0161nx−x0()11u´êüNk.§61nx−x0nx−x0X∞anX∞anq?êÂñ§KdCO{§Âñ.nx0nxn=1n=1X∞X∞6.{nan}Âñ§n(an−an−1)Âñ§KanÂñ.n=1n=1y²µÏ{nan}Âñ§Ù4a()X∞Xnqn(an−an−1)Âñ§KÙÜ©Úêk(ak−ak−1)k4§Ù4Sn=1k=1XnnX−1qk(ak−ak−1)=(a1−a0)+2(a2−a1)+···+n(an−an−1)=nan−akk=1k=0nX−1XnnX−1Xn=ak=nan−k(ak−ak−1)§Klimak=limnan−limk(ak−ak−1)=a−Sn→∞n→∞n→∞k=0k=1k=0k=1X∞X∞X∞u´anÂñ§lan=an−a0Âñ.n=0n=1n=0 课后答案网www.khdaw.comX∞X∞X∞7.e(av−av−1)ýéÂñ§bvÂñ§@"avbvÂñ.v=1v=1v=1nX+mn+my²µ-Bn=bvv=n+1nX+pXp−1n+pn+idAbelC§avbv=an+pBn+Bn(an+i−an+i+1)v=n+1i=1nX+pXp−1avbv6|an+p|Bn+p+Bn+i|annn+i−an+i+1|v=n+1i=1"#nX+pXp−1-Hp=maxBn+1,Bn+2,···,Bn+p§Kkavbv6Hp|an+p|+|an+i−an+i+1|nnnnnv=n+1i=1X∞X∞X∞Ï|av−av−1|Âñ§(av−av−1)Âñ(av−av−1)=−a0+an§liman3n→∞v=1v=1v=1Ï3M>0§¦én§kXp−1|an+i−an+i+1|+|an+p|0,∃N∈Z§n>N§ép∈Z§kv=1εpHn<(5)MnX+pX∞d(??),(??)§n>N§kavbv<ε§ùL²?êavbvÂñv=n+1v=18.|^ÜÂñny²?ê4ÙZ[½n.y²µé?Ûg,êp§k|Sn+p−Sn|=(−1)n+2un+1+(−1)n+3un+2+···+(−1)n+p+1un+p=(−1)n+2(un+1−un+2+···+(−1)p−1un+p)=up−1un+1−un+2+···+(−1)n+ppóê§(un+1−un+2)+···+(un+p−1−un+p)>0pÛê§(un+1−un+2)+···+(un+p−2−un+p−1)+un+p>0oup−1un+p=up−1un+pn+1−un+2+···+(−1)n+1−un+2+···+(−1)qpóê§un+1−(un+2−un+3)−···−(un+p−2−un+p−1)−un+p6un+1pÛê§un+1−(un+2−un+3)−···−(un+p−1−un+p)6un+1p−1oun+1−un+2+···+(−1)un+p6un+1é?¿ε>0§Ïlimun=0§Klimun+1=0n→∞n→∞+u´73N∈Z§n>N§k|un+1−0|<ε§Kun+1<εpddn>N§é?Ûg,êpÑk|Sn+p−Sn|=un+1−un+2+···+(−1)un+p6un+1<εX∞n+1ldÜÂñn§(−1)unÂñ.n=1 课后答案网www.khdaw.com157§5.ýéÂñ?êÚ^Âñ?ê5X∞1v−1v−2v−11.|x|<1,|y|<1§y²(x+xy+···+y)=(1−x)(1−y)v=1y²µÏ|x|<1,|y|<1§KX∞1v−12vx=1+x+x+···+x+···=ýéÂñ(6)1−xv=1X∞1v−12vy=1+y+y+···+y+···=ýéÂñ(7)1−yv=1X∞X∞1v−1v−1(??)·(??)§xy=(1−x)(1−y)v=1v=1X∞X∞X∞v−1v−12v2vv−1v−2v−1qxy=(1+x+x+···+x+···)(1+y+y+···+y+···)=(x+xy+···+y)§v=1v=1v=1X∞1v−1v−2v−1K(x+xy+···+y)=.(1−x)(1−y)v=1X∞xnX∞ynX∞(x+y)n2.y²µ=n!n!n!n=0n=0n=0|x|n+1|x|X∞|x|n(n+1)!y²µÏlimn=lim=0<1§KâKO{4/ª§?êÂñn→∞|x|n→∞n+1n!n!n=0X∞|x|nu´?êýéÂñn!n=0X∞|y|nÓn§?êýéÂñn!n=0X∞xnX∞ynX∞¤=Cnn!n!n=0n=0n=0Xnxiyn−iynxyn−1xn1(x+y)n0n1n−1nnÙ¥Cn=·=+·+···+=(Cny+Cnxy+···+Cnx)=i!(n−i)!n!1!(n−1)!n!n!n!i=0X∞xnX∞ynX∞(x+y)nK=n!n!n!n=0n=0n=03.y²µ±Ñ^Âñ?êS?ꧦÙuÑ+∞.X∞y²µun^Âñn=1X∞X∞X∞X∞d½n1§vnÚwnÑuѧvnuÑ+∞§(−wn)uÑ−∞n=1n=1n=1n=1ÀuÑ+∞ê{βn}§=limβn=+∞n→∞X∞rvnU^Så5n=1m1§¦v1+v2+···+vm>β1+w11,m2§¦v1+v2+···+vm+vm+···+vm>β2+w1+w211+12/§¿©mk>mk−1§¦v1+v2+···+vm+···+vm+···+vm>βk+w1+w2+···+wk(k=12k3,4,···)ù/|ÚKµ(v1+···+vm−w1)+(vm+···+vm−w2)+···+(vm+···+vm−wk)+···(∗)11+12k−1+1kd?êw,?êS?êX∞Ï(∗))Ò?ê(vm+···+vm−wk)kgÜ©Úk−1+1kk=1(v1+···+vm−w1)+(vm+···+vm−w2)+···+(vm+···+vm−wk)>βk11+12k−1+1k 课后答案网www.khdaw.comlimβk=+∞k→∞X∞K(vm+···+vm−wk)uÑ+∞k−1+1kk=1duÑ?ê?¿)Ò§K±Ñ^Âñ?êS?ꧦÙuÑ+∞. 课后答案网www.khdaw.com159§6.á¦È1.?Øá¦ÈÂñ5µY∞n2−4(1)n2−1n=3Y∞(−1)n(2)an(a>0)n=1sY∞n+1(3)n+2n=0)µ2n−433(1)Ï=1−,n>3§−<0n2−1n2−1n2−1!3X∞1X∞3X∞3n2−1qlim=3Âñ§KÂñ§u´−Âñn→∞1n2n2−1n2−1n2n=3n=3n=3Y∞n2−4lâ½n2§Âñ.n2−1n=3X∞(−1)nX∞(−1)nX∞(−1)n(2)lnan=lna=lnannn=1n=1n=1X∞(−1)nX∞(−1)nY∞(−1)nÏ?ê4ÙZ[.?ê§KÙÂñ§u´?êlnanÂñ§lá¦ÈanÂnn=1n=1n=1ñ.ss12nn+11(3)duÜ©¦ÈPn=·····=→0(n→∞)23n+1n+2n+2sY∞n+1á¦ÈuÑu0.n+2n=0X∞Y∞22.y²µexnÂñ§KcosxnÂñ.n=1n=1!!2Y∞Y∞xnxnsinxnx222ny²µÏcosxn=1−2sin062sin62·=2222n=1n=1X∞X∞xn22qxnÂñ§K2sinÂñ2n=1n=1Y∞u´â½n2§cosxnÂñ.n=1!!X∞Y∞ππ3.y²µeαnýéÂñ§Ktan+αnÂñÙ¥|αn|<.44n=1!n=1!Y∞πY∞1+tanαnY∞2tanαny²µtan+αn==1+41−tanαn1−tanαnn=1n=1n=1∞2tanαnX1−tanαn2tanαnÏαnýéÂñ§Klimαn=0§u´lim=lim=2n→∞n→∞|αn|n→∞1−tanαnαnn=1X∞X∞X∞2tanαn2tanαndαnýéÂñ§Âñ§u´ýéÂñ1−tanαn1−tanαnn=1!n=1n=1Y∞πltan+αnýéÂñ.4n=1 课后答案网www.khdaw.com1Ù2ÂÈ©§1.á2ÂÈ©1.¦e2ÂÈ©µZ+∞1(1)dxx2−12Z+∞1(2)dx,(p,q>0)0(x2+p)(x2+q)Z+∞−ax2(3)exdx(a>0)0Z+∞−ax(4)esinbxdx,(a>0)0)µZ+∞11x−1+∞1√(1)dx=ln=ln3=ln32x2−12x+122Z!+∞+∞111x1xππ2(2)dx=√arctan√−√arctan√=√√√=√√0(x2+p)(x2+q)q−pppqqpq(p+q)2(qp+pq)0Z+∞−ax2+∞−ax2e1(3)exdx=−=02a2a0Z+∞+∞−ax−asinbx−bcosbx−axb(4)esinbxdx=e=0a2+b2a2+b202.?ØeÈ©Âñ5µZ+∞dx(1)√3x4+10Z+∞xarctanx(2)dx1+x21Z+∞1(3)sindxx21Z+∞dx(4)01+x|sinx|Z+∞x(5)dx1+x2sin2x0Z+∞xm(6)dx,(n>0,m>0)1+xn0)µZZZ+∞dx1dx+∞dx(1)√=√+√3x4+13x4+13x4+10Z011dxÏ√~È©§KÙ7Âñ3x4+1Z0ZZZ+∞dx+∞dx+∞dx+∞dxé√§Ï√Âñ§K√Âñ§l√Âñ.3x4+13x43x4+13x4+11110xarctanxx3πZ+∞11+x3(2)Ïlim=limarctanx=§Âñx→+∞1x→+∞1+x32x2x21Z+∞xarctanxKd"O{4/ª§dxÂñ.1+x21 课后答案网www.khdaw.com161sin1Z+∞dxZ+∞1x2(3)Ïlim=1Âñ§lsindxÂñ.x→+∞1x2x2x21111(4)>1+x|sinx|1+x1Z+∞dxZ+∞dx1+xÏlim=1uѧld"O{4/ª§uÑ1x→+∞x1x11+xZZ1dx+∞dxq~È©KÂñ§u´uÑ01+x01+xZ+∞dxld"O{§uÑ.01+x|sinx|xxZ+∞x1+∞(5)Ïx∈[0,+∞)§k>dx=ln(1+x2)=+∞1+x2sin2x1+x21+x22Z00+∞xKd"O{§dxuÑ.1+x2sin2x0Z+∞xmZ1xmZ+∞xmZ1xm(6)dx=dx+dxdx~ÂÈ©01+xn01+xn11+xn01+xn111Z+∞xm(i)n−m>1§k·<È©dxÂñ§È©Âñ¶xn−m1+1xn−m1+xnxn1xm1Z+∞1(ii)n−m61x>1§k>§dxuѧÈ©uÑ1+xn2xn−m1xn−mZ+∞xmZ+∞xmKn−m>1§dxÂñ¶n−m61§dxuÑ.01+xn01+xn3.y²ýéÂñ2ÂÈ©7Âñ§Ø,.Z+∞000y²µ®|f(x)|dxÂñ§dÜOn§é∀ε>0,∃A>0§A>A>A§kaZA00ZA00ZA00ZA00|f(x)|dx<ε§K|f(x)|dx<ε§u´f(x)dx6|f(x)|dx<ε§A0A0A0A0Z+∞lf(x)dxÂñ.aÂñ2ÂÈ©7ýéÂñ.Z+∞sinxZ+∞sinx~µdxÂñ¶dxuÑ(Öþ55).1x1x4.y²éuáȩ§©ÜÈ©úª¤á£úª¥Ü©k¿Â¤Z+∞+∞Z+∞f(x)g0(x)dx=f(x)g(x)−g(x)f0(x)dxaaaZAAZAy²µéu?¿A>a§¤áf(x)g0(x)dx=f(x)g(x)−g(x)f0(x)dxZaa!aZAAAü>4§limf(x)g0(x)dx=limf(x)g(x)−limg(x)f0(x)dxA→+∞A→+∞A→+∞aaaZ+∞+∞Z+∞Kf(x)g0(x)dx=f(x)g(x)−g(x)f0(x)dxaaa5.y²µZ+∞(1)f(x)[0,+∞)þëY¼ê§¿È©f(x)dxÂñ§Klimf(x)=0¶XJ==Èx→+∞Z0+∞©f(x)dxÂñ§±9f(x)3[0,+∞)ëY§f(x)>0§´ÄEΤálimf(x)=0ºx→+∞0y²µ^y{.limf(x)6=0§K∃ε>0§é?¿A>0§Ñ3xA>A§¦|f(xA)|>2ε.x→+∞SAn→+∞(n→∞)§kSxn→+∞xn>An(n=1,2,···)§¦|f(xn)|>2ε000000,¡§df(x)Âñ5§éþãε>0,∃δ>0§¦|x−x|<δ§k|f(x)−f(x)|<ε!δδÏd§én§x∈xn−,xn+§k|f(x)−f(xn)|<ε§=f(xn)−ε0§|f(xn)|=f(xn)>2ε§dàت§f(x)>2ε−ε=εf(xn)<0§|f(xn)|=−f(xn)>2ε§dmàت§f(x)<−2ε+ε=−εZxn+δZxn+δ22l§f(x)dx>εδ£f(xn)>0¤½f(x)dx<−εδ£f(xn)<0¤xn−δxn−δZ22+∞df(x)dxÂñgñ§Kbؤá§u´limf(x)=0.x→+∞0Z+∞(2)È©f(x)dxÂñ§±9f(x)3[0,+∞)ëY§f(x)>0§¿ØUylimf(x)=0.x→+∞Z0+∞x~µdx.1+x6sin2x0§´ýéÂñ.Z+∞xX∞Z(n+1)πxZπxX∞12Ï1+x6sin2xdx=1+x6sin2xdx=1+x6sin2xdx+In+In0n=0nπ0n=1Z(n+12)πxZπ2nπ+z1Ù¥In=1+x6sin2xdx=1+(nπ+z)6sin2zdz,nπ0ZZπ(n+1)π2x2nπ+π−zIn=62dx=62dz(n+1)π1+xsinx01+(nπ+π−z)sinz2!2π2sinz2z6262325¿0(nπ)=(2πnz),2πzπ62232(nπ+π−z)sinz>(2πnz)ZπZ(nπ)32(n+1)πn+1dyn+11kIn6dz=601+(2π2n3z)22n3π01+y24n3n+12Ón§kIn6Z4n3πxÏdx~È©§K7Âñ1+x6sin2x0n+11X∞1X∞n+1q<Âñ§KÂñ2n3n2n22n3n=1n=1Z+∞xZπxX∞n+1u´dx6dx+ýéÂñ1+x6sin2x1+x6sin2x2n300n=1xw,f(x)=3[0,+∞)þKëY1+x6sin2xexn=2nπ(n=0,1,2,···)§kf(xn)=f(2nπ)=2nπ→+∞(n→∞)Klimf(x)6=0.x→∞2226.y²µef(x),g(x)3?Û«m[a,A]ȧqf(x),g(x)3[a,+∞)È©Âñ§@"[f(x)+g(x)]Ú|f(x)·g(x)|3[a,+∞)þÈ.ZZAA2y²µÏf(x),g(x)3?Û«m[a,A]ȧK|f(x)·g(x)|dx3§[f(x)+g(x)]dx3ZZZaa+∞+∞+∞2222qf(x)dxÚg(x)dxÑÂñ§K[f(x)+g(x)]dxÂñ§aZaZa+∞+∞12222u´2[f(x)+g(x)]dxÚ[f(x)+g(x)]dxÑÂñaa2122222q[|f(x)|−|g(x)|]=f(x)+g(x)−2|f(x)·g(x)|>0=|f(x)·g(x)|6[f(x)+g(x)]2Kd"O{§|f(x)·g(x)|3[a,+∞)þÈ2222222q[f(x)+g(x)]=f(x)+g(x)+2f(x)·g(x)6f(x)+g(x)+2|f(x)·g(x)|62[f(x)+g(x)]2Kd"O{§[f(x)+g(x)]3[a,+∞)þÈ.ZZ+∞dx+∞7.éá2ÂÈ©§?زÈÚýéÈ"X.~fµÚf(x)dx§Ù¥x3/2!1!1112f(x)=nn6xa§Qn(x)6=0aQn(x)Z+∞lnlnx(4)sinxdx2lnx)µZA(1)éA>0§ducosdx=|sinA−sin0|61√0√!0√!0√xx100−xxxqlim=0,=√§x>100§<0§Küx→+∞x+100x+1002x(x+100)2x+100x+100N~Z√+∞xcosxu´d)á4O{§dxÂñ.0x+100§ØýéÂñ.√√√√!2x|cosx|xcosx1xxcos2xdu>=+x+100x+1002x+100x+100√!Z√1x+∞xÏlimx2·=1§KdÜO{4/ª§dxuÑx→+∞x+1001x+100Z√Z√Z√Z√1x+∞x1x+∞xqdx~È©§Kdx=dx+dxuÑ0x+100Z√0x+1000xZ+100√1x+100+∞xcos2x+∞xcos2xcãy²§dxÂñ§lÈ©dxuÑ√0x+100√0x+100√Z+∞xcosxZ+∞x|cosx|Z+∞xcosxKdx=dxuѧlÈ©dx^Âñ.0x+1000x+1000x+100ZZcosx|cosx|1+∞dx+∞cosx(2)(i)λ>1§Ï=6λ>1§Âñ§ldxýéÂñxλxλxλ1xλ1xλZ+∞sinxÓndxýéÂñxλ1(ii)0<λ61ZA1Ïcosxdx=|sinA−sin1|620<λ61üN~§x→+∞ªu0§xλ1 课后答案网www.khdaw.comZ+∞cosxKd)á4O{§dxÂñxλ1!Z|cosx|cos2x11cos2x+∞cos2x>=+§dc¡y²§dxÂñxλxλ2xλxλ1xλZZZ+∞dx+∞|cosx|+∞cosxq(0<λ61)uѧKdxuѧldx^Âñxλxλxλ1Z11+∞sinxÓn§dx^Âñxλ1(iii)λ60Ïn→+∞,2nπ→+∞§u´é?¿A>0§±é(2n+1)π>2nπ>AZ(2n+1)πsinxZ(2n+1)πsinxZ(2n+1)πε0=2§(2n+1)π>2nπ>A§dx=dx>sinxdx=2nπxλ2nπxλ2nπ2=ε0Z+∞sinxKλ60§dxuÑxλZ1+∞cosxÓn§dxuÑ.xλ1ZZ+∞cosx+∞sinxnܧλ>1§dx§dxýéÂñ¶xλxλZ1Z1+∞cosx+∞sinx0<λ61§dx§dx^Âñ¶xλxλZ1Z1+∞cosx+∞sinxλ<0§dx§dxuÑ.xλxλ11Pm(x)(3)(i)ma)§Kâ)á4O{§È©Âñam(ii)Qn(x)≡1.dõªPm(x)=amx+···+a0§Øam>0Pm(x)ammdulim=am>0§3bπ+π>0§¦x>bπ+π§Pm(x)=xx→+∞xm2Z+∞Zbπ+πX∞Z(n+1)πu´kPm(x)sinxdx=Pm(x)sinxdx+In§Ù¥In=Pm(x)sinxdxaan=b+1nπZ(n+1)πZπaZπnmmdk|In|=Pm(x)sinxdx=Pm(nπ+z)(−1)sinzdz>(nπ)sinzdz=nπ020mam(nπ)§KIn→∞(n→∞)ZZbπ+π+∞qPm(x)sinxdx~È©§K7Âñ§u´Pm(x)sinxdxuÑaaPm(x)(iii)m>n§=R(x)+S(x)§Ù¥R(x)ý©ª§S(x)ªQn(x)ZZZ+∞+∞+∞Pm(x)d(ii)§S(x)sinxdxuѶd(i)§R(x)sinxdxÂñ§sinxdxuaaaQn(x)Ñn(iv)Qn(x)=bnx+···+b1x+b0Pn(x)sinxQm(x)dulim=1§Kd8(2)§λ=n−m>1§È©ýéÂñx→+∞amxm−nsinxbnnܵm>n§È©uѶm=n−1§È©^Âñ¶m2§sinxdx62§lim=limlnxx=lim=0§x→+∞lnxx→+∞1x→+∞lnx!2!x00lnlnx1−lnlnxlnlnxe=§x>e§<0§dd¼êüN~ªu0lnxx(lnx)2lnxZ+∞lnlnxKd)á4O{§sinxdxÂñeelnxZeeZ+∞lnlnxlnlnxqsinxdx~È©§K7Âñ§u´sinxdxÂñ2lnx2lnx 课后答案网www.khdaw.com165ZZ∞+∞lnlnxn0πlnlnxXeeqsinxdx=sinxdx+In§Ù¥n0>ê2lnx2lnxπn=n0ZZZ(n+1)πlnlnxπlnln(nπ+z)lnln(n+1)ππlnln(n+1)πIn=|sinx|dx=sinzdz>sinzdz=2nπlnx0ln(nπ+z)ln(n+1)π0ln(n+1)πZ+∞lnlnxZ+∞lnlnx+∞X∞lnln(n+1)πÏdx>dx=lnx(lnlnx−1)=+∞§KdÜO{§uee+πlnxee+πxee+πn=n0ln(n+1)πX+∞ѧu´InuѧlÈ©^Âñ.n=n0 课后答案网www.khdaw.com§2.Ã.¼ê2ÂÈ©1.eÈ©´ÄÂñºXJÂñ§¦Ù.Z12(1)cotxdx0Z1(2)lnxdx0)µ(1)Ïlimcotx=∞§Kx=0cotxÛ:x→+0Z11Z12212qcotxdx=ln|sinx|=lnsin−ln|sinη|→+∞(η→+0)§KÈ©cotxdxuÑ.0+ηη20(2)Ïlimlnx=∞§Kx=0lnxÛ:x→+0Z11Z1qlnxdx=x(lnx−1)=−ηlnη−1+η→−1(η→+0)§KÈ©lnxdxÂñu−1.0+ηη02.?ØeÈ©Âñ5µZ1sinx(1)dx30x2Z1dx(2)p3x2(1−x)0Z1lnx(3)dx1−x20Zπ2dx(4)sin2x·cos2x0Z1p(5)|lnx|dx0Zπ21−cosx(6)dxxm0Z1a−1b−1(7)x(1−x)dx0Z1a−1b−1(8)x(1−x)lnxdx0)µsinx(1)x=0Û:3x2Z1sinxsinx1sinxÏlimx2·=lim=1§KâÜO{§dxýéÂñ.33x→+0x2x→+0x0x2ZZ1Z11dx2dxdx(2)x=0§x=1þȼêÛ:§p=p+p3x2(1−x)3x2(1−x)13x2(1−x)002Z12112dxÏlimx3·p=lim√=1§KâÜO{§pýéÂñ¶x→+03x2(1−x)x→+031−x3x2(1−x)0Z1dx11dxqlim(1−x)3p=lim√=1§KâÜO{§pýéÂñx→1−03x2(1−x)x→1−03x213x2(1−x)Z21dxlpýéÂñ.3x2(1−x)0 课后答案网www.khdaw.com1671lnx11x(3)Ïlim=lim=−lim=−§Kx=1Ø´Û:§u´dÈ©kÛ:0x→11−x2x→1−2xx→12x2211lnx1lnx1xqlimx2·=limx2lnx=lim=lim=−2limx2=0x→+01−x2x→+0x→+0−1x→∞1−3x→+0x2−x2Z21lnxKdÜO{§dxÂñ.1−x20ZπZπZππ2dx4dx2dx(4)x=0§x=þȼêÛ:§K=+22222220sinx·cosx0sinx·cosxπsinx·cosxZ4π114dx2Ïlimx·=1§>0§KâÜO{§uÑ+∞x→+0sin2x·cos2xsin2x·cos2xsin2x·cos2xZ0π12dxq>0§KuÑ.sin2x·cos2xsin2x·cos2x0ZZ1Z11p2pp(5)|lnx|dx=|lnx|dx+|lnx|dx0012Z12pé|lnx|dx§p>0§0Û:0ppp−11p−11|lnx|(−lnx)plnx·lnxppxp+1Ïlimx2|lnx|=lim=lim=(−1)lim=(−1)2plimx→+0x→+0−1x→+0−1x→+01−3x→+0−1x2x2−x2x22=0(Öþ2311.(16))Z12pKdÜO{§|lnx|dxp>0Âñ0Z1Z1Z12p2p2pp60§|lnx|dx~È©§K|lnx|dx§u´p?Û§|lnx|dxþÂñ.Z0001pé|lnx|dx§p<0§1Û:12p1!p|lnx|pln1Ïlim(1−x)−p|lnx|p=lim=limx=lim=1x→1−0x→1−0(1−x)px→1−01−xx→1−0xZ1pKâÜO{§−p<1=0>p>−1§|lnx|dxÂñ¶1Z21p−p>1=p6−1§|lnx|dxuÑ1Z21pp>0§|lnx|dx~È©§Âñ12ZZ11ppu´p>−1§|lnx|dxÂñ¶p6−1§|lnx|dxuÑ112Z2Z11ppnܧp>−1§|lnx|dxÂñ¶p6−1§|lnx|dxuÑ.000,m600,020,m<21−cosx1Klimm=,m=2x→+0x2∞,m>2Zπ21−cosxlm62§dx~È©§Âñxm0Zπ21−cosxm>2§x=0dxÛ:xm01−cosx1−cosx1m−2qlimx=lim=x→+0xmx→+0x22 课后答案网www.khdaw.comK01=m>3§È©uÑZπZπ21−cosx21−cosxlm<3§dxÂñ¶m>3§dxuÑ.xmxm00Z1a−1b−1(7)a>1b>1§x(1−x)dx~È©§Âñ0ZZ1Z11a−1b−12a−1b−1a−1b−1x(1−x)dx=x(1−x)dx+x(1−x)dx0012Z1Z1b−12a−1b−12(1−x)éÈ©x(1−x)dx=dxx1−a00b−10,a>1b−1(1−x)(1−x)1−ab−1Ïlim=1,a=1limx=lim(1−x)=1x→+0x1−ax→+0x1−ax→+0∞,a<1KdÜO{4/ª§1−a<1=a>0È©Âñ¶1−a>1=a60§È©uѶZ1Z1xa−1a−1b−1éÈ©x(1−x)dx=dx1−b11(1−x)22a−10,b>1a−1xx1−ba−1Ïlim=1,b=1lim(1−x)=limx=1x→1−0(1−x)1−bx→1−0(1−x)1−bx→1−0∞,b<1KdÜO{4/ª§1−b<1=b>0È©Âñ¶1−b>1=b60§È©uѶZ1a−1b−1nþ¤ã§a>0b>0§x(1−x)dxÂñ§Ù{/È©þuÑ.0ZZ1Z11a−1b−12a−1b−1a−1b−1(8)x(1−x)lnxdx=x(1−x)lnxdx+x(1−x)lnxdx0012Z1Z1b−12a−1b−12(1−x)lnxéÈ©x(1−x)lnxdx=dxx1−a00b−1(1−x)lnx0,a>1Ïlim=x→+0x1−a∞,a61b−11c(1−x)−lnx−x1−a+cxé∀c>0§limx|lnx|=lim=lim=lim=0x→+0x1−ax→+0x−cx→+0−cx−c−1x→+0cKdÜO{4/ª§1−a+c<1=a>c>0Âñb−1(1−x)1−ab−1qlimx|lnx|=−lim(1−x)lnx=∞x→+0x1−ax→+0KdÜO{4/ª§1−a>1=a60uÑZ1Z1xa−1lnxa−1b−1éÈ©x(1−x)lnxdx=dx1−b11(1−x)22a−10,b>0xlnxÏlim=−1,b=0x→1−0(1−x)1−b∞,b<0a−1x−lnx1−blim(1−x)|lnx|=lim=lim=1x→1−0(1−x)1−bx→1−01−xx→1−0xKdÜO{4/ª§−b<1=b>−1Âñ¶−b>1=b6−1uÑZ1a−1b−1nþ¤ã§a>0b>−1§È©x(1−x)lnxdxÂñ§Ù{/È©þuÑ.03.y²Ã.¼ê2ÂÈ©ÜO{9Ù4/ª.y²µ(1)ÜO{µZZCbbC(i)d|f(x)|6(C>0),p<1§lim|f(x)|dx6limdx=(x−a)pε→+0a+εε→+0a+ε(x−a)p"#CbCCClim(1−a)1−p=lim(b−a)1−p−ε1−p=(b−a)1−pε→+01−pε→+01−p1−p1−pa+εZZbb=lim|f(x)|dx3§f(x)dxýéÂñε→+0a+εaZZ"#bbCCC1−p1−p(ii)Ïk|f(x)|dx>dx=(b−a)−ε→∞(p>1,C>a+εa+ε(x−a)p1−p1−p 课后答案网www.khdaw.com1690ε→0)ZZbCbqp=1§dxuѧl|f(x)|dxuÑ.ax−aa(2)ÜO{4/ªµp(i)lim(x−a)|f(x)|=k(0ε>0§3δ>0§¦a1§f(x)k½Ò§Kf(x)dxuÑaa(ii)k=0§ε0=1§K∃δ>0§¦a0§¦a11=|f(x)|>(x−a)pZZbbKdÜO{§p>1§|f(x)|dxuѶqf(x)k½Ò§lf(x)dxuÑ.aZabnþ§e06k<+∞,p<1§@"f(x)dxýéÂñ¶e01§@Zab"f(x)dxuÑ.a4.?ØeÈ©Âñ5µZ+∞dx(1)p3(x−1)2x(x−2)0Z+∞ln(1+x)(2)dxxα0Z+∞dx(3)xp+xq0Z+∞arctanx(4)dxxα0Z+∞dx(5)pq1xlnxZ+∞dx(6)−∞|x−a1|p1|x−a2|p2···|x−an|pn)µ(1)x=0,1,2þȼêÛ:ZZ1ZZ3ZZZ!+∞123+∞dx22dxp=+++++p3(x−1)2x(x−2)133(x−1)2x(x−2)0012322Z12dxéÈ©p3(x−1)2x(x−2)011x32Ïlimx3p=lim=0x→+03(x−1)2x(x−2)x→+0(x−1)2(x−2)Z12dxKdÜO{4/ª§È©pýéÂñ3(x−1)2x(x−2)0Z1dxéÈ©p13(x−1)2x(x−2)2 课后答案网www.khdaw.com151(1−x)6Ïlim(1−x)6p=lim1=0x→1−03(x−1)2x(x−2)x→1−0[x(x−2)]3Z1dxKdÜO{4/ª§È©pýéÂñ13(x−1)2x(x−2)2Z32dxÓdy{§È©pýéÂñ3(x−1)2x(x−2)1Z2dxéÈ©p33(x−1)2x(x−2)2112−x32Ïlim(2−x)3p=lim=0x→2−03(x−1)2x(x−2)x→2−0x(x−1)2Z2dxKdÜO{4/ª§È©pýéÂñ33(x−1)2x(x−2)Z23dxÓdy{§pýéÂñ3(x−1)2x(x−2)2Z11+∞dxÏx>3§p6ýéÂñ3244(x−1)x(x−2)(x−2)33(x−2)3Z+∞dxKd"O{§pýéÂñ3(x−1)2x(x−2)3Z+∞dxnþ§pýéÂñ3(x−1)2x(x−2)0ZZZ+∞ln(1+x)1ln(1+x)+∞ln(1+x)(2)dx=dx+dxxαxαxα0Z011ln(1+x)édxxα00,α60ln(1+x)10,0<α<1Ïlim=1+x§Kα>1§0Û:x→+0xαlim=1,α=1x→+0αxα−1∞,α>1ln(1+x)ln(1+x)α−1qlimx=lim=1x→+0xαx→+0xZZ1ln(1+x)1ln(1+x)Kα−1<1=1<α<2§dxýéÂñ¶α>2§dxuѶxαxαZ001ln(1+x)α61§dx~È©§7Âñxα0ZZ1ln(1+x)1ln(1+x)lα<2§dxýéÂñ¶α>2§−dxuÑxαxαZ00+∞ln(1+x)édxxα11ln(1+x)λ1+xλ>1§α−λ>0§Ïlimx=lim=0x→+∞xαx→+∞(α−λ)xα−λ−1Z+∞ln(1+x)Kα−λ>0=α>λ>1§È©dxýéÂñ¶xα1Zln(1+x)+∞ln(1+x)αqlimx=+∞§Kα61§È©dxuÑx→+∞xα1xαZZ+∞ln(1+x)+∞ln(1+x)l1<α<2§dxýéÂñ¶Ù§/§dxÑuÑ.xαxα00ZZZ+∞dx1dx+∞dx(3)=+0xp+xq0xp+xq1xp+xqZ1dxéÈ©§min(p,q)=pxp+xq0ZZ1dx1dxep60§K~È©§Âñ0xp+xq0xp+xq 课后答案网www.khdaw.com171111ep>0§dulimxp=lim=,p=qx→+0xp+xqx→+01+xq−p21,p6=qZ1dxÈ©=p<1=min(p,q)<1Âñxp+xqZ0+∞dxéÈ©§max(p,q)=qxp+xq1111dulimxq=lim=,p=qx→+∞xp+xqx→+∞x−(q−p)+121,p6=qZ+∞dxÈ©=q>1=max(p,q)>1Âñxp+xqZ1+∞dxKÈ©min(p,q)<1max(p,q)>1Âñ.xp+xq0arctanx1x1−α1+x2(4)0<α61§lim=lim=lim=0x→+0xαx→+0αxα−1x→+0α(1+x2)arctanx−αα60§lim=limxarctanx=0x→+0xαx→+0Kα61§0ØÛ:arctanxπαqlimx=limarctanx=x→+∞xαx→+∞2Z+∞arctanxKα61§dÜO{4/ª§dxuÑxα01arctanx1+x21α>1§Ïlim=lim=lim=+∞§K0Û:x→+0xαx→+0αxα−1x→+0αxα−1(1+x2)ZZZ+∞arctanx1arctanx+∞arctanxKdx=dx+dxxαxαxαZ0011arctanxédx§α>1§0Û:xα0arctanxarctanxα−1Ïlimx=lim=1x→+0xαx→+0xKdÜO{4/ª§α−1<1=α<2È©Âñ¶α>2§È©uÑZ+∞arctanxédxxα1ZZπarctanxπ+∞π+∞π4224Ï66dxα>1È©Âñ¶dxα61È©uÑxαxαxα1xα1xαZZ+∞arctanx+∞arctanxKd"O{§α>1§dxÂñ¶α61§dxuÑxαxαZ11+∞arctanxo§1<α<2§dxÂñ¶Ù{/dÈ©þuÑ.xα0ZZZ+∞dx2dx+∞dx(5)xplnqx=xplnqx+xplnqx1Z122dxÄpq§é?¿p1x"lnx#!qqq11(x−1)(x−1)x−1qdux→lim1+0(x−1)xplnqx=limx→1+0xp·lnqx=limx→1+0lnqx=x→lim1+0lnx!q1=lim=11x→1+0xZ2dxKÈ©pq=q<1p?¿Âñ1xlnxZ+∞dxÄpq§ep>1§α>0¿©§¦p−α>1§Ké?¿q§2xlnx!11p−αdux→lim+∞xxplnqx=lix→m+∞xαlnqx=0Z+∞dxu´È©pqp>1q?¿Âñ¶2xlnx 课后答案网www.khdaw.comZ+∞dxZ+∞dx1+∞ep61,q<1§du>=(lnx)1−q=+∞xplnqxxlnqx1−qZ222+∞dxKdÈ©pquÑ2xlnxZ+∞dxlÈ©pqp>1q<1Âñ.1xlnx1Xn(6)Äk§ȼê"u´pi?á(x→±∞)xi=1Ùg(Øi6=j§ai6=aj)"#1Ïlim|x−apii|=ci,01pi<1(i=1,2,···,n)Âñ.−∞|x−a1|p1|x−a2|p2···|x−an|pni=1Z15.f(x)x→+0üNªu+∞§Áy²µef(x)dxÂñ§7Llimxf(x)dx=0.x→0Z01y²µdK0´f(x)Û:§=f(x)dx´Ã.¼ê2ÂÈ©§x¿©C0§f(x)>0§03[0,x]þüN~Z1xqf(x)dxÂñ§KdÜÂñn§é∀ε>0,∃δ>0§0<f(x)<ξ0)1+xq0Z+∞esinxsin2x(2)dx(λ>0)xλ0Z+∞sinx+1x(3)dxxn0)µZ+∞xpsinxZ1xpsinxZ+∞xpsinx(1)dx=dx+dx01+xq01+xq11+xqZ1pxsinxédx1+xq0psinxxsinx−(p+1)xÏlimx=lim=1x→+01+xqx→+01+xqZ1xpsinxZ1xpsinxK−(p+1)<1=p>−2§dxýéÂñ¶p6−2§È©dxuÑ01+xq01+xqZ+∞xpsinxédx11+xqxqsinxxpxpxqq−pÏ6limx=lim=11+xq1+xqx→+∞1+xqx→+∞1+xqZ+∞xpZ+∞xpsinxKq−p>1=q>p+1dxÂñ§u´d"O{§dxýéÂñ11+xq11+xq2xq2xp1xp|sinx||sinx|Z+∞sinxq>1,>,>d568.(2)§dxq6p+1ýé1+xq1+xqxq−p1+xq2xq−p1xq−pÂñ 课后答案网www.khdaw.com173Z+∞xpsinxo§p>−2,q>p+1§dxýéÂñ1+xqZ0+∞xpsinxÄdx1+xq1ZAxpq>p§sinxdx62§üN~ªu0(x→+∞)1+xq1Z+∞xpsinxKd)á4O{§dxÂñ1+xq1ppxxq6p§q=p§→1(x→+∞)¶q1+xq3pππx1+u´é∀A>1§7∃N∈Z§¦2Nπ+>Ax>2Nπ+§ðk>441+xq3√ππZA00xp1ZA002000léA=2Nπ+,A=2Nπ+§ksinxdx>sinxdx=42A01+xq3A06Z+∞xpsinxKdÜn§dxuÑ1+xq1ZZ+∞xpsinx+∞xpsinxnþ¤ã§q>p+1>−1§dxýéÂñ¶p+1>q>p>−2§dx^01+xq01+xqÂñ.0,λ60esinxsin2xsin2x0,0<λ<10,λ<1(2)Ïlim=lim=2cos2x=2,λ=1x→+0xλx→+0xλlim=2,λ=1x→+0λxλ−1∞,λ>1∞,λ>1Kλ>1§0Û:Z+∞esinxsin2xZ1esinxsin2xZ+∞esinxsin2xdx=dx+dxxλxλxλ0Z011esinxsin2xédx§ȼê§0Û:xλ0sinxsinxesin2xesin2xλ−1Ïlimx=lim=2x→+0xλx→+0xZ1esinxsin2xKdÜO{4/ª§λ−1<1=λ<2§dxýéÂñ¶xλZ01esinxsin2xλ>2§dxuÑxλZ0+∞esinxsin2xédxxλ1Zesinxsin2xe+∞esinxsin2xλ>1§6§KdxýéÂñxλxλ1xλZ+∞esinxsin2xu´dx1<λ<2ýéÂñ¶xλ0!!sinx−12e|sin2x|esin2x1−cos4x11cos4x−1λ61§>=e=−xλxλ2xλ2exλxλZZZsinx+∞dx+∞cos4x+∞esin2xÏuÑ,dxÂñ§KdxuÑ1xλ1xλ1xλZ+∞esinxsin2xédxxλZ1ZAAÏesinxsin2xdx=2esinxsinxdsinx64e111Z+∞esinxsin2xqüN~ªu0§Kâ)á4O{§éλ>0kdxÂñxλxλZ1+∞esinxsin2xu´dx0<λ61^Âñxλ0 课后答案网www.khdaw.comZ+∞esinxsin2xZ+∞esinxsin2xl1<λ<2dxýéÂñ¶0<λ61dx^Âñ.xλxλ00Z+∞sinx+1Z1sinx+1Z+∞sinx+1xxx(3)dx=dx+dx=I1+I2xnxnxn00Z0Z1dt1sinx+1+∞sinx+1xxéI1§-x=,dx=−§KI1=dx=dxtt20xn1x2−nïÄI2sinx+11xÏ6§Kn>1§I2ýéÂñxnxnZ+∞sinx+1Z+∞sinx+11−1xxx2dxÏdx=xnxn1−111x2!ZA1Asinx+11−1dx=cosx+621xx2x"!#011nn−1n−3n−32x1−=nx−(n−2)x=x[nx−(n−2)]x2!11nüN~ªu0(x→+∞)Kn∈(0,1]§x1−üNO=x2xn1−1x2u´d)á4O{§0=−xnxn2xn2xnZ+∞dxZ+∞cos2x+1x01§7∃k∈Z§¦2kπ+>Ax>2kπ+§!!661π1−nðkxsinx+>sin2kπ+=x62!ππZA00sinx+1ZA00ππ000xu´§éA=2kπ+,A=2kπ+§kdx>sin2kπ+dx=63A0xnA0612KdÜÂñn§n60§I2uÑéI1§dI2(ا2−n>1=n<1ýéÂñ¶1>2−n>0=16n<2^Âñ¶2−nZ60=n62uÑ+∞sinx+1xo§dx00§K|f(x)|62 课后答案网www.khdaw.com175u´d"O{§|f(x)|È=²È½ýéÈ.Ø,.Z21Z2dx~µd57~1§1dxÂñ=1ýéÂñ1(x−1)21(x−1)2Z2dx1uѧ=3[1,2]þØÈ.1x−1x−19.OeÈ©Ü̵Z3dx(1)01−xZ+∞(2)sinxdx−∞)µZ"ZZ#"1−η3#3dx1−ηdx3dx(1)P.V.=lim+=lim−ln(1−x)−ln(x−1)=−ln201−xη→001−x1+η1−xη→001+ηZZA!+∞A(2)P.V.sinxdx=limsinxdx=lim−cosx=lim(cos(−A)−cosA)=0A→+∞A→+∞A→+∞−∞−A−A10.y²2ÂÈ©9ÜÌm"XµZZ+∞+∞(1)ef(x)dxÂñ§ÙA§KÜÌP.V.f(x)dx3§uA§Ø,¶−∞−∞ZZ+∞+∞(2)ef(x)>0§P.V.f(x)dx3§ÙA§Kf(x)dxÂñ§ÂñuA.−∞−∞y²µZZZZ+∞+∞0+∞(1)df(x)dxÂñ§f(x)dx=f(x)dx+f(x)dxÂñ§−∞Z−∞Z−∞0Z0AAKklimf(x)dx+limf(x)dx3§AOB=−A§klimf(x)dx3§B→−∞A→+∞A→+∞B0−AuAZ+∞ùL²P.V.f(x)dx3§uA−∞Ø,.ZZZZ+∞A+∞+∞~XµP.V.sinxdx=limsinxdx=0§f(x)dx=sinxdxØÂñ.A→+∞−∞−A−∞−∞(2)^y{.ZZa+∞eØ,§Kduf(x)>0§f(x)dxÚf(x)dx¥k+∞ZZ−∞aaAu´f(x)dxÚf(x)dx¥A→+∞kªu+∞§,uu0§l§Ú−AaZZ+∞+∞ªu+∞§ù®P.V.f(x)dx3gñ§Kf(x)dxÂñ.Z−∞Z−∞+∞+∞qdP.V.f(x)dx=A§Kâ45§f(x)dx=A.−∞−∞ 课后答案网www.khdaw.com1Ü©¼ê?ê1Ù¼ê?ê!?ê§1.¼ê?êÂñ1.?Øe¼êS3¤««SÂñ5µr1(1)fn(x)=x2+,−∞ε0222Kfn(x)3(−∞,+∞)þØÂñ.(4)06x<1§f(x)=limfn(x)=0¶x=1§fn(1)=0,f(1)=0§Kf(x)=limfn(x)=0n→∞n→∞nnn+1||fn−f||=sup|fn(x)−f(x)|=sup|x(1−x)|=max(x−x)x∈[0,1]x∈[0,1]x∈[0,1]nnn+10n−1-(x−x)=x[n−(n+1)x]=0"Kx=0,x=!!n!n+1nnnqfn(0)=fn(1)=0,fn=1−>0n+1n+1n+1!n!nnnn+1Kmax(x−x)=1−→0(n→∞)=||fn−f||→0(n→∞)x∈[0,1]n+1n+1u´d½Â2§d¼êS3¤««SÂñu0. 课后答案网www.khdaw.com1771,00§Ïlimtlnt=0§K3δ(ε)>0§0N§<δδnxxxlé00,∃N=§n>N§k|rn(x)|<ε§Kd?ê3(−∞,+∞)þÂñ.εsinnx1X∞1(3)−∞0§ε=1§73N=N(ε)∈Z(§xÃ")§¦n>N§éu(0,+∞)Sx§þk|un+1(x)+un+2(x)+···+un+p(x)|<ε§Ù¥p?¿ê8p=1,n=N§Kéx∈(0,+∞)§Ak|uN+1(x)|<ε=12qx0=∈(0,+∞)§Ak|uN+1(x0)|<13N+1π1N+1N+1¯¢þ%kuN+1(x0)=2sin=2>1ù|uN+1(x0)|<1gñ3N+1x0X∞1nKbؤá§=?ê2sin3(0,+∞)þÂñÂñ.3nxn=13.y²Âñ½Â1Ú½Â2d5.y²µ½Â1=⇒½Â2ε®é?ε>0§36uεêN(ε)§¦n>N(ε)§k|Sn(x)−S(x)|<éx∈XѤ2áεu´||Sn−S||=sup|Sn(x)−S(x)|6<ε§llim||Sn−S||=0.x∈X2n→∞½Â2=⇒½Â1+®lim||Sn−S||=0§=é∀ε>0,∃N(ε)∈Z§¦n>N§éx∈X§Ñkn→∞||Sn−S||−0=sup|Sn(x)−S(x)|<εx∈X|Sn(x)−S(x)|6||Sn−S||−0<εéx∈XѤá.X∞(aq/y²¼ê?êun½Â1⇐⇒½Â2).n=1X∞ln(1+nx)4.Áy?ê3?Û«m[1+α,∞),α>0Âñ.nxnn=1ln(1+nx)ln(1+nx)nx11y²µÏh>0§ln(1+h)0)þÂñ.(1+α)n−1n=1 课后答案网www.khdaw.com179X∞X∞X∞5.eun(x)|un(x)|6cn(x)§¿cn(x)3XþÂñ§Kun(x)3Xþ½Âñýén=1n=1n=1Âñ.X∞y²µÏcn(x)3XþÂñn=1+KdÂñÜ¿^§é∀ε>0,∃N=N(ε)∈Z§¦n>N§éx∈XÚ?¿êp§k|cn+1(x)+cn+2(x)+···+cn+p(x)|<εX∞qun(x)|un(x)|6cn(x)n=1Kéþãε>0§êN=N(ε)§¦n>N§éx∈XÚþãêp§k|un+1(x)+un+2(x)+···+un+p(x)|6|un+1(x)|+|un+2(x)|+···+|un+p(x)|6|cn+1(x)+cn+2(x)+···+cn+p(x)|<εX∞dÂñÜ¿^§un(x)3XþÂñýéÂñ.n=1Zx6.f0(x)3[0,a]þëY§qfn(x)=fn−1(t)dt§y²{fn(x)}3[0,a]þÂñu".0y²µÏf0Z(x)3[0,a]þëY§KÙk.§=3M>0§k|f0(x)|6Mxqfn(x)=fn−1(t)dt§KZ0ZZxxx|f1(x)=f0(t)dt6|f0(t)|dt6Mdt=Mx6MaZ0Z0Z0xxxMx2Ma2|f2(x)=f1(t)dt6|f1(t)|dt6Mtdt=6.......................................................00022ZxZxZxtn−1xnan|fn(x)=fn−1(t)dt6|fn−1(t)|dt6Mdt=M6M000(n−1)!n!n!ananan+Ïlim=0=é∀ε>0,∃N∈Z§n>N§k−0=<εn→∞n!n!n!u´|fn(x)−0|0§N=§Kn>N§éx∈(−∞,+∞)§Ñk−0=6<εεn+x2n+x2n()1X∞1n−1K"ux∈(−∞,+∞)Âñu0§u´d)á4O{§(−1)3(−∞,+∞)Sn+x2n+x2n=1Âñ.X∞1X∞1n−1(−1)=n+x2n+x2n=1n=11X∞1X∞1n+x2Ïlim=1uѧKd"O{4/ª§uѧu´é?Ûx?êýén→∞1nn+x2nn=1n=1Âñ.X∞x2X∞x2=(1+x2)n(1+x2)nn=1n=1s21xn,x6=0é½x∈(−∞,+∞)§Ïlim2n=1+x2n→∞(1+x)0,x=0X∞x2dÜO{§3(−∞,+∞)Âñ§u´ýéÂñ.(1+x2)nn=1 课后答案网www.khdaw.comXnx21x6=0§Sn(x)==1−§S(x)=limSn(x)=1(1+x2)k(1+x2)nn→∞k=11,x6=0x=0§Sn(0)=0,S(0)=0§KS(x)=0,x=0X∞x2ÏSn(x)3(−∞,+∞)þëY§S(x)3(−∞,+∞)þØëY§K3(−∞,+∞)SØÂñ.(1+x2)nn=18.y²µXX∞(1)XJ|fn(x)|3[a,b]þÂñ§@"fn(x)3[a,b]þÂñ¶1XXX∞nnn+1(2)XJfn(x)3[a,b]þÂñ§|fn(x)|7Âñ§±(−1)(x−x),06x61~15`².y²µ(1)dÜOK9K§+=é∀ε>0,∃N=N(ε)∈Z§¦n>N§éx∈[a,b]Ú?¿p∈Z§k|fn+1(x)|+|fn+2(x)|+···+|fn+p(x)|<εl|fn+1(x)+fn+2(x)+···+fn+p(x)|6|fn+1(x)|+|fn+2(x)|+···+|fn+p(x)|<εX∞KâÂñÜOK§fn(x)3[a,b]þÂñ.1X∞nnn+1(2)~µ(−1)(x−x)3[0,1]þÂñ1nn+1nn+1nnn+1Ïx−x=0(x=0,1)¶00)(iii)1+ε6x<∞)µπ0,06x6πx6=(1)f(x)=limfn(x)=2n→∞π1,x=2nÏf(x)3[0,π]þØëY§fn(x)3[0,π]þëY§Kfn(x)=(sinx)3[0,π]þØÂñ. 课后答案网www.khdaw.com1810,x=0,π(2)(i)f(x)=limfn(x)=n→∞1,00§¦α0§Ke>1§u´lim=<1§KdKO{4/ª§?n→∞ne−nαeαX∞X∞−nα−nxêneÂñ§lâMO{§ne3[α,β]þÂñ.11X∞−nx−nxqne3[α,β]þëY§lne3[α,β]þëY1X∞−nxÏx0∈[α,β]§Kne3x0:ëY1X∞−nxdux0´(0,+∞)?¿:§ne3(0,+∞)SëY.1X∞sinnx12.y²¼êf(x)=3(−∞,+∞)SëY§¿këY¼ê.n31sinnx1X∞1X∞sinnxy²µÏ6Âñ§KâMO{§f(x)=3(−∞,+∞)Âñn3n3n3n311sinnxX∞sinnxq3(−∞,+∞)SëY§Kf(x)=3(−∞,+∞)SëYn3n3!1dsinnxcosnx=dxn3n2cosnx1X∞1X∞cosnxÏ6Âñ§KâMO{§3(−∞,+∞)Âñn2n2n2n21!1dX∞sinnxX∞cosnx0u´f(x)==dxn3n211cosnxX∞cosnxq3(−∞,+∞)SëY§K3(−∞,+∞)SëYn2n21 课后答案网www.khdaw.comX∞cosnx00=f(x)3(−∞,+∞)SëYf(x)=.n21X∞113.y²¼êζ(x)=3(1,+∞)ëY§¿këY¼ê.nx1X∞lnny²µ¦ê¤?ê−.ey§311?¿5§ζ(x)=−é11)ÑÂñ§ìþã§yµé?Ûnan=1(k)êk§ζ(x)31m§cos(2πy)=1§d?êتu0§Kcos(2πx)=cos(2πy)uѧu´πcos(2πx)u111Ñ−mmq3?Û«mSÑ3x=k+2h(h=0,1,2,···,2−1)ù:§kxêÜ©X∞sin(2nπx)K?ê3?Û«mSØUŦû.2n115.ky1−r2X∞n=1+2rcosnx1−2rcosx+r2n=1|r|<1¤á§ly²µZπ21−rdx=2π(|r|<1)−π1−2rcosx+r2.nny²µ|rcosnx|6|r|é∀x∈(−∞,+∞)ѤáX∞X∞nnÏ|r|<1§K|r|Âñ§u´dMO{§rcosnx3(−∞,+∞)SÂñn=1n=1 课后答案网www.khdaw.com183X∞nlf(x)=1+2rcosnxn=122Ï1−2rcosx+r6=0§þªüàÓ¦±1−2rcosx+r§K!X∞22n(1−2rcosx+r)f(x)=(1−2rcosx+r)1+2rcosnx"n=1#X∞X∞X∞2nn+1n+2=1−2rcosx+r+2rcosnx−2r(2cosnxcosx)+2rcosnx"n=1n=1n=1#X∞X∞X∞X∞2nn+1n+1n+2=1−2rcosx+r+2rcosnx−2rcos(n+1)x−2rcos(n−1)x+2rcosnx"n=1n=1!n=1n=1!#X∞X∞X∞X∞2nn+1n+12n+2=1−r+2rcosnx−2rcos(n+1)x+rcosx−2rcos(n−1)x−r+2rcosnxn=1n=1n=1n=12=1−r1−r21−r2X∞nu´f(x)===1+2rcosnx1−2rcosx+r21−2rcosx+r2n=1nduþªmà?ê3[−π,π]þÂñ§rcosnx3[−π,π]þëY§Kþª?ê±ÅÈ©§Zπ2ZπX∞!X∞Zπ1−rnndx=1+2rcosnxdx=2π+2rcosnxdx=2π.−π1−2rcosx+r2−π−πn=1n=116.^kCX½ny²)Z½n.+y²µÏ{Sn(x)}3[a,b]þÂñuS(x)§é∀ε>0,∀x∈[a,b],∃N(ε,x)∈Z§¦n>N(ε,x)§ÑAk|Sn(x)−S(x)|<ε§AOk|SN(ε,x)−S(x)|<εdSN(ε,x)(x)−S(x)3x:ëY§3x:mOx§¦|SN(ε,x)(y)−S(y)|,∀y∈Oxu´Oxx∈[a,b]¤[a,b]mCX(éà:a,bëYòÿ)âkCX½n§l¥ÀÑkmOx1,···,OxmÓCX[a,b]÷v|SN(ε,xi)(y)−S(y)|<ε,∀y∈Ox,i=1,2,···,miSmN=maxN(ε,xi)§Kn>N§é∀x∈[a,b]§d{Sn(x)}üN5ÚOx⊃[a,b]§73,ii6i6mi=1Ox§¦x∈Ox§k|Sn(x)−S(x)|6|SN(x)−S(x)|6|SN(ε,xi)(x)−S(x)|<εii={Sn(x)}3[a,b]þÂñuS(x).17.eSn(x)3c:ëY(n=1,2,3,···)§{Sn(c)}uѧK3?Ûm«m(c−δ,c)S(δ>0)§{Sn(x)}7ØÂñ.y²µ^y{.b3δ0>0§¦{Sn(x)}3(c−δ0,c)SÂñ++dÂñÜn§é∀ε>0,∃N(ε)∈Z§¦n>N(ε)§é∀x∈(c−δ0,c)Ú∀p∈Z§ÑAεk|Sn+p(x)−Sn(x)|<(∗)¤á2ÏzSn(x)3c:ëY§KSn+p(x)−Sn(x)3c:ëYu´lim[Sn+p(x)−Sn(x)]=Sn+p(c)−Sn(c)x→c−0ε3(∗)ªüà-x→c−0§|Sn+p(c)−Sn(c)|6<ε2dêÜÂñn§{Sn(c)}Âñ§®{Sn(c)}uÑgñbØ(§K3?Ûm«m(c−δ,c)S(δ>0)§{Sn(x)}7ØÂñ. 课后答案网www.khdaw.com§2.?ê1.¦e?êÂñ«mµX∞(2x)n(1)n!n=1X∞ln(n+1)n+1(2)xn+1n=1"!n#nX∞n+1(3)xnn=1∞n2Xx(4)2nn=1X∞[3+(−1)n]nn(5)xnn=1X∞3n+(−2)nn(6)(x+1)nn=1)µn2(1)an=n!anÏR=lim=+∞§KÙÂñ(−∞,+∞).n→∞an+1X∞ln(n+1)X∞lnnlnnn+1n(2)x=x§an=n+1nnn=1n=2(y+1)lnyy+1lnyandulim=limlim=1§KR=lim=1§u´ÙÂñ«my→+∞yln(y+1)y→+∞yy→+∞ln(y+1)n→∞an+1(−1,1)X∞lnnnnx=−1§?ê(−1)xn!n=2!()00lnx1−lnxlnxlnnÏ=x>3§<0§KüN~xx2xnlnnX∞lnnX∞lnnnnnnqlim=0§K?ê(−1)x4ÙZ[?ê§u´?ê(−1)xÂñn→∞nnnn=2n=2X∞lnnnx=1§?êxnn=2lnnX∞1X∞lnnnnÏlim=+∞§Kâ?ê"O{9?êuѧ?êxuÑn→∞nnnn=1n=2Kd?êÂñ[−1,1)."!n#n!n2!n2X∞n+1X∞11n(3)Ïx=1+x§Kan=1+nnnn=1n=1!p111qlimn|an|=e§KÙÂñ»R=§Âñ«m−,.n→∞eee!n2!n!n2!n1X∞1111nnx=±§?ê(±1)1+§Kun=(±1)1+enenen=1−1dâ7{K§lim|un|=e26=0n→∞!n2!n!X∞1111nK?ê(±1)1+uѧu´?êÂñ−,.neeen=1 课后答案网www.khdaw.com1851(4)an=2nrnp2n2n1dlim|an|x=|x|lim=|x|<1§ÙÂñ»R=1§Âñ«m(−1,1)n→∞n→∞2∞n2X(±1)|x|=1=x=±1§?êC2nn=1X∞n2X∞X∞n2(±1)1(±1)du?ê=Âñ§K?êýéÂñKÂñ2n2n2nn=1n=1n=1∞n2Xxl?êÂñ[−1,1].2nn=1nn[3+(−1)](5)an=rn!nnn[3+(−1)]111Ïlim=4§K?êÂñ»R=§Âñ«m−,n→∞n4441X∞[3+(−1)n]nX∞1X∞1x=§?êC=+4n·4n2k(2k+1)22k+1n=1k=1k=1X∞1é?ê(2k+1)22k+1k=11X∞(2k+3)22k+311Ïlim=<1§KâKO{§?êÂñk→∞14(2k+1)22k+1k=1(2k+1)22k+1X∞1X∞[3+(−1)n]nq?êuѧK?êuÑ2kn·4nk=1n=11X∞[3+(−1)n]nnÓ{§x=−§?ê(−1)uÑ4n·4nn=1!X∞[3+(−1)n]n11nK?êxÂñ−,.n44n=1nn3+(−2)(6)an=n!an1142Ïlim=§K?êÂñ»R=§Âñ«m−,−n→∞an+13333X∞nn!nX∞nX∞2n43+(−2)1(−1)n3x=−§?êC(−1)=+3n3nnn=1n=1n=1X∞2n3é?ênn=12n+1X∞2n/(n+1)233Ïlim2n=<1§KâKO{§Âñn→∞/n3n3n=1X∞(−1)n4q?êÂñ§Kx=−§?êÂñ¶n3n=12Ó{§x=−§?êuÑ3"!X∞3n+(−2)n42nK?ê(x+1)Âñ−,−.n33n=12.¦?êÂñ»µ!X∞11n(1)1++···+x2nn=1X(2n)!n(2)x(n!)2)µ 课后答案网www.khdaw.com11(1)an=1++···+r2rnn1n11√nÏ1=n·61++···+6n·1→1(n→∞)pn2nKlimn|an|=1§u´ÙÂñ»R=1.n→∞(2n)!(2)an=(n!)2a2n(n+1)11Ïlim=lim=§u´ÙÂñ»R=.n→∞an+1n→∞2(n+1)(2n+1)44X∞3n+(−2)nXXnnn3.(x+1)?êanxÂñ»R§bnxÂñ»Q§?Øe?êÂñnn=1»µX2n(1)anxXn(2)(an+bn)xXn(3)anbnx)µrpp1211√(1)lim2n|an√n|=lim|an|==§KÙÂñ»R1=R.n→∞n→∞RR(2)Anp=an+bnppp√p√ppKkn|Annnnnnnn√n|=|an+bn|6|an|+|bn|62max(|an|,|bn|)=2·max(|an,bn|)=2max(|an|,|bn|)nÏlim2=1n→∞1p√ppppppK=limn|Annnnnnnn|6lim{2max(|an|,|bn|)}=lim{max(|an|,|bn|)}=maxlim|an|,lim|an|=R2n→∞!n→∞n→∞n→∞n→∞11max,RQ1l§R2>!=min(R,Q).11max,RQ(3)Bnp=anbnpppKkn|Bnnnn|=|anbn|=|an|·|bn|1ppppp111u´=limn|Bnnnnn|=lim{|an|·|bn|6lim|an|·lim|bn|}=·=R3n→∞n→∞n→∞n→∞RQRQlR3>RQ.XXnn4.é¿©n§|an|6|bn|§@"?êanxÂñ»ØubnxÂñ».ppppy²µÏé¿©n§|annnnn|6|bn|§K|an|6|bn|§u´lim|an|6lim|bn|XXn→∞n→∞nn?êanxÂñ»R§?êbnxÂñ»Qpp11K0Q¶n→∞n→∞limn|an|limn|bn|ppn→∞n→∞0=limn|ann|6lim|bn|§KR=∞,Q6∞§u´R>Q¶n→∞pn→∞plimn|ann|6lim|bn|=∞§KR>0,Q=0§u´R>Qn→∞Xn→∞Xnnnþ§?êanxÂñ»ØubnxÂñ».5.y²?ê51Ú52.y²µ51.x(x0−R,x0+R)S?:§o±À00§½3õªQ(x)§¦||f(x)−Q(x)||=max|f(x)−Q(x)|0§kϕ(z)dz→(p→∞)πaz2y²µ(1)Ïϕ(x)3[a,b]þüNO¼ê§Kϕ(−t)3[−b,−a]þüN~¼êa=0,b<0§ϕ(−t)3[0,−b](−b>0)þüNO¼êZZZbsinpzbsinpz−bsinptéϕ(z)dzCþz=−t§Kϕ(z)=−ϕ(−t)dtazZaz0Zt−bsinptπbsinpzπKd)á4Ún§limϕ(−t)dt=ϕ(−0)=limϕ(z)dz=−ϕ(−0)Zp→∞0t2p→∞az21bsinpz1u´ϕ(z)dz→−ϕ(−0)(p→∞)πaz2ZZZbsinpz0sinpzbsinpz(2)Ïa<0,b>0§ϕ(x)3[a,b]þüNO¼ê§ϕ(z)dz=ϕ(z)dz+ϕ(z)dzZaZzaz0zasinpzπ0sinpzπâ(1)§limϕ(z)dz=−ϕ(−0)§Klimϕ(z)dz=ϕ(−0)p→∞0zZ2p→∞az2bsinpzπqd)á4Ún§limϕ(z)dt=ϕ(+0)p→∞0z2ZbsinpzπKlimϕ(z)dz=[ϕ(+0)+ϕ(−0)]p→∞az2Z1bsinpzϕ(−0)+ϕ(+0)u´ϕ(z)dz→(p→∞)πaz2 课后答案网www.khdaw.com§2.LpDC1.f(x)3(−∞,+∞)Sýéȧy²fb(ω)3(−∞,+∞)SëY.000000y²µé∀ω∈(−∞,+∞)§okA,A§¦ω∈[A,A]Z+∞Z+∞dufb(ω)=f(x)e−iωxdx6|f(x)|dx−∞−∞Z+∞−iωx000öÂñعëþω§ùL²È©fb(ω)=f(x)edx3[A,A]þÂñ−∞000âÂñÈ©ëY5§fb(ω)3[A,A]þëY§l3:ω?ëYdω?¿5§fb(ω)3(−∞,+∞)SëY.2.f(x)3(−∞,+∞)Sýéȧy²limfb(ω)=0.ω→∞Z+∞εy²µdf(x)3(−∞,+∞)Sýéȧéu?ε>0§3A>0§¦k|f(x)|dx0§¦ω>δ§ðk|mk|<ω3k=1k=1uZ´éþã¤Àδ§Zω>δZZ+∞A+∞+∞f(x)sinωxdx6f(x)sinωxdx+f(x)sinωxdx6ε=limf(x)sinωxdx=0ω→∞00A0Ùg§f(x)3«m[0,A]¥k×:§{Bå§Øk×:0Zηεu´é?ε>0§3η>0§¦k|f(x)|dx<03ZAεqf(x)3[η,A]þÃa:§A^þã(J3䧦ω>δ§ðkf(x)sinωxdx<η3ZZZZ+∞ηA+∞u´ω>δ§kf(x)sinωxdx6|f(x)|dx+f(x)sinωxdx+|f(x)|dx<εZ00ηA+∞=limf(x)sinωxdx=0ω→∞0Z+∞Ó{§f(x)3(−∞,+∞)Sýéȧþklimf(x)sinωxdx=0ω→∞Z−∞+∞Ó{yf(x)3(−∞,+∞)Sýéȧlimf(x)cosωxdx=0ω→∞−∞u´limfb(x)=0.ω→∞3.¦e¼êLpDCµπEsinω0x,|x|<(1)f(x)=ω0π0,|x|>ω0π0,−∞0,∃N∈Z§n>N§kr(Mn,M0)<εpn→∞=(xn−x0)2+(yn−y0)2<εu´½k|xn−x0|6r(Mn,M0)<ε,|yn−y0|6r(Mn,M0)<ε=xn→x0,yn→y0(n→∞)⇐pÏ(|x22222n−x0|+|yn−y0|)>|xn−x0|+|yn−y0|=06|xn−x0|+|yn−y0|6|xn−x0|+|yn−y0|pqxn→x0,yn→y0(n→∞)§K|xn−x0|2+|yn−y0|2→0(n→∞)=(xn,yn)→(x0,y0)(n→∞)2.y²µe²¡þ:{Mn}Âñ§K§k4.0y²µlimMn=M0§bqklimMn=M0n→∞n→∞εε+0d½Â§é∀ε>0,∃N∈Z§n>N§kr(Mn,M0)<,r(Mn,M0)<2200dnت§kr(M0,M0)6r(Mn,M0)+r(Mn,M0)<ε000qM0,M0½ü:§dε?¿5§r(M0,M0)=0=M0=M0.3.y²µeMn→M0(n→∞)§@o§?ÛfMn→M0.k+y²µÏMn→M0(n→∞)§Ké∀ε>0,∃N∈Z§n>N§kr(Mn,M0)<ε8K=N§Kék>K§knk>nK=nN>N§g,kr(Mn,M0)<ε=Mn→M0(k→∞).kk4.¦e:8ES:§:§>.:µ2(1)Ed÷vyx:(x,y)´E:¶÷vy=x:(x,y)´E>.:.222yyy222(2)÷v14:(x,y)´E:¶44422yy22÷vx+=1½x+=4:(x,y)´E>.:.442222(3)÷v01:(x,y)´E:¶:θ9÷22vx+y=1:(x,y)´E>.:.(4)dknê9ÃnêÈ5§²¡þ¤k:(x,y)Ñ´E>.:.5.y²µeM0´²¡:8Eà:§K3E¥3:Mn→M0(n→∞).1y²µ®M0´²¡:8Eà:§δn=§3O(M0,δ1)¥½3E:M16=M0¶3O(M0,δ2)¥½n3E:M2,M26=Mi(i6=0,1)1Xd?1e§:{Mn}(Mn6=Mi)(i=0,1,···,n−1)r(M0,Mn)0,∃N∈Z§n,m>N§kr(Mn,M0)<,r(Mm,M0)<22 课后答案网www.khdaw.com205dålnت§r(Mm,Mn)6r(Mn,M0)+r(Mm,M0)<ε⇐+:{Mn}÷vé∀ε>0,∃N∈Z§n,m>N§kr(Mn,Mm)<εò{Mn}©OÝKüI¶þ§ê{xn},{yn}Ï|xm−xn|0y61(2)½Â÷vتy6x+1:8(3)½Â²¡x+y<022(4)½Â÷vت2kπ6x+y6(2k+1)π(k=0,1,2,···):822222(5)½Â÷vتr6x+y+z6R:82.¦e4µ22x+y(1)limx→0|x|+|y|y→022x+y(2)limpx→0x2+y2+1−1y→0221+x+y(3)limx→0x2+y2y→033sin(x+y)(4)limx→0x2+y2y→022−(x+y)(5)lim(x+y)ex→+∞y→+∞yln(x+e)(6)limpx→1x2+y2y→0)µ22222x+y(|x|+|y|)x+y(1)Ï066=|x|+|y|lim(|x|+|y|)=0§Klim=0|x|+|y||x|+|y|x→0x→0|x|+|y|y→0y→022t√x+y(2)Ïlim√=lim(t+1+1)=2§Klimp=2t→+0t+1−1t→+0x→0x2+y2+1−1y→0221+t1+x+y(3)Ïlim=+∞§Klim=+∞t→+0tx→0x2+y2y→0sin(x3+y3)|x3+y3||x|3+|y|3|x|3|y|3(4)Ï0666=+6|x|+|y|lim(|x|+|y|)=0x2+y2x2+y2x2+y2x2+y2x2+y2x→0y→033sin(x+y)Klim=0x→0x2+y2y→02tt(5)Ïlim=0,lim=0t→+∞ett→+∞et"#2(x+y)xy22−(x+y)Klim(x+y)e=lim−2·=0x→+∞x→+∞e−(x+y)exeyy→+∞y→+∞yln(x+e)(6)limp=ln2x→1x2+y2y→0 课后答案网www.khdaw.com2073.Áyelimf(x,y)=A3§x?ÛaC§4limf(x,y)=ϕ(x)3§Kg43§y→ay→bx→buAµlimlimf(x,y)=limf(x,y)=Ax→ay→by→ax→b.22y²µÏ43§Ké∀ε>0,∃δ>0§|x−a|<δ,|y−b|<δ(x−a)+(y−b)6=0§ðk|f(x,y)−A|<εy30<|x−a|<δ¥½x§3þª¥-y→b§=|ϕ(x)−A|6ε§ùÒy²limϕ(x)=Ax→au´limlimf(x,y)=limϕ(x)=A=limf(x,y)x→ay→bx→ay→ax→b4.(1)ÁÞÑüg4Ø~f¶(2)ÁÞÑkg43~f¶(3)ÁÞÑ43§g4Ø3~f.)µx−y,x+y6=0(1)~µf(x,y)=x+y3:(0,0)g40,x+y=0x−ylimlimf(x,y)=lim=1,limlimf(x,y)=lim=−1x→0y→0x→0xy→0x→0y→0yKlimlimf(x,y)6=limlimf(x,y).x→0y→0y→0x→01xsin+yx(2)~µf(x,y)=3:(0,0)g4x+yylimlimf(x,y)=lim=1y→0x→0y→0y1xsinx1limlimf(x,y)=lim=limsinØ3.x→0y→0x→0xx→0x1xsin,y6=0(3)~µf(x,y)=y3:(0,0)g4Ú40,y=01Ï06|f(x,y)|=xsin6|x|§Klimf(x,y)=0=Ù43yx→0y→01limlimf(x,y)=0§y→0§xsin4Ø3§=limlimf(x,y)Ø3.y→0x→0yx→0y→05.?Øe¼ê3:(0,0)g4Ú4µ22xy(1)f(x,y)=x2y2+(x−y)211(2)f(x,y)=(x+y)·sin·sinxy)µ(1)limlimf(x,y)=0,limlimf(x,y)=0x→0y→0y→0x→022xkeUy=kx→04§Kklimf(x,y)=limy=kxx→0x2k2+(1−k)2x→0AO§©Ok6=19k=1§BØÓ4091§Ïdlimf(x,y)Ø3.x→0y→0(2)Ï06|f(x,y)|6|x+y|6|x|+|y|§Klimf(x,y)=0=Ù43x→0y→0!11111qlim(x+y)·sin·sinØ3x6=(k=±1,±2,···)§lim(x+y)·sin·sinØy→0xykπx→0xy!13y6=(k=±1,±2,···)kπ=limlimf(x,y)9limlimf(x,y)ÑØ3.x→0y→0y→0x→0 课后答案网www.khdaw.com6.?Øe¼êëYµ1(1)u=px2+y222(2)u=ln(1−x−y)1(3)u=sinxsiny1(4)u=ln(x−1)a+(y−b)2+(z−c)2)µ1(1)¼êu=p3:(0,0)ý§:(0,0)d¼êØëY:§Ød:þëY¶x2+y22222(2)üS:§=÷vx+y<1:¼êu=ln(1−x−y)ëY:¶(3)ëYx6=mπ,y6=nπ(m,n=0,±1,±2,···).(4)Ø:(a.b.c)þëY.7.y²¼ê2xy22,x+y6=0f(x,y)=x2+y2220,x+y=0©OéuzCþxÚy´ëY§"uCþëY¼ê.2axy²µk½y=a6=0§Kx¼êg(x)=f(x,a)=(−∞0§|x−x0|<δ1§εk|f(x,y0)−f(x0,y0)|<2qÏf(x,y)3GSéy÷voÊF[^§Ké?Û(x,y)∈G,(x,y0)∈G§k|f(x,y)−f(x,y0)|6L|y−y0| 课后答案网www.khdaw.com209εε-L|y−y0|<§K|y−y0|<2!2Lεδ=minδ1,§|x−x0|<δ,|y−y0|<䧽k2L|f(x,y)−f(x0,y0)|6|f(x,y)−f(x,y0)|+|f(x,y0)−f(x0,y0)|<ε=d¼ê3GSëY. 课后答案网www.khdaw.com1oÙêÚ©§1.êÚ©Vg1.¦e¼êêµ222(1)z=xln(x+y)xy(2)u=ex(3)z=xy+yy(4)u=arctanx222(5)u=x+y+z+2xy+2yz+2zxϕ−θ(6)u=ecos(θ+ϕ))µ"#22x2xy22(1)zx=2xln(x+y)+,zy=.x2+y2x2+y2xyxy(2)ux=ye,uy=xe.21x(y−1)(3)zx=y+,zy=.yy2yx(4)ux=−,uy=.x2+y2x2+y2(5)ux=2(x+y+z),uy=2(x+y+z),uz=2(x+y+z).ϕ−θϕ−θ(6)uϕ=e[cos(θ+ϕ)−sin(θ+ϕ)],uθ=−e[sin(θ+ϕ)+cos(θ+ϕ)].222.f(x,y)=xy−2y§¦fx(x,y),fy(x,y),fx(2,3),fy(0,0),fy(x,y)x=y.y=x222)µfx(x,y)=2xy,fy(x,y)=2xy−2,fx(2,3)=36,fy(0,0)=−2,fy(x,y)x=y=2xy−2y=x√√∂z∂z13.z=ln(x+y)§y²x+y=.∂x∂y2√√∂z1∂z1y²µÏz=ln(x+y)§K=√√√,=√√√∂x2x(x+y)∂y2y(x+y)∂z∂z1u´x+y=.∂x∂y24.¦e¼ê3½:(x0,y0)©µ4422(1)u=x+y−4xy,(0,0),(1,1)x(2)u=p,(1,0),(0,1)x2+y2!ππ(3)u=xsin(x+y),(0,0),,442(4)u=ln(x+y),(0,1),(1,1))µ2222(1)Ïdu=4x(x−2y)dx+4y(y−2x)dy§K3(0,0):du=0¶3(1,1):du=−4dx−4dy.2yxy(2)Ïdu=dx−dy§K33(x2+y2)2(x2+y2)23(1,0):du=0¶3(0,1):du=dx.(3)Ïdu=[sin(x+y)+xcos(x+y)]dx+xcos(x+y)dy§K!ππ3(0,0):du=0¶3,:du=dx.44 课后答案网www.khdaw.com211dx2y(4)Ïdu=+dy§Kx+y2x+y2dx3(0,1):du=dx+2dy¶3(1,1):du=+dy.25.¦e¼ê©µ22(1)u=sin(x+y)mn(2)u=x·yxy(3)u=ey(4)u=xp(5)u=x2+y2+z2222(6)u=ln(x+y+z))µ22(1)du=2cos(x+y)(xdx+ydy)m−1n−1(2)du=xy(mydx+nxdy)xy(3)du=e(ydx+xdy)y−1(4)du=x(ydx+xlnxdy)xdx+ydy+zdz(5)du=px2+y2+z22(xdx+ydy+zdz)(6)du=x2+y2+z2p6.y²µf(x,y)=|xy|3(0,0)ëY§fx(0,0),fy(0,0)3§3(0,0):Ø.py²µdlim|xy|=0§limf(x,y)=0=f(0,0)§Kf(x,y)3(0,0):ëYx→0x→0y→0y→0f(∆x,0)−f(0,0)f(0,∆y)−f(0,0)Ïfx(0,0)=lim=0,fy(0,0)=lim=0∆x→0∆x∆y→0∆yKfx(0,0),fyp(0,0)3f(x,y)=|xy|3(0,0):Ø.e§Kk∆f=fx(0,0)∆x+fy(0,0)∆y+o(ρ)=∆f=o(ρ)p∆f|∆x∆y|1Ä:P(x,y)÷y=xªu0§k=p=√6→0(ρ→0)gñ§u´bؤá§ρ∆x2+∆y22Kf(x,y)3(0,0):Ø.xy22p,x+y6=07.y²µf(x,y)=x2+y23(0,0):¥ëY§fx(x,y),fy(x,y)k.§3(0,0):220,x+y=0Ø.xy22y²µdup´Ð¼ê§3Ù½ÂS7ëY§Kf(x,y)3x+y6=0ëYx2+y2pxy|xy|x2+y2q00)∂z∂zpu´x+y=z=x2+y2.∂x∂y9.ϕψ´?¿¼ê§y²µ!!yyz=xϕ+ψxx 课后答案网www.khdaw.com222∂z∂z∂z22÷vx+2xy+y=0∂x2∂x∂y!∂y2!!!!∂zyyyyy∂zy1y0000y²µÏ=ϕ−ϕ−ψ,=ϕ+ψ∂xxxxx2x∂yxxx22222∂zy2yy∂zy1y∂z1100000000000000K=ϕ+ψ+ψ,=−ϕ−ψ−ψ,=ϕ+ψ∂x2x3x3x4∂x∂yx2x2x3∂y2xx2222∂z∂z∂z22u´x+2xy+y=0∂x2∂x∂y∂y210.u=ϕ(x+at)+ψ(x−at)§Ù¥ϕ,ψ´?¿g¼ê§¦y22∂u∂u2=a.∂t2∂x2y²µÏu=ϕ(x+at)+ψ(x−at)§ϕ,ψ´?¿g¼ê22∂u∂u∂u∂u0000200000000K=a(ϕ−ψ),=ϕ+ψ§u´=a(ϕ+ψ),=ϕ+ψ∂t∂x∂t2∂x222∂u∂u2l=a.∂t2∂x2 课后答案网www.khdaw.com217§3.d§(|)¤(½¼ê¦{1.¦de§¤(½¼êz=f(x,y)Úêµz(1)x+y+z=e(2)xyz=x+y+z)µz1ez(1)ü>"ux¦§1+zx=zxe§Kzx=§u´zx2=ez−1(1−ez)3zz1eeÓ{§zy=,zy2=,zxy=zyx=ez−1(1−ez)3(1−ez)3yz−1(2)ü>"ux¦§yz+xyzx=1+zx(∗)§Kzx=1−xy2yzx2y(yz−1)ò(∗)ªü>"ux¦§2yzx+xyzx2=zx2§Kzx2==1−xy(xy−1)2xz−12x(xz−1)2zÓ{§zy=,zy2=,zxy=zyx=1−xy(xy−1)2(xy−1)22.¦de§¤(½¼ê©½êµ∂z∂z(1)f(x+y,y+z,z+x)=0§¦,¶∂x∂y(2)z=f(xz,z−y)§¦dz¶∂z∂z(3)F(x−y,y−z,z−x)=0§¦,¶∂x∂y2∂z∂z∂z(4)F(x,x+y,x+y+z)=0§¦,,.∂x∂y∂x2)µf1+f3(1)ü>"ux¦§z=z(x,y)§f1+f2zx+f3(zx+1)=0§Kzx=−f2+f3f1+f2Ó{§zy=−f2+f3zf1dx−f2dy(2)ü੧dz=(xdz+zdx)f1+(dz−dy)f2§Kdz=1−xf1−f2F1−F3(3)ü>"ux¦§z=z(x,y)§F1−F2zx+F3(zx−1)=0§Kzx=F2−F3F2−F1Ó{§zy=F2−F3F1+F2+F3(4)ü>"ux¦§z=z(x,y)§F1+F2+F3(1+zx)=0(∗)§Kzx=−F33(∗)ªü>2"ux¦§F11+F12+F13(1+zx)+F21+F22+F23(1+zx)+zx2F3+(1+zx)[F13+F23+F33(1+zx)]=0122Kzx2=−3[F3(F11+2F12+F22)−2F3(F1+F2)(F13+F23)+F33(F1+F2)]F3F2+F3Ó{§zy=−F303.d§z=x+y·ϕ(z)(½¼êz=z(x,y)§1−yϕ(z)6=0§y²∂z∂z=ϕ(z)·∂y∂x0y²µ§ü੧z=z(x,y)§dz=dx+ϕ(z)dy+yϕ(z)dzdx+ϕ(z)dy0q1−yϕ(z)6=0§Kdz=1−yϕ0(z)∂zϕ(z)∂z1∂z∂zu´=,=§l=ϕ(z)·∂y1−yϕ0(z)∂x1−yϕ0(z)∂y∂x 课后答案网www.khdaw.com∂z∂z2224.y²d§ax+by+cz=Φ(x+y+z)¤½Â¼êz=z(x,y)÷v§(cy−bz)+(az−cx)=∂x∂ybx−ay§Ù¥Φ(u)´u¼ê§a,b,c~ê.y²µ§ü੧z=z(x,y)§Φ(u)´u¼ê0Kadx+bdy+cdz=2(xdx+ydy+zdz)Φ00∂z2xΦ−a∂z2yΦ−bu´=,=∂xc−2zΦ0∂yc−2zΦ0∂z∂zl(cy−bz)+(az−cx)=bx−ay∂x∂y∂z∂z5.ϕ?¿¼ê§y²d§ϕ(cx−az,cy−bz)=0¤½Â¼êz=z(x,y)÷va+b=c.∂x∂yy²µé§üà©O"ux,y¦§z=z(x,y)§cϕ1−aϕ1zx−bϕ2zx=0,−aϕ1zy+cϕ2−bϕ2zy=0∂zcϕ1∂zcϕ2u´=,=∂xaϕ1+bϕ2∂yaϕ1+bϕ2∂z∂zla+b=c.∂x∂y∂z∂z−1−16.y²d§F(x+zy,y+zx)=0¤(½¼êz=z(x,y)÷vx+y=z−xy.∂x∂yy²µé§üà©O"ux,y¦§z=z(x,y)§!!!!zxzxzzyzzyF11++F2−=0,F1−+F21+=0yxx2yy2x22∂zyzF2−xyF1∂zxzF1−xyF2u´=,=∂xx(xF1+yF2)∂yy(xF1+yF2)∂z∂zlx+y=z−xy.∂x∂y7.¦e§|¤(½¼êê½ê½©µ2x+y+z=0,dydzdy(1)¦,,¶x·y·z=1,dxdxdx2x+y=u+v,(2)xsinu¦du,dv¶=,ysinv2xu+yv=0,∂u∂u∂v∂v∂u(3)¦,,,,¶yu+xv=1,∂x∂y∂x∂y∂x∂yx=cosθcosϕ,∂z∂z(4)y=cosθsinϕ,¦,¶∂x∂yz=sinθ,u=f(u,x,v+y),∂u∂v(5)2¦,.v=g(u−x,u·y),∂x∂x)µdydz1++=0(1)éx¦§dxdx(∗)dydzyz+xz+xy=0dxdxdyy(z−x)dzz(x−y)éá¦)§=,=dxx(y−z)dxx(y−z)22dydz+=0(∗)ª2éx¦§dx2dx222dydzdydydzdydzdydzdzz+y+z+x·+xz+y+x·+xy=0dxdxdxdxdxdx2dxdxdxdx2d2y2zdy+2ydz+2xdy·dzdxdxdxdxéá§=dx2x(y−z)2222dydzdyyz[(x−y)+(x−z)+(y−z)]ò,§=dxdxdx2x2(z−y)3 课后答案网www.khdaw.com219u+v=x+ydu+dv=dx+dy(2)òªU©§ysinu=xsinvsinudy+ycosudu=sinvdx+xcosvdv1Kdu=[(sinv+xcosv)dx−(sinu−xcosv)dy]xcosv+ycosu1dv=[−(sinv−ycosu)dx+(sinu+ycosu)dy]xcosv+ycosuxdu+ydv=−udx−vdy(3)©§ydu+xdv=−vdx−udy11u´du=[(yv−xu)dx+(yu−xv)dy],dv=[(yu−xv)dx+(yv−xu)dy]x2−y2x2−y2∂uyv−xu∂uyu−xv∂vyu−xv∂uyv−xuK=,=,=,=∂xx2−y2∂yx2−y2∂xx2−y2∂xx2−y2222∂u(yux−v−xvx)(x−y)−2x(yu−xv)u´=∂x∂y(x2−y2)2222∂u∂v∂u2(xv+yv−2xyu)ò,§=∂x∂x∂x∂y(x2−y2)2∂θ∂ϕ1=−sinθ·cosϕ−cosθ·sinϕ(4)dx,yéx¦ê§∂x∂x∂θ∂ϕ0=−sinθ·sinϕ+cosθ·cosϕ∂x∂x∂θcosϕ∂ϕsinϕ∂z∂z∂θxK=−,=−§u´=·=−cotθcosϕ=−∂xsinθ∂xcosθ∂x∂θ∂xz∂zyÓn§=−∂yz∂u∂u∂v=f1+f2+f3∂x∂x!∂x(5)éx¦§∂v∂u∂v=g1−1+2vyg2∂x∂x∂x∂uf2(1−2vyg2)−g1f3∂vg1(f1+f2−1)K=,=.∂x(f1−1)(2vyg2−1)−g1f3∂x(f1−1)(2vyg2−1)−g1f3∂z∂z22338.§x=u+v,y=u+v,z=u+v½Âzx,y¼ê§¦,.∂x∂yx2222)µÏx−y=2uv§Kz=(u+v)(u−uv+v)=(3y−x)2∂z3∂z32u´=(y−x),=x.∂x2∂y29.x=rcosθ,y=rsinθ§C§dx22=y+kx(x+y)dtdy22=−x+ky(x+y)dt4I§.)µd§§x,y´t¼ê§l4ICr,θ´t¼ê§x=rcosθ,y=rsinθdxdrdθ=cosθ−rsinθüàét¦§dtdtdtdydrdθ=sinθ+rcosθdtdtdtdrdθ2dxdycosθ−rsinθ=rsinθ+krcosθ·ròx,y,,§|§dtdtdtdtdrdθ2sinθ+rcosθ=−rcosθ+krsinθ·rdtdtdrdθ3u´=kr,=−1.dtdt22∂z∂zuu10.x=ecosθ,y=esinθ§C§+=0.∂x2∂y2yuu22)µÏx=ecosθ,y=esinθ§Ku=ln(x+y),θ=arctanx 课后答案网www.khdaw.com∂ux∂uy∂θy∂θx∂u∂θ∂u∂θK=,=;=−,=§u´=,=−∂xx2+y2∂yx2+y2∂xx2+y2∂yx2+y2∂x∂y∂y∂x∂z∂z∂u∂z∂θ∂z∂z∂u∂z∂θq=·+·,=·+·∂x∂u∂x∂θ∂x∂y∂u∂y∂θ∂y!2!2222222∂z∂z∂u∂z∂u∂θ∂z∂θ∂z∂u∂z∂θK=+2··++·+·∂x2∂u2∂x∂θ∂u∂x∂x∂θ2∂x∂u∂x2∂θ∂x2!2!2222222∂z∂z∂u∂z∂u∂θ∂z∂θ∂z∂u∂z∂θ=+2··++·+·∂y2∂u2∂y∂θ∂u∂y∂y∂θ2∂y∂u∂y2∂θ∂y2!!!22∂u∂∂θ∂∂θ∂∂u∂uq===−=−∂x2∂x∂y∂y∂x∂y∂y∂y222∂θ∂θÓ{§=−∂x2∂y22222∂θ∂θ∂u∂uK+=+=0∂x2∂y2∂x2∂y2!2!2!2!2∂u∂u∂θ∂θ∂u∂θ∂u∂θq+=+,·=−·∂x∂y∂x∂y∂x∂x∂y∂y!2222∂z∂z∂z∂z−2uK+=e+=0∂x2∂y2∂u2∂θ222∂z∂z=+=0.∂u2∂θ222∂f∂f11.x=rcosθ,y=rsinθ§Kf(x,y)=Φ(r,θ)§^Φ"ur,θê5L«+.∂x2∂y2)µòf(x,y)=Φ(r,θ)"ur,覧∂f∂x∂f∂y∂Φ∂f∂f∂Φ·+·==cosθ+sinθ=∂x∂r∂y∂r∂r∂x∂y∂r∂f∂x∂f∂y∂Φ∂f∂f∂Φ·+·==−rsinθ+rcosθ=∂x∂θ∂y∂θ∂θ∂x∂y∂θ2222∂Φ∂f∂f∂f22K=cosθ+sin2θ+sinθ∂r2∂x2∂x∂y∂y2!2222∂Φ∂f∂f∂f∂f∂f222=rsinθ−sin2θ+cosθ−rcosθ−rsinθ∂θ2∂x2∂x∂y∂y2∂x∂y2222∂Φ1∂Φ∂f∂f1∂Φu´+=+−∂r2r2∂θ2∂x2∂y2r∂r2222∂f∂f∂Φ1∂Φ1∂Φl+=++∂x2∂y2∂r2r2∂θ2r∂r222∂z∂z∂zξη2212.x=e,y=e§C§ax+2bxy+cy=0(a,b,c~ê).∂x2∂x∂y∂y2dξ1dη1ξη)µÏx=e,y=e§Kξ=lnx,η=lny§u´=,=dxxdyy∂z1∂z∂z1∂zK=,=∂xx∂ξ∂yy∂η!!222222∂z1∂z∂z∂z1∂z∂z∂z1∂zu´=−,=−,=∂x2x2∂ξ2∂ξ∂y2y2∂η2∂η∂x∂yxy∂ξ∂η!!222∂z∂z∂z∂z∂z§§z{n§a−+2b+c−=0.∂ξ2∂ξ∂ξ∂η∂η2∂η∂z∂z2213.ξ=x,η=x+y§C§y−x=0.∂x∂y)µd§z´x,y¼ê§ξ,ηq´x,y¼ê§lzw¤´ÏL¥mCþξ,η"ux,yEܼê∂z∂z∂z∂z∂zu´=+2x,=2y∂x∂ξ∂η∂y∂η∂z∂z∂zÏy−x=y∂x∂y∂ξ 课后答案网www.khdaw.com221∂z∂z∂zÏy6≡0§Kdy−x=0§=0.∂x∂y∂ξ∂u∂u∂u14.ξ=x,η=y−x,ζ=z−x§C§++=0.∂x∂y∂z)µd§u´x,y,z¼ê§ξ,η,ζq´x,y,z¼ê§luw¤´ÏL¥mCþξ,η,ζ"ux,y.zEܼê∂u∂u∂u∂u∂u∂u∂u∂uu´=−−,=,=∂x∂ξ∂η∂ζ∂y∂η∂z∂ζ∂u∂u∂u∂zKd++=0§=0∂x∂y∂z∂ξ222∂u∂u∂u15.5Cξ=x+λ1y,η=x+λ2y§y3r§A+2B+C=0(A,B,C~ê§∂x2∂x∂y∂y22∂u22AC−B<0)C=0§y²λ1,λ2§Cλ+2Bλ+A=0üÉ¢.∂ξ∂ηy²µd§u´x,y¼ê§Ï±ruÀ±ξ,η¥mCþ"ux,yEܼê§u´∂u∂u∂u∂u∂u∂u=+,=λ1+λ2∂x∂ξ∂η∂y∂ξ∂η22222222∂u∂u∂u∂u∂u∂u∂u∂u22∂x2=∂ξ2+2∂ξ∂η+∂η2,∂y2=λ1∂ξ2+2λ1λ2∂ξ∂η+λ2∂η2,2222∂u∂u∂u∂u=λ1+(λ1+λ2)+λ2∂x∂y∂ξ2∂ξ∂η∂η2222222∂u∂u∂u∂u∂u∂u2ÏA+2B+C=(A+2Bλ1+Cλ1)+2[A+B(λ1+λ2)+Cλ1λ2]+(A+∂x2∂x∂y∂y2∂ξ2∂ξ∂η∂η222Bλ2+Cλ2)=02∂2u∂2u∂2u∂2uA+2Bλ1+Cλ1=02¦A+2B+C=0C=0§7LA+2Bλ2+Cλ2=0∂x2∂x∂y∂y2∂ξ∂ηA+B(λ1+λ2)+Cλ1λ26=02dcü§λ1,λ2´§Cλ+2Bλ+A=02d1n§λ16=λ2§Kλ1,λ2´Cλ+2Bλ+A=0üÉ¢2BA22qÏλ1+λ2=−,λ1λ1=§KA+B(λ1+λ2)+Cλ1λ2=(AC−B)6=0CCC2222∂u∂u∂u∂uu´§A+2B+C=035Cξ=x+λ1y,η=x+λ2ye(¢C=0§∂x2∂x∂y∂y2∂ξ∂η2λ1,λ2§Cλ+2Bλ+A=0üÉ¢.!22∂w∂w∂ϕ∂ψ∂ϕ∂ψ16.y².Ê.d§∆w≡+=03Czx=ϕ(u,v),y=ψ(u,v)§÷v=,=−e∂x2∂y2∂u∂v∂v∂u/G±ØC.y²µl§ω´x,y¼ê§x,y´u,v¼ê§Kw´±x,y¥mCþu,v¼ê∂w∂w∂ϕ∂w∂ψ∂w∂w∂ϕ∂w∂ψu´=·+·,=·+·∂u∂x∂u∂y∂u∂v∂x∂v∂y∂v!2!2222222∂w∂w∂ϕ∂w∂ϕ∂ψ∂w∂ψ∂w∂ϕ∂w∂ψ=+2··++·+·∂u2∂x2∂u∂x∂y∂u∂u∂y2∂u∂x∂u2∂y∂u2!2!2222222∂w∂w∂ϕ∂w∂ϕ∂ψ∂w∂ψ∂w∂ϕ∂w∂ψ=+2··++·+·∂v2∂x2∂v∂x∂y∂v∂v∂y2∂v∂x∂v2∂y∂v222222222∂ϕ∂ψ∂ϕ∂ψ∂ϕ∂ψ∂ϕ∂ψ∂ψ∂ϕ∂ψ∂ϕ5¿òz^=,=−§K=,=−,=−,=∂u∂v∂v∂u∂u2∂u∂v∂v2∂v∂u∂u2∂u∂v∂v2∂v∂u22∂w∂wò,§¿òþ㪧∂u2∂v2!"!!#222222∂w∂w∂w∂w∂ϕ∂ϕ+=++∂u2∂v2∂x2∂y2∂u∂v2222∂w∂w∂w∂wÏ+=0§K+=0∂x2∂y2∂u2∂v222∂w∂wùL².Ê.d§∆w≡+=03Czx=ϕ(u,v),y=ψ(u,v)e/G±ØC.∂x2∂y222∂u∂u217.ξ=x−at,η=x+at§C§=a.∂t2∂x2 课后答案网www.khdaw.com)µd§u´t,x¼ê§ξ,η´t,x¼ê§òuÀ±ξ,η¥mCþ"ut,x¼ê∂u∂u∂u∂u∂u∂uK=−a+a,=+∂t∂ξ∂η∂x∂ξ∂η22222222∂u∂u∂u∂u∂u∂u∂u∂u222=a−2a+a,=++∂t2∂ξ2∂ξ∂η∂η2∂x2∂ξ2∂ξ∂η∂η2222∂u∂u∂u22u´d=a§4a=0∂t2∂x2∂ξ∂η2∂uqa6≡0§K=0.∂ξ∂η18.gCêÚÏCêC§u,v#gCê§w=w(u,v)#ÏCêµ1122(1)u=x+y,v=+,w=lnz−(x+y)§C§xy∂z∂zy−x=(y−x)·z∂x∂yyz(2)u=x+y,v=,w=§C§xx222∂z∂z∂z−2+=0∂x2∂x∂y∂y2uu(3)x=u,y=,z=§C§1+uv1+u·w∂z∂z222x+y=z∂x∂yx(4)u=,v=x,w=xz−y§C§y2∂z∂z2y+2=∂y2∂yx)µ111(1)d®§du=2xdx+2ydy,dv=−dx−dy,dw=dz−dx−dyx2y2z∂w∂w,¡§dw=du+dv∂u∂v!1∂w∂w11Kdz−dx−dy=(2xdx+2ydy)+−dx−dyz∂u∂vx2y2!!∂wz∂w∂wz∂wn§dz=2xz−·+zdx+2yz−·+zdy∂ux2∂v∂uy2∂v!∂z∂zxy∂wòþª¤(½,§§z−=0∂x∂yy2x2∂v!xy∂wqz−6≡0§K=0.y2x2∂vy1z1(2)d®§du=dx+dy,dv=−dx+dy,dw=−dx+dzx2xx2x∂w∂w,¡§dw=du+dv∂u∂v!z1∂w∂wy1K−dx+dz=(dx+dy)+−dx+dyx2x∂u∂vx2x!!∂wy∂wz∂w∂wn§dz=x−·+dx+x+dy∂ux∂vx∂u∂v∂z∂wy∂wz∂z∂w∂wK=x−·+,=x+∂x∂ux∂vx∂y∂u∂v 课后答案网www.khdaw.com223∂z∂z∂w-R=−=w−(1+v)∂x∂y∂v!!!222∂z∂z∂z∂∂z∂z∂∂z∂z∂R∂R∂R∂u∂uK−2+=−−−=−=−+∂x2∂x∂y∂y2∂x∂x∂y∂y∂x∂y∂x∂y∂u∂x∂y!"#!22∂R∂v∂v∂∂wy1(1+v)∂w−=w−(1+v)−−==0∂v∂x∂y∂v∂vx2xx∂v222(1+v)∂wÏ6≡0§K§C=0.x∂v2uu1111(3)Ïx=u,y=,z=§Ku=x,v=−,w=−1+uv1+u·wyxzx1111u´du=dx,dv=dx−dy,dw=dx−dzx2y2x2z2∂w∂w,¡§dw=du+dv∂u∂v!11∂w∂w11Kdx−dz=dx+dx−dyx2z2∂u∂vx2y2!21∂w1∂wz∂w2n§dz=z−−·dx+·dyx2∂ux2∂vy2∂v∂z∂z∂w22òþª¤(½,§xz=0∂x∂y∂u∂wqxz6≡0§K=0.∂ux∂w∂z∂w∂w∂u∂w∂v∂ux∂v(4)Ïu=,v=x,w=xz−y§K=x−1,=·+·,=−,=0y∂y∂y∂y∂u∂y∂v∂y∂yy2∂y∂wx∂w∂z11∂wu´=−§K=−∂yy2∂u∂yxy2∂u22∂z∂z2x∂w2u´y+2=+=∂y2∂yxy3∂u2x2x∂wq6≡0§K§C=0.y3∂u2 课后答案网www.khdaw.com§4.m{²¡1.¦e3¤«:?{²¡µπ22(1)x=asint,y=bsint·cost,z=ccost§3t=:?¶4222(2)x+y+z=6,x+y+z=0§3:(1,−2,1).)µabc000(1)x0=,y0=,z0=,x(t0)=a,y(t0)=0,z(t0)=−c222acx−2z−2xzπ=+=1K3t=:?§a−c=ac4bby=y=!!22ac122{²¡§ax−−cz−=0=ax−cz=(a−c).222D(F1,F2)2y2zD(F1,F2)2z2x(2)ÏD(y,z)=11=−6,D(z,x)=11=0,(1,−2,1)(1,−2,1)(1,−2,1)(1,−2,1)D(F1,F2)2x2y==6D(x,y)11(1,−2,1)(1,−2,1)x+z−2=0K3:(1,−2,1)§y=−2{²¡§x−z=0.232.3x=t,y=t,z=tþ¦Ñ:§¦d:²1u²¡x+2y+z=4.230002)µ¤¦:(t0,t0,t0)§Kx(t0)=1,y(t0)=2t0,z(t0)=3t02u´¥þv={1,2t0,3t0}12q²¡{¥þn={1,2,1}§KâK¿§Akv·n=1+4t0+3t0=0§u´t0=−1,t0=−!3111K¤¦:(−1,1,−1),−,,−.3927ttt2223.y²x=aecost,y=aesint,z=aeI¡x+y=z1¤Ó.22222t222t222t2y²µòx,y,zx+y=z§aecost+aesint=ae=z§KA3¡þ222Ix+y=zº:3:§LIþ?:P(x0,y0,z0)1L:K1¥þv1={x0,y0,z0}q3:Pþvt0t0t02={ae(cost0−sint0),ae(sint0+cost0),ae}={x0−y0,x0+y0,z0}222x0+y0=z0√v1·v226Kcos(v1,v2)==√=§ùþ:(x,y,z)vk"X|v1||v2|63ÏI¡1¤Ó.4.¦e3¤«:{uµ234(1)x=t,y=t,z=t§3t=1:þ¶2(2)xyz=1,y=x§3:(1,1,1).)µ000(1)Ïx(t0)=2,y(t0)=3,z(t0)=4§Kþ{2,3,4}2√3√4√u´{uµcosα=±29,cosβ=±29,cosγ=±29.292929D(F1,F2)xzxyD(F1,F2)xyyz(2)ÏD(y,z)=−2y0=2,D(z,x)=01=1,(1,1,1)(1,1,1)(1,1,1)(1,1,1)D(F1,F2)yzxz==−3§Kþ{2,1,−3}D(x,y)1−2y(1,1,1)√(1,1,1)√14143√u´{uµcosα=±,cosβ=±,cosγ=±14.71414 课后答案网www.khdaw.com225§5.¡²¡{1.¦e¡3¤«:²¡9{§µ(1)x=asinϕcosθ,y=asinϕsinθ,z=acosϕ§3(θ0,ϕ0)¶xy(2)ez+ez=4§3:(ln2,ln2,1)¶22(3)z=2x+4y§3:(2,1,12)¶222(4)ax+by+cz+d=0§3:(x0,y0,z0).)µD(y,z)asinϕcosθacosϕsinθ2(1)Ï=0−asinϕ=−asinϕ0cosθ0,D(θ,ϕ)(θ0,ϕ0)(θ0,ϕ0)D(z,x)D(x,y)222=−asinϕ0sinθ0,=−asinϕ0cosϕ0D(θ,ϕ)D(θ,ϕ)(θ0,ϕ0)(θ0,ϕ0)K²¡§sinϕ0cosθ0x+sinϕ0sinθ0y+cosϕ0z=ax−asinϕ0cosθ0y−asinϕ0sinθ0z−acosϕ0{§==.sinϕ0cosθ0sinϕ0sinθ0cosϕ0(2)Ï3(ln2,ln2,1):fx=2,fy=2,fz=−ln16x−ln2y−ln2z−1K²¡§x+y−2ln2·z=0¶{§==.11−2ln2(3)Ïzx(2,1)=8,zy(2,1)=8x−2y−1z−12K²¡§8x+8y−z=12¶{§==.88−1(4)Ï3(x0,y0,z0):fx=2ax0,fy=2by0,fz=2cz0x−x0y−y0z−z0K²¡§ax0x+by0y+cz0z+d=0¶{§==.ax0by0cz02.3¡z=xyþ¦:§¦ù:{Ru²¡x+3y+z+9=0§¿Ñd{§.)µL¡þ?:M0(x0,y0,z0)n1={y0,x0,−1}§{þn2={1,3,1}−y−x1¦{Ruþ㲡§Kn1kn2===131x+3y+1z−3u´¤¦:(−3,−1,3)§K{§==.131√√√√3.y²¡x+y+z=a,(a>0)þ?Û:²¡3I¶þåÚua.y²µ3¡þ?:P0(x0,y0,z0)111K¡3T:²¡§√(x−x0)+√(y−y0)+√(z−z0)=02x02y02z0√√√=y0z0(x−x0)+x0z0(y−y0)+x0y0(z−z0)=0√√√√√√√u´²¡3I¶þå©ax0,ay0,az0§ÙÚa(x0+y0+z0)=a.2224.¦ü¡x+y=a,bz=xy.)µü¡?:M0(x0,y0,z0)dü¡3M0:{þn1={2x0,2y0,0},n2={y0,x0,−b}n1·n22bz0u´ϕ÷vcosϕ==√.|n1||n2||a|a2+b2 课后答案网www.khdaw.com§6.êÚFÝ221.¦u=x−xy+y3(1,1)?÷l=(cosα,sinα)ê.¿?Ú¦µ(1)3=þÙêk¶(2)3=þÙêk¶(3)3=þÙê0¶(4)¦uFÝ.)µÏux=2x−y,uy=−x+2y§Kux(1,1)=1,uy(1,1)=1!∂u∂u√πq=ux(1,1)cosα+uy(1,1)sinα§K=cosα+sinα=2sinα+∂l∂l4u´√√!π22√(1)α=§3l=,þÙêk2¶422√√!322√(2)α=−π§3l=−,−þÙêk−2¶422√√!√√!π32222(3)α=−,π§3l=,−½l=−,þÙê0¶442222(4)gradu=ux(1,1)i+uy(1,1)j=i+j.2.¦u=xyz3:M(1,1,1)§÷l=(2,−1,3)ê9FÝ.)µÏux=yz,uy=xz,uz=xy§K3(1,1,1):ux=uy=uz=1213qþl{ucosα=√,sinβ=−√,cosγ=√141414∂u2√K=ux(1,1,1)cosα+uy(1,1,1)cosβ+uz(1,1,1)cosγ=14¶gradu=i+j+k.∂l72223.¦êþ¼êu=x+2y+3z+xy+3x−2y−6z3O(0,0,0)9A(1,1,1)FÝ9Ù.)µÏux=2x+y+3,uy=4y+x−2,uz=6z−6K3O(0,0,0):µux=3,uy=−2,uz=−6§u´gradu=3i−2j+6k,|√gradu|=73A(1,1,1):µux=6,uy=3,uz=0§u´gradu=6i+3j,|gradu|=35.4.y²µ(1)grad(αu+βv)=αgradu+βgradv§Ù¥α,βÑ´~ê¶(2)grad(uv)=ugradv+vgradu¶0(3)gradF(u)=F(u)graduy²µ±¼ê~5y.-u=u(x,y),v=v(x,y)∂(αu+βv)∂u∂v∂(αu+βv)∂u∂v(1)Ï=α+β,=α+β∂x∂x∂x∂y!∂y∂y!!∂(αu+βv)∂(αu+βv)∂u∂v∂u∂vKgrad(αu+βv)=,=α,+β,=αgradu+βgradv.∂x∂y∂x∂y∂x∂y∂(uv)∂u∂v∂(uv)∂u∂v(2)Ï=v+u,=v+u∂x∂x∂x∂y!∂y∂y!!∂(uv)∂(uv)∂u∂u∂v∂vKgrad(uv)=,=v,+u,=ugradv+vgradu.∂x∂y∂x∂y∂x∂y!!!∂F∂F∂u∂u∂u∂u0000(3)gradF(u)=,=F(u),F(u)=F(u),=F(u)gradu∂x∂y∂x∂y∂x∂yõ¼ê¼êy.1rp5.y²grad=−§r=x2+y2+z2,r=xi+yj+zk.rr3∂rx∂ry∂rzy²µÏ=,=,=∂xr∂y!r∂zr!1d11∂r∂r∂r11rKgrad=gradr=−i+j+k=−·(xi+yj+zk)=−.rdrrr2∂x∂y∂zr2rr3 课后答案网www.khdaw.com2271p6.êþ¼êu=ln,r=(x−a)2+(y−b)2+(z−c)2§3m¥=:þ¤á|gradu|=1ºr∂rx−a∂ry−b∂rz−c)µÏ=,=,=∂xr∂y!r∂zr!d11x−ay−bz−c1Kgradu=lngradr=−i+j+k=−[(x−a)i+(y−b)j+(z−c)k]drrrrrrr21222u´|gradu|==1§Kr=1=(x−a)+(y−b)+(z−c)=1rùL²3±(a,b,c)¥%§»1¥¡þ¤á|gradu|=1. 课后答案网www.khdaw.com§7.Vúª221.Ñ:(1,−2)NC¼êf(x,y)=2x−xy−y−6x−3y+5Vúª.)µÏfx=4x−y−6,fy=−x−2y−3,fx2=4,fxy=−1,fy2=−2§¤knþ0K3:(1,−2)§f=5,fx=0,fy=0,fx2=4,fxy=−1,fy2=−222u´f(x,y)=5+2(x−1)−(x−1)(y+2)−(y+2).x2.Ux9y¦Ðm¼êf(x,y)=eln(1+y)n.xxxeeexx)µÏfx=eln(1+y),fy=,fx2=eln(1+y),fy2=−2,fxy=1+y(1+y)1+yxxx2eeexfx3=eln(1+y),fy3=(1+y)3,fxy2=−(1+y)2,fyx2=1+yK3:(0,0)?§f=0,fx=fx2=fx3=0,fy=1,fxy=1,fy2=−1,fxy2=−1,fyx2=1,fy3=211112223u´f(x,y)=y+xy−y+xy−xy+y"2223 课后答案网www.khdaw.com2291ÊÙ4Ú^4§1.4Ú¦{1.¦e¼ê4µ22(1)z=x−(y−1)2(2)z=(x−y+1)33(3)z=3axy−x−y(a>0)xπ(4)z=sinx+cosy+cos(x−y)066y2r22xy(5)z=xy·1−−(a,b>0)a2b2)µ(1)-zx=2x=0,zy=−2(y−1)=0Kx=0,y=1§u´:(0,1)U4:qzx2=2,zxy=0,zy2=−2§KA=2,B=0,C=−2§u´H=−4<0§ld¼êÃ4.(2)-zx=2(x−y+1)=0,zy=−2(x−y+1)=0K:©Ù3x−y+1=0þ§¼êUk4qA=2,B=−2,C=2§KH=0§I?ÚäÏéx−y+1=0þ:þkz=0§z>0ð¤áK¼êz3x−y+1=0þ:4z=0.22(3)-zx=3ay−3x=0,zy=3ax−3y=0x1=0x2=aK=3:(0,0),(a,a)?Uk4y1=0y2=aqzx2=−6x,zxy=3a,zy2=−6y2K3:(0,0)§A=0,B=3a,C=0§u´H=−9a<0§d¼êÃ4¶233:(a,a)§A=−6a<0,B=3a,C=−6a§u´H=27a>0§d¼êk4z=a.(4)-zx=cosx−sin(x−y)=0,zy=−siny+sin(x−y)=0!ππx3Kcosx=siny§u´y=−x§cosx−sin(x−y)=cos−sin2x−=2coscosx=02222!πx3ππππÏ06x6§Kcos6=0,cosx=0§u´x=,y=§=3:,?Uk42223636qzx2=−sinx−cos(x√−y),zxy=cos(x−y),zy2=−cosy−cos(x−!y)√3√9ππ3√KA=−3<0,B=,C=−3§u´H=>0§=3:,?¼êk4z=3.24362rr222222xyxyxyxy(5)-zx=y1−−−r=0,zy=x1−−−r=0a2b2x2y2a2b2x2y2a21−−b21−−a2b2a2b2aaaax2=√x3=−√x4=√x5=−√Kx1=03333y1=0bbbby2=√y3=−√y4=−√y5=√3!3!3!3!ababababu´3:P1(0,0),P2√,√,P3−√,−√,P4√,−√,P5−√,√?U4333333332223234424244422222244−3abxy+2bxy+3axyab−3abx+2bx−3aby+3abxy+2ayqzx2=3,zxy=3a4b21−x2−y22a4b41−x2−y22a2b2a2b22322233bxy−3abxy+2axyzy2=324x2y22ab1−a2−b2 课后答案网www.khdaw.com!!√√abab43b2√43a3:P2√,√,P3−√,−√?§A=−<0,B=−3,C=−33333a33b√3dH=4>0§u´¼êk4z=ab¶!!9√√abab43b2√43a3:P4√,−√,P5−√,√?§A=>0,B=−3,C=33333a33b√3dH=4>0§u´¼êk4z=−ab¶93:P1(0,0)?§A=0,B=1,C=0§dH=−1<0§u´¼êÃ4.yy2.y²¼êz=(1+e)cosx−yekáõ4§Ã4.yyyyy²µ-zx=−(1+e)sinx=0zy=ecosx−e−ye=0yÏ1+e6=0§Ksinx=0§u´x=kπ(k∈Z)yqe6=0§Kcosx−1−y=0=ky=cosx−1x1=2kπx2=(2k+1)πkóê§y=0¶kÛê§y=−2§KU4:(k=y1=0y2=−20,±1,±2,···)yyyyyqzx2=−(1+e)cosx,zxy=−esinx,zy2=ecosx−2e−yeK3:(2kπ,0)§A=−2<0,B=0,C=−1§dH=2>0§Kd¼êk4z=2!11113:((2k+1)π,−2)§A=1+,B=0,C=−§dH=−1+<0§Kd¼êÃ4e2e2e2e2yynþ§¼êz=(1+e)cosx−yekáõ4§Ã4.3.3®±2pn/¥¦Ñ¡Èn/.x+y+z)µn/>©Ox,y,z§KC=x+y+z=2p§D==p§u´z=2p−x−ypp2KS=D(D−x)(D−y)(D−z)=p(p−x)(p−y)(x+y−p)2ļêu=S=p(p−x)(p−y)(x+y−p),00,B=−4,C=18§u´H=2>0Kd¼êk4z=−5§l¡k$:(1,1,−5)22qx+y→+∞§z→+∞§¡Ãp:.25.®y=ax+bx+c§yÿ|êâ(xi,yi),i=1,2,···,n§|^¦{§¦Xêa,b,c¤÷vng§|.Xn22)µd®§ε=(yi−axi−bxi−c)§¦oε(a,b,c)§d47^§ki=1∂εXn∂εXn∂εXn2222=−2(yi−axi−bxi−c)xi=0,=−2(yi−axi−bxi−c)xi=0,=−2(yi−axi−bxi−c)=0∂a∂b∂ci=1!i=1!!i=1XnXnXnXnx4a+x3b+x2c=x2yiiiiii=1!i=1!i=1!i=1XnXnXnXn32=a,b,c÷veng§|µxia+xib+xic=xiyii=1!i=1!i=1i=1XnXnXn2xia+xib+nc=yii=1i=1i=126.y=x3[0,1]þ^oη=ax+b5O§âU¦§²ØÈ©Z12J(a,b)=(y−η)dx4¿ÂeZCqº0 课后答案网www.khdaw.com231Z1Z11a2a22222)µJ(a,b)=(y−η)dx=(x−ax−b)dx=++b−−b+ab005323ÀJa,b¦²ØÈ©J(a,b)4§d47^§k∂J12∂J2-=−+a+b=0,=−+a+2b=0∂a23∂b31Ka=1,b=−612u´y=x^η=x−5O§ZCq¦.6 课后答案网www.khdaw.com§2.^41.¦e¼ê3¤^e4µ22(1)f=x+y,ex+y=1¶222(2)f=x−2y+2z,ex+y+z=1¶1111(3)f=xyz,e++=(x>0,y>0,z>0,a>0)¶xyza11(4)f=+,ex+y=2¶xy222(5)f=xyz,ex+y+z=1,x+y+z=0.)µ22(1)¼êL=x+y+λ(x+y−1)√√22x1=x2=−Lx=1+2λx=0√2√222)§|Ly=1+2λy=0§y1=y2=−Lλ=x2+y2−1=02√√222λ1=−λ2=22qLx2=2√λ,Lxy√=0!,Ly2=2λ√√!22√22√222KdL,=−2(dx+dy)<0§u´¼ê3,?42¶2222√√!22√Ón§¼ê3−,−?4−2.22222(2)¼êL=x−2y+2z+λ(x+y+z−1)11x1=x2=−33Lx=1+2λx=022Ly1=−y2=y=−2+2λy=033)§|§Lz=2+2λz=022222Z1=z2=−Lλ=x+y+z−1=03333λ1=−λ2=22qLx2=Ly2=Lz2=2λ,Lxy==Lxz=Lyz=0!1222222KdL(x2,y2,z2)=3(dx+dy+dz)>0§u´¼ê3−,,−?4−3¶333!122Ón§¼ê3,−,?43.333!1111(3)¼êL=xyz+λ++−xyzaλLx=yz−=0x2λLy=xz−=0y24)§|§x=y=z=3a,λ=81aλLz=xy−=0z21111Lλ=++−=0xyzaqLx2(3a,3a,3a)=Ly2(3a,3a,3a)=Lz2(3a,3a,3a)=6a,Lxy(3a,3a,3a)=Lxz(3a,3a,3a)=Lyz(3a,3a,3a)=3a22222KdL(3a,3a,3a)=3a[(dx+dy+dz)+dx+dy+dz]>0§u´¼ê3(3a,3a,3a)?4327a.11(4)¼êL=++λ(x+y−2)xy 课后答案网www.khdaw.com2331Lx=−+λ=0x2)§|1§x=y=λ=1Ly=−+λ=0y2Lλ=x+y−2=0qLx2(1,1)=Ly2(1,1)=2,Lxy(1,1)=0222KdL(1,1)=2(dx+dy)>0§u´¼ê3(1,1)?42.222(5)¼êL=xyz+u(x+y+z−1)+v(x+y+z)Lx=yz+2ux+v=0Ly=xz+2uy+v=0)§|Lz=xy+2uz+v=0§222Lu=x+y+z−1=0Lv=x+y+z=0√√√√√√666666x1=x2=−x3=−x4=x5=x6=−√6√6√33√6√√6666666y1=y2=−y3=y4=−y5=−y6=6√√6√6√6√33√666666z1=−√3z2=3√z3=√6z4=−√6z5=√6z6=−√6666666u1=u2=−u3=u4=−u5=u6=−121212121212111111v1=v2=v3=v4=v5=v6=6666662222qdL=2u(dx+dy+dz)+2(zdxdy+ydxdz+xdydz)√62222K3:(x1,y1,z1)?§dL=(dx+dy+dz−4dxdy+2dxdz+2dydz)6222dx+y+z=1§2xdx+2ydy+2zdz=0§K3:(x1,y1,z1)?§kdx+dy=2d√z22qdx+y+z=0§dx+dy+dz=0§Kdx=−dy,dz=0§u´dL(x1,y1,z1)=6dx>0§√√√!√6666K¼ê3,,−?4−66318√6Ón§¼ê3(x3,y3,z3),(x5,y5,z5)?4−√186¼ê3(x2,y2,z2),(x4,y4,z4),(x6,y6,z6)?4.18mnp2.¦f=xyz3^x+y+z=a,a>0,m>0,n>0,p>0,x>0,y>0,z>0e.mnp)µÏx>0,y>0,z>0§Kf=xyz§lnf=mlnx+nlny+plnz§½,§I¦lnf4:§´f4:-L=mlnx+nlny+plnz+λ(x+y+z−a)mamx=Lx=x+λ=0m+n+pnnay=K)§Ly=y+λ=0§m+n+ppapz=Lz=+λ=0m+n+pzm+n+pLλ=x+y+z−a=0λ=−!amanapaK,,U4:m+n+pm+n+pm+n+p!mnpmnp2222qLx2=−x2,Lxy=Lyz=Lxz=0,Ly2=−y2,Lz2=−z2,dL=−x2dx−y2dy−z2dz<0!mnpmanapamnpm+n+p3,,?lnfk4§=fk4am+n+pm+n+pm+n+p(m+n+p)m+n+pmnpx+y=ax+z=ay+z=aqf=xnz(x,y,z)ªu>.§f→0§f4:z=0y=0x=0´§:.223.¦ýx+3y=12Sn/§¦Ù.>²1uý¶§¡È.22xy)µduK¥n/Suý√+=1´n/§.>²1u¶(23)24 课后答案网www.khdaw.comÙ.>¤éº:7´á¶þýº:(0,±2)n/,º:I(x,y)(x,y>0)§KÙSn/.>2x§py+2n/nº:IA(0,−2),B(x,y),C(−x,y)§dýé¡5§A(0,2),B(x,−y),C(−x,−y)´Ùº:22KS=x(y+2)§:(x,y)3ýx+3y=12þ22qÏd¯K´¦S=x(y+2)3^x+3y=12þ(x,y>0)22¼êL=x(y+2)+λ(x+3y−12)x=3Lx=y+2+2λx=0y=1K)§Ly=x+6λy=0§221Lλ=x+3y−12=0λ=−2u´Ùº:IA(0,2),B(3,−1),C(−3,−1)½A(0,−2),B(3,1),C(−3,1)Ïd¯K¢S¯K§73§K3(0,2),(3,−1),(−3,−1)½(0,−2),(3,1),(−3,1)?١ȧÙ9.24.Á¦Ôy=4xþ:§¦§x−y+4=0åC.12)µ¤¦:I(x,y)§K§åld=√|x−y+4|§Ù¥y=4x2x−y+4=0ò²¡©!müÜ©§¡x−y+4<0§m¡x−y+4>012Ôy=4x3m¡Ü©§Ï:(x,y)§åld=√(x−y+4)212-L=√(x−y+4)+λ(y−4x)21Lx=√−4λ=0x=12y=2K)§|1§Ly=−√+2λy=012λ=√242Lλ=y−4x=021dy222qLx2=0,Ly2=√,Lxy=0,dL(1,2)=Lx2dx+2Lxydxdy+Ly2dy=√>02222(1,2)4:§=:(1,2)ålC.225.Ô¡z=x+y²¡px+y+z=1¤ý§¦:ùýáål.)µâK¿§¦åld=x2+y2+z23^z=x2+y2,x+y+z=1222=¦u=x+y+z3^e22222L=x+y+z+λ(z−x−y)+γ(x+y+z−1)√√−1+3−1−3x1=x2=2√2√Lx=2x−2λx+γ=0−1+3−1−3Ly=2y−2λy+γ=0y1=y2=√2√2K)§|Lz=2z+λ+γ=0§z1=2−3,z2=2+322√√Lλ=z−x−y=0−53+953+9Lλ1=λ2=γ=x+y+z−1=03311√11√γ1=−7+3γ2=−7−3p√p√33u´d(x1,y1,z1)=9−53,d(x2,y2,z2)=9+53â¯K¢S¿Â§!á√ål3√!1+31+3√p√Kål::−,−,2+3ål§9+53¶22√√!−1+3−1+3√p√áål::,,2−3ål§9−53.226.¦m:(a,b,c)²¡Ax+By+Cz+D=0áål.p)µ(x,y,z)²¡Ax+By+Cz+D=0þ?:§K§(a,b,c):åld=(x−a)2+(y−b)2+(z−c)2§Ù¥(x,y,z)÷vAx+By+Cz+D=02Ïd>0§d⇐⇒d2222UK§A¦d=(x−a)+(y−b)+(z−c)3^Ax+By+Cz+D=0e4222-L=(x−a)+(y−b)+(z−c)+λ(Ax+By+Cz+D) 课后答案网www.khdaw.com2351x=a−λA2Lx=2(x−a)+λA=01Ly=b−λBK)§|y=2(y−b)+λB=0§2Lz=2(z−c)+λC=01z=c−λCLλ=Ax+By+Cz−D=022(Aa+Bb+Cc+D)λ=A2+B2+C2|Aa+Bb+Cc+D|u´d=√A2+B2+C2qx,y,z¥k?ªu∞§d→∞§Ïd3(x,y,z)(x−a)2+(y−b)2+(z−c)20,F(x0,y0−b)<0d^(1)§F(x,y)3«DþëY§Ï3η>0§¦|x−x0|<秽kF(x,y0+b)>0,F(x,y0−b)<0@"é∀x∈O(x0,η)§d¼êF(x,y)3[y0−b,y0+b]ëY59F(x,y0+b)>0,F(x,y0−b)<0â":3½n§73y∈(y0−b,y0+b)§¦F(x,y)=0duF(x,y)3[y0−b,y0+b]îüN§ly>y§F(x,y)>0¶y0(ε0,F(x1,y1−ε)<0KdFëY5§3O(x1,δ)⊂O(x0,a)§¦x∈O(x1,δ)§ðkF(x,y1+ε)>0,F(x,y1−ε)<0u´â":3½n§7ky∈O(y1,ε)§¦F(x,y)=0=y=f(x)=|x−x1|<δ§Òk|f(x)−f(x1)|=|y−y1|<ε=y=f(x)3x1:ëYdx1∈O(x0,a)?¿5§f(x)ëY¼ê.2222.¼êF(x,y)≡y−x(1−x)=03=:C/û½üëY§këYê¼êy=y(x).2223)µ¼êF(x,y)=y−x(1−x)3mëY§§êFx=4x−2x,Fy=2yëY22222dy−x(1−x)=0§ey=0§Kx(1−x)=0§)x=0,x=±1222qy>0,x>0§1−x>0=−16x61y6=0§Fy6=0dÛ¼ê3½n1§3?Û÷v{(x,y)|x|<1,x6=0,y2−x2(1−x2)=0}C/û½üëYkëYê¼êy=y(x).03.y²k¼êy=y(x)÷v§siny+sinhy=x§¿¦Ñêy(x).y²µ¼êF(x,y)=siny+sinhy−x3mëY§Fx=−1,Fy=cosy+coshyëYy−ye+eqcoshy=>1Ò3y=0¤á§dcosy=1§3¹e|cosy|612Ké:(x,y)§ðkFy=cosy+coshy>0§u´Fy6=0dÛ¼ê3½n1§3?Û÷vþã§:(x,y)§k¼ê÷v§siny+sinhy=xFx10Ù¼êy=−=.Fycosy+coshy4.D´:P0:(x0,y0,z0,u0,v0)§e(1)F(x0,y0,z0,u0,v0)=0,G(x0,y0,z0,u0,v0)=0¶(2)F,G"uCþê3D¥ëY¶FuFv(3)J=G3P0:Ø"¶uGvK3(x0,y0,z0)RS3é¼êu=f(x,y,z);v=g(x,y,z)÷vµ 课后答案网www.khdaw.com237(1)u0=f(x0,y0,z0),v0=g(x0,y0,z0)(2)F(x,y,z,f,g)≡0,G(x,y,z,f,g)≡0(3)u=f(x,y,z),v=g(x,y,z)3:(x0,y0,z0)RSkéCþê§∂f1D(F,G)∂f1D(F,G)∂f1D(F,G)=−,=−,=−∂xJD(x,v)∂yJD(y,v)∂zJD(z,v)∂g1D(F,G)∂g1D(F,G)∂g1D(F,G)=−,=−,=−∂xJD(u,x)∂yJD(u,y)∂zJD(u,z)y²µd^(3)§Fu,Fv¥k3P0:Øu0ØFv(P0)6=0§KdÛ¼ê3½n2§3P0:,S±rvlF(x,y,z,u,v)=0¥)Ñ5.v=ϕ(x,y,z,u)v0=ϕ(x0,y0,z0,u0)3(x0,y0,z0,u0),S´§äk"ux,y,z,uëYêrv=ϕ(x,y,z,u)G(x,y,z,u,v)¥G(x,y,z,u,ϕ(x,y,z,u))=ψ(x,y,z,u)!FuJψu=Gu+Gv·vu=Gu+Gv−=−FvFvdbFv(P0)6=03P0:J6=0§ψu(x0,y0,z0,u0)6=0Kd½n2§3(x0,y0,z0,u0),Sl§G=G(x,y,z,u,ϕ)≡ψ(x,y,z,u)=0¥)Ñu5.u=f(x,y,z)§3(x0,y0,z0),SkëYê§u0=f(x0,y0,z0)ru=f(x,y,z)ϕ(x,y,z,u)¥v=ϕ(x,y,z,f(x,y,z))=g(x,y,z)Kkg(x0,y0,z0)=ϕ(x0,y0,z0,u0)=v0u=f(x,y,z),v=g(x,y,z)=¤¦∂F∂F∂f∂F∂gF(x,y,z,u,v)=0∂x+∂u·∂x+∂v·∂x=0é§|üà"ux¦§G(x,y,z,u,v)=0∂G∂G∂f∂G∂g+·+·=0∂x∂u∂x∂v∂x∂f1D(F,G)∂g1D(F,G))§=−,=−∂xJD(x,v)∂xJD(x,u)∂f1D(F,G)∂f1D(F,G)∂g1D(F,G)∂g1D(F,G)Ón=−,=−,=−,=−∂yJD(y,v)∂zJD(z,v)∂yJD(u,y)∂zJD(u,z)5.ϕi(x)(i=1,2,···,n)´xëY¼ê§Gi(x1,···,xn)=Fi(ϕ1(x1),···,ϕn(xn))∂(G1,G2,···,Gn)Qn0y²=∆(ϕ(x1),···,ϕn(xn))ϕi(xi)∂(x1,x2,···,xn)i=1D(F1,F2,···,Fn)Ù¥∆(x1,x2,···,xn)=D(x1,x2,···,xn)Qn0000ϕi(xi)=ϕ1(x1)ϕ2(x2)···ϕn(xn).i=1y²µÏϕi(x)(i=1,2,···,n)´xëY¼ê§Gi(x1,···,xn)=Fi(ϕ1(x1),···,ϕn(xn))∂Gi∂Fi∂ϕj∂Fi0K=·=ϕi(xj)(i,j=1,2,···,n)∂xj∂ϕj∂xj∂ϕj∂G1∂G1∂G1∂F10∂F10∂F10···∂ϕϕ1(x1)ϕ2(x2)···ϕn(xn)∂x1∂x2∂xn1(x1)∂ϕ2(x2)∂ϕn(xn)∂G2∂G2∂G2∂F2∂F2∂F2∂(G1,G2,···,Gn)···ϕ10(x1)ϕ20(x2)···ϕn0(xn)u´=∂x1∂x2∂xn=∂ϕ1(x1)∂ϕ2(x2)∂ϕn(xn)=∂(x1,x2,···,xn).......................................................................................∂Gn∂Gn∂Gn∂Fn∂Fn∂Fn···000ϕ1(x1)ϕ2(x2)···ϕn(xn)∂x1∂x2∂xn∂ϕ1(x1)∂ϕ2(x2)∂ϕn(xn)∂F1∂F1∂F1···∂ϕ1(x1)∂ϕ2(x2)∂ϕn(xn)∂F2∂F2∂F2···QnD(F1,F2,···,Fn)ϕ0000=1(x1)ϕ2(x2)···ϕn(xn)∂ϕ1(x1)∂ϕ2(x2)∂ϕn(xn)=ϕi(xi)......................................i=1D(ϕ1(x1),ϕ2(x2),···,ϕn(xn))∂Fn∂Fn∂Fn···∂ϕ1(x1)∂ϕ2(x2)∂ϕn(xn)Qn0∆(ϕ(x1),···,ϕn(xn))ϕi(xi).i=16.F(x,y,z)këY꧿dF(x,y,z)=0(½z=f(x,y).?Øz=f(x,y)47Ú¿©^ 课后答案网www.khdaw.com.2¦d222x+y+z−2x+2y−4z−10=0¤(½z=f(x,y)4.zx=fx(x,y)=0y²µÏ¼êz=f(x,y)47^zy=fy(x,y)=0FxFyFx=0qzx=−,zy=−§KF(x,y,z)47^FzFzFy=0qÛ¼ê4¿©^w¼êaÓ§´¦ê^Û¼êpê¦{Fx=2x−2=0x=1-)§éAzz1=−2,z2=6Fy=2y+2=0y=−12222222∂zx−1∂z1+y∂z(x−1)+(2−z)∂z(1+y)+(2−z)∂z(x−1)(1+y)q=,=,=,=,=∂x2−z∂y2−z∂x2(2−z)3∂y2(2−z)3∂x∂y(2−z)3222∂z1∂z1∂z1111u´3:(1,−1,−2),=,=,=0§d·−0=>09>0§Kz1=−24¶∂x24∂y24∂x∂y4!4!164222∂z1∂z1∂z11113:(1,−1,6),=−,=−,=0§d−−−0=>09−<0§Kz2=64∂x24∂y24∂x∂y44164 课后答案网www.khdaw.com239§2.¼ê1ª5!¼ê"x=rcosθcosϕ1.y²y=rcosθsinϕ¼êÕáz=rsinθcosθcosϕ−rsinθcosϕ−rcosθsinϕD(x,y,z)y²µÏ=cosθsinϕ−rsinθsinϕrcosθcosϕ=−r2cosθD(r,θ,ϕ)sinθrcosθ0πD(x,y,z)K3r6=0θ6=kπ+«DS6=02D(r,θ,ϕ)u´â½n5§¼ê|3«DS¼êÕá.y1=x1+x2+···+xn2222.y²y2=x1+x2+···+xn¼ê"§¿ÑÙ¼ê"Xª.y3=x1x2+x1x3+···+xn−1xn1122y²µÏ3¼êϕ(t1,t2)=(t1−t2)§¦y3=ϕ(y1,y2)=(y1−y2)3nm(x1,x2,···,xn)S22¤ðª12K¼ê|3nm¥¼ê"§Ù¼ê"Xªy3=(y1−y2).23.e¼ê´Ä"ºx−yy−zz−x(1),,x−zy−xz−yxyz(2),,1−x−y−z1−x−y−z1−x−y−z)µ(1)Ïf1·f2·f3=−1§K¼ê".xyz(2)-f1(x,y,z)=,f2(x,y,z)=,f3(x,y,z)=1−x−y−z1−x−y−z1−x−y−z∂f1∂f1∂f11−y−zxx∂x∂y∂z(1−x−y−z)2(1−x−y−z)2(1−x−y−z)2∂f2∂f2∂f2y1−x−zyKJocobiÝ∂x∂y∂z=(1−x−y−z)2(1−x−y−z)2(1−x−y−z)2∂f3∂f3∂f3zz1−x−y∂x∂y∂z(1−x−y−z)2(1−x−y−z)2(1−x−y−z)2qdÝ3§Kâ½n6§¼ê|¼êÕá. 课后答案网www.khdaw.com1nÜ©¹ëCþÈ©Ú2ÂÈ©1ÔÙ¹ëCþÈ©Zy2−x2y01.F(y)=edx§OF(y).y)µÏ½n4^÷v§A^½n4§kZy22535533102−xy−y−y−y−yF(y)=(−x)edx+2ye−e=ye−e−F(y).y222yZy002.F(y)=(x+y)f(x)dx§Ù¥f(x)¼ê§¦F(y).0)µÏf(x)Z¼ê§Kf(x)ëY§u´(x+y)f(x)ëY§K½n4^÷vy0000u´F(y)=f(x)dx+2yf(y)§F(y)=3f(y)+2yf(y).0Z1p3.eF(y)=lnx2+y2dx§OÈ©§¦ÑF(y)§2¦ÑF0(0)§¿uA^½n4OF0(0)(05.Z1Z21pp1xp)µy6=0§kF(y)=lnx2+y2dx=xlnx2+y2−dx=ln1+y2−1+x2+y2000xZ1dp1yy!dx=ln1+y2−1+yarctan.2y0x1+yZ1ÏF(0)=lnxdx=−10F(y)−F(0)πF(y)−F(0)π00KF+(0)=lim=,F−(0)=lim=−y→+0y2y→−0y20u´F(0)Ø3Z!∂py1∂p,¡§x>0§lnx2+y2==0§Klnx2+y2dx=0∂yx2+y20∂yy=0!y=0y=0!ZZπ1∂pπ1∂pqF+0(0)=6=0=lnx2+y2dx,F−0(0)=−6=0=lnx2+y2dx20∂y20∂yy=0y=0Ky=0§ØU3È©Òe¦ê§=¦¦!mêØ1.4.¦¼êZπqZπ22dϕE(k)=1−k2sin2ϕdϕÚF(k)=p(00)x2+y20ëY5§Ù¥f(x)´[0,1]þëY¼ê.yf(x))µd>c>0§y∈[c,d]§Kȼê3[0,1]×[c,d]þëYx2+y2Z1yf(x)d½n1§F(y)=dx3[c,d]þëY§dc,d?¿5§F(y)3y>0ëYx2+y20qf(x)´[0,1]þëY¼ê§Kf(x)3[0,1]þ7km>0Z1y11πmπduF(y)>mdx=marctan9limarctan=§KlimF(y)>>00x2+y2yy→+0y2y→+02qF(0)=0§KF(y)y=0ØëY.6.A^éëê¦{OÈ©µZπ222(1)ln(a−sinx)dx(a>1)(Ø7½~ê§eOÑyÃ.¹§4O)¶0Zπ2(2)ln(1−2acosx+a)dx(|a|<1)0)µZπ222(1)I(a)=ln(a−sinx)dx0"#π22Ïȼêln(a−sinx)30,×[1,+∞]þØëY2"#πKØU^½n2§U^½n§0,×[b,c](b>1,c→+∞)2"#2aπ22ùf(x,a)=ln(a−sinx)9fa=Ñ34Ý/0,×[b,c]þëYa2−sin2x2Zπ"#22a2a+1a−1π0d½n2§kI(a)=dx=√arctan√+arctan√=√a2−sin2xa2−1a2−1a2−1a2−10√éaÈ©§I(a)=πln|a+a2−1|+C√Ïa∈[b,c]§db,c?¿5§KI(a)=πln|a+a2−1|+CZπ2(2)I(a)=ln(1−2acosx+a)dx0222|a|<1§du1−2acosx+a>1−2|a|+a=(1−|a|)>0−2cosx+2a2Kf(x,a)=ln(1−2acosx+a)9fa=Ñ34Ý/[0,π]×[−b,b]þëY(|a|6b<1)1−2acosx+a2Zπ−2cosx+2aπ1−a2Zπdxπ1−a2Zπdx0d½n2§kI(a)=dx=−=−01−2acosx+a2aa0(1+a2)−2acosxaa(1+a2)01+−2acosxa2+1xt=tanZ2Z22πdx+∞1+a1+aK=2dt=π01+−2acosx0(1−a)2+(1+a)2t21−a2a2+10u´I(a)=0§lI(a)=CqI(0)=0§KC=0§u´I(a)=0Ïa∈[−bb]§db?¿5§|a|<1§I(a)=0.7.A^È©Òe¦È©{OÈ©µZ!11xb−xasinlndx(a>0,b>0)0xlnx 课后答案网www.khdaw.com(eÑyÃ.¹c¡Ó?n).)µZØa0,∃δ>0§|x−x0|<δ§kbZZBB|F(x)−F(x0)|=f(x,y)dy−f(x0,y)dy<εbbduy=ϕ1(x)3x0:ëY§Ké∀ε1>0,∃δ1>0§|x−x0|<2δ1§k|y−y0|=|ϕ1(x)−ϕ1(x0)|<ε1u´3x0−δ16x6x0+δ1,b6y6BS¦f(x,y)mä:¹u±(x0,y0)¥%Ý/x0−δ16x6x0+δ1,y0−ε10,∃δ2>0§|x−x0|<δ2§k|f(x,y)−f(x0,y)|<ε20yδ=min(δ1,δ2)§|x−x0|<δ§kZZZZBBy0−ε1y0+ε1|F(x0)−F(x)|=f(x0,y)dy−f(x000,y)dy6|f(x,y)−f(x0,y)|dy+|f(x,y)|dy+ZbZbby0−ε1y0+ε1B0|f(x0,y)|dy+|f(x,y)−f(x0,y)|dy6ε2(B−b)+4ε1My0−ε1y0+ε1εεeε1=,ε1=8M2(B−b)00K|x−x0|<δ§k|F(x)−F(x0)|<εx0∈[a,α]½x0∈[β,A]§F(x)3x0ëY§F(x)3[a,A]ëYef(x,y)kmäëYkA^§KIr¦f(x,y)U¤mä:^õAÝ/mÒ1Ù{ØyÓZBduf(x,y)k.õkA^mä§KF(x)=f(x,y)dy33[a,A]ëY.b 课后答案网www.khdaw.com2431lÙ¹ëCþ2ÂÈ©ZZ+∞+∞1.y²µe3[a,∞;c,d]S¤á|f(x,y)|6F(x,y)§¿"uy∈[c,d]È©F(x,y)dxÂñ§Kf(x,y)dx"aauy∈[c,d]½Âñ§ýéÂñ.Z+∞y²µÏÈ©F(x,y)dx"uy∈[c,d]Âñ§Kd¹ëCþ2ÂÈ©ÜÂñn§aZA00é∀ε>0§3yÃ"A0(ε)>a§A,A>A0§éy∈[c,d]§kF(x,y)dx<εAZA0ZA0ZA0f(x,y)dx6|f(x,y)|dx6F(x,y)dx<εéy∈[c,d]ѤáAAAZZ+∞+∞dá¹ëCþ2ÂÈ©ÜÂñn§f(x,y)dx"uy∈[c,d]Âñ§|f(x,y)|dx"aauy∈[c,d]ÂñZ+∞Kf(x,y)dx"uy∈[c,d]ÂñýéÂñ.a2.y²eÈ©3¤½«mSÂñµZ+∞cosxy(1)dx(y>a>0)x2+y20Z+∞cosxy(2)dx(−∞10by²µZcosxy1+∞dxπ(1)Ïy>a>0§K6=Âñx2+y2x2+a20x2+a22aZ+∞cosxyu´d¼O{§dx"uy3[a,+∞)(a>0)SÂñ.x2+y20Zcosxy1+∞dxπ(2)Ïy∈(−∞,+∞),6=Âñx2+1x2+10x2+12Z+∞cosxyu´d¼O{§dx"uy3(−∞,+∞)SÂñ.x2+101b(3)x=0´Û:§6y6b,b>1,01)þÂñ.0bZ+∞3.f(x,y)3[a,+∞;c,d]ëY§é[c,d)þzy§f(x,y)dxÂñ§È©3y=duÑ.ay²ùÈ©3[c,d]Âñ.Z+∞ZA00000y²µdf(x,d)dxuѧ∃ε0>0,∀A0>a,∃A,A>A0§¦f(x,d)dx>ε0aA0ZA00Z+∞ùL²éy=d∈[c,d]kf(x,y)dx>ε0§`²f(x,y)dx3[c,d]Âñ.A0a4.?ØeÈ©3½«mÂñ5µZ+∞α−x(1)xedx(a6α6b;a,b?¿¢ê)1Z+∞√2−αx(2)αedx(0<α<+∞)0 课后答案网www.khdaw.comZ+∞−(x−α)2(3)edx−∞(i)a<αp0>0(ii)p>0Z+∞−αx(5)esinxdx(α>0)0)µα−xb−x(1)Ïα∈[a,b],x∈(1,+∞)§K0<|xe|6xeZ+∞qlimx2·xbe−x=0§Kâá2ÂÈ©ÜO{4/ª§xbe−xdxÂñx→+∞Z1+∞α−xu´d¼O{§xedx"uα∈[a,b](a,b?¿¢ê)Âñ.1Z√+∞√2π−αx(2)αedx=Âñ§§3(0,+∞)"uαÂñ0Z2ZZ√+∞√2+∞2+∞2π−αx−t−té∀A>0§Ïlimαedx=limedt=edt=α→+0α→+0√2√AαA0ZZπ+∞√2+∞√2éu0<ε−α0x−α0x0<§73α0>0§¦α0edx=α0edx>ε0§Z2AA+∞√2−αx=αedx"uα3(0,+∞)þØÂñ.0ZZ+∞2+∞2√−(x−α)−(x−α)(3)é?¿½α∈(−∞,+∞)§È©edxÑÂñ§edx=π−∞−∞2x2−(x−α)−(i)|x|¿©§éa<α0§klimedx=limedt=πα→+∞α→+∞A√A−αZ+∞2π−(x−α)Kα¿©§edx>ZA2+∞−(x−α)2dd§edx3−∞<α<+∞þÂñZ0+∞−(x−α)2ledx3−∞<α<+∞þÂñ.−∞(4)(i)|xp−1ln2x|=xp−1ln2x6xp0−1ln2x(p>p0>0,06x61)ZZ1+∞È©xp−1ln2xdx=e−p0zz2dz004zlimz2·e−p0zz2=lim=0(p0>0)z→+∞z→+∞Zep0zZ+∞1KdÜO{4/ªe−p0zz2dzÂñ§u´xp0−1ln2xdxÂñZ001p−12ld¼O{§xlnxdx"up3p>p0>0þÂñ.!012(ii)Ïx∈0,,lnx>1eZZ1Z1!p1p−12ep−12ep−111kxlnxdx>xlnxdx>xdx=→+∞(p→+0)000peZ1p−12u´xlnxdx3p>0ØÂñ.0 课后答案网www.khdaw.com245(5)^y{.Z+∞−αx000besinxdx"uα>0Âñ§Ké∀ε>0,∃M>0§A>A>M§é0ZA00−αxα>0¤áesinxdx<εA0ZA00−αxléuα∈(0,1)½¤áesinxdx<εA0ZA00Z+∞3تü>-α→0§Kksinxdx6ε§lsinxdxÂñA00ZZA+∞sinxdx=1−cosA§A→+∞§cosA4Ø3§u´sinxdxuѧKgñ§00bؤáZ+∞−αxlesinxdx"uα>0ØÂñ.05.y²µZ+∞α(1)dx3عα=0?Û«mþ´ëY¼ê¶x2+α20Zπsinx(2)F(p)=dx3(0,2)SëY.0xp(π−x)2−py²µZ+∞α(1)F(α)=dx.x2+α20é?Ûα06=0§Øα0>0§8δ>0§¦α0−δ>0§eyF(α)3[α0−δ,α0+δ]SÂñαα0+δ¯¢þ§α∈[α0−δ,α0+δ]§6x2+α2x2+(α0−δ)2Z+∞α0+δÏÈ©dxÂñ§Kd¼O{§F(α)3[α0−δ,α0+δ]þ"uαÂñ0(α0−δ)2+x2u´dëY½n§F(α)3T«mþ´αëY¼ê§AO3α0:ëYZ+∞αduα06=0?¿5§dxé?Ûα6=0ëY§ddF(α)3?Ûعα=0«mþx2+α20ÑëYZZ+∞απ+∞απdlimdx=,limdx=−α→+00α2+x22α→−00α2+x22Z+∞αF(α)3α=0?ØëY§Kdx3عα=0?Û«mþ´ëY¼ê.x2+α20(2)?p∈(0,2)§K300§K1−p1<1§u´dÜO{4/ª§dxÂñπ−1xp−1(π−x)2−p1Zπsinxld¼O{§dx"up∈[p1,p2]Âñπ−1xp(π−x)2−pZsinxπsinxqȼê3[π−1,π)×[p1,p2]þëY§KdëY5½n§dx3[p1,p2]ëxp(π−x)2−pπ−1xp(π−x)2−pYnܱþ§F(p)3[p1,p2]ëY§l3Ùþ?:pëYZπsinxqdp∈(0,2)?¿5§F(p)=dx3(0,2)SëY..0xp(π−x)2−pZZ+∞+∞λλ6.f(t)t>0ëY.XJtf(t)dtλ=a,λ=bÑÂñ§@"tf(t)dt"uλ3[a,b]þÂ00ñ.λy²µÏf(t)t>0ëY§Kȼêtf(t)Û:U´0ZZZ+∞1+∞λλλu´tf(t)dt=tf(t)dt+tf(t)dtZ0Z0111λλ−aaéutf(t)dt=ttf(t)dtZ00Z+∞1aaλ−aÏtf(t)dtÂñ§Ktf(t)dtÂñ§l"uλ∈(−∞,+∞)Âñ§téuλ>aüN~00λ−a|t|61(06t61,λ>a)Z1λKdAbelO{§tf(t)dt"uλ>aÂñZ0Z+∞+∞λλ−bbéutf(t)dt=ttf(t)dtZ11Z+∞+∞bbλ−bÏtf(t)dtÂñ§Ktf(t)dtÂñ§l"uλ∈(−∞,+∞)Âñ§téuλ6büN~01λ−b|t|61(16t<+∞,λ6b)Z+∞λKdAbelO{§tf(t)dt"uλ6bÂñZ1+∞λu´tf(t)dt"uλ3[a,b]þÂñ.0e−ax−e−bxZb−xy7.lª=edyÑu§OÈ©xaZ+∞e−ax−e−bxdx(b>a>0)0xe−ax−e−bxZbZ+∞e−ax−e−bxZ+∞Zb−xy−xy)µÏ=edy§Kdx=dxedyxa0x0a−xy¼êe3[0,+∞)×[a,b]þëYZ+∞1qéy∈[a,b](a>0)§K|e−xy|6e−axe−axdx=ÂñZ0a+∞−xyu´d¼O{§edx"uy3[a,b]Âñ0Z+∞e−ax−e−bxZ+∞ZbZbZ+∞Zbdy−xy−xydÈ©^S½n§dx=dxedy=dyedx==0x0aa0aybln(b>a>0)a 课后答案网www.khdaw.com24708.Áy²Γ(s)ê3§¦ÑΓ(s)È©Lª§`²íL§´Ün.Z+∞s−1−xy²µΓ(s)=xedx0∂s−1−xs−1−xs−1−xÏxe9(xe)=xelnx300þëYZ∂sZZ+∞1+∞s−1−xs−1−xs−1−xxedx=xedx+xedx001éu?¿s>0§o01§Kxedx~ÂÈ©§ÂñZ0Z11oxs0−1e−xdxÂñ§ld¼O{§xs−1e−xdx"us3s>s0þÂñ00qxs−1e−x6xS0−1e−x(16x<+∞)Z+∞Ïlimx2xS0−1e−x=0§KdÜO{4/ª§xS0−1e−xdxÂñx→+∞Z1+∞s−1−xu´d¼O{§xedx"us3s6S0þÂñZ1+∞s−1−xlxedx3[s0,S0]þÂñ§Âñ.Z0ZZ+∞1+∞s−1−xs−1−xs−1−xxelnxdx=xelnxdx+xelnxdx001éþ¡0s0þÂñ0lnxqxs−1e−xlnx=xse−x0?¿5§Γ(s)3s>0Γ(s)=xelnxdx.0Z√Z√+∞2π+∞2c2π−y−y−−2c9.(1)ledy=íÑL(c)=ey2dy=e¶0202ZdL+∞−ay2−b(2)|^È©Òe¦{KÚÑ=−2L5¦Ó(J§¿íÑey2dy(a>0,b>0)dc0.y²µZ+∞2c2Z+∞c2Z+∞c2−y−−y−−2c−2c−y−(1)L(c)=ey2dy=eydy=eeydy=Z00!Z0+∞2+∞2−2c−y−cc−2c−y−cceeydy−+eeyd0y0ycc3cÈ©¥-u=y−§3È©¥-v=yyZZ+∞2+∞c2√−2c−u−2c−(v−)−2cKL(c)=eedu−eevdv=πe−L(c)−∞0 课后答案网www.khdaw.comZ√+∞2c2π−y−−2cu´L(c)=ey2dy=e.02ZZ!+∞2c2dL+∞2c2c−y−−y−(2)L(c)=ey2dy,=2ey2−dydcy200Z+∞2cdL−v2−c-v=§K=−2ev2dv=−2L(c)ydc0L−2cu´lnL=−2c+lnc0=ln=−2c½=L=c0eZ√c0√√+∞2πππ−y−2cqL(0)=edy=§Kc0=§u´L(c)=e√0222K-u=ay§ksZZ√√+∞−ay2−b1+∞2(ab)21π√1π√−u−−2ab−2abey2dy=√eu2du=√·e=e(a>0,b>0).0a0a22a 课后答案网www.khdaw.com2491oÜ©õCþÈ©Æ1ÊÙÈ©(!nÈ©§1a!¡È©)½ÂÚ5§2.È©51.y²¥½nµef(M),g(M)3ΩþëY§g(M)3ΩØCÒ§KZZf(M)g(M)dΩ=f(P)g(M)dΩΩΩÙ¥P∈Ω.y²µΩ´k.4«kÝþÏf(M),g(M)3ΩþëY§g(M)3ΩØCÒKf(M),g(M)3Ωþȧg(M)>0§M=max{f(M)},m=min{f(M)}ZZMZ∈ΩM∈Ωd54§mg(M)dΩ6f(M)g(M)dΩ6Mg(M)dΩZΩΩΩZeg(M)dΩ=0§dug(M)>0ëY§K7kg(M)≡0,M∈Ω§lf(M)g(M)dΩ=0=yØΩΩª¤á¶ZZf(M)g(M)dΩeg(M)dΩ>0§Km6ΩZ6MΩg(M)dΩΩZf(M)g(M)dΩdëY¼ê0½n§73P∈Ω§¦ΩZ=f(P)g(M)dΩZZΩ=f(M)g(M)dΩ=f(P)g(M)dΩΩZΩZÓn§g(M)60§½kf(M)g(M)dΩ=f(P)g(M)dΩ.ΩΩ2.y²µef(M)3ΩþëY§f(M)>0§f(M)6≡0§KZf(M)dΩ>0Ω.y²µÏf(M)>0§f(M)6≡0§K3:M0∈Ω§¦f(M0)>0qf(ZM)3ΩþëY§,3MZ0ëY§K73δ>Z0§M∈OZ(M0,δ)§kf(M)>0u´f(M)dΩ=f(M)dΩ+f(M)dΩ>f(M)dΩ>0ΩΩO(M0,δ)O(M0,δ)O(M0,δ)03.y²µef(M)3ΩþëY§3Ω?ÛÜ©«Ω⊆ΩþZf(M)dΩ=0Ω0Kf(M)≡00dy²µef(M),g(M)3ΩþëY§3Ω?ÛÜ©«Ω⊆Ωþ¤áµZZf(M)dΩ=g(M)dΩΩ0Ω0K3Ωþ¤áµf(M)≡g(M).000y²µ^y{.e3:M∈Ω§¦f(M)6=0§Øf(M)>00f(M)0000duf(M)3ΩþëY§K3MΩ=O(M,δ)⊂Ω(δ>0)§¦f(M)>>0,∀M∈ΩZ0Z2f(M)0u´kf(M)dΩ>||Ω||>0Kf(M)dΩ=0gñΩ02Ω0 课后答案网www.khdaw.comKbؤá§=kf(M)≡0ZZZ0-F(M)=f(M)−g(M)§K3Ω?ÛÜ©«Ω⊆ΩþF(M)dΩ=f(M)dΩ−g(M)dΩ=0Ω0Ω0Ω0ldþ¡¤y(اkF(M)≡0§=f(M)−g(M)≡0½=f(M)≡g(M).4.e|f(M)|3Ωþȧ@"f(M)3Ωþ´ÄȺ¼êf(x,y)=−1§xÚy¥k´Ãnê¶f(x,y)=1§xÚyÑ´knê§3[0,1;0,1]þÈ©.)µ7.XX0¯¢þ§f(x,y)3[0,1;0,1]þþÚ!eÚ©OS=Mi∆Ωi=1,S=mi∆Ωi=−1kkkkikikÙ¥Mi=maxf(x,y)=1,mi=minf(x,y)=−1kk[0,1;0,1][0,1;0,1]lf(x,y)3[0,1;0,1]þØÈ,|f(x,y)|≡13[0,1;0,1]þÈ. 课后答案网www.khdaw.com2511ÙÈ©O9A^§1.È©O1.zÈ©ZZI=f(x,y)dσDgÈ©(©OÑéüCþkgSØÓgÈ©)§Ù¥È©D©Oµ222(1)D´dx¶x+y=r(y>0)¤¤«¶2(2)D´dy=0,y=x(x>0)9x+y=2¤¤«¶1(3)D´dy=x,x=29y=(x>0)¤¤«¶x22(4)D´16x+y64)µ√√ZrZr2−x2ZrZr2−y2(1)I=dxf(x,y)dy=dy√f(x,y)dx−r00−r2−y2Z1Z2−yZ1Zx3Z2Z2−x(2)I=dyf(x,y)dx=dxf(x,y)dy+dxf(x,y)dy√03y0010ZZZZZZ12222x(3)I=dyf(x,y)dx+dyf(x,y)dx=dxf(x,y)dy111y112yxZZ√2Z"Z√2Z√2#ZZ√2−14−x1−1−x4−x24−x(4)I=dx√f(x,y)dy+dx√f(x,y)dy+√f(x,y)dy+dx√f(x,y)dy=−2−4−x2−1−4−x21−x21−4−x2ZZ√2Z"Z√2Z√2#ZZ√2−14−y1−1−y4−y24−ydy√f(x,y)dx+dy√f(x,y)dx+√f(x,y)dx+dy√f(x,y)dx−2−4−y2−1−4−y21−y21−4−y22.f(x,y)3«DþëY§Ù¥D´dy=x,y=a9x=b(b>a)¤¤§y²ZZZZbxbbdxf(x,y)dy=dyf(x,y)dxaaayy²µdf(x,y)3DþëY§Èf(x,y),(x,y)∈D-f(x,y)=Øy=xëY§7È0,(x,y)∈[a,b;a,b]DZZZZZZZbbbxKf(x,y)dxdy=f(x,y)dxdy=dxf(x,y)dy=dxf(x,y)dyaaaaD[a,b;a,b]ZZZZZZZbbbbf(x,y)dxdy=f(x,y)dxdy=dyf(x,y)dx=dyf(x,y)dx.aaayD[a,b;a,b]3.3eÈ©¥UCÅgÈ©gSµZZ√2a2ax(1)dx√f(x,y)dy¶02ax−x2ZZ2πsinx(2)dxf(x,y)dy¶00ZZZZ12y33−y(3)dyf(x,y)dx+dyf(x,y)dx¶0010√Z1Zx2Z2Z1−(x−1)2(4)dxf(x,y)dy+dxf(x,y)dy.0010)µZZ√Z"Z√2−y2Z#ZZ2a2axaa−a2a2a2a(1)dx√f(x,y)dy=dyf(x,y)dx+√f(x,y)dx+dyf(x,y)dx.02ax−x20y2a+a2−y2ay22a2a 课后答案网www.khdaw.comZZZZZZ2πsinxπsinx2πsinx(2)dxf(x,y)dy=dxf(x,y)dy+dxf(x,y)dy=Z0Z0Z0Z0ZπZ0ZZπsinx2π01π−arcsiny02π+arcsinydxf(x,y)dy−f(x,y)dy=dyf(x,y)dx−dyf(x,y)dx.00πsinx0arcsiny−1π−arcsinyZZZZZZ12y33−y23−x(3)dyf(x,y)dx+dyf(x,y)dx=dxf(x,y)dy.00100x2√√Z1Zx2Z2Z1−(x−1)2Z1Z1+1−y2(4)dxf(x,y)dy+dxf(x,y)dy=dyf(x,y)dx.√00100y4.OeÈ©µZZx2+y2(1)xyedxdy¶[a,b;c,d]ZZρ22(2)xydxdy,Ω´dÔy=2pxÚx=(ρ>0)¤.«¶2ΩZZdxdy(3)√(a>0),Ω´d%3:(a,a)»aI¶±áãlÚI¶¤2a−xΩ¤«¶ZZ22(4)(x+y)dxdy,Ω´±y=x,y=x+a,y=aÚy=3a(a>0)>«.Ω)µZZZZ22b2d212222x+yxybadc(1)xyedxdy=xedxyedy=(e−e)(e−e).ac4[a,b;c,d]ZZZρZ√32px222pρ√(2)xydxdy=xdxydy=pρ.√210−2pxΩZZZZ√2!dxdyadxa−2ax−x√8√(3)√=√dy=22−aa.2a−x02a−x03ΩZZZZ3ay22224(4)(x+y)dxdy=dy(x+y)dx=14a.ay−aΩ5.y²ZZZZbxbbJ=dxf(y)dy=f(y)(b−y)dy=f(x)(b−x)dxaaaaZZZZbxy²µòdxf(y)dyÅÈ©§f(y)dxdy§Ù¥Ω´x=b,x=y,y=a¤¤«aaΩédÈ©zkéxéyÈ©§KZZZZZZbxbbbbdxf(y)dy=dyf(y)dx=f(y)(b−y)dy=f(x)(b−x)dx.aaayaa6.²¡þ«D3x¶Úy¶þÝKÝlx,ly,D¡È|D|§(α,β)DS?:§y²µZZ(1)(x−α)(y−β)dxdy6lxly|D|¶DZZ22lxly(2)(x−α)(y−β)dxdy6.4Dy²µ(1)du(x−α)(y−β)3DþëY§dÈ©¥½n§3(ξ,η)∈D§¦ZZZZ(x−α)(y−β)dxdy=(ξ−α)(η−β)dxdy6lxly|D|DD 课后答案网www.khdaw.com253(2)lx=b−a,ly=d−c§KZZZZZZ(x−α)(y−β)dxdy6|x−α||y−β|dxdy6|x−α||y−β|dxdy=DD[a,b;c,d]ZZZZZZbdαbβd|x−α|dx|y−β|dy=(α−x)dx+(x−α)dx(β−y)dy+(y−β)dy=acaαcβ22222222(b−α)+(α−a)(d−β)+(β−c)(b−a)(d−c)lxly·6·=22224ZZ7.^4IOf(x,y)dxdy§È©XÛ(Ñe«þü«ÅgÈ©)ºΩ222(1)Ω:x+y6a,y>0¶2222(2)Ω:a6x+y6b,x>0¶22(3)Ω:x+y6ay(a>0)¶(4)Ω:/µ06x6a,06y6a.)µZZZZZZπ|a||a|π(1)f(x,y)dxdy=dθf(rcosθ,rsinθ)rdr=rdrf(rcosθ,rsinθ)dθ.0000ΩZZZπZZZπ|b||b|22(2)f(x,y)dxdy=dθf(rcosθ,rsinθ)rdr=rdrf(rcosθ,rsinθ)dθ.−π|a||a|−πΩ22ZZZZZZrπasinθaπ−arcsina(3)f(x,y)dxdy=dθf(rcosθ,rsinθ)rdr=rdrf(rcosθ,rsinθ)dθ.000arcsinrΩaZZZπZaZπZa4cosθ2sinθ(4)f(x,y)dxdy=dθf(rcosθ,rsinθ)rdr+dθf(rcosθ,rsinθ)rdr00π0Ω4ZZπZ√Zaa2aarcsin2r=rdrf(rcosθ,rsinθ)dθ+rdrf(rcosθ,rsinθ)dθ.00aarccosar8.3eÈ©¥Ú?#Cþu,v§CeÈ©.ZbZβxu=x,(1)dxf(x,y)dy(00y=uvD(u,v)ZZZZbβxbβu´dxf(x,y)dy=uduf(u,uv)dvaαxaαu+vx=2D(x,y)1(2)ϧK|J|==u−vD(u,v)2y=ZZ2ZZ!22−x124−uu+vu−vu´dxf(x,y)dy=duf,dv01−x21−u224D(x,y)usin32vx=ucosv(3)Ï4§K|J|==y=usinvD(u,v)2ZZZZπZπZaa1234412344u´f(x,y)dxdy=udusin2vf(ucosv,usinv)dv=sin2vdvuf(ucosv,usinv)du.200200Ω 课后答案网www.khdaw.com9.A^4IOeÈ©µZZ−(x2+y2)(1)edxdy¶x2+y26R2ZZp(2)sinx2+y2dxdy¶π26x2+y264π2ZZ22(3)(x+y)dxdy,(Ω´x+y6x+ySÜ).Ω)µZZZZ2πR−(x2+y2)−r2−R2(1)edxdy=dθredr=π(1−e).00x2+y26R2ZZZZp2π2π(2)sinx2+y2dxdy=dθrsinrdr=−6π20ππ26x2+y264π211(3)Cx=+rcosθ,y=+rsinθ§K|J|=r22ZZZ2πZ√1π22u´(x+y)dxdy=dθ[r+r(sinθ+cosθ)]dr=.002Ωhp10.¦dI¡z=x2+y2!²¡z=09Ρx2+y2=R2¤áNNÈ.Rhp)µI¡z=x2+y2!²¡z=09Ρx2+y2=R2¤áN3XOY²¡þK´RΩ={(x,y)x2+y26R2}§31Ü©PΩ1K|^é¡5§¤¦áNNÈZZZZZZZπZ4hp4h2R2V=zdxdy=4zdxdy=x2+y2dxdy=dθr2dr=πR2h.RR003ΩΩ1Ω122222211.¦¥¡x+y+z=aΡx+y=ax(a>0)úÜ©NÈ.ZZZπZ!p2acosθp24)µdé¡5§V=2a2−x2−y2dxdy=2dθra2−r2dr=a3π−.−π033Ω22212.¦dÔy=mx,y=nx(00).!2222xyxy222)µòz=+¥§§x+y++−c=c2a2b22a2b 课后答案网www.khdaw.com255√√p√-x=arcosθ,y=brsinθ§Kr=2c−(acos2θ+bsin2θ),|J|=abrZZ22!ZπZ2√c−(acos2θ+bsin2θ)√√!1xy2ab3323212u´V=+dxdy=4dθrdr=4abπa+b+ab−ac−bc+c.2ab002884D15.¦>a/þ§þz:ÝT:å/,º:ål¤"§3/¥:?Ýρ0.√pa2ρ0)µ,º::(0,0)§Kρ=kx2+y2x=y=§ρ=ρ0§u´k=√2a2pKݼêρ(x,y)=ρ0x2+y2au´|^17K(4)§ZZ√ZπZa√ZπZa√2ρ0p42ρ022ρ0m=x2+y2ddy=dθcosθr2dr+dθsinθr2dra00aπ0a[0,a;0,a]4ρ0a2√√=[2+2ln(1+2)].3 课后答案网www.khdaw.com§2.nÈ©O1.OenÈ©µZZZ23(1)xyzdxdydz,Vµd¡z=xy,y=x,z=0,x=1¤¤¶VZZZ222(2)xyzdxdydz,Vµd¡x+y+z=1,x>0,y>0,z>0¤.V)¶ZZZZZZ1xxy12323(1)xyzdxdydz=xdxydyzdz=.000364V√√ZZZZ1Z1−x2Z1−x2−y21(2)xyzdxdydz=xdxydyzdz=.00048V2.«enÈ©«V/G¿UCÈ©gSµZZZ11−xx+y(1)dxdyf(x,y,z)dz¶000ZZZ1xxy(2)dxdyf(x,y,z)dz¶000ZZZ210(3)dxdyf(x,y,z)dz¶101−x−y√Z1Z1−x2Z1(4)dx√dy√f(x,y,z)dz¶−1−1−x2x2+y2Z1Z1Zx2+y2(5)dxdyf(x,y,z)dz.000)¶ZZZZZZ11−xx+y11−yx+y(1)dxdyf(x,y,z)dz=dydxf(x,y,z)dz0Z0ZZ0Z0Z0Z01x1−x111−x=dxdzf(x,y,z)dy+dxdzf(x,y,z)dyZ0Z0Z0Z0ZxZz−x1z1−x111−x=dzdxf(x,y,z)dy+dzdxf(x,y,z)dyZ0Z0Zz−xZ0ZzZ01z1−y111−y=dzdyf(x,y,z)dx+dzdyf(x,y,z)dxZ0Z0Zz−yZ0ZzZ01y1−y111−y=dydzf(x,y,z)dx+dydzf(x,y,z)dx0000yz−yZZZZZZ1xxy11xy(2)dxdyf(x,y,z)dz=dydxf(x,y,z)dz0000y0Z1Zx2ZxZ1Z1Zx=dxdzf(x,y,z)dy=dzdxf(x,y,z)dyz√z000zZZZxZZ√Zx1111z1=dzdyf(x,y,z)dx+dzdyf(x,y,z)dx√z0zy0zyZ1Zy2Z1Z1ZyZ1=dydzf(x,y,z)dx+dydzf(x,y,z)dx00y0y2zyZZZZZZ210120(3)dxdyf(x,y,z)dz=dydxf(x,y,z)dz1Z0Z1−Zx−yZ0Z11Z−x−y1021−y2=dydzf(x,y,z)dx+dydzf(x,y,z)dxZ0−Zy1Z0Z−1−yZ1−y−ZzZZZ−1120−z2012=dzdyf(x,y,z)dx+dzdyf(x,y,z)dx+dzdyf(x,y,z)dx−2−1−z1−y−z−101−y−z−1−z1 课后答案网www.khdaw.com257ZZZZZZZZZ−12101−z1021=dzdxf(x,y,z)dy+dzdxf(x,y,z)dy+dzdxf(x,y,z)dyZ−2Z−zZ1−x−zZ−1Z1Z1−x−z−11−z022121−x1=dxdzf(x,y,z)dy+dxdzf(x,y,z)dy11−x01−x1−x−z√√Z1Z1−x2Z1Z1Z1−y2Z1(4)dx√dy√f(x,y,z)dz=dy√dx√f(x,y,z)dz−1−1−x2√x2+y2−1−1−y√2x2+y2Z1Z1Zz2−x2Z1ZzZz2−x2=dxdz√f(x,y,z)dy=dzdx√f(x,y,z)dy−1|x|−√z2−x20−z−√z2−x2Z1ZzZz2−y2Z1Z1Zz2−y2=dzdy√f(x,y,z)dx=dydz√f(x,y,z)dx0−z−z2−y2−1|y|−z2−y2Z1Z1Zx2+y2Z1Z1Zx2+y2(5)dxdyf(x,y,z)dz=dydxf(x,y,z)dz000000Z1Zx2Z1Z1Zx2+1Z1=dxdzf(x,y,z)dy+dxdz√f(x,y,z)dy0000x2z−x2ZZ√ZZZZZZZ1z1111211=dzdx√f(x,y,z)dy+dzdxf(x,y,z)dy+dzdx√f(x,y,z)dy√√00z−x20z01z−1z−x2ZZ√ZZZZZZZ1z1111211=dzdy√f(x,y,z)dx+dz√dyf(x,y,z)dx+dz√dy√f(x,y,z)dx00z−y20z01z−1z−y2Z1Zy2Z1Z1Zy2+1Z1=dydzf(x,y,z)dx+dydz√f(x,y,z)dx0000y2z−y23.OenÈ©µZZZ122222(1)zdxdydz§Ù¥È©«V´d¥¡x+y+z=4Ô¡z=(x+y)¤¤áN¶3VZZZ222222(2)(x+y+z)dV§Ù¥V´x+y+z61¶VZZZ(3)z2dxdydz,Vdü¥x2+y2+z26R2,x2+y2+z262RzúÜ©¤|¤¶VsZZZ222222xyzxyz(4)1−−−dxdydz,Vý¥++61.a2b2c2a2b2c2V)¶ZZZZZ√Z√22π34−r13(1)|^ΡI§zdxdydz=dθdrrzdz=π00r24V3ZZZZZZ2ππ142224(2)|^¥¡I§(x+y+z)dV=dθsinϕdϕρdρ=π0005V(3)|^¥¡I§ZZZZZπZZZπZ2πR2π2Rcosϕ2324224zdxdydz=dθcosϕsinϕdϕρdρ+dθcosϕsinϕdϕρdρ0000π0V3595=πR480(4)d2Â¥¡I§sZZZx2y2z2Z2πZπZ1pπ21−−−dxdydz=abcdθsinϕdϕρ21−ρ2dρ=abc.a2b2c20004V4.|^¥¡I½Î¡IOe¡¤.Nȵ222222(1)x+y+z=4RSÜx+y=2Rx¤yÑÜ©¶2223(2)(x+y+z)=3xyz. 课后答案网www.khdaw.com)¶(1)|^ΡIx=rcosθ,y=rsinθ,z=z|J|=r§3dCe§¡§Cµ222r+z=4R,r=2rcosθ√!ZZZZπZ2RcosθZ4R2−r221634KV=dxdydz=2dθrdrdz=Rπ−−π0033V2(2)dKáN31!1n!1891l%S§éuù%©Okx,y,z>0;x,y60,z>0;x,z60,y>0;x>0,y,z60Ϫà9màx,y,z¥?üÓCÒªE¤á§áN3ùo%SÜ©§éé/é¡uI¶.2d¥¡Ix=ρsinϕcosθ,y=ρsinϕsinθ,z=ρcosϕ,|J|=ρsinϕ63232¡§Cµρ=3ρsinϕcosϕsinθcosθ=ρ=3sinϕcosϕsinθcosθ§ππ31%S§ρ>0,06θ6,06ϕ62√2ZπZπZ33sin2ϕcosϕsinθcosθ2221u´V=4dθsinϕdϕρdρ=.00025.|^·ICOe¡¤Nȵ!222222xyzxy(1)++=+a2b2c2a2b2!2!2xyz(2)++=1,(x>0,y>0,z>0,a,b,c>0)abc222222(3)z=x+y,z=2(x+y),xy=a,xy=2a,x=2y,2x=y§(Ù¥x,y>0))¶(1)d2Â¥¡I:x=aρsinϕcosθ,y=bρsinϕsinθ,z=cρcosϕ§Ù¥ρ>0,06θ62π,06ϕ6π§2ù|J|=abcρsinϕ¡§Cµρ=sinϕZ2πZπZsinϕπ22KV=abcdθsinϕdϕρdρ=abc0004ππ22(2)Cµx=arcosθcosϕ,y=brsinθcosϕ,z=crsinϕ§Ù¥06r61,06θ6,06ϕ6§222ù|J|=2abcrcosθsinθcosϕZπZπZ1222abcKV=dθdϕ(2abcrcosθsinθcosϕ)dr=0003r!√vv22(3)-z=u(x+y),xy=v,x=wy§Kx=wv,y=,z=uwv+wwvv122d|J|=+§16u62,a6v62a,6w6222w2!2Z2Z2a2Z21194u´V=duvdv+dw=a21a2122w426.¦äküNÈ06x61,06y61,06z61ÔNþ§eÔN3:M(x,y,z)ݵ=x+y+z.ZZZZZZ1113)¶m=(x+y+z)dxdydz=dxdy(x+y+z)dz=.0002V 课后答案网www.khdaw.com259§3.È©3ÔnþA^1.¦e¤.%Iµ2(1)ay=x,x+y=2a(a>0)(2)r=a(1+cosϕ)(06ϕ6π))µRRRRxdΩydΩΩΩ(1)Ýρ~ê§Kx=RR,y=RRGdΩGdΩΩΩZZZZa2a−x92ddΩ=dxdy=a−2ax22ΩaZZZZa2a−x93xdΩ=xdxdy=−a−2ax24ΩaZZZZa2a−x363ydΩ=dxydy=a−2ax25Ωaa8Kx=−,y=aG2G5RRRRrcosϕdΩrsinϕdΩΩΩ(2)Ýρ~ê§Kx=RR,y=RRGdΩGdΩΩΩZZZZπa(1+cosϕ)32ddΩ=dϕrdr=aπ004ΩZZZZπa(1+cosϕ)523rcosϕdΩ=dϕrcosϕdr=aπ008ΩZZZZπa(1+cosϕ)423rsinϕdΩ=dϕrsinϕdr=a003Ω516aKx=a,y=.G6G9π2.¦de¡¤.ÔN%µ222xyz(1)++=1,x>0,y>0,z>0a2b2c222(2)z=x+y,x+y=a,x=0,y=0,z=0)µRRRRRRRRRxdxdydzydxdydzDzdxdydzVVV(1)Ýρ~ê§Kx=RRR,y=RRR,z=RRRGdxdydzGdxdydzGdxdydzVVVππ-x=aρsinϕcosθ,y=bρsinϕsinθ,z=cρcosϕ§Ù¥06ρ61,06θ6,06ϕ6§d222|J|=abcρsinϕZZZZπZπZ1222πKdxdydz=abcdθsinϕdϕρdρ=abc0006VZZZZπZπZ122223π2xdxdydz=abccosθdθsinϕdϕρdρ=abc00016V333u´x=a§dé¡5§y=b,z=cG8G8G8RRRRRRRRRxdxdydzydxdydzzdxdydzVVV(2)Ýρ~ê§Kx=RRR,y=RRR,z=RRRGdxdydzGdxdydzGdxdydzVVVZZZZaZa−xZx2+y24addxdydz=dxdydz=0006V 课后答案网www.khdaw.comZZZZaZa−xZx2+y25axdxdydz=xdxdydz=00015VZZZ5ZZZa76ydxdydz=,zdxdydz=a15180VV2272Kx=a,y=a,z=a.G5G5G303.¦þ!©Ùuür=2sinθ9r=4sinθm«þþ%.)µdé¡5§x=0!ZZ1π4sinθ772qy=dθrsinθdr=§K¤¦/%0,.3π02sinθ334.3,)L§¥§3/>þVþ>»Ý/§¦²¡ã/%á3 %þ§Á¦Ý/,>.)µÝρ~ê§Ý/,>l§%3I:(0,0)§ux¶þ§Ý/ux¶e√ZRZR2−x2ρxdxdy−R−lu´x==0ρ1πR2+2Rl2√ZRZR2−x2ρdxydy!22−R−l==22y=R−lρ1πR2+2RlπR+4l32√6-y=0§Kl=R.325.¦þ!©Ù3dy=xy=1¤¤²¡ã/þþ"uy=−1=Ä.þ.ZZZZ1136822)µIy=1=(y+1)dΩ=dx(y+1)dy=.−1x2105Ω6.¦de¡¤.þ!Néu¤«¶=Ä.þµ22(1)z=x+y,x+y=±1,x−y=±1,z=0"uz¶¶(2)N"u§c.)µ(1)¡¤.þZZZ!ÔNéuOZ¶=Ä.þPIOZ22KIOZ=(x+y)dxdydzVZ1Z1−xZx2+y2Z0Zx+1Zx2+y2142222=dxdy(x+y)dz+dxdy+(x+y)dz=0x−10−1−(1+x)045(2)N06z6c,06y6b,06x6aZZZabcabc2222"uz¶=Ä.þIOZ=dxdy(x+y)dz=(a+b).00032227.¦þ!¡x+y6R,z=0éuz¶þ:(0,0,c)(c>0)?üþÚå.)µÚå3OX,OY¶þK0§=Fx=Fy=0§ρ=ρ0"#ZZZZc2πRcr11KFz=kρ0dΩ=kρ0dθdr=2kρ0πc−√.d3223cR2+c200(r+c)2Ω2228.¦þ!ÎNx+y6a,06z6héup(0,0,c)(c>h):?üþÚå.)µρ=ρ0§dé¡5§Úå3OX,OY¶þK0§=Fx=Fy=0|^ΡI§Úå3OZ¶þKµZZZZZZhz−c2πahz−cFz=kρ0dxdydz=kρ0dθrdrdz330(x2+y2+(z−c)2)2000[r2+(z−c)2]2pΩp=2πkρ0(a2+c2−a2+(c−h)2−h). 课后答案网www.khdaw.com261§4.2ÂÈ©1.Oe2ÂÈ©µZZdxdy(1)xpyqxy>1x>1ZZdxdy(2)p1−x2−y2x2+y261ZZ+∞+∞−(x2+y2)(3)edxdy.¿dy²VÇÈ©−∞−∞Z1+∞2−x√edx=1π−∞)µZZZZdxdy+∞dx+∞dy(1)duȼêK§I==pqpqxy1x1yxy>1xx>1ZZ1+∞dy+∞dyq61§dx>1§0<61§KÈ©uÑk=+∞§qqx1y1yZZxxdxdyu´I==+∞xpyqxy>1x>1Z+∞dyxq−1q>1§=q1yq−1xZZZ+∞dx+∞dy1+∞1q−p−1d§p>q§I==xdx=pq1x1yq−11(q−1)(p−q)xZZZ1+∞dxdyq−p−1p6q§(p+1)−q61§KÈ©xdx=+∞§lI==+∞q−11xpyqxy>1x>1ZZdxdy1nþ§p>q>1§I==§Ù{¹I=+∞.xpyq(q−1)(p−q)xy>1x>1ZZZZdxdy2πεr(2)p=limdθ√dr=2π.1−x2−y2ε→1001−r2x2+y261(3)Cx=rcosθ,y=rsinθ(06θ62π,r>0),|J|=rZZZZ+∞+∞2π+∞−(x2+y2)−r2Kedxdy=dθredr=π.Z−∞Z−∞Z00ZZZ+∞+∞+∞+∞+∞+∞−(x2+y2)−x2−y2−x2−y2dedxdy=edxedyedx=edy,−∞−∞−∞−∞−∞−∞Z+∞2√1R+∞2−x√−xKedx=π=edx=1.π−∞−∞2.?Øe¡2ÂÈ©Âñ5µZZ+∞+∞dxdy(1)−∞−∞(1+|x|p)(1+|y|q)ZZϕ(x,y)(2)dxdy,01§È©Âñ¶p61§È©uÑ01+xp01+xpZZ+∞dy+∞dyÓn§q>1§È©Âñ¶q61§È©uÑ01+yq01+yqZZ+∞+∞dxdynþ§p>1q>1§È©Âñ§Ù{¹þuÑ.−∞−∞(1+|x|p)(1+|y|q)mϕ(x,y)M(2)Ï66(1+x2+y2)p(1+x2+y2)p(1+x2+y2)pZZZZϕ(x,y)dxdyKd2ÂÈ©"O{92ÂÈ©5§dxdy(1+x2+y2)p(1+x2+y2)p06y6106y61ÓñÑZZZZdxdy1+∞dxdȼêé¡59K5§=2dy(1+x2+y2)p00(1+x2+y2)p06y61du06y61§KZZZ+∞dx+∞dx+∞dxep>0§K660(2+x2)p0(1+x2+y2)p0(1+x2)pZZZ+∞dx+∞dx+∞dxep<0§K>>0(2+x2)p0(1+x2+y2)p0(1+x2)PZ1+∞dx112péuα>0§dulimx=1§KÈ©p>Âñ¶p6uÑx→+∞(α2+x2)p0(α2+x2)p22ZZdxdy11u´p>Âñ¶p6uÑ(1+x2+y2)p2206y61ZZϕ(x,y)11ldxdyp>Âñ¶p6uÑ.(1+x2+y2)p2206y61mϕ(x,y)M(3)Ï0<66|x−y|p|x−y|p|x−y|pZZZZaaϕ(x,y)aadxdyKd2ÂÈ©"O{92ÂÈ©5§dxdyÓñÑ00|x−y|p00|x−y|pZZZZaadxdyaxdydȼêé¡59K5§dxdy=2dx00|x−y|p00(x−y)pZaZxdya2−pp<1§dx=00(x−y)p(2−p)(1−p)ZaZadxdyZaZxdy2a2−pK=2dx=00|x−y|p00(x−y)p(2−p)(1−p)ZZZZaxdyax−εdyp>1§dx=limdx00(x−y)pε→+0ε0(x−y)pZZZZaxdyax−εdyp=1§dx=limdx=lim(alna−a+ε−alnε)=+∞00(x−y)pε→+0ε0x−yε→+0ZZaadxdyKp=1uѶ00|x−y|p!ZZZZaxdyax−εdya+εlnεp=2§dx=limdx=lim−1−lna=−∞00(x−y)pε→+0ε0(x−y)2ε→+0εZZaadxdyKp=2uѶ00|x−y|p 课后答案网www.khdaw.com263ZZZZaxdyax−εdyp>1p6=2§dx=limdx"00(x−!y)pε→+0ε0#(x−y)p1p−11=lima−ε+=+∞ε→+0(p−1)εp−1p−2(p−1)(p−2)ap−2ZZaadxdy)Kp>1p6=2uÑ00|x−y|pZZaaϕ(x,y)nþdxdyp<1Âñ¶p>1uÑ.00|x−y|p22(4)(0,0)´Û:§dux++xy+y>0((x,y)6=(0,0))§Kmϕ(x,y)M66(x2+xy+y2)p(x2+xy+y2)p(x2+xy+y2)pZZZZaaϕ(x,y)aadxdyd2ÂÈ©"O{92ÂÈ©5§dxdy00(x2+xy+y2)p00(x2+xy+y2)pÓñÑZZZZZdxdy1dr2πdθ1dr=lim=Nlim(x2+xy+y2)pε→+0εr2p−10(1+sinθcosθ)pε→+0εr2p−1x2+y261Nlim(−lnε)=+∞,p=1!ε→+0Z2π=2−2pNÙ¥N=dθ~ÂÈ©§~þ1−ε,p<1(1+sinθcosθ)pNε→lim+02−2p=2−2p0∞,p>1ZZdxdyo§p<1Âñ¶p>1uÑ(x2+xy+y2)px2+y261ZZϕ(x,y)ldxdyp<1Âñ¶p>1uÑ.(x2+xy+y2)px2+y261ZZdxdy2223.y²D´d31Ôy=x§±x+y=19x¶¤¤«§K3.x2+y2Dy²µ(0,0)´Û:ZZdxdyZθ0Z1drZθ0cos2θ=dθ=lndθ,0´Û:22x+y0sinθr0sinθDcos2θ!√sinθ05−1Ù¥θ0÷v=1=sinθ0=cos2θ02cos2θZθ0cos2θ1Ïlimθ2ln=0§KdÜO{4/ª§lndθÂñθ→+0ZZsinθ0sinθdxdylÈ©3.x2+y2D4.¦þ!IN"u3§º:?þm:Úå.)µÚå3OX,OY¶þK0§=Fx=Fy=0§ZZZZZZh2πRρmzmRρz2mRπFz=dV=dθdρdz=(l−g).33grg000(ρ2+z2)2glV 课后答案网www.khdaw.com1ÙÈ©Ú¡È©O§1.1aÈ©OZ1.O(x+y)ds§l´±O(0,0),A(1,0),B(0,1)º:n/.lZZZZ)µI=(x+y)ds=++(x+y)dslOAABBOZZ113ãOAþ§y=0,ds=dx§K(x+y)ds=xdx=¶OAZ0Z2√1√√3ãABþ§y=1−x,ds=2dx§K(x+y)ds=2dx=2¶ZABZ0113ãBOþ§x=0,ds=dy§K(x+y)ds=ydy=√BO02u´I=1+2.Z222.O(x+y)ds§l´±:¥%§»R±.lπ3p)µÏl:x=Rcosθ,y=Rsinθ,6θ6π§Kds=x2+y2dθ=Rdθ22θθZ223u´(x+y)ds=πR.lZ2223.O(x+y+z)ds§l´Ú^µx=acost,y=asint,z=bt(06t62π).lp√)µÏds=x02(t)+y02(t)+z02(t)dt=a2+b2dtZ2pKI=(x2+y2+z2)ds=π(3a2+4π2b2)a2+b2.l3Z4.Ox2ds§l´¥¡x2+y2+z2=a2²¡x+y+z=0±.lZZZZZZ21a222222223)µdé¡5§xds=yds=xds§Kxds=(x+y+z)ds=ds=πa.llll3l3l3Z2z5.Ods§l´Úµx=acost,y=asint,z=at,(06t62π).x2+y2lZ√p√2z82)µÏds=x02(t)+y02(t)+z02(t)dt=2dt§KI=ds=π3a.lx2+y236.7ájl§µtttx=ecost,y=esint,z=e,(06t6t0)§3z:ÝT:¥»²¤"§3:(1,0,1)?1§¦§þ.k2−2t)µÏρ=3:(1,0,1)?ρ=1§Kk=2§u´ρ==ex2+y2+z2Zx2+y2+z2p√√qds=x02(t)+y02(t)+z02(t)dt=3etdt§Km=ρds=3(1−e−t0).l7.¦ýx=Zacost,y=bsint±.þ(06t62π)§e3:M(x,y)5Ýρ=|y|.)µM=|y|ds§Ù¥lýx=acost,y=bsint(06t62π)l√ppa2−b2(1)a>b§Kds=x02(t)+y02(t)dt=a1−ε2cos2tdt§Ù¥ε11=ZZπpZ2πqau´M=|y|ds=absint1−ε2221costdt+a(−bsint)1−ε1costdt=l0πq2ab2ab2ab1−ε2+arcsinε211=2b+arcsinε1ε1ε1√ppb2−a2(2)abε12lM=4a,a=b2abp2b2+ln(ε2+1+ε2),a0)¤.Ü©L¡¶3222(3)Ρx+y=a²¡x+z=0,x−z=0(x>0,y>0)¤Ü©.)µpp(1)dzx=ay,zy=ax§1+zx2+zy2=1+a2x2+a2y2dé¡5§¿|^ΡI§ZZpZπ2Zap2hi43S=41+a2x2+a2y2dxdy=4dθ1+a2r2rdr=π(1+a)2−1.3a200σxy222222(2)¡3xoy²¡þK3x+3y=(2a−x−y)=x+y−xy+2a(x+y)=2a√020211(x+22a)y0000-x=√(x−y),y=√(x+y)§K§C√+=122(23a)2(2a)2√dd§¡¤.ÔN3xoy²¡þK±2aᶧ23a¶ýÔNL¡Èd¡ÚpÑI¡üÜ©|¤p√péuz=2a−x−y,z=3x2+3y2©Ok1+zx2+zy2=3,1+zx2+zy2=2ZZZZ√√√√2u´ÔNL¡ÈS=3dxdy+2dxdy=(3+2)π·2a·23π=4π(3+23)a.ΩΩvu!2xputx|a|(3)dyx=−,yz=0§1+yx2+yz2=1+=√yya2−x2ZZZZ|a||a|x|a|2KS=√dxdz=dx√dz=2a.a2−x20−xa2−x2σxz2.O1a¡È©µZZ2222(1)(x+y+z)dS,S:¥¡x+y+z=a,y60¶SZZ(2)xdS,S:Ú^¡x=ucosv,y=usinv,z=cvþÜ©06u6a,06v62π¶SZZ222222(3)dS,S:¥¡x+y+z=2cz(c>0)Y3I¡x+y=zSÜ©¶SZZp(4)(x2+y2)dS,S:NÈx2+y26z61>.¶SZZdS222(5),SΡx+y=R0uz=0Úz=HmÜ©§Ù¥r¡þ::ål.r2S)µ√(1)òx2+y2+z2=a2ÝKxoz²¡§dky=−a2−x2−z2xzpaKyx=√,yz=√§u´1+yx2+yz2=√a2−x2−z2a2−√x2−z2a2−x2−z2ZZZaZa2−x2apu´(x+y+z)dS=dx√(x−a2−x2−z2+z)dz=−πa3√−a−a2−x2a2−x2−z2S22222222(2)EZZ=xu+yu+ZZzu=1,F=xuxv+yuyv+zZuzv=0,G=xv+Zyv+zv=u+cpap2πKxdS=ucosvu2+c2dudv=uu2+c2ducosvdv=000SΣ 课后答案网www.khdaw.com267p(3)Ïx2+y2+z2=2cz§Kx2+y2+(z−c)2=c2,z=c+c2−x2−y2xypcu´zx=−p,zy=−p§K1+zx2+zy2=pc2−x2−y2c2−x2−y2c2−x2−y2ZZZZZZc2πccr2u´dS=pdσ=dθ√dr=2πc.c2−x2−y200c2−r2Sσ(4)©üÜ©µppp√1Ü©µz=1,1+zx2+zy2=1¶1Ü©µz=x2+y2,1+zx2+zy2=2ZZZZZZ2π12π1√π√2233K(x+y)dS=dθrdr+dθ2rdr=(1+2).00002S(5)x=Rcosθ,y=Rsinθ,z=z(06θ2π,06z6H)2222222KE=xθ+yθ+zθ=R,FZZ=xθxz+Zyθyz+Zzθzz=0,G=xz+yz+zz=1√dS2πHRHu´EG−F2=R§l=dθdz=2πarctan.r200R2+z2RS1223.¦Ô¡z=(x+y),06z61þ.dÝρ=z.21pp)µÏz=(x2+y2)§Kz2222x=x,zy=y§u´1+zx+zy=1+x+y2ZZZZZZ√√1p12π2p2(1+63)KþM=ρdS=(x2+y2)1+x2+y2dxdy=dθr31+r2dr=π.220015Sx2+y262 课后答案网www.khdaw.com§3.1aÈ©1.Oe1aÈ©µZ222(1)(x−2xy)dx+(y−2xy)dy,ly=xl(1,1)(−1,1)¶lI2222(2)(x+y)dx+(x−y)dy,l±A(1,0),B(2,0)C(2,1),D(1,1)º:/§¶lZ(3)(2a−y)dx+dy,l^Óx=a(t−sint),y=a(1−cost)§l(0,0)(2π,0)¶lZ(4)ydx−xdy+(x2+y2)dz,lx=et,y=e−t,z=atl(1,1,0)(e,e−1,a)l)µZZ−114222343(1)(x−2xy)dx+(y−2xy)dy=[x−2x+2x(x−2x)]dx=.l115IZZZZ22222222(2)I=(x+y)dx+(x−y)dy=+++(x+y)dx+(x−y)dylZABBCCDDA22÷AB§y=0§(x−y)dy=0ZABZZ222222Ó§k(x+y)dx=(x−y)dy=(x+y)dx=0ZBCZCDZDAZ21102222KI=xdx+(4−y)dy+(x+1)dx=(1−y)dy=2.1021ZZ2π2(3)(2a−y)dx+dy=[(a+acost)·a(1−cost)+asint]dt=aπ.l0ZZ1a22−ttt−t2t−2t2−2(4)ydx−xdy+(x+y)dz=[e·e−e(−e)+(e+e)a]dt=2+(e−e).l022.¦È©Z(1,1,1)ijkJ=111·dr(0,0,0)xyzÙ¥dr¥»§È©´»©Oµ(1)÷¶!2ϕπ(2)÷r=isinϕ+j(1−cosϕ)+k,06ϕ6.π2)µ(1)§µx=y=zZ(1,1,1)ijkZ(1,1,1)KJ=111·dr=(z−y)dx+(x−z)dy+(y−x)dz=(0,0,0)xyz(0,0,0)ZZZ111(x−x)dx+(y−y)dy+(z−z)dz=0.000ZZ("#!)(1,1,1)ijkπ22ϕ2ϕ2(2)J=111·dr=−(1−cosϕ)cosϕ+sinϕ−sinϕ+[(1−cosϕ)−sinϕ]·dϕ=(0,0,0)xyz0ππππ81−−.2π3.1w4L31w¡Sþ§S§z=f(x,y)§L3XY¡þÝKl§¼êP(x,y,z)3LþëY§y²IIP(x,y,z)dx=P[x,y,f(x,y)]dxLly²µØS¡þý§z=f(x,y),(x,y)∈DK¡>.L3XY²¡þÝKA´_l:x=ϕ(t),y=ψ(t),aF/abPSÚabQP¡È(Ù¥a,b©SP,RQX¶:)Zbu´kS=[y1(x)−y0(x)]dxaZZZZbb,¡§âII.Oúª§kydx=y0(x)dx,ydx=y1(x)dx__ZZPQaSRa¿5¿ydx=ydx=0PSPQZZZZZZZZbbK−ydx=ydx=+++ydx=y1(x)dx−y0(x)dx=S__LZPSRQPPSSRRQQRaa=S=−ydx.LZ(2)éu«D=PQRS§Ù¥PQ,RSkX¶§Ón§kxdy=S.L(3)éuE,«/zþü«/§ÓOì¡È§,§5¿E´p-§Óþü«(J.I1nþ¤ã§kS=xdy−ydx.2L6.Oe¤«¡Èµ(1)ýµx=acost,y=bsint,(06t62π)¶33(2)(/µx=acost,y=asint,(06t62π). 课后答案网www.khdaw.com)µIZ112π(1)S=xdy−ydx=abdt=πab.2L20IZ132π32222(2)S=xdy−ydx=asintcostdt=πa.2L208 课后答案网www.khdaw.com271§4.1a¡È©ZZ1.O(x+y)dydz+(y+z)dzdx+(z+x)dxdySS´±:¥%N(z>Ý2)>.§ý.ZZZZZZZZ)µI=(x+y)dydz+(y+z)dzdx+(z+x)dxdy=(x+y)dydz+(y+z)dzdx+(z+x)dxdyZZSSSSOI=(x+y)dydzSÏN8¡¥ko¡RuYOZZZZZ²¡§Kdo¡¡È0ZZZZu´(x+y)dydz=(1+y)dydz−(−1+y)dydz=2dydz=8S−16y61−16y61−16y61ZZ−16z61ZZ−16z61−16z61Ón(y+z)dzdx=8,(z+x)dxdy=8ZZSSu´I=(x+y)dydz+(y+z)dzdx+(z+x)dxdy=24.SZZ2.Of(x)dydz+g(y)dxdz+h(z)dxdySª¥f,g,hëY¼ê§S²18¡N(06x6a,06y6b,06z6c)>.§ý.)µSZZ1:x=a;S2:x=0;S3:y=b;S4:y=0;S5:z=c;S6:z=0KI=f(x)dydz+g(y)dxdz+h(z)dxdy=SZZZZZZZZZZZZ+++++f(x)dydz+g(y)dxdz+h(z)dxdyZZS1S2S3S4S5S6ZZÏf(x)dydz+g(y)dxdz+h(z)dxdy=f(x)dydz=f(a)bcZZS1ZZS1f(x)dydz+g(y)dxdz+h(z)dxdy=f(x)dydz=−f(0)bcZZS2ZZS2f(x)dydz+g(y)dxdz+h(z)dxdy=g(y))dzdx=g(b)acZZS3ZZS3f(x)dydz+g(y)dxdz+h(z)dxdy=g(y)dzdx=−g(0)acZZS4ZZS4f(x)dydz+g(y)dxdz+h(z)dxdy=h(z)dxdy=h(c)abZZS5ZZS5f(x)dydz+g(y)dxdz+h(z)dxdy=h(z)dxdy=−h(0)abS6S6"#ZZf(a)−f(0)g(b)−g(0)h(c)−h(0)KI=f(x)dydz+g(y)dxdz+h(z)dxdy=abc++.abcSZZ3.OyzdzdxS222xyzS:++=1þL¡þý.a2b2c2!π)µòý¥¡Lëê(ϕ,θ)/ªµx=asinϕcosθ,y=bsinϕcosθ,z=ccosϕ06ϕ6,06θ62π2ZZZZπI=yzdzdx=±bcsinϕcosϕsinθ·Bdϕdθ§Ù¥Ωϕθ²¡þ«06ϕ6,06θ62π2SΩ2B=zϕxθ−xϕzθ=acsinϕsinθZπZ2π232π22ÏÈ©÷þý§AÒ§=I=abcsinϕcosϕdϕsinθdθ=abc004 课后答案网www.khdaw.comZZ4.Ozdxdy+xdydz+ydxdzS22SΡx+y=1²¡z=09z=3¤Ü©ý.ZZ22)µduΡx+y=13XOY²¡þÝK±§Ù¡È0§lzdxdy=0SZZZZZZZZZZppqxdydz=+xdydz=1−y2dydz−(−1−y2)dydz=ZSZScSSyzSyz21p2dz1−y2dy=3π0−1ZZZZZZZZ31p2ydxdz=+ydxdz=2dz1−xdx=3π0−1SZZSmSKzdxdy+xdydz+ydxdz=6π.SZZ3335.Oxdydz+ydzdx+zdxdyS2222S¥¡x+y+z=aZZý.ZZZZZZ3333)µâÓ顧IOxdydz§xdydz=xdydz+xdydzSSpS1S2pÙ¥S19S2©OL«e¥¡9þ¥¡§=S2:x=a2−y2−z2Aþý¶S1:x=−a2−y2−z2AeZZýZZZZZZ3332223Kxdydz=xdydz+xdydz=2(a−y−z)2dydz=SS2S1y2+z26a2ZZ2πa342252dθr(a−r)2dr=πa005ZZ123335u´xdydz+ydzdx+zdxdy=πa.5S 课后答案网www.khdaw.com2731Ù«È©méXÚ|ØÐÚ§1.«È©méX1.|^úªOÈ©µI22222(1)xydx−xydy,lµ±x+y=a¶lI22xy(2)(x+y)dx−(x−y)dy,lµý±+=1¶a2b2lI222(3)(x+y)dx−(x+y)dy,lµº:A(1,1),B(3,2),C(2,5)n/>.¶lZxx(4)(esiny−my)dx+(ecosy−m)dy§_AMO_22Ù¥AMOd:A(a,0):O(0,0)²Lþ±x+y=ax´¶Ix(5)e[(1−cosy)dx−(y−siny)dy],lµ«0.l)µ22(1)dúª§dP=xy,Q=−xy√IZZZaZa2−x222Kxydx−xydy=(−2xy−2xy)dxdy=−4xdx√ydy=0l−a−a2−x2DIZZ(2)P=x+y,Q=−(x−y)§K(x+y)dx−(x−y)dy=−2dxdy=−2πablD(3)AB,BC,CA§©OµAB:x−2y+1=0;BC:3x+y−11=0;CA:4x−y−3=0222P=(xI+y),Q=−(x+y)ZZ222KI=(x+y)dx−(x+y)dy=−2(2x+y)dxdyl"ZZZDZ#24x−3311−3x3=−2dx(2x+y)dy+dx(2x+y)dy=−461x+12x+1222(4)3ZOx¶þë:O(0,0)A(a,0)§ùB¤µ4/AMOA§3ãOAþxx(esiny−my)dx+(ecosy−m)dy=0OAZZxxxxK(esiny−my)dx+(ecosy−m)dy=(esiny−my)dx+(ecosy−m)dy__AMOAZAMOZZπmxx2|^úª§(esiny−my)dx+(ecosy−m)dy=mdxdy=a_8AMOADZ2πmxx2u´(esiny−my)dx+(ecosy−m)dy=a_8AMOxx(5)P=e(1−cosy),Q=(y−siny)(−e)IZZZZπsinx1xxxπKe[(1−cosy)dx−(y−siny)dy]=−yedxdy=−edxydy=−(e−1).l005D2.|^úªOe¤¡Èµ33(1)(/µx=acost,y=bsint¶2(2)Ôµ(x+y)=ax(a>0)Úx¶)µZZI1(1)dúª§¡ÈDD=dxdy=xdy−ydx2lDIZ132π3332qx=acost,y=bsint(06t62π)§KD=xdy−ydx=absin2tdt=πab2l808 课后答案网www.khdaw.com22(2)y=tx§K§zx(1+t)=ax(a>0,x>0)aatu´ëê§x=,y=(06t<+∞)(1+t)2(1+t)2§Ox¶:(a,0)(0,0)2a3Ox¶þl(0,0):(a,0):ãþkxdy−ydx=0¶3Ôþkxdy−ydx=dt(1+t)41Ia2Z+∞dta2u´¡ÈD=xdy−ydx==.2l20(1+t)463.y²eC²¡þµ4§l?¿KIcos(l,n)ds=0cª¥nC{.y²µØC_Ï(l,n)=(l,x)−(n,x)§Kcos(l,n)=cos(l,x)cos(n,x)+sin(l,x)sin(n,x)dxdyqsin(n,x)=−cos(t,x),cos(n,x)=sin(t,x)cos(t,x)=,sin(t,x)=dsdsKcos(Il,n)ds=cos(l,xI)dy−sin(l,x)dxu´cos(l,n)ds=[−sin(l,x)dx+cos(l,x)dy]CC∂P∂QdP=−sin(l,x),Q=cos(l,x)§=0=∂y!∂xIZZ∂Q∂Pu´cos(l,n)ds=−dxdy=0C∂x∂yD4.u(x,y),v(x,y)´äkëYê¼ê§¿22∂u∂u∆u≡+∂x2∂y2y²µZZZ∂u(1)∆udxdy=dsl∂nσZZZZ!I∂u∂v∂u∂v∂u(2)v∆udxdy=−+dxdy+vds∂x∂x∂y∂yl∂nσσZZZ!∂u∂v(3)(u∆v−v∆u)dxdy=−v−udsl∂n∂nσ∂u∂vÙ¥σ4l¤²¡«§,÷l{ê.∂n∂ny²µZZ!ZZ∂u∂u∂u∂u∂u(1)ds=cos(n,x)+sin(n,x)ds=sin(t,x)ds−cos(t,x)dsl∂nl∂x∂yl∂xl∂yZZZZ"22#ZZ∂u∂u∂u∂u=dy−dx=+dxdy=∆udxdyl∂xl∂y∂x2∂y2σσII!I"#∂u∂u∂u∂u∂u(2)Ïvds=vcos(n,x)+sin(n,x)ds=vsin(t,x)−vcos(t,x)dsl∂nl∂x∂yl∂x∂yIZZ"!!#∂u∂u∂∂u∂∂u=vdy−vdx=v−−vdxdyl∂x∂y∂x∂x∂y∂yZZ!σZZ∂u∂v∂u∂v=+dxdy+v∆udxdy∂x∂x∂y∂yZZσZZσ!I∂u∂v∂u∂v∂uKv∆udxdy=−+dxdy+vds∂x∂x∂y∂yl∂nσσ 课后答案网www.khdaw.com275ZZZZ!I∂v∂u∂v∂u∂v(3)d(2)§u∆vdxdy=−+dxdy+uds∂x∂x∂y∂yl∂nZZσσZ!∂u∂vK(u∆v−v∆u)dxdy=−v−udsl∂n∂nσ5.¦±eÈ©II=[xcos(n,x)+ycos(n,y)]dsllµk.«{üµ4§n§{.II)µI=[xcos(n,x)+ycos(n,y)]ds=[xsin(t,x)−ycos(t,x)]dsIlZZ!lZZdxdy=xdy−ydx=+dxdy=2dxdy=2Sldxdyσσ6.y²µIcos(r,n)ds=0lrÙ¥l´üëÏ«σ>.r´lþ:σ,½:ål.erL«lþ:σS,½:ål§@"ùÈ©u2π.y²µr:A(x,y)lþ:M(ξ,η)þ§n,rOx¶Y©Oα,βξ−xη−yK(r,n)=α−β§u´cos(r,n)=cosαcosβ+sinαsinβ=cosα+sinαII!Irrcos(r,n)η−yξ−xξ−xη−yKds=sinα+cosαds=dη−dξlrlr2r2lr2r222η−yξ−x∂P−(ξ−x)+(η−y)∂QÏP=−,Q=§K==r2r2∂ηr4∂ξ∂Q∂PÏP,QêØ:A(d?r=0)§3²¡þ´ëY§=∂ξ∂ηIcos(r,n)u´|^úª§:A3l§ds=0lr∂P∂Q:3lS§P,Q,,þ3(x,y)ØëY§KØU¦^úª§d3l¤«∂η∂ξ0000σS§±A%§R»§±Ù±l§¿¦Ù«σ⊂σ§2òσ*σ§00¦σ⊂σ∂P∂Q∂P∂QÏP,Q,,þ3Ø(x,y)²¡þëY=∂η∂ξ∂η∂ξ∂P∂Q00K3EëÏ«σ(x,y)¥ëY=∂η∂ξIIξ−xη−yξ−xη−yùdη−dξ=dη−dξlr2r2l0r2r2IZξ−xη−y2πdη−dξ=dθ=2π0r2r2Il0cos(r,n)Kds=2πlrIcos(r,n)(:A3lþ§ds=π)lr7.|^pdúªC±eÈ©µZZ(1)xydxdy+xzdxdz+yzdydzSZZ!∂u∂u∂u(2)cosα+cosβ+cosγdS∂x∂y∂zSÙ¥cosα,cosβ,cosγ´¡{{u.)µ 课后答案网www.khdaw.com(1)ÏP=yz,Q=xz,RZZ=xy§KPx=Qy=Rz=0u´dpdúª§xydxdy+xzdxdz+yzdydz=0S(2)ÏP=ux,Q=uy,R=uz§Kdpdúª§ZZ!ZZZ222!∂u∂u∂u∂u∂u∂ucosα+cosβ+cosγdS=++dxdydz∂x∂y∂z∂x2∂y2∂z2SV8.|^pdúªO¡È©µZZ222(1)xdydz+ydxdz+zdxdy,SµáN06x,y,z6aL¡¶SZZ333(2)xdydz+ydxdz+zdxdy,Sµü¥L¡¶SZZ222222(3)(xcosα+ycosβ+zcosγ)dS,Sµx+y=z,06z6h;cosα,cosβ,cosγd¡{S{u.)µ222(1)ÏP=x,Q=y,RZZ=z§ZZZaaa2224Kdpdúª§xdydz+ydxdz+zdxdy=2dxdy(x+y+z)dz=3a000S333(2)ÏP=x,Q=y,RZZ=zZZZ333222Kdpdúª§xdydz+ydxdz+zdxdy=3(x+y+z)dxdydzSVZZZ2ππ1124=3dθsinϕdϕrdr=π0005(3)dZZpdúª§ZZZ222(xcosα+ycosβ+zcosγ)dS=2(x+y+z)dxdydzSVZ2πZhZhπh4=2dϕrdr[r(cosϕ+sinϕ)+z]dz=.00r29.y²µe222∂u∂u∂u∆u≡++∂x2∂y2∂z2S´V>.¡§K¤áe¡úªµZZZZZ∂u(1)∆udxdydz=dS∂nVSZZZZZ"!2!2!2#ZZZ∂u∂u∂u∂u(2)udS=++dxdydz+u∆udxdydz∂n∂x∂y∂zSVV∂uª¥u3V+SþkëYê§÷¡S{ê.∂ny²µZZZZ"#ZZZ"222#∂u∂u∂u∂u∂u∂u∂u(1)dS=cos(n,x)+cos(n,y)+cos(n,z)dS=++dxdydz=∂n∂x∂y∂z∂x2∂y2∂z2SZZZSV∆udxdydzVZZZZ"#∂u∂u∂u∂u(2)udS=ucos(n,x)+ucos(n,y)+ucos(n,z)dS∂n∂x∂y∂zSZZZ"S!!!#∂∂u∂∂u∂∂u=u+u+udxdydz∂x∂x∂y∂y∂z∂zV 课后答案网www.khdaw.com277ZZZ"!2!2!2#ZZZ"222#∂u∂u∂u∂u∂u∂u=++dxdydz+u++dxdydz∂x∂y∂z∂x2∂y2∂z2VVZZZ"!2!2!2#ZZZ∂u∂u∂u=++dxdydz+u∆udxdydz∂x∂y∂zVV10.y²d¡S¤NÈuZZ1V=(xcosα+ycosβ+zcosγ)dS3Sª¥cosα,cosβ,cosγ¡S{{u.y²µdpdúª§ZZZZZZZ11V=dxdydz=(xdydz+ydxdz+zdxdy)=(xcosα+ycosβ+zcosγ)dS.33VSS11.|^d÷iúªOÈ©µI2222x+y+z=a(1)ydx+zdy+xdz,lµ±lx¶w±´_¶x+y+z=0lI(2)(z−y)dx+(x−z)dy+(y−x)dz,l´l(a,0,0)²(0,a,0)Ú(0,0,a)£(a,0,0)n/.l)µ(1)r²¡x+y+z=0þl¤«Pσ§Kσ{(1,1,1)1KÙ{ucosα=cosβ=cosγ=√3cosαcosβcosγIZZZZ∂∂∂√√2u´ydx+zdy+xdz==−(3dS=−3πal∂x∂y∂zSyzxS1(2)rl¤«Pσ§Kσ{(1,1,1)§KÙ{ucosα=cosβ=cosγ=√3∂R∂Q∂P∂R∂Q∂PqP=z−y,Q=x−z,R=y−x§K−=2,−=2,−=2I∂y∂zZZ∂z∂x∂x∂y√2u´(z−y)dx+(x−z)dy+(y−x)dz=23dS=3alS 课后答案网www.khdaw.com§2.È©Ú´»Ã"5∂P∂Q1.3,4Ý/«DS=§Áy∂y∂xZZxyU(x,y)=P(x,y)dx+Q(x0,y)dy+Cx0y0Pdx+Qdy¼Zê§Ù¥C=UZ(x0,y0).xyy²µÏU(x,y)=P(x,y)dx+Q(x0,y)dy+Cx0Zy0Z∂U∂UxxK=P(x,y),=Py(x,y)dx+Q(x0,y)=Qx(x,y)dx+Q(x0,y)=Q(x,y)∂x∂yx0x0u´dU=P(x,y)dx+Q(x,y)dyZZxyqU(x0,y0)=C§KU(x,y)=P(x,y)dx+Q(x0,y)dy+CPdx+Qdy¼ê§Ù¥C=x0y0U(x0,y0)2.Oe©ªÈ©µZ(1,1)(1)(x−y)(dx−dy)(0,0)Z(a,b)(2)f(x+y)(dx+dy)§ª¥f(u)´ëY¼ê¶(0,0)Z(1,2)ydx−xdy(3)§÷ØÚOy¶延x2(2,1)Z(0,1,1)(4)yzdx+xzdy+xydz(1,2,3)Z(6,8)xdx+ydy(5)p§÷ØÏL:延(1,0)x2+y2Z(1,2)(6)ϕ(x)dx+ψ(y)dy§Ù¥ϕ,ψëY¼ê.(2,1))µ2Z(1,1)2(1,1)(x−y)(x−y)(1)Ï(x−y)(dx−dy)=d§K(x−y)(dx−dy)==02(0,0)2(0,0)∂P∂Q0(2)ÏP+Q=f(x+y)§K=f(x+y)=§u´l(0,0)(a,b)È©´»Ã"∂y∂x(0,0)→(a,0)→(a,b)§ZZZZ(a,b)aba+bKf(x+y)(dx+dy)=f(x+0)dx+f(a+y)dy=f(u)du(0,0)000!Z(1,2)ydx−xdyy(1,2)ydx−xdyy3(3)x6=0§=d−§K=−=−x2x(2,1)x2x2(2,1)Z(0,1,1)(4)Ïyzdx+xzdy+xydz=dxyz§Kyzdx+xzdy+xydz=0(1,2,3)Zxdx+ydyp(6,8)xdx+ydy(5)(x,y)6=(0,0)§p=dx2+y2§Kp=9x2+y2(1,0)x2+y2(6)duϕ,ψ´ëZY¼ê§kϕ(x)dxZ+ψ(y)dy=d(F(x)+G(x))xyÙ¥F(x)=ϕ(u)du,G(y)=ψ(v)dv21Z(1,2)(1,2)Z1Z2Z2u´kϕ(x)dx+ψ(y)dy=(F(x)+G(y))=ϕ(u)du+ψ(v)dv=[ψ(x)−ϕ(x)]dx(2,1)211(2,1)3.¦¼êuµ 课后答案网www.khdaw.com2792222(1)(x+2xy−y)dx+(x−2xy−y)dy22(2)(2xcosy−ysinx)dx+(2ycosx−xsiny)dyab−by−ax(3)dx+dy+dzzzz2222(4)(x−2yz)dx+(y−2xz)dy+(z−2xy)dzxyxy(5)e[e(x−y+2)+y]dx+e[e(x−y)+1]dy)µ∂P∂Q∂P∂Q(1)Ï=2x−2y,=2x−2y§K=∂y∂x∂y∂xZxZyx3y322222u´u=(x+2xy−y)dx+(−y)dy+C=+xy−xy−+C0033222222(2)Ï(2xcosy−ysinx)dx+(2ycosx−xsiny)dy=cosydx+xdcosy+ydcosx+cosxdy=22d(xcosy+ycosx)22Ku=xcosy+ycosx+Cab−by−axzdx−xdzzdy−ydzax+by(3)Ïdx+dy+dz=a+b=dzzz2z2z2z1Ku=(ax+by)+Cz1222333(4)Ï(x−2yz)dx+(y−2xz)dy+(z−2xy)dz=(dx+dy+dz)−2(yzdx+xzdy+xydz)=!3333x+y+zd−2xyz31333Ku=(x+y+z)−2xyz+C3xyxyx+yx+yx(5)Ïe[e(x−y+2)+y]dx+e[e(x−y)+1]dy=(x−y)e(dx+dy)+2edx+d(ye)=x+yx+yxx+yxd((x−y)e)+ed(x+y)+d(ye)=d((x−y+1)e)+d(ye)x+yxKu=(x−y+1)e+ye+C4.yµ1xdy−ydxPdx+Qdy=2Ax2+2Bxy+Cy22(A,B,C~ê§AC−B>0)·Ü^µ∂P∂Q=∂y∂x¦µ"uÛ:(0,0)Ì~ê.yxy²µÏP=−,Q=2(Ax2+2Bxy+Cy2)2(Ax2+2Bxy+Cy2)22∂PCy−Ax∂QK==∂y2(Ax2+2Bxy+Cy2)2∂xIZπBπ22dt1Ctant+Cu´ω=Pdx+Qdy==√arctan√2+y2=1π2(Acos2t+2Bsintcost+Csin2t)AC−B2AC−B2x−π2−2π√,C>0=AC−B2π−√,C<0AC−B25.y²µZxdx+ydyx2+y2xdx+ydy"uÛ:(0,0)Ì~ê0§lÈ©´»Ã".x2+y2xy∂P2xy∂Qy²µÏP=,Q=§K=−=Ix2+y2x2+y2∂y(x2+y2)2∂xu´ω=Pdx+Qdy=0x2+y2=1 课后答案网www.khdaw.com(1)e4´lØ(0,0):§òÛ:(0,0)«D>.^^Cëå5§u´EëÏ«C¤üëÏ«I∂P∂Qxdx+ydyq=§Kdd^§=0∂y∂xlx2+y2Ixdx+ydy(2)e4´lÛ:(0,0)§Ï÷7Û:?4´È©uÌ~ê§K=0x2+y2lxdx+ydyoÈ©´»Ã".x2+y2 课后答案网www.khdaw.com281§3.|ØÐÚt−t1.H(t)=ea+eb§Ù¥a,b~þ§tëê§dH(1)¦dt2dH(2)y²=Hdt2t−t)µÏH(t)=ea+eb§a,b~þ§KdHt−t(1)=ea−ebdt!2dHddHt−t(2)==ea+eb=Hdt2dtdt!!ddAdBdC2.y²µ[A·(B×C)]=·(B×C)+A·×C+A·B×dtdtdtdty²µA=Axi+Ayj+Azk,B=Bxi+Byj+Bzk,C=Cxi+Cyj+CzkAxAyAzKA·(B×C)=BxByBz§éªüধmà^é1ª¦{K§CxCyCzAxAyAzAxAyAzAxAyAzdttt[A·(B×C)]=BxByBz+BxtBytBzt+BxByBzdtCxCyCzCxCyCzCxCyCz!!tttdAdBdC=·(B×C)+A·×C+A·B×dtdtdt3.a=3i+20j−15k§éeêþ|φ©O¦Ñgradφ9div(φa).222−1(1)φ=(x+y+z)2222(2)φ=x+y+z222(3)φ=ln(x+y+z))µ−x−y−z(1)gradφ=φxi+φyj+φzk=i+j+k333(x2+xy+y2)2(x2+xy+y2)2(x2+xy+y2)2−3x−20y+15zdiv(φa)=φdiva+gradφ·a=gradφ·a=3(x2+xy+y2)2(2)gradφ=2xi+2yj+2zk,div(φa)=6x+40y−30z2x2y2z6x+40y−30z(3)gradφ=i+j+k,div(φa)=x2+y2+z2x2+y2+z2x2+y2+z2x2+y2+z24.U(x,y,z)=xyz(1)¦U(x,y,z)3:P1(0,0,0),P2(1,1,1)9P3(2,1,1)?÷b=2i+3j−4kê¶(2)3þãn:?§U(M)êÛº(3)3þãn:?§¦divgradU(M)9rotgradU(M).)µ234(1)Ïb{ucosα=√,cosβ=√,cosγ=−√292929∂U1K=yzcosα+xzcosβ+xycosγ=√(2yz+3xz−4xy)∂b29√∂U∂U29∂Uu´3P1(0,0,0):=0¶3P2(1,1,1):=¶3P3(2,1,1):=0∂b∂b29∂b∂U(2)Ï=gradU·b0=|gradU|cos(gradU,b0)§Ù¥b0´büþ∂bpKU(M)ê|gradU|=y2z2+x2z2+x2y2√u´3P1(0,0,0):|gradU|=0¶3P2(1,1,1):|gradU|=3¶3P3(2,1,1):|gradU|=3 课后答案网www.khdaw.com(3)ÏgradU=yzi+xzj+xyk∂(yz)∂(xz)∂(xy)KdivgradU=++=0∂x∂y!∂z!!∂(xy)∂(xz)∂(yz)∂(xy)∂(xz)∂(yz)rotgradU=−i+−j+−k=0∂y∂z∂z∂x∂x∂yu´3þãn:?§divgradU(M)=0,rotgradU(M)=0.2222225.¦þa=xi+yj+zkBL¥x+y+z=1,x>0,y>0,z>06þ.ZZZZZπZ1222222π)µΦ=xdydz+ydxdz+zdxdy§zdxdy=dθ(1−r)rdr=008SSZZZZπ322aq/§©OXOZ,YOZ²¡ÝK§ydxdz=xdydz=§u´Φ=π.88SS6.¦a=yzi+xzj+xykÏLS6þ§222(1)SÎNx+y6a,06z6hý¡¶(2)S(1)¥ÎNþ.¡¶(3)S(1)¥ÎNL¡.)µZZZZZZZZ"#∂(yz)∂(xz)∂(xy)(3)andS=divadV=++dV=0∂x∂y∂zSVVu´þaBLÎNL¡6þ0ZZZZZZ2πa3(2)Ï3 ÎNþ!e.¡an=xy§KandS=xydxdy=dθrsinθcosθdr=000Sþx2+y26a2ZZÓnandS=0§u´þaBLÎNþ.¡6þ0ZZSeZZZZZZZZ(1)ÏandS=andS+andS+andS§KandS=0.SSýSþSeSý!y7.¦a=gradarctan÷l6þµx22(1)l(x−2)+(y−2)=1,z=0¶22(2)lx+y=4,z=1.)µ!yyx(1)d®§ka=gradarctan=−i+jxx2+y2x2+y2xy∂x2+y2∂−x2+y2Krota=−k=0(Øx=y=0=Oz¶þ:)∂x∂y22Ïl:(x−2)+(y−2)=1,zI=0´ØZZ7z¶§ulþÜ¡S§¦SOz¶ØKâd÷iúª§k6þadl=n·rotadS=0lS22(2)Ïl:x+y=4,z=1§dlÐ7Oz¶^=±§~êc>0¿©(c<2)§¦lu²222¡z=cþ§3²¡z=cþ7Oz¶±lr:x+y=r,z=c§r¿©§¦ru2§±llr>.ÜþI¡S§¦SIOz¶ØZZdd÷iúª§a·dr+a·dr=n·rotadS=0§Ù¥−lrL«÷^l−lrIISu´6þa·dr=a·drllrIZ2πqlrëê§x=rcosθ,y=rsinθ,z=c§a·dr=dθ=2πIlr0la·dr=2π.l 课后答案网www.khdaw.com2838.¦þa=−yi+xj+ck(c~ê)6þµ22(1)÷±x+y=1,z=0¶22(2)÷±(x−2)+y=1,z=0.)µ22(1)Ïl:x+y=1,z=0§Kl=costi+sintj+0k(06t62π)IZ2πu´a·dl=dt§l¤¦6þa·dl=dt=2πl022(2)Ïl:(x−2)+y=1,z=0§Kl=(2+cost)i+sintj+0k(06t62π)IZ2πu´a·dl=(2cost+1)dt§l¤¦6þa·dl=(2cost+1)dt=2πl09.y²µ(1)rot(uA)=urotA+gradu×A¶(2)div(φa)=φdiva+gradφ·a(3)graddiva−rotrota=∆ay²µ!!∂Az∂Ay∂u∂u(1)Ïrotx(uA)=u−+Az−Ay=urotxA+(gradu×A)x∂y∂z∂y∂zÓ{§roty(uA)=urotyA+(gradu×A)y,rotz(uA)=urotzA+(gradu×A)zu´rot(uA)=urotA+gradu×A∂(φax)∂ax∂φ∂(φay)∂ay∂φ∂(φaz)∂az∂φ(2)Ï=φ+ax,=φ+ay,=φ+az∂x∂x∂x∂y∂y∂y∂z∂z∂zKdiv(φa)=φdiva+gradφ·a!∂ax∂ay∂az(3)Ïgraddiva=grad++∂x∂y∂z!!!222222222∂ax∂ay∂az∂ax∂ay∂az∂ax∂ay∂az=++i+++j+++k∂x2∂x∂y∂x∂z∂x∂y∂y2∂y∂z∂x∂z∂y∂z∂z2"!!!#∂az∂ay∂ax∂az∂ay∂axrotrota=rot−i+−j+−k∂y∂z∂z∂x∂x∂y!!!222222222222∂ay∂az∂ax∂ax∂ax∂az∂ay∂ay∂ax∂ay∂az∂az=+−−i++−−j++−−k∂x∂y∂x∂z∂y2∂z2∂x∂y∂y∂z∂x2∂z2∂x∂z∂y∂z∂x2∂y2Kgraddiva−rotrota=∆axi+∆ayj+∆azk=∆a10.¦rot(w×r)§w~¥þ§r¥»þ.)µw=(w1,w2,w3),r=(x,y,z)ijku´w×r=w1w2w3=(w2z−w3y)i+(w3x−w1z)j+(w1y−w2x)kxyzrot(w×r)=2w1i+2w2j+2w2k=2w11.y²a=yz(2x+y+z)i+xz(x+2y+z)j+xy(x+y+2z)kÅ|§¿¦Ù³¼ê.y²µém?:(x,y,z)§k()∂∂rota=[xy(x+y+2z)]−[xz(x+2y+z)]i∂y∂z()∂∂+[yz(2x+y+z)]−[xy(x+y+2z)]j∂z∂x()∂∂+[xz(x+2y+z)]−[yz(2x+y+z)]k∂x∂y=0KaÅ|du³φ÷vdφ=a·dl=axdx+aydy+azdz=d[(xyz(x+y+z)]KÙ³¼êu(x,y,z)=xyz(x+y+z)+C§Ù¥C?¿~ê. 课后答案网www.khdaw.com12.¦þa=r÷Úr=acosti+asintj+btk(06t62π)ã¤õ.)µÏa=xi+yj+Zzk,l:x=acost,y=asint,z=bt(062π)22K¤¦õW=xdx+ydy+zdz=2bπl13.φ¼ê§Oµgradφ(r),div(φ(r)r)9rot(φ(r)r).r00)µgradφ(r)=φ(r)gradr=φ(r)·r0div(φ(r)r)=φ(r)divr+r·gradφ(r)=3φ(r)+rφ(r)rot(φ(r)r)=φ(r)rotr+gradφ(r)×r=014.¦÷v^div(φ(r)r)=0¼êφ(r).0)µdþK§div(φ(r)r)=3φ(r)+rφ(r)0φ(r)30¦div(φ(r)r)=0§3φ(r)+rφ(r)=0==−φ(r)rcKφ(r)=(c~ê)r315.¦±eþÑÝ9^Ý(a,b~þ)µ(1)(a·r)b(2)a×r(3)φ(r)(a×r)(4)r×(a×r))µ(1)div[(a·r)b]=(a·r)divb+grad(a·r)·b=grad(a·r)·b=a·brot[(a·r)b]=(a·r)rotb+grad(a·r)×b=grad(a·r)×b=a×b(2)Ï(a×r)x=ayz−azy,(a×r)y=azx−axz,(a×r)z=axy−ayx∂∂∂Kdiv(a×r)=(ayz−azy)+(azx−axz)+(axy−ayx)=0∂x∂y∂zijk∂∂∂rot(a×r)==2a∂x∂y∂zayz−azyazx−axzaxy−ayx0(3)div[φ(r)(a×r)]=φ(r)div(a×r)+grad(φ(r))(a×r)=φ(r)(r·rota−a·rotr)+(rφ(r)·(a×r)=0rφ(r)0φ(r)·(a×r)=[r·(a×r)]=0rrrot[φ(r)(a×r)]=φ(r)rot(a×r)+grad(φ(r))×(a×r)=!0rφ(r)02φ(r)[−(axi+ayj+azk)+3a]+φ(r)×(a×r)=2φ(r)a+[ra−(a·r)r]rr2(4)Ïr×(a×r)=|r|a−(a·r)r22Kdiv[r×(a×r)]=|r|diva+grad|r|·a−[(r·a)divr+r·grad(a·r)]=(ax+ay+az)−4(xax+yay+zaz)122rot[r×(a×r)]=|r|rotr+grad|r|×a−(r·a)rotr−grad(r·a)×r=(r×a)−a×r.r16.y²±eªµ(1)grad(a·b)=a×rotb+b×rota+(b·∇)a+(a·∇)b(2)rot(a×b)=(b·∇)a−(a·∇)b+(divb)a−(diva)b(3)c·grad(a·b)=a·(c·∇)+b·(c·∇)a(4)(c·∇)(a×b)=a×(c·∇)b−b×(c·∇)ay²µ(1)grad(a·b)=grad(axbx+ayby+azbz)=!∂bx∂ax∂by∂ay∂bz∂azax+bx+ay+by+az+bzi+∂x∂x∂x∂x∂x∂x!∂bx∂ax∂by∂ay∂bz∂azax+bx+ay+by+az+bzj+∂y∂y∂y∂y∂y∂y 课后答案网www.khdaw.com285!∂bx∂ax∂by∂ay∂bz∂azax+bx+ay+by+az+bzk∂z∂z∂z∂z∂z∂z=a×rotb+b×rota+(b·∇)a+(a·∇)b!!∂∂∂∂∂∂(2)rot(a×b)=bx+by+bza−ax+ay+azb+(divb)a−(diva)b∂x∂y∂z∂x∂y∂z=(b·∇)a−(a·∇)b+(divb)a−(diva)b(3)c·grad(a·b)=!∂bx∂ax∂by∂ay∂bz∂azcxax+bx+ay+by+az+bz+∂x∂x∂x∂x∂x∂x!∂bx∂ax∂by∂ay∂bz∂azcyax+bx+ay+by+az+bz+∂y∂y∂y∂y∂y∂y!∂bx∂ax∂by∂ay∂bz∂azczax+bx+ay+by+az+bz∂z∂z∂z∂z∂z∂z=a·(c·∇)+b·(c·∇)a!∂∂∂(4)(c·∇)(a×b)=cx+cy+cz[(aybz−azby)i+(azbx−axbz)j+(axby−aybx)k]∂x∂y∂z∂ay∂bz∂az∂by∂ay∂bz∂az∂by=bzcx+aycx−bycx−azcx+bzcy+aycy−bycy−azcy+∂x∂x∂x∂x∂y∂y∂y∂y!∂ay∂bz∂az∂bybzcz+aycz−bycz−azczi+∂z∂z∂z∂z∂az∂bx∂ax∂bz∂az∂bx∂ax∂bzbxcx+azcx−bzcx−axcx+bxcy+azcy−bzcy−axcy+∂x∂x∂x∂x∂y∂y∂y∂y!∂az∂bx∂ax∂bzbxcz+azcz−bzcz−axczj+∂z∂z∂z∂z∂ax∂by∂ay∂bx∂ax∂by∂ay∂bxbycx+axcx−bxcx−aycx+bycy+axcy−bxcy−aycy+∂x∂x∂x∂x∂y∂y∂y∂y!∂ax∂by∂ay∂bxbycz+axcz−bxcz−ayczk∂z∂z∂z∂z=a×(c·∇)b−b×(c·∇)a217.ÁydivgradsinrL«¤F(r)/ª§¿ÑF(x).222222∂sinr∂sinr∂sinr22y²µdivgradsinr=∆sinr=++=!!∂x2∂y2!∂z2∂x∂y∂z12sin2r·+sin2r·+sin2r·=2cos2r+2sin2r·=(sin2r+rcos2r)∂xr∂yr∂zrrr2=F(r)=(sin2r+rcos2r)r22dsinx2KF(x)=divgradsinxr==2cos2xdx2218.y²µ|a|=~ê§k(a·∇)a=−a×rota.22y²µÏ|a|=~ê§Kgrad|a|=0d16K(1)§grad(a·a)=2[a×rota+(a·∇)a]=0K(a·∇)a=−a×rota.'

您可能关注的文档