- 2.83 MB
- 2022-04-22 11:25:03 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'课后答案网,用心为你服务!大学答案---中学答案---考研答案---考试答案最全最多的课后习题参考答案,尽在课后答案网(www.khdaw.com)!Khdaw团队一直秉承用心为大家服务的宗旨,以关注学生的学习生活为出发点,旨在为广大学生朋友的自主学习提供一个分享和交流的平台。爱校园(www.aixiaoyuan.com)课后答案网(www.khdaw.com)淘答案(www.taodaan.com)
课后答案网www.khdaw.comkhdaw.comInstructorSolutionsManualforPhysicsbyHalliday,Resnick,andKranewww.khdaw.comPaulStanleyBeloitCollegeVolume2课后答案网khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comANoteToTheInstructor...Thesolutionsherearesomewhatbrief,astheyaredesignedfortheinstructor,notforthestudent.Checkwiththepublishersbeforeelectronicallypostinganypartofthesesolutions;website,ftp,orserveraccessmustberestrictedtoyourstudents.Ihavebeensomewhatcasualaboutsubscriptswheneveritisobviousthataproblemisonedimensional,orthatthechoiceofthecoordinatesystemisirrelevanttothenumericalsolution.Althoughthisdoesnotchangethevalidityoftheanswer,itwillsometimesobfuscatetheapproachifviewedbyanovice.Therearesometraditionalformula,suchasv2=v2+2ax;x0xxwhicharenotusedinthetext.Theworkedsolutionsuseonlymaterialfromthetext,sotheremaybetimeswhenthesolutionhereseemsunnecessarilyconvolutedanddrawnout.Yes,Iknowaneasierapproachexisted.Butifitwasnotinthetext,Ididnotuseithere.khdaw.comIalsotriedtoavoidreinventingthewheel.Therearesomeexercisesandproblemsinthetextwhichbuilduponpreviousexercisesandproblems.Insteadofrederivingexpressions,Isimplyreferyoutotheprevioussolution.Iadoptadierentapproachforroundingofsignicantguresthanpreviousauthors;inpartic-ular,Iusuallyroundintermediateanswers.Assuch,someofmyanswerswilldierfromthoseinthebackofthebook.ExercisesandProblemswhichareenclosedinaboxalsoappearintheStudent"sSolutionManualwithconsiderablymoredetailand,whenappropriate,includediscussiononanyphysicalimplicationsoftheanswer.Thesestudentsolutionscarefullydiscussthestepsrequiredforsolvingproblems,pointouttherelevantequationnumbers,orevenspecifywhereinthetextadditionalinformationcanbefound.Whentwoalmostequivalentmethodsofsolutionexist,oftenbotharepresented.Youarewww.khdaw.comencouragedtoreferstudentstotheStudent"sSolutionManualfortheseexercisesandproblems.However,thematerialfromtheStudent"sSolutionManualmustnotbecopied.PaulStanleyBeloitCollegestanley@clunet.edu课后答案网1khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE25-1ThechargetransferredisQ=(2:5104C=s)(2010 6s)=5:010 1C:E25-2UseEq.25-4:s(8:99109Nm2=C2)(26:310 6C)(47:110 6C)r==1:40m(5:66N)E25-3UseEq.25-4:(8:99109Nm2=C2)(3:1210 6C)(1:4810 6C)F==2:74N:(0:123m)2E25-4(a)Theforcesareequal,som1a1=m2a2,orm=(6:3110 7kg)(7:22m=s2)=(9:16m=s2)=4:9710 7kg:khdaw.com2(b)UseEq.25-4:s(6:3110 7kg)(7:22m=s2)(3:2010 3m)2 11q==7:2010C(8:99109Nm2=C2)E25-5(a)UseEq.25-4,1q1q21(21:3C)(21:3C)F===1:77N40r1224(8:8510 12C2www.khdaw.com=Nm2)(1:52m)2(b)Inpart(a)wefoundF12;tosolvepart(b)weneedtorstndF13.Sinceq3=q2andr13=r12,wecanimmediatelyconcludethatF13=F12.Wemustassessthedirectionoftheforceofq3onq1;itwillbedirectedalongthelinewhichconnectsthetwocharges,andwillbedirectedawayfromq3.Thediagrambelowshowsthedirections.F23Fq课后答案网12FF23F12netFromthisdiagramwewanttondthemagnitudeofthenetforceonq1.Thecosinelawisappropriatehere:F2=F2+F2 2FFcos;net12131213=(1:77N)2+(1:77N)2 2(1:77N)(1:77N)cos(120);2=9:40N;Fnet=3:07N:khdaw.com2若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE25-6OriginallyF=CQ2=0:088N,whereCisaconstant.Whensphere3touches1the00chargeonbothbecomesQ0=2.Whensphere3thetouchessphere2thechargeoneachbecomes(Q0+Q0=2)=2=3Q0=4.Theforcebetweensphere1and2isthenF=C(Q=2)(3Q=4)=(3=8)CQ2=(3=8)F=0:033N:0000E25-7Theforcesonq3areF~31andF~32.TheseforcesaregivenbythevectorformofCoulomb"sLaw,Eq.25-5,F~=1q3q1^r=1q3q1^r;314r2314(2d)2310310F~=1q3q2^r=1q3q2^r:324r2324(d)2320320Thesetwoforcesaretheonlyforceswhichactonq3,soinordertohaveq3inequilibriumtheforcesmustbeequalinmagnitude,butoppositeindirection.Inshort,khdaw.comF~31= F~32;1q3q11q3q2^r31= ^r32;40(2d)240(d)2q1q2^r31= ^r32:41Notethat^r31and^r32bothpointinthesamedirectionandarebothofunitlength.Wethengetq1= 4q2:E25-8Thehorizontalandverticalcontributionsfromtheupperleftchargeandlowerrightchargearestraightforwardtond.Thecontributionsfromtheupperleftchargerequireslightlymorework.pwww.khdaw.compThediagonaldistanceis2a;thecomponentswillbeweightedbycos45=2=2.Thediagonalchargewillcontributepp1(q)(2q)22q2Fx=p^i=^i;40(2a)2280a2pp1(q)(2q)22q2Fy=p^j=^j:40(2a)2280a2(a)Thehorizontalcomponentofthenetforceisthenp课后答案网1(2q)(2q)2q2Fx=^i+^i;40a280a2p4+2=2q2=^i;40a2=(4:707)(8:99109Nm2=C2)(1:1310 6C)2=(0:152m)2^i=2:34N^i:(b)Theverticalcomponentofthenetforceisthenp1(q)(2q)2q2Fy= ^j+^j;40a280a2p 2+2=2q2=^j;80a2=( 1:293)(8:99109Nm2=C2)(1:1310 6C)2=(0khdaw.com:152m)2^j= 0:642N^j:3若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE25-9ThemagnitudeoftheforceonthenegativechargefromeachpositivechargeisF=(8:99109Nm2=C2)(4:1810 6C)(6:3610 6C)=(0:13m)2=14:1N:Theforcefromeachpositivechargeisdirectedalongthesideofthetriangle;butfromsymmetryonlythecomponentalongthebisectorisofinterest.Thismeansthatweneedtoweighttheaboveanswerbyafactorof2cos(30)=1:73.Thenetforceisthen24:5N.E25-10Letthechargeononespherebeq,thenthechargeontheothersphereisQ=(52:610 6C) q.Then1qQ=F;40r2(8:99109Nm2=C2)q(52:610 6C q)=(1:19N)(1:94m)2:Solvethisquadraticexpressionforqandgetanswersq=4:0210 5Candq=1:2410 6N.khdaw.com12E25-11ThisproblemissimilartoEx.25-7.Therearesomeadditionalissues,however.ItiseasyenoughtowriteexpressionsfortheforcesonthethirdchargeF~=1q3q1^r;314r231031F~=1q3q2^r:324r232032ThenF~31=www.khdaw.com F~32;1q3q11q3q22^r31= 2^r32;40r3140r32q1q22^r31= 2^r32:r31r32Theonlywaytosatisfythevectornatureoftheaboveexpressionistohave^r31=^r32;thismeansthatq3mustbecollinearwithq1andq2.q3couldbebetweenq1andq2,oritcouldbeoneitherside.Let"sresolvethisissuenowbyputtingthevaluesforq1andq2intotheexpression:(1:07C)( 3:28C)课后答案网2^r31= 2^r32;r31r32r2^r=(3:07)r2^r:32313132Sincesquaredquantitiesarepositive,wecanonlygetthistoworkif^r31=^r32,soq3isnotbetweenq1andq2.Wearethenleftwithr2=(3:07)r2;3231sothatq3isclosertoq1thanitistoq2.Thenr32=r31+r12=r31+0:618m,andifwetakethesquarerootofbothsidesoftheaboveexpression,pr31+(0:618m)=(3:07)r31;p(0:618m)=(3:07)r31 r31;(0:618m)=0:752r31;0:822m=r31khdaw.com4若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE25-12Themagnitudeofthemagneticforcebetweenanytwochargesiskq2=a2,wherea=0:153m.Theforcebetweeneachchargeisdirectedalongthesideofthetriangle;butfromsymmetryonlythecomponentalongthebisectorisofinterest.Thismeansthatweneedtoweighttheaboveanswerbyafactorof2cos(30)=1:73.Thenetforceonanychargeisthen1:73kq2=a2.Thelengthoftheanglebisector,d,isgivenbyd=acos(30).Thedistancefromanychargetothecenteroftheequilateraltriangleisx,givenbyx2=(a=2)2+(d x)2.Thenx=a2=8d+d=2=0:644a:Theanglebetweenthestringsandtheplaneofthechargesis,givenbysin=x=(1:17m)=(0:644)(0:153m)=(1:17m)=0:0842;or=4:83.Theforceofgravityoneachballisdirectedverticallyandtheelectricforceisdirectedhorizontally.Thetwomustthenberelatedbykhdaw.comtan=FE=FG;so1:73(8:99109Nm2=C2)q2=(0:153m)2=(0:0133kg)(9:81m=s2)tan(4:83);orq=1:2910 7C:E25-13Onanycornerchargetherearesevenforces;onefromeachoftheothersevencharges.Thenetforcewillbethesum.Sincealleightchargesarethesamealloftheforceswillberepulsive.Weneedtosketchadiagramtoshowhowthechargesarelabeled.2www.khdaw.com14673课后答案网85Themagnitudeoftheforceofcharge2oncharge1is1q2F12=2;40r12wherer=a,thelengthofaside.Sincebothchargesarethesamewewroteq2.Bysymmetrywe12expectthatthemagnitudesofF12,F13,andF14willallbethesameandtheywillallbeatrightanglestoeachotherdirectedalongtheedgesofthecube.Writtenintermsofvectorstheforces5khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comwouldbe1q2F~12=^i;40a21q2F~13=^j;40a21q2F~14=k^:40a2Theforcefromcharge5is1q2F15=2;40r15andisdirectedalongthesidediagonalawayfromcharge5.Thedistancer15isalsothesidediagonaldistance,andcanbefoundfromr2=a2+a2=2a2;15then1q2khdaw.comF15=:402a2BysymmetryweexpectthatthemagnitudesofF15,F16,andF17willallbethesameandtheywillallbedirectedalongthediagonalsofthefacesofthecube.Intermsofcomponentswewouldhave1q2ppF~15=^j=2+k^=2;402a21q2ppF~16=^i=2+k^=2;402a21q2ppF~17=^i=2+^j=2:402a2www.khdaw.comThelastforceistheforcefromcharge8oncharge1,andisgivenby1q2F18=2;40r18andisdirectedalongthecubediagonalawayfromcharge8.Thedistancer18isalsothecubediagonaldistance,andcanbefoundfromr2=a2+a2+a2=3a2;18thenintermofcomponents课后答案网1q2pppF~18=^i=3+^j=3+k^=3:403a2Wecanaddthecomponentstogether.Bysymmetryweexpectthesameanswerforeachcom-ponents,sowe"lljustdoone.Howabout^i.Thiscomponenthascontributionsfromcharge2,6,7,and8:1q2121+p+p;40a212233or1q2(1:90)40a2pThethreecomponentsaddaccordingtoPythagorastopickupanalfactorof3,soq2Fnet=(0:262):0a2khdaw.com6若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE25-14(a)Yes.ChangingthesignofywillchangethesignofFy;sincethisisequivalenttoputtingthechargeq0ontheother"side,wewouldexpecttheforcetoalsopushintheother"direction.(b)TheequationshouldlookEq.25-15,exceptally"sshouldbereplacedbyx"s.Then1q0qFx=p:40xx2+L2=4(c)Settingtheparticleadistancedawayshouldgiveaforcewiththesamemagnitudeas1q0qF=p:40dd2+L2=4Thisforceisdirectedalongthe45line,soF=Fcos45andF=Fsin45.pxy(d)Letthedistancebed=x2+y2,andthenusethefactthatFx=F=cos=x=d.Thenx1xq0qFx=F=:khdaw.comd40(x2+y2+L2=4)3=2andy1yq0qFy=F=:d40(x2+y2+L2=4)3=2E25-15(a)Theequationisvalidforbothpositiveandnegativez,soinvectorformitwouldreadF~=Fk^=1q0qzk^:z4(z2+R2)3=20(b)Theequationisnotvalidforbothpositiveandnegativez.ReversingthesignofzshouldpreversethesignofFz,andonewaytoxthisistowrite1=www.khdaw.comz=z2.ThenF~=Fk^=12q0qzp1 p1k^:z240Rz2z2E25-16Dividetherodintosmalldierentiallengthsdr,eachwithchargedQ=(Q=L)dr.Eachdierentiallengthcontributesadierentialforce1qdQ1qQdF==dr:40r240r2LIntegrate:ZZx+L课后答案网1qQF=dF=dr;x40r2L1qQ11= 40Lxx+LE25-17YoumustsolveEx.16beforesolvingthisproblem!q0referstothechargethathadbeencalledqinthatproblem.Ineithercasethedistancefromq0willbethesameregardlessofthesignofq;ifq=Qthenqwillbeontheright,whileifq= Qthenqwillbeontheleft.Settingtheforcesequaltoeachotheronegets1qQ111qQ =;40Lxx+L40r2orpr=x(x+L):khdaw.com7若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE25-18YoumustsolveEx.16andEx.17beforesolvingthisproblem.Ifallchargesarepositivethenmovingq0oaxiswillresultinanetforceawayfromtheaxis.That"sunstable.Ifq= QthenbothqandQareonthesamesideofq0.Movingq0closertoqwillresultintheattractiveforcegrowingfasterthantherepulsiveforce,soq0willmoveawayfromequilibrium.E25-19WecanstartwiththeworkthatwasdoneforusonPage577,exceptsinceweareconcernedwithsin=z=rwewouldhave1q0dzzdFx=dFsin=p:40(y2+z2)y2+z2Wewillneedtotakeintoconsiderationthatchangessignforthetwohalvesoftherod.ThenZZ!0L=2q0 zdz+zdzFx=+;40 L=2(y2+z2)3=20(y2+z2)3=2ZL=2khdaw.comq0zdz=;200(y2+z2)3=2L=2q0 1=p;20y2+z20!q011= p:20yy2+(L=2)2E25-20UseEq.25-15tondthemagnitudeoftheforcefromanyonerod,butwriteitas1www.khdaw.comqQF=p;40rr2+L2=4wherer2=z2+L2=4.ThecomponentofthisalongthezaxisisF=Fz=r.Sincethereare4rods,zwehave1qQz1qQzF=p;=p;0r2r2+L2=40(z2+L2=4)z2+L2=2EquatingtheelectricforcewiththeforceofgravityandsolvingforQ,0mg22pQ=(z+L=4)z2+L2=2;qz课后答案网puttinginthenumbers,(8:8510 12C2=Nm2)(3:4610 7kg)(9:8m=s2)p((0:214m)2+(0:25m)2=4)(0:214m)2+(0:25m)2=2(2:4510 12C)(0:214m)soQ=3:0710 6C:E25-21Ineachcaseweconservechargebymakingsurethatthetotalnumberofprotonsisthesameonbothsidesoftheexpression.Wealsoneedtoconservethenumberofneutrons.(a)Hydrogenhasoneproton,Berylliumhasfour,soXmusthaveveprotons.ThenXmustbeBoron,B.(b)Carbonhassixprotons,Hydrogenhasone,soXmusthaveseven.ThenXisNitrogen,N.(c)Nitrogenhassevenprotons,Hydrogenhasone,butHeliumhastwo,soXhas7+1 2=6protons.ThismeansXisCarbon,C.khdaw.com8若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE25-22(a)UseEq.25-4:(8:99109Nm2=C2)(2)(90)(1:6010 19C)2F==290N:(1210 15m)2(b)a=(290N)=(4)(1:6610 27kg)=4:41028m=s2.E25-23UseEq.25-4:(8:99109Nm2=C2)(1:6010 19C)2F==2:8910 9N:(28210 12m)2E25-24(a)UseEq.25-4:s(3:710 9N)(5:010 10m)2 19q==3:2010C:khdaw.com(8:99109Nm2=C2)(b)N=(3:2010 19C)=(1:6010 19C)=2.E25-25UseEq.25-4,1qq(11:610 19C)(11:610 19C)F=12=33=3:8N:40r24(8:8510 12C2=Nm2)(2:610 15m)212E25-26(a)N=(1:1510 7C)=(1:6010 19C)=7:191011.(b)Thepennyhasenoughelectronstomakeatotalchargeofwww.khdaw.com 1:37105C.Thefractionisthen(1:1510 7C)=(1:37105C)=8:4010 13:E25-27Equatethemagnitudesoftheforces:1q2=mg;40r2sos(8:99109Nm2=C2)(1:6010 19C)2r==5:07m课后答案网(9:1110 31kg)(9:81m=s2)E25-28Q=(75:0kg)( 1:6010 19C)=(9:1110 31kg)= 1:31013C.E25-29Themassofwateris(250cm3)(1:00g/cm3)=250g.Thenumberofmolesofwateris(250g)=(18:0g/mol)=13:9mol.Thenumberofwatermoleculesis(13:9mol)(6:021023mol 1)=8:371024.Eachmoleculehastenprotons,sothetotalpositivechargeisQ=(8:371024)(10)(1:6010 19C)=1:34107C:9khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE25-30Thetotalpositivechargein0:250kgofwateris1:34107C.Mary"simbalanceisthenq=(52:0)(4)(1:34107C)(0:0001)=2:79105C;1whileJohn"simbalanceisq=(90:7)(4)(1:34107C)(0:0001)=4:86105C;2Theelectrostaticforceofattractionisthen1qq(2:79105)(4:86105)F=12=(8:99109Nm2=C2)=1:61018N:40r2(28:0m)2E25-31(a)ThegravitationalforceofattractionbetweentheMoonandtheEarthisGMEMMFG=;khdaw.comR2whereRisthedistancebetweenthem.IfboththeEarthandthemoonareprovidedachargeq,thentheelectrostaticrepulsionwouldbe1q2FE=:40R2Settingthesetwoexpressionequaltoeachother,q2=GMEMM;40whichhassolutionwww.khdaw.compq=40GMEMM;q=4(8:8510 12C2=Nm2)(6:6710 11Nm2=kg2)(5:981024kg)(7:361022kg);=5:711013C:(b)Weneed(5:711013C)=(1:6010 19C)=3:571032protonsoneachbody.Themassofprotonsneededisthen课后答案网(3:571032)(1:6710 27kg)=5:971065kg:Ignoringthemassoftheelectron(whynot?)wecanassumethathydrogenisallprotons,soweneedthatmuchhydrogen.P25-1Assumethatthespheresinitiallyhavechargesq1andq2.Theforceofattractionbetweenthemis1q1q2F1=2= 0:108N;40r12wherer12=0:500m.Thenetchargeisq1+q2,andaftertheconductingwireisconnectedeachspherewillgethalfofthetotal.Thesphereswillhavethesamecharge,andrepelwithaforceof1(q+q)1(q+q)1212212F2=2=0:0360N:40r12khdaw.com10若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comSinceweknowtheseparationofthesphereswecanndq1+q2quickly,qq1+q2=240r122(0:0360N)=2:00CWe"llputthisbackintotherstexpressionandsolveforq2.1(2:00C q2)q2 0:108N=;40r212 3:0010 12C2=(2:00C q)q;220= q2+(2:00C)q+(1:73C)2:22Thesolutionisq2=3:0Corq2= 1:0C.Thenq1= 1:0Corq1=3:0C.P25-2TheelectrostaticforceonQfromeachqhasmagnitudeqQ=4a2,whereaisthelength0ofthesideofthesquare.Themagnitudeofthevertical(horizontal)componentoftheforceofQonpQis2Q2=16a2.khdaw.com0(a)InordertohaveazeronetforceonQthemagnitudesofthetwocontributionsmustbalance,sop2Q2qQ=;160a240a2porq=2Q=4.Thechargesmustactuallyhaveoppositecharge.(b)No.P25-3(a)Thethirdcharge,q3,willbebetweenthersttwo.Thenetforceonthethirdchargewillbezeroif1qq314qq3=www.khdaw.com;40r31240r322whichwilloccurif12=r31r32ThetotaldistanceisL,sor31+r32=L,orr31=L=3andr32=2L=3.Nowthatwehavefoundthepositionofthethirdchargeweneedtondthemagnitude.Thesecondandthirdchargesbothexertaforceontherstcharge;wewantthisnetforceontherstchargetobezero,so1qq31q4q=;课后答案网40r13240r122orq34q=;(L=3)2L2whichhassolutionq3= 4q=9.Thenegativesignisbecausetheforcebetweentherstandsecondchargemustbeintheoppositedirectiontotheforcebetweentherstandthirdcharge.(b)Considerwhathappenstothenetforceonthemiddlechargeifisisdisplacedasmalldistancez.Ifthecharge3ismovedtowardcharge1thentheforceofattractionwithcharge1willincrease.Butmovingcharge3closertocharge1meansmovingcharge3awayfromcharge2,sotheforceofattractionbetweencharge3andcharge2willdecrease.Socharge3experiencesmoreattractiontowardthechargethatitmovestoward,andlessattractiontothechargeitmovesawayfrom.Soundsunstabletome.11khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP25-4(a)Theelectrostaticforceonthechargeontherighthasmagnitudeq2F=;40x2TheweightoftheballisW=mg,andthetwoforcesarerelatedbyF=W=tansin=x=2L:Combining,2Lq2=4mgx3,so021=3qLx=:20(b)Rearrangeandsolveforq,s2(8:8510 12C2=Nm2)(0:0112kg)(9:81m=s2)(4:7010 2m)3q==2:2810 8C:khdaw.com(1:22m)P25-5(a)Originallytheballswouldnotrepel,sotheywouldmovetogetherandtouch;aftertouchingtheballswouldsplit"thechargeendingupwithq=2each.Theywouldthenrepelagain.(b)Thenewequilibriumseparationis21=31=30(q=2)L1x==x=2:96cm:20mg4P25-6TakethetimederivativeoftheexpressioninProblem25-4.Thendx2xdq2(4:7010 2m)www.khdaw.com==( 1:2010 9C=s)=1:6510 3m=s:dt3qdt3(2:2810 8C)P25-7Theforcebetweenthetwochargesis1(Q q)qF=:40r212Wewanttomaximizethisforcewithrespecttovariationinq,thismeansndingdF=dqandsettingitequalto0.ThendFd1(Q q)q1Q 2q课后答案网=2=2:dqdq40r1240r12ThiswillvanishifQ 2q=0,orq=1Q.2P25-8Displacethechargeqadistancey.ThenetrestoringforceonqwillbeapproximatelyqQ1yqQ16F2=y:40(d=2)2(d=2)40d3SinceF=yiseectivelyaforceconstant,theperiodofoscillationisr331=2m0mdT=2=:kqQ12khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP25-9DisplacethechargeqadistancextowardoneofthepositivechargesQ.ThenetrestoringforceonqwillbeqQ11F= ;40(d=2 x)2(d=2+x)2qQ32x:40d3SinceF=xiseectivelyaforceconstant,theperiodofoscillationisr331=2m0mdT=2=:k2qQP25-10(a)Zero,bysymmetry.(b)RemovingapositiveCesiumionisequivalenttoaddingasinglychargednegativeionatthatsamelocation.ThenetforceisthenF=e2=4r2;khdaw.com0whereristhedistancebetweentheChlorideionandthenewlyplacednegativeion,orpr=3(0:2010 9m)2Theforceisthen(1:610 19C)2F==1:9210 9N:4(8:8510 12C2=Nm2)3(0:2010 9m)2P25-11Wecanpretendthatthisproblemisinasingleplanecontainingallthreecharges.Thewww.khdaw.commagnitudeoftheforceonthetestchargeq0fromthechargeqontheleftis1qq0Fl=:40(a2+R2)Aforceofidenticalmagnitudeexistsfromthechargeontheright.weneedtoaddthesetwoforcesasvectors.OnlythecomponentsalongRwillsurvive,andeachforcewillcontributeanamountRFlsin=Flp;R2+a2sothenetforceonthetestparticlewillbe课后答案网2qq0Rp:40(a2+R2)R2+a2WewanttondthemaximumvalueasafunctionofR.Thismeanstakethederivative,andsetitequaltozero.Thederivativeis2qq13R20 ;40(a2+R2)3=2(a2+R2)5=2whichwillvanishwhena2+R2=3R2;pasimplequadraticequationwithsolutionsR=a=2.13khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE26-1E=F=q=ma=q.ThenE=(9:1110 31kg)(1:84109m=s2)=(1:6010 19C)=1:0510 2N=C:E26-2Theanswersto(a)and(b)arethesame!F=Eq=(3:0106N=C)(1:6010 19C)=4:810 13N.E26-3F=W,orEq=mg,somg(6:6410 27kg)(9:81m=s2)E===2:0310 7N=C:q2(1:6010 19C)Thealphaparticlehasapositivecharge,thismeansthatitwillexperienceanelectricforcewhichisinthesamedirectionastheelectriceld.Sincethegravitationalforceisdown,theelectricforce,andconsequentlytheelectriceld,mustbedirectedup.E26-4(a)E=F=q=(3:010 6N)=(2:010 9C)=1:5103N=C.khdaw.com(b)F=Eq=(1:5103N=C)(1:6010 19C)=2:410 16N:(c)F=mg=(1:6710 27kg)(9:81m=s2)=1:610 26N:(d)(2:410 16N)=(1:610 26N)=1:51010:E26-5RearrangeE=q=4r2,0q=4(8:8510 12C2=Nm2)(0:750m)2(2:30N=C)=1:4410 10C:E26-6p=qd=(1:6010 19C)(4:3010 9)=6:8810 28Cm.E26-7UseEq.26-12forpointsalongtheperpendicularbisector.Thenwww.khdaw.com1p(3:5610 29Cm)E==(8:99109Nm2=C2)=1:95104N=C:40x3(25:410 9m)3E26-8Ifthechargesonthelinex=awhere+qand qinsteadof+2qand 2qthenatthecenterofthesquareE=0bysymmetry.ThissimpliestheproblemintondingEforacharge+qat(a;0)and qat(a;a).Thisisadipole,andtheeldisgivenbyEq.26-11.Forthisexercisewehavex=a=2andd=a,so1qaE=;40[2(a=2)2]3=2or,puttinginthenumbers,课后答案网E=1:11105N=C.E26-9Thechargesat1and7areoppositeandcanbeeectivelyreplacedwithasinglechargeof 6qat7.Thesameistruefor2and8,3and9,onupto6and12.Bysymmetryweexpecttheeldtopointalongalinesothatthreechargesareaboveandthreebelow.Thatwouldmean9:30.E26-10IfbothchargesarepositivethenEq.26-10wouldreadE=2E+sin,andEq.26-11wouldlooklike1qxE=2p;40x2+(d=2)2x2+(d=2)21qx2p40x2x2whenxd.ThiscanbesimpliedtoE=2q=4x2.0khdaw.com14若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE26-11Treatthetwochargesontheleftasonedipoleandtreatthetwochargesontherightasaseconddipole.PointPisontheperpendicularbisectorofbothdipoles,sowecanuseEq.26-12tondthetwoelds.Forthedipoleontheleftp=2aqandtheelectriceldduetothisdipoleatPhasmagnitude12aqEl=40(x+a)3andisdirectedup.Forthedipoleontherightp=2aqandtheelectriceldduetothisdipoleatPhasmagnitude12aqEr=40(x a)3andisdirecteddown.ThenetelectriceldatPisthesumofthesetwoelds,butsincethetwocomponenteldspointinoppositedirectionswemustactuallysubtractthesevalues,E=Er El;khdaw.com2aq11= ;40(x a)3(x+a)3aq111= :20x3(1 a=x)3(1+a=x)3Wecanusethebinomialexpansiononthetermscontaining1a=x,aq1E((1+3a=x) (1 3a=x));20x3aq1=(6a=x);20x3www.khdaw.com3(2qa2)=:20x4E26-12Doaseriesexpansiononthepartintheparentheses11R2R21 p1 1 =:1+R2=z22z22z2Substitutethisin,R2QEz=:课后答案网202z240z2E26-13Atthesurfacez=0andEz==20.Halfofthisvalueoccurswhenzisgivenby1z=1 p;2z2+R2pwhichcanbewrittenasz2+R2=(2z)2.Solvethis,andz=R=3.E26-14LookatEq.26-18.Theelectriceldwillbeamaximumwhenz=(z2+R2)3=2isamaximum.Takethederivativeofthiswithrespecttoz,andget132z2z2+R2 3z2 =:(z2+R2)3=22(z2+R2)5=2(z2+R2)5=2pThiswillvanishwhenthenumeratorvanishes,orwhenz=R=2.khdaw.com15若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE26-15(a)TheelectriceldstrengthjustabovethecentersurfaceofachargeddiskisgivenbyEq.26-19,butwithz=0,E=20Thesurfacechargedensityis=q=A=q=(R2).Combining,q=2R2E=2(8:8510 12C2=Nm2)(2:510 2m)2(3106N=C)=1:0410 7C:0NoticeweusedanelectriceldstrengthofE=3106N=C,whichistheeldatairbreaksdownandsparkshappen.(b)Wewanttondouthowmanyatomsareonthesurface;ifaisthecrosssectionalareaofoneatom,andNthenumberofatoms,thenA=Naisthesurfaceareaofthedisk.ThenumberofatomsisA(0:0250m)2N===1:311017a(0:01510 18m2)(c)Thetotalchargeonthediskis1:0410 7C,thiscorrespondstokhdaw.com(1:0410 7C)=(1:610 19C)=6:51011electrons.(Weareignoringthesignofthechargehere.)Ifeachsurfaceatomcanhaveatmostoneexcesselectron,thenthefractionofatomswhicharechargedis(6:51011)=(1:311017)=4:9610 6;whichisn"tverymany.E26-16Imagineswitchingthepositiveandnegativecharges.Theelectriceldwouldalsoneedtoswitchdirections.Bysymmetry,then,theelectriceldcanonlypointverticallydown.Keepingonlythatcomponent,www.khdaw.comZ=21dE=2sin;040r22=:40r2But=q=(=2),soE=q=2r2.0E26-17WewanttotthedatatoEq.26-19,课后答案网zEz=1 p:20z2+R2Thereareonlytwovariables,Randq,withq=R2.Wecanndveryeasilyifweassumethatthemeasurementshavenoerrorbecausethenatthesurface(wherez=0),theexpressionfortheelectriceldsimpliestoE=:20Then=2E=2(8:85410 12C2=Nm2)(2:043107N=C)=3:61810 4C=m2.0Findingtheradiuswilltakealittlemorework.Wecanchooseonepoint,andmakethatthereferencepoint,andthensolveforR.StartingwithzEz=1 p;20z2+R2khdaw.com16若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comandthenrearranging,20Ezz=1 p;z2+R220Ez1=1 p;1+(R=z)2120Ezp=1 ;1+(R=z)2211+(R=z)=;2(1 20Ez=)sR1= 1:z(1 2E=)20zUsingz=0:03mandE=1:187107N=C,alongwithourvalueof=3:61810 4C=m2,wezndkhdaw.comsR1= 2 1;z1 2(8:85410 12C2=Nm2)(1:187107N=C)=(3:61810 4C=m2)R=2:167(0:03m)=0:065m:(b)Andnowndthechargefromthechargedensityandtheradius,q=R2=(0:065m)2(3:61810 4C=m2)=4:80C:E26-18(a)= q=L.www.khdaw.com(b)Integrate:ZL+a12E=dxx;a4011= ;40aL+aq1=;40a(L+a)since=q=L.(c)IfaLthen课后答案网Lcanbereplacedwith0intheaboveexpression.E26-19Asketchoftheeldlookslikethis.17khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comkhdaw.comE26-20(a)F=Eq=(40N=C)(1:6010 19C)=6:410 18N(b)Linesaretwiceasfarapart,sotheeldishalfaslarge,orE=20N=C.www.khdaw.comE26-21Consideraviewofthediskonedge.课后答案网E26-22Asketchoftheeldlookslikethis.18khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comkhdaw.comE26-23Totheright.E26-24(a)Theelectriceldiszeronearertothesmallercharge;sincethechargeshaveoppositesignsitmustbetotherightofthe+2qcharge.Equatingthemagnitudesofthetwoelds,2q5q=;40x240(x+a)2orpp5x=www.khdaw.com2(x+a);whichhassolutionp2ax=pp=2:72a:5 2E26-25Thiscanbedonequicklywithaspreadsheet.E课后答案网xdE26-26(a)AtpointA,1q 2q1 qE= =;40d2(2d)2402d219khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comwherethenegativesignindicatesthatE~isdirectedtotheleft.AtpointB,1q 2q16qE= =;40(d=2)2(d=2)240d2wherethepositivesignindicatesthatE~isdirectedtotheright.AtpointC,1q 2q1 7qE=+=;40(2d)2d2404d2wherethenegativesignindicatesthatE~isdirectedtotheleft.E26-27(a)Theelectricelddoes(negative)workontheelectron.ThemagnitudeofthisworkisW=Fd,whereF=Eqisthemagnitudeoftheelectricforceontheelectronanddisthedistancethroughwhichtheelectronmoves.Combining,khdaw.comW=F~~d=qE~~d;whichgivestheworkdonebytheelectriceldontheelectron.TheelectronoriginallypossessedakineticenergyofK=1mv2,sincewewanttobringtheelectrontoarest,theworkdonemustbe2negative.Thechargeqoftheelectronisnegative,soE~and~darepointinginthesamedirection,andE~~d=Ed.Bytheworkenergytheorem,12W=K=0 mv:2Weputallofthistogetherandndd,W mv2 (9:1110 31www.khdaw.comkg)(4:86106m=s)2d====0:0653m:qE2qE2( 1:6010 19C)(1030N=C)(b)Eq=magivesthemagnitudeoftheacceleration,andvf=vi+atgivesthetime.Butvf=0.Combiningtheseexpressions,mv(9:1110 31kg)(4:86106m=s)t= i= =2:6910 8s:Eq(1030N=C)( 1:6010 19C)(c)Wewillapplytheworkenergytheoremagain,exceptnowwedon"tassumethenalkineticenergyiszero.Instead,课后答案网W=K=Kf Ki;anddividingthroughbytheinitialkineticenergytogetthefractionlost,WKf Ki==fractionalchangeofkineticenergy.KiKiButK=1mv2,andW=qEd,sothefractionalchangeisi2WqEd( 1:6010 19C)(1030N=C)(7:8810 3m)=== 12:1%:Ki1mv21(9:1110 31kg)(4:86106m=s)222E26-28(a)a=Eq=m=(2:16104N=C)(1:6010 19C)=(1:6710 27kg)=2:071012m=s2.pp(b)v=2ax=2(2:071012m=s2)(1:2210 2m)=2:25105m=s:20khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE26-29(a)E=2q=4r2,or0(1:8810 7C)E==5:85105N=C:2(8:8510 12C2=Nm2)(0:152m=2)2(b)F=Eq=(5:85105N=C)(1:6010 19C)=9:3610 14N.E26-30(a)Theaveragespeedbetweentheplatesis(1:9510 2m)=(14:710 9s)=1:33106m=s.Thespeedwithwhichtheelectronhitstheplateistwicethis,or2:65106m=s.(b)Theaccelerationisa=(2:65106m=s)=(14:710 9s)=1:801014m=s2.TheelectriceldthenhasmagnitudeE=ma=q,orE=(9:1110 31kg)(1:801014m=s2)=(1:6010 19C)=1:03103N=C:E26-31Thedropisbalancediftheelectricforceisequaltotheforceofgravity,orEq=mg.Themassofthedropisgivenintermsofthedensitybykhdaw.com43m=V=r:3Combining,mg4r3g4(851kg=m3)(1:6410 6m)3(9:81m=s2)q====8:1110 19C:E3E3(1:92105N=C)Wewantthechargeintermsofe,sowedivide,andgetq(8:1110 19C)e=(1:6010 19www.khdaw.comC)=5:075:E26-32(b)F=(8:99109Nm2=C2)(2:1610 6C)(85:310 9C)=(0:117m)2=0:121N:(a)E=F=q=(0:121N)=(2:1610 6C)=5:60104N=C:21E=F=q=(0:121N)=(85:310 9C)=1:42106N=C:12E26-33IfeachvalueofqmeasuredbyMillikanwasamultipleofe,thenthedierencebetweenanytwovaluesofqmustalsobeamultipleofq.Thesmallestdierencewouldbethesmallestmultiple,andthismultiplemightbeunity.Thedierencesare1.641,1.63,1.60,1.63,3.30,3.35,3.18,3.24,alltimes10 19C.Thisisaprettyclearindicationthatthefundamentalchargeisontheorderof1:610 19课后答案网C.Ifso,thelikelynumberoffundamentalchargesoneachofthedropsisshownbelowinatablearrangedliketheoneinthebook:48125101471116Thetotalnumberofchargesis87,whilethetotalchargeis142:6910 19C,sotheaveragechargeperquantais1:6410 19C.21khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE26-34Becauseoftheelectriceldtheaccelerationtowardthegroundofachargedparticleisnotg,butgEq=m,wherethesigndependsonthedirectionoftheelectriceld.(a)Ifthelowerplateispositivelychargedthena=g Eq=m.Replaceginthependulumperiodexpressionbythis,andthensLT=2:g Eq=m(b)Ifthelowerplateisnegativelychargedthena=g+Eq=m.Replaceginthependulumperiodexpressionbythis,andthensLT=2:g+Eq=mE26-35Theinkdroptravelsanadditionaltimet0=d=v,wheredistheadditionalhorizontalxdistancebetweentheplatesandthepaper.Duringthistimeittravelsanadditionalverticaldistancey0=vt0,wherev=at=2y=t=2yv=L.Combining,khdaw.comyyx2yvt02yd2(6:410 4m)(6:810 3m)y0=x===5:4410 4m;LL(1:610 2m)sothetotalde
ectionisy+y0=1:1810 3m.E26-36(a)p=(1:4810 9C)(6:2310 6m)=9:2210 15Cm:(b)U=2pE=2(9:2210 15Cm)(1100N=C)=2:0310 11J.E26-37Use=pEsin,whereistheanglebetween~pandE~.Forthisdipolep=qd=2edorp=2(1:610 19C)(0:7810 9m)=2:510www.khdaw.com 28Cm.ForallthreecasespE=(2:510 28Cm)(3:4106N=C)=8:510 22Nm:Theonlythingwecareaboutistheangle.(a)Fortheparallelcase=0,sosin=0,and=0.(b)Fortheperpendicularcase=90,sosin=1,and=8:510 22Nm:.(c)Fortheanti-parallelcase=180,sosin=0,and=0.E26-38(c)Equalandopposite,or5:2210 16N.(d)UseEq.26-12andF=Eq.Then4x3F课后答案网0p=;q4(8:8510 12C2=Nm2)(0:285m)3(5:2210 16N)=;(3:1610 6C)=4:2510 22Cm:E26-39Thepoint-likenucleuscontributesanelectriceld1ZeE+=;40r2whiletheuniformsphereofnegativelychargedelectroncloudofradiusRcontributesanelectriceldgivenbyEq.26-24,1 ZerE =:40R3khdaw.com22若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comThenetelectriceldisjustthesum,Ze1rE= 40r2R3E26-40Theshelltheoremrstdescribedforgravitationinchapter14isapplicableheresincebothelectricforcesandgravitationalforcesfalloas1=r2.Thenetpositivechargeinsidethesphereofradiusd=2isgivenbyQ=2e(d=2)3=R3=ed3=4R3.Thenetforceoneitherelectronwillbezerowhene2eQ4e2d3e2d===;d2(d=2)2d24R3R3whichhassolutiond=R.P26-1(a)Letthepositivechargebelocatedclosertothepointinquestion,thentheelectriceldfromthepositivechargeiskhdaw.com1qE+=40(x d=2)2andisdirectedawayfromthedipole.Thenegativechargeislocatedfartherfromthepointinquestion,so1qE =40(x+d=2)2andisdirectedtowardthedipole.Thenetelectriceldisthesumofthesetwoelds,butsincethetwocomponenteldspointinoppositedirectionwemustactuallysubtractthesevalues,www.khdaw.comE=E+ E ;1q1q= ;40(z d=2)240(z+d=2)21q11= 40z2(1 d=2z)2(1+d=2z)2Wecanusethebinomialexpansiononthetermscontaining1d=2z,1qE((1+d=z) (1 d=z));课后答案网40z21qd=20z3(b)Theelectriceldisdirectedawayfromthepositivechargewhenyouareclosertothepositivecharge;theelectriceldisdirectedtowardthenegativechargewhenyouareclosertothenegativecharge.Inshort,alongtheaxistheelectriceldisdirectedinthesamedirectionasthedipolemoment.P26-2Thekeytothisproblemwillbetheexpansionof113zd1:(x2+(zd=2)2)3=2(x2+z2)3=22x2+z223khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.compfordx2+z2.Farfromthechargestheelectriceldofthepositivechargehasmagnitude1qE+=;40x2+(z d=2)2thecomponentsofthisare1qxEx;+=p;40x2+z2x2+(z d=2)21q(z d=2)Ez;+=p:40x2+z2x2+(z d=2)2Expandbothaccordingtotherstsentence,then1xq3zdEx;+1+;40(x2+z2)3=22x2+z21(z d=2)q3zdEz;+=1+:khdaw.com40(x2+z2)3=22x2+z2Similarexpressionexistforthenegativecharge,exceptwemustreplaceqwith qandthe+intheparentheseswitha ,andz d=2withz+d=2intheEzexpression.Allthatisleftistoaddtheexpressions.Then1xq3zd1 xq3zdEx=1++1 ;40(x2+z2)3=22x2+z240(x2+z2)3=22x2+z213xqzd=;40(x2+z2)5=21(z d=2)q3zd1 (z+d=2)q3zdEz=1++1 ;40(x2+z2)3=22x2+z2www.khdaw.com40(x2+z2)3=22x2+z213z2dq1dq= ;40(x2+z2)5=240(x2+z2)3=21(2z2 x2)dq=:40(x2+z2)5=2pP26-3(a)Eachpointontheringisadistancez2+R2fromthepointontheaxisinquestion.Sinceallpointsareequaldistantandsubtendthesameanglefromtheaxisthenthetophalfoftheringcontributesq1zE1z=p;课后答案网40(x2+R2)z2+R2whilethebottomhalfcontributesasimilarexpression.Add,andq1+q2zqzEz==;40(z2+R2)3=240(z2+R2)3=2whichisidenticaltoEq.26-18.(b)Theperpendicularcomponentwouldbezeroifq1=q2.Itisn"t,soitmustbethedierenceq1 q2whichisofinterest.Assumethischargedierenceisevenlydistributedonthetophalfofthering.Ifitisapositivedierence,thenE?mustpointdown.Weareonlyinterestedthenintheverticalcomponentasweintegratearoundthetophalfofthering.ThenZ1(q1 q2)=E?=cosd;040z2+R2q1 q21=:220z2+R2khdaw.com24若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP26-4Usetheapproximation1=(zd)2(1=z2)(12d=z+3d2=z2).Addthecontributions:1q2qqE= +;40(z+d)2z2(z d)2q2d3d22d3d21 + 2+1++;40z2zz2zz2q6d23Q==;40z2z240z4whereQ=2qd2.P26-5Amonopoleeldfallsoas1=r2.Adipoleeldfallsoas1=r3,andconsistsoftwooppositelychargemonopolesclosetogether.Aquadrupoleeld(seeExercise11aboveorreadProblem4)fallsoas1=r4and(can)consistoftwootherwiseidenticaldipolesarrangedwithanti-paralleldipolemoments.Justtakingaleapoffaithitseemsasifwecanconstructa1khdaw.com=r6eldbehaviorbyextendingthereasoning.Firstweneedanoctopolewhichisconstructedfromaquadrupole.Wewanttokeepthingsassimpleaspossible,sotheconstructionstepsare1.Themonopoleisacharge+qatx=0.2.Thedipoleisacharge+qatx=0andacharge qatx=a.We"llcallthisadipoleatx=a=23.Thequadrupoleisthedipoleatx=a=2,andaseconddipolepointingtheotherwayatx= a=2.Thechargesarethen qatx= a,+2qatx=0,and qatx=a.www.khdaw.com4.Theoctopolewillbetwostacked,osetquadrupoles.Therewillbe qatx= a,+3qatx=0, 3qatx=a,and+qatx=2a.5.Finally,ourdistributionwithafareldbehaviorof1=r6.Therewillbe+qatx=2a, 4qatx= a,+6qatx=0, 4qatx=a,and+qatx=2a.P26-6TheverticalcomponentofE~issimplyhalfofEq.26-17.ThehorizontalcomponentisgivenbyavariationoftheworkrequiredtoderiveEq.26-16,1dzzdEz=dEsin=p;课后答案网40y2+z2y2+z2whichintegratestozeroifthelimitsare 1to+1,butinthiscase,Z11Ez=dEz=:040zSincetheverticalandhorizontalcomponentsareequalthenE~makesanangleof45.P26-7(a)Swapallpositiveandnegativechargesintheproblemandtheelectriceldmustreversedirection.Butthisisthesameas
ippingtheproblemover;consequently,theelectriceldmustpointparalleltotherod.ThisonlyholdstrueatpointP,becausepointPdoesn"tmovewhenyou
iptherod.25khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.com(b)Weareonlyinterestedintheverticalcomponentoftheeldascontributedfromeachpointontherod.Wecanintegrateonlyhalfoftherodanddoubletheanswer,sowewanttoevaluateZL=21dzzEz=2p;040y2+z2y2+z2p2(L=2)2+y2 y=p:40y(L=2)2+y2(c)Thepreviousexpressionisexact.IfyL,thentheexpressionsimplieswithaTaylorexpansiontoL2Ez=;40y3whichlookssimilartoadipole.P26-8EvaluateZR1zdqkhdaw.comE=;040(z2+r2)3=2whereristheradiusofthering,zthedistancetotheplaneofthering,anddqthedierentialchargeonthering.Butr2+z2=R2,anddq=(2rdr),where=q=2R2.ThenZpRqR2 r2rdrE=;040R5q1=:403R2P26-9Thekeystatementistheseconditalicizedparagraphonpage595;thenumberofeldwww.khdaw.comlinesthroughaunitcross-sectionalareaisproportionaltotheelectriceldstrength.Iftheexponentisn,thentheelectriceldstrengthadistancerfromapointchargeiskqE=;rnandthetotalcrosssectionalareaatadistanceristheareaofasphericalshell,4r2.Thenthenumberofeldlinesthroughtheshellisproportionaltokq22 nEA=4r=4kqr:课后答案网rnNotethatthenumberofeldlinesvarieswithrifn6=2.Thismeansthataswegofartherfromthepointchargeweneedmoreandmoreeldlines(orfewerandfewer).Buttheeldlinescanonlystartoncharges,andwedon"thaveanyexceptforthepointcharge.Wehaveaproblem;wereallydoneedn=2ifwewantworkableeldlines.P26-10Thedistancetraveledbytheelectronwillbed=at2=2;thedistancetraveledbythe11protonwillbed=at2=2.aandaarerelatedbyma=ma,sincetheelectricforceisthe22121122same(samechargemagnitude).Thend+d=(a+a)t2=2isthe5.00cmdistance.Divideby1212theprotondistance,andthend1+d2a1+a2m2==+1:d2a2m1Thend=(5:0010 2m)=(1:6710 27=9:1110 31+1)=2:7310 5m:2khdaw.com26若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP26-11Thisismerelyafancyprojectilemotionproblem.vx=v0coswhilevy;0=v0sin.Thexandypositionsarex=vxtand1ax2y=at2+vt=+xtan:2y;02v2cos20TheaccelerationoftheelectronisverticallydownandhasamagnitudeofFEq(1870N=C)(1:610 19C)a====3:2841014m=s2:mm(9:1110 31kg)Wewanttondouthowtheverticalvelocityoftheelectronatthelocationofthetopplate.Ifwegetanimaginaryanswer,thentheelectrondoesn"tgetashighasthetopplate.qvy=vy;02+2ay;p=(5:83106m=s)2sin(39)2+2( 3:2841014m=s2)(1:9710 2m);khdaw.com=7:226105m=s:Thisisarealanswer,sothismeanstheelectroneitherhitsthetopplate,oritmissesbothplates.Thetimetakentoreachtheheightofthetopplateisv(7:226105m=s) (5:83106m=s)sin(39)t=y==8:97210 9s:a( 3:2841014m=s2)Inthistimetheelectronhasmovedahorizontaldistanceofx=(5:83106m=s)cos(39)(8www.khdaw.com:97210 9s)=4:06510 2m:Thisisclearlyontheupperplate.P26-12NearthecenteroftheringzR,soaTaylorexpansionyieldszE=:20R2TheforceontheelectronisF=Ee,sotheeectivespring"constantisk=e=2R2.Thismeans0rrrkeeq!===:课后答案网m20mR240mR3P26-13U= pEcos,sotheworkrequiredto
ipthedipoleisW= pE[cos(0+) cos0]=2pEcos0:P26-14Ifthetorqueonasystemisgivenbypjj=,whereisaconstant,thenthefrequencyofoscillationofthesystemisf==I=2.Inthiscase=pEsinpE,sopf=pE=I=2:27khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP26-15UsetheavariationoftheexactresultfromProblem26-1.Thetwochargearepositive,butsincewewilleventuallyfocusontheareabetweenthechargeswemustsubtractthetwoeldcontributions,sincetheypointinoppositedirections.Thenq11Ez= 40(z a=2)2(z+a=2)2andthentakethederivative,dEzq11= :dz20(z a=2)3(z+a=2)3Applyingthebinomialexpansionforpointsza,dEz8q111= ;dz20a3(2z=a 1)3(2z=a+1)38q1 ( (1+6z=a) (1 6z=a));khdaw.com20a38q1=:0a3Thereweresomefancysign
ipsinthesecondline,soreviewthosestepscarefully!(b)Theelectrostaticforceonadipoleisthedierenceinthemagnitudesoftheelectrostaticforcesonthetwochargesthatmakeupthedipole.NearthecenteroftheabovechargearrangementtheelectriceldbehavesasdEzEzEz(0)+z+higherorderedterms.dzz=0www.khdaw.comThenetforceonadipoleisdEzdEzF+ F =q(E+ E )=qEz(0)+z+ Ez(0) z dzdzz=0z=0wherethe+"and-"subscriptsrefertothelocationsofthepositiveandnegativecharges.ThislastlinecanbesimpliedtoyielddEzdEzq(z+ z )=qd:dzdz课后答案网z=0z=028khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE27-1=(1800N=C)(3:210 3m)2cos(145)= 7:810 3Nm2=C.EE27-2TherightfacehasanareaelementgivenbyA~=(1:4m)2^j.(a)=A~E~=(2:0m2)^j(6N=C)^i=0.E(b)=(2:0m2)^j( 2N=C)^j= 4Nm2=C:E(c)=(2:0m2)^j[( 3N=C)^i+(4N=C)k^]=0:E(d)IneachcasetheeldisuniformsowecansimplyevaluateE=E~A~,whereA~hassixparts,oneforeveryface.Thefaces,however,havethesamesizebutareorganizedinpairswithoppositedirections.Thesewillcancel,sothetotal
uxiszeroinallthreecases.E27-3(a)The
atbaseiseasyenough,sinceaccordingtoEq.27-7,ZE=E~dA~:Therearetwoimportantfactstoconsiderinordertointegratethisexpression.khdaw.comE~isparalleltotheaxisofthehemisphere,E~pointsinwardwhiledA~pointsoutwardonthe
atbase.E~isuniform,soitiseverywherethesameonthe
atbase.SinceE~isanti-paralleltodA~,E~dA~= EdA,thenZZE=E~dA~= EdA:SinceE~isuniformwecansimplifythisasZZ= EdA= EdA= EA= R2E:EThelaststepsarejustsubstitutingtheareaofacircleforthe
atsideofthehemisphere.www.khdaw.com(b)WemustrstsortoutthedotproductEdAR课后答案网qfWecansimplifythevectorpartoftheproblemwithE~dA~=cosEdA,soZZE=E~dA~=cosEdAOnceagain,E~isuniform,sowecantakeitoutoftheintegral,ZZE=cosEdA=EcosdAFinally,dA=(Rd)(Rsind)onthesurfaceofaspherecenteredonkhdaw.comR=0.29若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comWe"llintegratearoundtheaxis,from0to2.We"llintegratefromtheaxistotheequator,from0to=2.ThenZZ2Z=2=EcosdA=ER2cossindd:E00Pullingouttheconstants,doingtheintegration,andthenwriting2cossinassin(2),Z=2Z=2=2R2Ecossind=R2Esin(2)d;E00Changevariablesandlet=2,thenwehaveZ212E=REsind=RE:02E27-4khdaw.comThroughS1,E=q=0.ThroughS2,E= q=0.ThroughS3,E=q=0.ThroughS4,E=0.ThroughS5,E=q=0.E27-5ByEq.27-8,q(1:84C)52E==2=2:0810Nm=C:0(8:8510 12C=Nm2)E27-6Thetotal
uxthroughthesphereis=( 1+2 3+4 5+6)(103Nm2=C)=3103Nm2=C:Ewww.khdaw.comThechargeinsidethedieis(8:8510 12C2=Nm2)(3103Nm2=C)=2:6610 8C:E27-7Thetotal
uxthroughacubewouldbeq=0.Sincethechargeisinthecenterofthecubeweexpectthatthe
uxthroughanysidewouldbethesame,or1=6ofthetotal
ux.Hencethe
uxthroughthesquaresurfaceisq=60.E27-8Iftheelectriceldisuniformthentherearenofreechargesnear(orinside)thenet.The
uxthroughthenettingmustbeequalto,butoppositeinsign,fromthe
uxthroughtheopening.The
uxthroughtheopeningisEa2,sothe
uxthroughthenettingis Ea2.课后答案网E27-9Thereisno
uxthroughthesidesofthecube.The
uxthroughthetopofthecubeis( 58N=C)(100m)2= 5:8105Nm2=C.The
uxthroughthebottomofthecubeis(110N=C)(100m)2=1:1106Nm2=C:Thetotal
uxisthesum,sothechargecontainedinthecubeisq=(8:8510 12C2=Nm2)(5:2105Nm2=C)=4:6010 6C:E27-10(a)Thereisonlya
uxthroughtherightandleftfaces.Throughtherightface=(2:0m2)^j(3N=Cm)(1:4m)^j=8:4Nm2=C:RThe
uxthroughtheleftfaceiszerobecausey=0.khdaw.com30若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE27-11Thereareeightcubeswhichcanbewrapped"aroundthecharge.Eachcubehasthreeexternalfacesthatareindistinguishableforatotaloftwenty-fourfaces,eachwiththesame
uxE.Thetotal
uxisq=0,sothe
uxthroughonefaceisE=q=240.Notethatthisisthe
uxthroughfacesoppositethecharge;forfaceswhichtouchthechargetheelectriceldisparalleltothesurface,sothe
uxwouldbezero.E27-12UseEq.27-11,=2rE=2(8:8510 12C2=Nm2)(1:96m)(4:52104N=C)=4:9310 6C=m:0E27-13(a)q=A=(2:010 6C=m2)(0:12m)(0:42m)=3:1710 7C:(b)Thechargedensitywillbethesame!q=A=(2:010 6C=m2)(0:08m)(0:28m)=1:4110 7C:E27-14TheelectriceldfromthesheetontheleftisofmagnitudeEl==20,andpointsdirectlyawayfromthesheet.Themagnitudeoftheelectriceldfromthesheetontherightisthesame,khdaw.combutitpointsdirectlyawayfromthesheetontheright.(a)Totheleftofthesheetsthetwoeldsaddsincetheypointinthesamedirection.ThismeansthattheelectriceldisE~= (=0)^i.(b)Betweenthesheetsthetwoelectriceldscancel,soE~=0.(c)Totherightofthesheetsthetwoeldsaddsincetheypointinthesamedirection.ThismeansthattheelectriceldisE~=(=0)^i.E27-15TheelectriceldfromtheplateontheleftisofmagnitudeEl==20,andpointsdirectlytowardtheplate.Themagnitudeoftheelectriceldfromtheplateontherightisthesame,butitpointsdirectlyawayfromtheplateontheright.www.khdaw.com(a)Totheleftoftheplatesthetwoeldscancelsincetheypointintheoppositedirections.ThismeansthattheelectriceldisE~=0.(b)Betweentheplatesthetwoelectriceldsaddsincetheypointinthesamedirection.ThismeansthattheelectriceldisE~= (=0)^i.(c)Totherightoftheplatesthetwoeldscancelsincetheypointintheoppositedirections.ThismeansthattheelectriceldisE~=0.E27-16ThemagnitudeoftheelectriceldisE=mg=q.Thesurfacechargedensityontheplatesis=0E=0mg=q,or(8:85课后答案网10 12C2=Nm2)(9:1110 31kg)(9:81m=s2)==4:9410 22C=m2:(1:6010 19C)E27-17Wedon"treallyneedtowriteanintegral,wejustneedthechargeperunitlengthinthecylindertobeequaltozero.Thismeansthatthepositivechargeincylindermustbe+3:60nC=m.ThispositivechargeisuniformlydistributedinacircleofradiusR=1:50cm,so3:60nC=m3:60nC=m3===5:09C=m:R2(0:0150m)231khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE27-18Theproblemhassphericalsymmetry,souseaGaussiansurfacewhichisasphericalshell.TheE~eldwillbeperpendiculartothesurface,soGauss"lawwillsimplifytoIIIq==E~dA~=EdA=EdA=4r2E:enc0(a)ForpointPthechargeenclosedisq=1:2610 7C,so1enc(1:2610 7C)E==3:38106N=C:4(8:8510 12C2=Nm2)(1:8310 2m)2(b)InsideaconductorE=0.E27-19Theprotonorbitswithaspeedv,sothecentripetalforceontheprotonisF=mv2=r.CThiscentripetalforceisfromtheelectrostaticattractionwiththesphere;solongastheprotonisoutsidethespheretheelectriceldisequivalenttothatofapointchargeQ(Eq.27-15),khdaw.com1QE=:40r2IfqisthechargeontheprotonwecanwriteF=Eq,ormv21Q=qr40r2SolvingforQ,4mv2r0Q=;qwww.khdaw.com4(8:8510 12C2=Nm2)(1:6710 27kg)(294103m=s)2(0:0113m)=;(1:6010 19C)= 1:1310 9C:E27-20Theproblemhassphericalsymmetry,souseaGaussiansurfacewhichisasphericalshell.TheE~eldwillbeperpendiculartothesurface,soGauss"lawwillsimplifytoIIIq==E~dA~=EdA=EdA=4r2E:enc0课后答案网 8(a)Atr=0:120mqenc=4:0610C.Then(4:0610 8C)E==2:54104N=C:4(8:8510 12C2=Nm2)(1:2010 1m)2(b)Atr=0:220mq=5:9910 8C.Thenenc(5:9910 8C)E==1:11104N=C:4(8:8510 12C2=Nm2)(2:2010 1m)2(c)Atr=0:0818mqenc=0C.ThenE=0.32khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE27-21Theproblemhascylindricalsymmetry,souseaGaussiansurfacewhichisacylindricalshell.TheE~eldwillbeperpendiculartothecurvedsurfaceandparalleltotheendsurfaces,soGauss"lawwillsimplifytoIZZqenc=0=E~dA~=EdA=EdA=2rLE;whereListhelengthofthecylinder.Notethat=q=2rLrepresentsasurfacechargedensity.(a)r=0:0410misbetweenthetwocylinders.Then(24:110 6C=m2)(0:0322m)E==2:14106N=C:(8:8510 12C2=Nm2)(0:0410m)Itpointsoutward.(b)r=0:0820misoutsidethetwocylinders.Then(24:110 6C=m2)(0:0322m)+( 18:010 6C=m2)(0:0618m)E== 4:64105N=C:khdaw.com(8:8510 12C2=Nm2)(0:0820m)Thenegativesignisbecauseitispointinginward.E27-22Theproblemhascylindricalsymmetry,souseaGaussiansurfacewhichisacylindricalshell.TheE~eldwillbeperpendiculartothecurvedsurfaceandparalleltotheendsurfaces,soGauss"lawwillsimplifytoIZZqenc=0=E~dA~=EdA=EdA=2rLE;whereListhelengthofthecylinder.Thechargeenclosediswww.khdaw.comZ q=dV=Lr2 R2encTheelectriceldisgivenby Lr2 R2r2 R2E==:20rL20rAtthesurface, (2R)2 R23REs==:课后答案网202R40SolveforrwhenEishalfofthis:3Rr2 R2=;82r3rR=4r2 4R2;0=4r2 3rR 4R2:Thesolutionisr=1:443R.That"s(2R 1:443R)=0:557Rbeneaththesurface.E27-23Theelectriceldmustdoworkontheelectrontostopit.TheelectriceldisgivenbyE==20.TheworkdoneisW=Fd=Eqd.disthedistanceinquestion,so2K2(8:8510 12C2=Nm2)(1:15105eV)0d===0:979mq(2:0810 6C=m2)ekhdaw.com33若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE27-24LetthesphericalGaussiansurfacehavearadiusofRandbecenteredontheorigin.Choosetheorientationoftheaxissothattheinnitelineofchargeisalongthezaxis.TheelectriceldisthendirectedradiallyoutwardfromthezaxiswithmagnitudeE==20,whereistheperpendiculardistancefromthezaxis.NowwewanttoevaluateIE=E~dA~;overthesurfaceofthesphere.Insphericalcoordinates,dA=R2sindd,=Rsin,andE~dA~=EAsin.ThenI2RE=sinRdd=:200E27-25(a)Theproblemhascylindricalsymmetry,souseaGaussiansurfacewhichisacylindricalshell.TheE~eldwillbeperpendiculartothecurvedsurfaceandparalleltotheendsurfaces,soGauss"lawwillsimplifytoIZZkhdaw.comqenc=0=E~dA~=EdA=EdA=2rLE;whereListhelengthofthecylinder.Nowfortheqencpart.Ifthe(uniform)volumechargedensityis,thenthechargeenclosedintheGaussiancylinderisZZq=dV=dV=V=r2L:encCombining,r2L==E2rLorE=r=2:00(b)OutsidethechargedcylinderthechargeenclosedintheGaussiansurfaceisjustthechargeinthecylinder.ThenZZq=dV=dV=V=R2L:encwww.khdaw.comandR2L==E2rL;0andthennallyR2E=:20rE27-26(a)q=4(1:22m)2(8:1310 6C=m2)=1:5210 4C.(b)=q==(1:5210 4C)=(8:8510 12C2=Nm2)=1:72107Nm2=C:E0(c)E===(8:1310 6C=m2)=(8:8510 12C2=Nm2)=9:19105N=C0课后答案网E27-27(a)=(2:410 6C)=4(0:65m)2=4:5210 7C=m2:(b)E===(4:5210 7C=m2)=(8:8510 12C2=Nm2)=5:11104N=C:0E27-28E===q=4r2.00E27-29(a)TheneareldisgivenbyEq.27-12,E==20,so(6:010 6C)=(8:010 2m)2E=5:3107N=C:2(8:8510 12C2=Nm2)(b)Veryfarfromanyobjectapointchargeapproximationisvalid.Then1q1(6:010 6C)E===60N=C:40r24(8:8510 12C2=Nm2)(30m)khdaw.com234若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP27-1ForasphericallysymmetricmassdistributionchooseasphericalGaussianshell.ThenIII~gdA~=gdA=gdA=4r2g:Thengr2g== m;4GGorGmg= :r2Thenegativesignindicatesthedirection;~gpointtowardthemasscenter.P27-2(a)The
uxthroughallsurfacesexcepttherightandleftfaceswillbezero.Throughtheleftface,p= EA= baa2:lyThroughtherightface,khdaw.comp=EA=b2aa2:ryThenet
uxisthenpp=ba5=2(2 1)=(8830N=Cm1=2)(0:130m)5=2(2 1)=22:3Nm2=C:(b)Thechargeenclosedisq=(8:8510 12C2=Nm2)(22:3Nm2=C)=1:9710 10C.P27-3Thenetforceonthesmallsphereiszero;thisforceisthevectorsumoftheforceofgravityW,theelectricforceFE,andthetensionT.www.khdaw.comqTFEW课后答案网TheseforcesarerelatedbyEq=mgtan:WealsohaveE==20,so20mgtan=;q2(8:8510 12C2=Nm2)(1:1210 6kg)(9:81m=s2)tan(27:4)=;(19:710 9C)=5:1110 9C=m2:35khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP27-4Thematerialsareconducting,soallchargewillresideonthesurfaces.Theelectriceldinsideanyconductoriszero.Theproblemhassphericalsymmetry,souseaGaussiansurfacewhichisasphericalshell.TheE~eldwillbeperpendiculartothesurface,soGauss"lawwillsimplifytoIIIq==E~dA~=EdA=EdA=4r2E:enc0Consequently,E=q=4r2.enc0(a)WithinthesphereE=0.(b)Betweenthesphereandtheshellq=q.ThenE=q=4r2.enc0(c)WithintheshellE=0.(d)Outsidetheshellqenc=+q q=0.ThenE=0.(e)SinceE=0insidetheshell,qenc=0,thisrequiresthat qresideontheinsidesurface.Thisisnochargeontheoutsidesurface.P27-5Theproblemhascylindricalsymmetry,souseaGaussiansurfacewhichisacylindricalshell.TheE~eldwillbeperpendiculartothecurvedsurfaceandparalleltotheendsurfaces,soGauss"lawwillsimplifytokhdaw.comIZZqenc=0=E~dA~=EdA=EdA=2rLE;whereListhelengthofthecylinder.Consequently,E=qenc=20rL.(a)Outsidetheconductingshellqenc=+q 2q= q.ThenE= q=20rL.Thenegativesignindicatesthattheeldispointinginwardtowardtheaxisofthecylinder.(b)SinceE=0insidetheconductingshell,qenc=0,whichmeansachargeof qisontheinsidesurfaceoftheshell.Theremaining qmustresideontheoutsidesurfaceoftheshell.(c)Intheregionbetweenthecylindersqenc=+q.ThenE=+q=20rL.Thepositivesignindicatesthattheeldispointingoutwardfromtheaxisofthecylinder.www.khdaw.comP27-6SubtractEq.26-19fromEq.26-20.ThenzE=p:20z2+R2P27-7ThisproblemiscloselyrelatedtoEx.27-25,exceptforthepartconcerningqenc.We"llsetuptheproblemthesameway:theGaussiansurfacewillbea(imaginary)cylindercenteredontheaxisofthephysicalcylinder.ForGaussiansurfacesofradiusrR,qenc=l.We"vealreadyworkedouttheintegral课后答案网ZE~dA~=2rlE;tubeforthecylinder,andthenfromGauss"law,Zqenc=0E~dA~=20rlE:tube(a)WhenrRthereisachargelenclosed,soE=:20rkhdaw.com36若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP27-8ThisproblemiscloselyrelatedtoEx.27-25,exceptforthepartconcerningqenc.We"llsetuptheproblemthesameway:theGaussiansurfacewillbea(imaginary)cylindercenteredontheaxisofthephysicalcylinders.ForGaussiansurfacesofradiusrr>a,qenc=l.We"vealreadyworkedouttheintegralZE~dA~=2rlE;tubeforthecylinder,andthenfromGauss"law,Zqenc=0E~dA~=20rlE:tube(a)Whenrr>athereisachargelenclosed,soE=:20rP27-9Uniformcircularorbitsrequireaconstantnetforcetowardsthecenter,soF=Eq=q=2r.ThespeedofthepositronisgivenbyF=mv2=r;thekineticenergyisK=mv2=2=0Fr=2.Combining,qK=;40(3010 9C=m)(1:610 19C)=www.khdaw.com;4((8:8510 12C2=Nm2)=4:3110 17J=270eV:P27-10=20rE,soq=2(8:8510 12C2=Nm2)(0:014m)(0:16m)(2:9104N=C)=3:610 9C:P27-11(a)PutasphericalGaussiansurfaceinsidetheshellcenteredonthepointcharge.Gauss"lawstatesI课后答案网E~dA~=qenc:0SincethereissphericalsymmetrytheelectriceldisnormaltothesphericalGaussiansurface,anditiseverywherethesameonthissurface.ThedotproductsimpliestoE~dA~=EdA,whilesinceEisaconstantonthesurfacewecanpullitoutoftheintegral,andweendupwithIqEdA=;0Hwhereqisthepointchargeinthecenter.NowdA=4r2,whereristheradiusoftheGaussiansurface,soqE=:40r2(b)Repeattheabovesteps,exceptputtheGaussiansurfaceoutsidetheconductingshell.Keepitcenteredonthecharge.Twothingsaredierentfromtheabovederivation:(1)khdaw.comrisbigger,and37若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.com(2)thereisanunchargedsphericalconductingshellinsidetheGaussiansurface.Neitherchangewillaectthesurfaceintegralorqenc,sotheelectriceldoutsidetheshellisstillqE=;40r2(c)Thisisasubtlequestion.Withallthesymmetryhereitappearsasiftheshellhasnoeect;theeldjustlookslikeapointchargeeld.If,however,thechargeweremovedocentertheeldinsidetheshellwouldbecomedistorted,andwewouldn"tbeabletouseGauss"lawtondit.Sotheshelldoesmakeadierence.Outsidetheshell,however,wecan"ttellwhatisgoingoninsidetheshell.Sotheelectriceldoutsidetheshelllookslikeapointchargeeldoriginatingfromthecenteroftheshellregardlessofwhereinsidetheshellthepointchargeisplaced!(d)Yes,qinducessurfacechargesontheshell.Therewillbeacharge qontheinsidesurfaceandachargeqontheoutsidesurface.(e)Yes,asthereisanelectriceldfromtheshell,isn"tthere?(f)No,astheelectriceldfromtheoutsidechargewon"tmakeitthroughaconductingshell.Theconductoractsasashield.khdaw.com(g)No,thisisnotacontradiction,becausetheoutsidechargeneverexperiencedanyelectrostaticattractionorrepulsionfromtheinsidecharge.Theforceisbetweentheshellandtheoutsidecharge.P27-12Therepulsiveelectrostaticforcesmustexactlybalancetheattractivegravitationalforces.Then1q2m2=G;40r2r2porm=q=40G:Numerically,(1:6010 19C)m=qwww.khdaw.com=1:8610 9kg:4(8:8510 12C2=Nm2)(6:6710 11Nm2=kg2)P27-13Theproblemhassphericalsymmetry,souseaGaussiansurfacewhichisasphericalshell.TheE~eldwillbeperpendiculartothesurface,soGauss"lawwillsimplifytoIIIq==E~dA~=EdA=EdA=4r2E:enc0Consequently,E=q=4r2.Renc0q=q+4r2dr,orenc课后答案网Zrq=q+4Ardr=q+2A(r2 a2):encaTheelectriceldwillbeconstantifqbehavesasr2,whichrequiresq=2Aa2,orA=q=2a2.encP27-14(a)Theproblemhassphericalsymmetry,souseaGaussiansurfacewhichisasphericalshell.TheE~eldwillbeperpendiculartothesurface,soGauss"lawwillsimplifytoIIIq==E~dA~=EdA=EdA=4r2E:enc0Consequently,E=q=4r2.Renc0q=4r2dr=4r3=3,soencE=r=30khdaw.com38若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comandisdirectedradiallyoutfromthecenter.ThenE~=~r=30.(b)TheelectriceldintheholeisgivenbyE~h=E~ E~b,whereE~istheeldfrompart(a)andE~bistheeldthatwouldbeproducedbythematterthatwouldhavebeenintheholehadtheholenotbeenthere.ThenE~b=~b=30;where~bisavectorpointingfromthecenterofthehole.Then~r~bE~h= =(~r ~b):303030But~r ~b=~a,soE~h=~a=30.P27-15Ifapointisanequilibriumpointthentheelectriceldatthatpointshouldbezero.Ifitisastablepointthenmovingthetestcharge(assumedpositive)asmalldistancefromtheequilibriumpointshouldresultinarestoringforcedirectedbacktowardtheequilibriumpoint.Inotherwords,therewillbeapointwheretheelectriceldiszero,andaroundthispointtherewillbekhdaw.comanelectriceldpointinginward.ApplyingGauss"lawtoasmallsurfacesurroundingourpointP,wehaveanetinward
ux,sotheremustbeanegativechargeinsidethesurface.ButthereshouldbenothinginsidethesurfaceexceptanemptypointP,sowehaveacontradiction.P27-16(a)FollowtheexampleonPage618.BysymmetryE=0alongthemedianplane.Thechargeenclosedbetweenthemedianplaneandasurfaceadistancexfromtheplaneisq=Ax.ThenE=Ax=0A=A=0:(b)Outsidetheslabthechargeenclosedbetweenthemedianplaneandasurfaceadistancewww.khdaw.comxfromtheplaneisisq=Ad=2,regardlessofx.TheE=Ad=2=0A=d=20:P27-17(a)Thetotalchargeisthevolumeintegraloverthewholesphere,ZQ=dV:Thisisactuallyathreedimensionalintegral,anddV=Adr,whereA=4r2.Then课后答案网ZQ=dV;ZRSr2=4rdr;0R4S14=R;R4=R3:S(b)PutasphericalGaussiansurfaceinsidethespherecenteredonthecenter.WecanuseGauss"lawherebecausethereissphericalsymmetryintheentireproblem,bothinsideandoutsidetheGaussiansurface.Gauss"lawstatesIE~dA~=qenc:039khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comSincethereissphericalsymmetrytheelectriceldisnormaltothesphericalGaussiansurface,anditiseverywherethesameonthissurface.ThedotproductsimpliestoE~dA~=EdA,whilesinceEisaconstantonthesurfacewecanpullitoutoftheintegral,andweendupwithIqencEdA=;0HNowdA=4r2,whereristheradiusoftheGaussiansurface,soqencE=:40r2Wearen"tdoneyet,becausethechargeencloseddependsontheradiusoftheGaussiansurface.Weneedtodopart(a)again,exceptthistimewedon"twanttodothewholevolumeofthesphere,weonlywanttogooutasfarastheGaussiansurface.ThenZqenc=dV;khdaw.comZrSr2=4rdr;0R4S14=r;R4r4=S:RCombinetheselasttworesultsandr4SE=;4www.khdaw.com0r2Rr2S=;40RQr2=:40R4Inthelastlineweusedtheresultsofpart(a)toeliminateSfromtheexpression.P27-18(a)InsidetheconductorE=0,soaGaussiansurfacewhichisembeddedintheconductorbutcontainingtheholemusthaveanetenclosedchargeofzero.Thecavitywallmustthenhaveachargeof 3:0C.课后答案网(b)Thenetchargeontheconductoris+10:0C;thechargeontheoutersurfacemustthenbe+13:0C.P27-19(a)InsidetheshellE=0,sothenetchargeinsideaGaussiansurfaceembeddedintheshellmustbezero,sotheinsidesurfacehasacharge Q.(b)Still Q;theoutsidehasnothingtodowiththeinside.(c) (Q+q);seereason(a).(d)Yes.40khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comThroughoutthischapterwewillusetheconventionthatV(1)=0unlessexplicitlystatedotherwise.ThenthepotentialinthevicinityofapointchargewillbegivenbyEq.28-18,V=q=40r.E28-1(a)LetU12bethepotentialenergyoftheinteractionbetweenthetwoup"quarks.Then(2=3)2e(1:6010 19C)U=(8:99109Nm2=C2)=4:84105eV:12(1:3210 15m)(b)LetU13bethepotentialenergyoftheinteractionbetweenanup"quarkandadown"quark.Then( 1=3)(2=3)e(1:6010 19C)U=(8:99109Nm2=C2)= 2:42105eV13(1:3210 15m)NotethatU13=U23.Thetotalelectricpotentialenergyisthesumofthesethreeterms,orzero.E28-2khdaw.comTherearesixinteractionterms,oneforeverychargepair.Numberthechargesclockwisefromtheupperlefthandcorner.ThenU= q2=4a;120U= q2=4a;230U= q2=4a;340U= q2=4a;410pU=( q)2=4(2a);130pU=q2=4(2a):24www.khdaw.com0Addthesetermsandget2q2q2U=p 4= 0:206240a0aTheamountofworkrequiredisW=U.E28-3(a)Webuildtheelectrononepartatatime;eachparthasachargeq=e=3.Movingtherstpartfrominnitytothelocationwherewewanttoconstructtheelectroniseasyandtakesnoworkatall.Movingthesecondpartinrequiresworktochangethepotentialenergyto1q1q2课后答案网U12=;40rwhichisbasicallyEq.28-7.Theseparationr=2:8210 15m.Bringinginthethirdpartrequiresworkagainsttheforceofrepulsionbetweenthethirdchargeandbothoftheothertwocharges.PotentialenergythenexistsintheformU13andU23,whereallthreechargesarethesame,andallthreeseparationsarethesame.ThenU12=U13=U12,sothetotalpotentialenergyofthesystemis1(e=3)23(1:6010 19C=3)2U=3==2:7210 14J40r4(8:8510 12C2=Nm2)(2:8210 15m)(b)Dividingouranswerbythespeedoflightsquaredtondthemass,2:7210 14Jm==3:0210 31kg:(3:00108m=s)2khdaw.com41若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE28-4Therearethreeinteractionterms,oneforeverychargepair.Numberthechargesfromtheleft;leta=0:146m.Then(25:510 9C)(17:210 9C)U12=;40a(25:510 9C)( 19:210 9C)U13=;40(a+x)(17:210 9C)( 19:210 9C)U23=:40xAddtheseandsetitequaltozero.Then(25:5)(17:2)(25:5)(19:2)(17:2)(19:2)=+;aa+xxwhichhassolutionkhdaw.comx=1:405a=0:205m.E28-5Thevolumeofthenuclearmaterialis4a3=3,wherea=8:010 15m.Upondividinginp333 15halfeachpartwillhavearadiusrwhere4r=3=4a=6.Consequently,r=a=2=6:3510m.Eachfragmentwillhaveachargeof+46e.(a)Theforceofrepulsionis(46)2(1:6010 19C)2F==3000N4(8:8510 12C2=Nm2)[2(6:3510 15m)]2(b)Thepotentialenergyis(46)2e(1:6010www.khdaw.com 19C)U==2:4108eV4(8:8510 12C2=Nm2)2(6:3510 15m)E28-6Thisisawork/kineticenergyproblem:1mv2=qV.Then20s2(1:6010 19C)(10:3103V)7v0==6:010m=s:(9:1110 31kg)E28-7(a)Theenergyreleasedisequaltothechargestimesthepotentialthroughwhichthechargewasmoved.Then课后答案网U=qV=(30C)(1:0109V)=3:01010J:(b)Althoughtheproblemmentionsacceleration,wewanttofocusonenergy.Theenergywillchangethekineticenergyofthecarfrom0toK=3:01010J.Thespeedofthecaristhenfrs2K2(3:01010J)v===7100m=s:m(1200kg)(c)TheenergyrequiredtomelticeisgivenbyQ=mL,whereListhelatentheatoffusion.ThenQ(3:01010J)m===90;100kg:L(3:33105J=kg)42khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE28-8(a)U=(1:6010 19C)(1:23109V)=1:9710 10J:(b)U=e(1:23109V)=1:23109eV.E28-9Thisisanenergyconservationproblem:1mv2=qV;V=q=4(1=r 1=r).Com-2012bining,sq211v= ;20mr1r2s(3:110 6C)211= ;2(8:8510 12C2=Nm2)(1810 6kg)(0:9010 3m)(2:510 3m)=2600m=s:E28-10Thisisanenergyconservationproblem:1q21khdaw.comm(2v)2 =mv2:240r2Rearrange,q2r=;60mv2(1:6010 19C)2==1:4210 9m:6(8:8510 12C2=Nm2)(9:1110 31kg)(3:44105m=s)2)E28-11(a)V=(1:6010 19C)=4(8:8510 12www.khdaw.comC2=Nm2)(5:2910 11m)=27:2V.(b)U=qV=( e)(27:2V)= 27:2eV.(c)ForuniformcircularorbitsF=mv2=r;theforceiselectrical,orF=e2=4r2.Kinetic0energyisK=mv2=2=Fr=2,soe2(1:6010 19C)K===13:6eV:80r8(8:8510 12C2=Nm2)(5:2910 11m)(d)Theionizationenergyis (K+U),orEion= [(13:6eV)+( 27:2eV)]=13:6eV:E28-12(a)Theelectricpotentialat课后答案网Ais1qq( 5:010 6C)(2:010 6C)V=1+2=(8:99109Nm2=C)+=6:0104V:A40r1r2(0:15m)(0:05m)TheelectricpotentialatBis1qq( 5:010 6C)(2:010 6C)V=1+2=(8:99109Nm2=C)+= 7:8105V:B40r2r1(0:05m)(0:15m)(b)W=qV=(3:010 6C)(6:0104V 7:8105V)=2:5J.(c)Sinceworkispositivethenexternalworkisconvertedtoelectrostaticpotentialenergy.43khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE28-13(a)ThemagnitudeoftheelectriceldwouldbefoundfromF(3:9010 15N)E===2:44104N=C:q(1:6010 19C)(b)ThepotentialdierencebetweentheplatesisfoundbyevaluatingEq.28-15,ZbV= E~d~s:aTheelectriceldbetweentwoparallelplatesisuniformandperpendiculartotheplates.ThenE~d~s=Edsalongthispath,andsinceEisuniform,ZbZbZbV= E~d~s= Eds= Eds=Ex;aaawherekhdaw.comxistheseparationbetweentheplates.Finally,V=(2:44104N=C)(0:120m)=2930V.E28-14V=Ex,so22(8:8510 12C2=Nm2)x=0V=(48V)=7:110 3m(0:1210 6C=m2)E28-15TheelectriceldaroundaninnitelylongstraightwireisgivenbyE==20r.ThepotentialdierencebetweentheinnerwireandtheoutercylinderisgivenbyZbV= (=20r)www.khdaw.comdr=(=20)ln(a=b):aTheelectriceldnearthesurfaceofthewireisthengivenbyV( 855V)8E====1:3210V=m:20aaln(a=b)(6:7010 7m)ln(6:7010 7m=1:0510 2m)TheelectriceldnearthesurfaceofthecylinderisthengivenbyV( 855V)3E====8:4310V=m:20aaln(a=b)(1:0510 2m)ln(6:7010 7m=1:0510 2m)课后答案网5 23E28-16V=Ex=(1:9210N=C)(1:5010m)=2:8810V:E28-17(a)Thisisanenergyconservationproblem:1(2)(79)e2(2)(79)e(1:6010 19C)K==(8:99109Nm2=C)=3:2107eV40r(7:010 15m)(b)ThealphaparticlesusedbyRutherfordnevercameclosetohittingthegoldnuclei.E28-18Thisisanenergyconservationproblem:mv2=2=eq=4r,or0s(1:6010 19C)(1:7610 15C)4v==2:1310m=s2(8:8510 12C2=Nm2)(1:2210 2m)(9:1110 31kg)44khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE28-19(a)WeevaluateVAandVBindividually,andthenndthedierence.1q1(1:16C)VA==2=5060V;40r4(8:8510 12C=Nm2)(2:06m)and1q1(1:16C)VB==2=8910V;40r4(8:8510 12C=Nm2)(1:17m)ThedierenceisthenVA VB= 3850V.(b)Theansweristhesame,sincewhenconcerningourselveswithelectricpotentialweonlycareaboutdistances,andnotdirections.E28-20Thenumberofexcess"electronsoneachgrainis4rV4(8:8510 12C2=Nm)(1:010 6m)( 400V)05n===2:810khdaw.come( 1:6010 19C)E28-21Theexcesschargeontheshuttleisq=4rV=4(8:8510 12C2=Nm)(10m)( 1:0V)= 1:110 9C0E28-22q=1:37105C,so(1:37105C)V=(8:99109Nm2=C2)=1:93108V:(6:37106m)E28-23Theratiooftheelectricpotentialtotheelectriceldstrengthiswww.khdaw.comV1q1q===r:E40r40r2InthisproblemristheradiusoftheEarth,soatthesurfaceoftheEarththepotentialisV=Er=(100V=m)(6:38106m)=6:38108V:E28-24UseEq.28-22:(1:47)(3:3410 30Cm)V=(8课后答案网:99109Nm2=C2)=1:6310 5V:(52:010 9m)2E28-25(a)WhenndingVAweneedtoconsiderthecontributionfromboththepositiveandthenegativecharge,so1 qVA=qa+40a+dTherewillbeasimilarexpressionforVB,1qVB= qa+:40a+d45khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comNowtoevaluatethedierence.1 q1qVA VB=qa+ qa+;40a+d40a+dq11= ;20aa+dqa+da= ;20a(a+d)a(a+d)qd=:20a(a+d)(b)Doesitdowhatweexpectwhend=0?IexpectitthedierencetogotozeroasthetwopointsAandBgetclosertogether.Thenumeratorwillgotozeroasdgetssmaller.Thedenominator,however,staysnite,whichisagoodthing.Soyes,Va VB!0asd!0.E28-26(a)Sincebothchargesarepositivetheelectricpotentialfrombothchargeswillbepositive.Therewillbenokhdaw.comnitepointswhereV=0,sincetwopositivescan"taddtozero.(b)Betweenthechargestheelectriceldfromeachchargepointstowardtheother,soE~willppvanishwhenq=x2=2q=(d x)2.Thishappenswhend x=2x,orx=d=(1+2).pE28-27ThedistancefromCtoeitherchargeis2d=2=1:3910 2m.(a)VatCis2(2:1310 6C)V=(8:99109Nm2=C2)=2:76106V(1:3910 2m)(b)W=qV=(1:9110 6C)(2:76106V)=5:27J.(c)Don"tforgetaboutthepotentialenergyoftheoriginaltwocharges!www.khdaw.com 62922(2:1310C)U0=(8:9910Nm=C)=2:08J(1:9610 2m)Addthistotheanswerfrompart(b)toget7:35J.E28-28ThepotentialisgivenbyEq.28-32;atthesurfaceVs=R=20,halfofthisoccurswhenpR2+z2 z=R=2;R2+z2=R2=4+Rz+z2;3R=4=z:课后答案网E28-29Wecanndthelinearchargedensitybydividingthechargebythecircumference,Q=;2RwhereQreferstothechargeonthering.TheworkdonetomoveachargeqfromapointxtotheoriginwillbegivenbyW=qV;W=q(V(0) V(x));1Q1Q=qp p;40R240R2+x2qQ11= p:40RR2+x2khdaw.com46若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comPuttinginthenumbers,!( 5:9310 12C)( 9:1210 9C)11 p=1:8610 10J:4(8:8510 12C2=Nm2)1:48m(1:48m)2+(3:07m)2E28-30(a)TheelectriceldstrengthisgreatestwherethegradientofVisgreatest.Thatisbetweendande.(b)Theleastabsolutevalueoccurswherethegradientiszero,whichisbetweenbandcandagainbetweeneandf.E28-31Thepotentialonthepositiveplateis2(5:52V)=11:0V;theelectriceldbetweentheplatesisE=(11:0V)=(1:4810 2m)=743V=m.E28-32Takethederivative:E= @V=@z.E28-33khdaw.comTheradialpotentialgradientisjustthemagnitudeoftheradialcomponentoftheelectriceld,@VEr= @rThen@V1q= ;@r40r2179(1:6010 19C)=;4(8:8510 12C2=Nm2)(7:010 15m)2= 2:321021V=m:www.khdaw.comE28-34Evaluate@V=@r,andZe 1rE= +2:40r22R3E28-35E= @V=@x= 2(1530V=m2)x.Atthepointinquestion,E= 2(1530V=m2)(1:28x10 2m)=39:2V=m.E28-36Drawthewiressothattheyareperpendiculartotheplaneofthepage;theywillthen课后答案网comeoutof"thepage.Theequipotentialsurfacesarethenlineswheretheyintersectthepage,andtheylooklike47khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comkhdaw.comE28-37(a)jV Vj=jW=qj=j(3:9410 19J)=(1:6010 19C)j=2:46V.TheelectriceldBAdidworkontheelectron,sotheelectronwasmovingfromaregionoflowpotentialtoaregionofhighpotential;orVB>VA.Consequently,VB VA=2:46V.(b)VCisatthesamepotentialasVB(bothpointsareonthesameequipotentialline),soVC VA=VB VA=2:46V.(c)VCisatthesamepotentialasVB(bothpointsareonthesameequipotentialline),soVC VB=0V.www.khdaw.comE28-38(a)Forpointchargesr=q=40V,sor=(8:99109Nm2=C2)(1:510 8C)=(30V)=4:5m(b)No,sinceV/1=r.E28-39Thedottedlinesareequipotentiallines,thesolidarrowsareelectriceldlines.Notethattherearetwiceasmanyelectriceldlinesfromthelargercharge!课后答案网48khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comkhdaw.comE28-40Thedottedlinesareequipotentiallines,thesolidarrowsareelectriceldlines.www.khdaw.com课后答案网E28-41Thiscaneasilybedonewithaspreadsheet.Thefollowingisasketch;theelectriceldistheboldcurve,thepotentialisthethincurve.49khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comkhdaw.comsphereradiusrE28-42OriginallyV=q=40r,whereristheradiusofthesmallersphere.(a)Connectingthesphereswillbringthemtothesamepotential,orV1=V2.(b)q1+q2=q;V1=q1=40randV2=q2=402r;combiningalloftheaboveq2=2q1andq1=q=3andq2=2q=3.E28-43(a)q=4R2,soV=q=4R=R=www.khdaw.com,or00V=( 1:6010 19C=m2)(6:37106m)=(8:8510 12C2=Nm2)=0:115V(b)PretendtheEarthisaconductor,thenE==epsilon0,soE=( 1:6010 19C=m2)=(8:8510 12C2=Nm2)=1:8110 8V=m:E28-44V=q=40R,soV=(8:99109Nm2=C2)(1510 9C)=(0:16m)=850V:课后答案网E28-45(a)q=4RV=4(8:8510 12C2=Nm2)(0:152m)(215V)=3:6310 9C0(b)=q=4R2=(3:6310 9C)=4(0:152m)2=1:2510 8C=m2.E28-46Thedottedlinesareequipotentiallines,thesolidarrowsareelectriceldlines.50khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comkhdaw.comwww.khdaw.comE28-47(a)Thetotalcharge(Q=57:2nC)willbedividedupbetweenthetwospheressothattheyareatthesamepotential.Ifq1isthechargeononesphere,thenq2=Q q1isthechargeontheother.ConsequentlyV1=V2;1q11Q q1=;40r140r2q1r2=(Q q1)r1;Qr2q1=:r2+r1课后答案网Puttinginthenumbers,wendQr1(57:2nC)(12:2cm)q1===38:6nC;r2+r1(5:88cm)+(12:2cm)andq2=Q q1=(57:2nC) (38:6nC)=18:6nC.(b)Thepotentialoneachsphereshouldbethesame,soweonlyneedtosolveone.Then1q11(38:6nC)==2850V:40r14(8:8510 12C2=Nm2)(12:2cm)E28-48(a)V=(8:99109Nm2=C2)(31:510 9C)=(0:162m)=1:75103V.(b)V=q=40r,sor=q=40V,andthenr=(8:99109Nm2=C2)(31:510 9C)=(1:2010khdaw.com3V)=0:236m:51若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comThatis(0:236m) (0:162m)=0:074mabovethesurface.E28-49(a)Applythepointchargeformula,butsolveforthecharge.Then1q=V;40rq=40rV;q=4(8:8510 12C2=Nm2)(1m)(106V)=0:11mC:Nowthat"safairlysmallcharge.Butiftheradiusweredecreasedbyafactorof100,sowouldthecharge(1:10C).Consequently,smallermetalballscanberaisedtohigherpotentialswithlesscharge.(b)Theelectriceldnearthesurfaceoftheballisafunctionofthesurfacechargedensity,E==.Butsurfacechargedensitydependsonthearea,andvariesasr 2.Foragivenpotential,0theelectriceldnearthesurfacewouldthenbegivenbyqVE===:khdaw.com040r2rNotethattheelectriceldgrowsastheballgetssmaller.Thismeansthatthebreakdowneldismorelikelytobeexceededwithalowvoltagesmallball;you"llgetsparking.E28-50AVolt"isaJouleperCoulomb.Thepowerrequiredbythedrivebeltistheproduct(3:41106V)(2:8310 3C=s)=9650W.P28-1(a)AccordingtoNewtonianmechanicswewantK=1mv2tobeequaltoW=qV2whichmeansmv2(0:511MeV)V===256kV:2qwww.khdaw.com2emc2istherestmassenergyofanelectron.(b)Let"sdosomerearrangingrst."#21K=mcp 1;1 2K1=p 1;mc21 2K1+1=p;mc21 2课后答案网1p=1 2;K+1mc212 2=1 ;K+1mc2andnally,s1=1 2K+1mc2Puttinginthenumbers,vu1ut1 2=0:746;(256keV)+1(511keV)sov=0:746c.khdaw.com52若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP28-2(a)ThepotentialofthehollowsphereisV=q=40r.TheworkrequiredtoincreasethechargebyanamountdqisdW=V=;dq.Integrating,Ze2qeW=dq=:040r80rThiscorrespondstoanelectricpotentialenergyofe(1:6010 19C)W==2:55105eV=4:0810 14J:8(8:8510 12C2=Nm2)(2:8210 15m)(b)Thiswouldbeamassofm=(4:0810 14J)=(3:00108m=s)2=4:5310 31kg.P28-3Thenegativechargeisheldinorbitbyelectrostaticattraction,ormv2qQ=:khdaw.comr40r2Thekineticenergyofthechargeis12qQK=mv=:280rTheelectrostaticpotentialenergyisqQU= ;40rsothetotalenergyisqQE= www.khdaw.com:80rTheworkrequiredtochangeorbitisthenqQ11W= :80r1r2RP28-4(a)V= Edr,soZr2qrqrV= dr= :040R380R3课后答案网(b)V=q=80R.(c)IfinsteadofV=0atr=0aswasdoneinpart(a)wetakeV=0atr=1,thenV=q=40Ronthesurfaceofthesphere.ThenewexpressionforthepotentialinsidethespherewilllooklikeV=V0+V,whereV0istheanswerfrompart(a)andVisaconstantsothatthesssurfacepotentialiscorrect.ThenqqR23qR2Vs=+=;40R80R380R3andthenqr23qR2q(3R2 r2)V= +=:80R380R380R353khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP28-5Thetotalelectricpotentialenergyofthesystemisthesumofthethreeinteractionpairs.Oneofthesepairsdoesnotchangeduringtheprocess,soitcanbeignoredwhenndingthechangeinpotentialenergy.Thechangeinelectricalpotentialenergyisthenq2q2q211U=2 2= :40rf40ri20rfriInthiscaseri=1:72m,whilerf=0:86m.Thechangeinpotentialenergyisthen9222118U=2(8:9910Nm=C)(0:122C) =1:5610J(0:86m)(1:72m)Thetimerequiredist=(1:56108)=(831W)=1:87105s=2:17days:P28-6khdaw.com(a)Applyconservationofenergy:qQqQK=;ord=;40d40Kwheredisthedistanceofclosestapproach.(b)Applyconservationofenergy:qQ12K=+mv;40(2d)2pso,combiningwiththeresultsinpart(a),v=K=m.www.khdaw.comP28-7(a)FirstapplyEq.28-18,butsolveforr.Thenq(32:010 12C)r===562m:40V4(8:8510 12C2=Nm2)(512V)(b)Iftwosuchdropsjointogetherthechargedoubles,andthevolumeofwaterdoubles,butthep3radiusofthenewdroponlyincreasesbyafactorof2=1:26becausevolumeisproportionaltotheradiuscubed.Thepotentialonthesurfaceofthenewdropwillbe课后答案网1qnewVnew=;40rnew12qold=p;4302rold2=31qold2=3=(2)=(2)Vold:40roldThenewpotentialis813V.P28-8(a)TheworkdoneisW= Fz= Eqz= qz=20.(b)SinceW=qV,V= z=20,soV=V0 (=20)z:54khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP28-9(a)Thepotentialatanypointwillbethesumofthecontributionfromeachcharge,1q11q2V=+;40r140r2wherer1isthedistancethepointinquestionfromq1andr2isthedistancethepointinquestionfromq2.Pickapoint,callit(x;y).Sinceq1isattheorigin,pr1=x2+y2:Sinceq2isat(d;0),whered=9:60nm,pr2=(x d)2+y2:DenetheStanleyNumber"asS=40V.Equipotentialsurfacesarealsoequi-Stanleysurfaces.Inparticular,whenV=0,sodoesS.Wecanthenwritethepotentialexpressioninasightlysimpliedformq1q2S=+:khdaw.comr1r2IfS=0wecanrearrangeandsquarethisexpression.q1q2= ;r1r2r2r212=;q2q212x2+y2(x d)2+y2=;q2q212Let=q2=q1,thenwecanwritewww.khdaw.com 2x2+y2=(x d)2+y2;2x2+2y2=x2 2xd+d2+y2;(2 1)x2+2xd+(2 1)y2=d2:Wecompletethesquareforthe(2 1)x2+2xdtermbyaddingd2=(2 1)tobothsidesoftheequation.Then"#22d221( 1)x++y=d1+:2 12 1Thecenterofthecircleisat课后答案网d(9:60nm) == 5:4nm:2 1( 10=6)2 1(b)Theradiusofthecircleisvuu1+1t2 1d2;2 1whichcanbesimpliedtoj( 10=6)jd=(9:6nm)=9:00nm:2 1( 10=6)2 1(c)No.khdaw.com55若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP28-10Anannulusiscomposedofdierentialringsofvaryingradiirandwidthdr;thechargeonanyringistheproductoftheareaofthering,dA=2rdr,andthesurfacechargedensity,ork2kdq=dA=2rdr=dr:r3r2Thepotentialatthecentercanbefoundbyaddingupthecontributionsfromeachring.Sinceweareatthecenter,thecontributionswilleachbedV=dq=40r.ThenZb22kdrk11kb aV== :=:a20r340a2b240b2a2ThetotalchargeontheannulusisZb2k11b aQ=dr=2k =2k:ar2abbaCombining,khdaw.comQa+bV=:80abP28-11Addthethreecontributions,andthendoaseriesexpansionfordr.q 111V=++;40r+drr dq 11=+1+;40r1+d=r1 d=rqdd 1++1+1+;40rwww.khdaw.comrrq2d1+:40rrP28-12(a)Addthecontributionsfromeachdierentialcharge:dq=dy.ThenZy+Ly+LV=dy=ln:y40y40y(b)Takethederivative:课后答案网@Vy LLEy= = =:@y40y+Ly240y(y+L)(c)Bysymmetryitmustbezero,sincethesystemisinvariantunderrotationsabouttheaxisoftherod.Notethatwecan"tdetermineE?fromderivativesbecausewedon"thavethefunctionalformofVforpointso-axis!P28-13(a)WefollowtheworkdoneinSection28-6forauniformlineofcharge,startingwithEq.28-26,1dxdV=p;40x2+y2ZL1kxdxdV=p;400x2+y2khdaw.com56若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comkpL=x2+y2;400pk=L2+y2 y:40(b)Theycomponentoftheelectriceldcanbefoundfrom@VEy= ;@ywhich(usingacomputer-aidedmathprogram)is!kyEy=1 p:40L2+y2(c)WecouldndExifweknewthexvariationofV.Butwedon"t;weonlyfoundthevaluesofValongaxedvalueofx.khdaw.com(d)WewanttondysuchthattheratiopkkL2+y2 y=(L)4040pisone-half.Simplifying,L2+y2 y=L=2;whichcanbewrittenasL2+y2=L2=4+Ly+y2;or3L2=4=Ly;withsolutiony=3L=4.P28-14Thespheresaresmallcomparedtotheseparationdistance.Assumingonlywww.khdaw.comonesphereatapotentialof1500V,thechargewouldbeq=4rV=4(8:8510 12C2=Nm)(0:150m)(1500V)=2:5010 8C:0Thepotentialfromthesphereatadistanceof10.0mwouldbe(0:150m)V=(1500V)=22:5V:(10:0m)Thisissmallcomparedto1500V,sowewilltreatitasaperturbation.Thismeansthatwecanassumethatthesphereshavechargesofq=4rV课后答案网=4(8:8510 12C2=Nm)(0:150m)(1500V+22:5V)=2:5410 8C:0P28-15Calculatingthefractionofexcesselectronsisthesameascalculatingthefractionofexcesscharge,sowe"llskipcountingtheelectrons.ThisproblemiseectivelythesameasExercise28-47;wehaveatotalchargethatisdividedbetweentwounequalsizesphereswhichareatthesamepotentialonthesurface.UsingtheresultfromthatexercisewehaveQr1q1=;r2+r1whereQ= 6:2nCisthetotalchargeavailable,andq1isthechargeleftonthesphere.r1istheradiusofthesmallball,r2istheradiusofEarth.Sincethefractionofchargeremainingisq1=Q,wecanwriteq1r1r1 8==2:010:Qr2+r1r2khdaw.com57若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP28-16Thepositivechargeonthespherewouldbeq=4rV=4(8:8510 12C2=Nm2)(1:0810 2m)(1000V)=1:2010 9C:0Thenumberofdecaysrequiredtobuildupthischargeisn=2(1:2010 9C)=(1:6010 19C)=1:501010:Theextrafactoroftwoisbecauseonlyhalfofthedecaysresultinanincreaseincharge.Thetimerequiredist=(1:501010)=(3:70108s 1)=40:6s:P28-17(a)None.(b)None.(c)None.(d)None.khdaw.com(e)No.P28-18(a)OutsideofanisolatedchargedsphericalobjectE=q=4r2andV=q=4r.00ThenE=V=r.Consequently,thespheremusthavearadiuslargerthanr=(9:15106V)=(100106V=m)=9:1510 2m.(b)Thepowerrequiredis(32010 6C=s)(9:15106V)=2930W.(c)wv=(32010 6C=s),so(32010 6C=s)==2:0010 5C=m2:(0:485m)(33:0m=s)www.khdaw.com课后答案网58khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE29-1(a)Thechargewhich
owsthroughacrosssectionalsurfaceareainatimetisgivenbyq=it;whereiisthecurrent.Forthisexercisewehaveq=(4:82A)(4:6060s)=1330Casthechargewhichpassesthroughacrosssectionofthisresistor.(b)Thenumberofelectronsisgivenby(1330C)=(1:6010 19C)=8:311021electrons.E29-2Q=t=(20010 6A=s)(60s=min)=(1:6010 19C)=7:51016electronsperminute.E29-3(a)j=nqv=(2:101014=m3)2(1:6010 19C)(1:40105m=s)=9:41A=m2:Sincetheionshavepositivechargethenthecurrentdensityisinthesamedirectionasthevelocity.(b)Weneedanareatocalculatethecurrent.E29-4(a)j=i=A=(12310 12A)=(1:2310 3m)2=2:5910 5A=m2.(b)v=j=ne=(2:5910 5A=m2)=(8:491028=m3)(1:6010 19C)=1:9110 15m=s:khdaw.comdE29-5ThecurrentratingofafuseofcrosssectionalareaAwouldbei=(440A=cm2)A;maxandifthefusewireiscylindricalA=d2=4.Thens4(0:552A) 2d==4:0010cm:(440A=m2)E29-6Currentdensityiscurrentdividedbycrosssectionofwire,sothegraphwouldlooklike:www.khdaw.com43课后答案网2I(A/mil^2x10^−3)150100150khdaw.com200d(mils)59若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE29-7Thecurrentisinthedirectionofthemotionofthepositivecharges.Themagnitudeofthecurrentisi=(3:11018=s+1:11018=s)(1:6010 19C)=0:672A:E29-8(a)Thetotalcurrentisi=(3:501015=s+2:251015=s)(1:6010 19C)=9:2010 4A:(b)Thecurrentdensityisj=(9:2010 4A)=(0:16510 3m)2=1:08104A=m2:E29-9(a)j=(8:70106=m3)(1:6010 19C)(470103m=s)=6:5410 7A=m2:(b)i=(6:5410 7A=m2)(6:37106m)2=8:34107A:E29-10i=wv,sokhdaw.com=(95:010 6A)=(0:520m)(28:0m=s)=6:5210 6C=m2:E29-11ThedriftvelocityisgivenbyEq.29-6,ji(115A) 4vd====2:7110m=s:neAne(31:210 6m2)(8:491028=m3)(1:6010 19C)Thetimeittakesfortheelectronstogettothestartermotorisx(0:855m)3t===3:2610s:v(2:7110 www.khdaw.com4m=s)That"sabout54minutes.E29-12V=iR=(5010 3A)(1800)=90V:E29-13TheresistanceofanobjectwithconstantcrosssectionisgivenbyEq.29-13,L 7(11;000m)R==(3:010m)=0:59:A(0:0056m2)E29-14Theslopeisapproximately[(8课后答案网:2 1:7)=1000]cm=C,so1 3 3=6:510cm=C410=C1:7cmE29-15(a)i=V=R=(23V)=(1510 3)=1500A:(b)j=i=A=(1500A)=(3:010 3m)2=5:3107A=m2:(c)=RA=L=(1510 3)(3:010 3m)2=(4:0m)=1:110 7m.Thematerialispossiblyplatinum.E29-16UsetheequationfromExercise29-17.R=8;thenT=(8)=(50)(4:310 3=C)=37C:Thenaltemperatureisthen57C.khdaw.com60若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE29-17StartwithEq.29-16, 0=0av(T T0);andmultiplythroughbyL=A,LL( 0)=0av(T T0);AAtogetR R0=R0av(T T0):E29-18ThewirehasalengthL=(250)2(0:122m)=192m.Thediameteris0.129inches;thecrosssectionalareaisthenA=(0:1290:0254m)2=4=8:4310 6m2:Theresistanceiskhdaw.comR=L=A=(1:6910 8m)(192m)=(8:4310 6m2)=0:385:E29-19IfthelengthofeachconductorisLandhasresistivity,thenL4LRA==D2=4D2andL4LRB==:(4D2=4 www.khdaw.comD2=4)3D2TheratiooftheresistancesisthenRA=3:RBE29-20R=R,soL=(d=2)2=L=(d=2)2.Simplifying,=d2==d2.Then1112221122pd=(1:1910 3m)(9:6810 8m)=(1:6910 8m)=2:8510 3m:2E29-21(a)(75010 3A)=(125)=6:0010 3A.(b)V=iR=(6课后答案网:0010 3A)(2:6510 6)=1:5910 8V:(c)R=V=i=(1:5910 8V)=(75010 3A)=2:1210 8:E29-22SinceV=iR,thenifVandiarethesame,thenRmustbethesame.(a)SinceR=R,L=r2=L=r2,or=r2==r2.Then1112221122priron=rcopper=(9:6810 8m)(1:6910 8m)=2:39:(b)Startwiththedenitionofcurrentdensity:iVVj===:ARALSinceVandListhesame,butisdierent,thenthecurrentdensitieswillbedierent.61khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE29-23ConductivityisgivenbyEq.29-8,~j=E~.Ifthewireislongandthin,thenthemagnitudeoftheelectriceldinthewirewillbegivenbyEV=L=(115V)=(9:66m)=11:9V=m:Wecannowndtheconductivity,j(1:42104A=m2)===1:19103(m) 1:E(11:9V=m)E29-24(a)vd=j=en=E=en:Thenv=(2:7010 14=m)(120V=m)=(1:6010 19C)(620106=m3+550106=m3)=1:7310 2m=s:d(b)j=E=(2:7010 14=m)(120V=m)=3:2410 14A=m2:E29-25khdaw.com(a)R=L==A,soj=i=A=(R=L)i=.Forcopper,j=(0:15210 3=m)(62:3A)=(1:6910 8m)=5:60105A=m2;foraluminum,j=(0:15210 3=m)(62:3A)=(2:7510 8m)=3:44105A=m2:(b)A=L=R;ifisdensity,thenm=lA=l=(R=L).Forcopper,m=(1:0m)(8960kg=m3)(1:6910 8m)=(0:15210 3=m)=0:996kg;foraluminum,www.khdaw.comm=(1:0m)(2700kg=m3)(2:7510 8m)=(0:15210 3=m)=0:488kg:E29-26Theresistanceforpotentialdierenceslessthan1.5Varebeyondthescale.108课后答案网6R(Kilo−ohms)421234V(Volts)62khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE29-27(a)TheresistanceisdenedasV(3:55106V=A2)i2R===(3:55106V=A2)i:iiWheni=2:40mAtheresistancewouldbeR=(3:55106V=A2)(2:4010 3A)=8:52k:(b)Inverttheaboveexpression,andi=R=(3:55106V=A2)=(16:0)=(3:55106V=A2)=4:51A:E29-28First,n=3(6:021023)(2700kg=m3)(27:010 3kg)=1:811029=m3.Thenm(9:1110 31kg)===7:1510 15s:ne2(1:811029=m3)(1:6010 19C)2(2:7510 8m)E29-29khdaw.com(a)E=E==q=4R2,so0e0e(1:0010 6C)E==4(8:8510 12C2=Nm2)(4:7)(0:10m)2(b)E=E=q=4R2,so00(1:0010 6C)E==4(8:8510 12C2=Nm2)(0:10m)2(c)=(E E)=q(1 1=)=4R2.Thenind00ewww.khdaw.com(1:0010 6C)1=1 =6:2310 6C=m2:ind4(0:10m)2(4:7)E29-30MidwaybetweenthechargesE=q=0d,soq=(8:8510 12C2=Nm2)(0:10m)(3106V=m)=8:310 6C:E29-31(a)AtthesurfaceofaconductorofradiusRwithchargeQthemagnitudeoftheelectriceldisgivenby12课后答案网E=QR;40whilethepotential(assumingV=0atinnity)isgivenby1V=QR:40TheratioisV=E=R.Thepotentialonthespherethatwouldresultinsparking"isV=ER=(3106N=C)R:(b)Itiseasier"togetasparkoofaspherewithasmallerradius,becauseanypotentialonthespherewillresultinalargerelectriceld.(c)Thepointsofalightingrodarelikesmallhemispheres;theelectriceldwillbelargenearthesepointssothatthiswillbethelikelyplaceforsparkstoformandlightningboltstostrike.khdaw.com63若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP29-1Ifthereismorecurrent
owingintothespherethanis
owingoutthentheremustbeachangeinthenetchargeonthesphere.Thenetcurrentisthedierence,or2A.Thepotentialonthesurfaceofthespherewillbegivenbythepoint-chargeexpression,1qV=;40randthechargewillberelatedtothecurrentbyq=it.Combining,1itV=;40ror4Vr4(8:8510 12C2=Nm2)(980V)(0:13m)0t===7:1ms:i(2A)P29-2Thenetcurrentdensityisinthedirectionofthepositivecharges,whichistotheeast.Therearetwoelectronsforeveryalphaparticle,andeachalphaparticlehasachargeequalinmagnitudekhdaw.comtotwoelectrons.Thecurrentdensityisthenj=qeneve+q+nv;=( 1:610 19C)(5:61021=m3)( 88m=s)+(3:210 19C)(2:81021=m3)(25m=s);=1:0105C=m2:P29-3(a)TheresistanceofthesegmentofthewireisR=L=A=(1:6910 8m)(4:010 2m)=(2:610 3m)2=3:1810 5:Thepotentialdierenceacrossthesegmentiswww.khdaw.comV=iR=(12A)(3:1810 5)=3:810 4V:(b)Thetailisnegative.(c)Thedriftspeedisv=j=en=i=Aen,sov=(12A)=(2:610 3m)2(1:610 19C)(8:491028=m3)=4:1610 5m=s:Theelectronswillmove1cmin(1:010 2m)=(4:1610 5m=s)=240s.P29-4(a)N=it=q课后答案网=(25010 9A)(2:9s)=(3:210 19C)=2:271012.p(b)Thespeedoftheparticlesinthebeamisgivenbyv=2K=m,sopv=2(22:4MeV)=4(932MeV=c2)=0:110c:Ittakes(0:180m)=(0:110)(3:00108m=s)=5:4510 9sforthebeamtotravel18.0cm.ThenumberofchargesisthenN=it=q=(25010 9A)(5:4510 9s)=(3:210 19C)=4260:(c)W=qV,soV=(22:4MeV)=2e=11:2MV:64khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP29-5(a)Thetimeittakestocompleteoneturnist=(250m)=c.Thetotalchargeisq=it=(30:0A)(950m)=(3:00108m=s)=9:5010 5C:(b)ThenumberofchargesisN=q=e,thetotalenergyabsorbedbytheblockisthenU=(28:0109eV)(9:5010 5C)=e=2:66106J:ThiswillraisethetemperatureoftheblockbyT=U=mC=(2:66106J)=(43:5kg)(385J=kgC)=159C:RRP29-6(a)i=jdA=2jrdr;Zi=2 0Rj(1 r=R)rdr=2j(R2=2 R3=3R)=jR2=6:000khdaw.com(b)Integrate,again:Zi=2 0Rj(r=R)rdr=2j(R3=3R)=jR2=3:000P29-7(a)Solve2=[1+(T 20C)],or00T=20C+1=(4:310 3=C)=250C:(b)Yes,ignoringchangesinthephysicaldimensionsoftheresistor.P29-8Theresistancewhenonis(2:90V)=(0:310A)=9www.khdaw.com:35.ThetemperatureisgivenbyT=20C+(9:35 1:12)=(1:12)(4:510 3=C)=1650C:P29-9OriginallywehavearesistanceR1madeoutofawireoflengthl1andcrosssectionalareaA1.ThevolumeofthiswireisV1=A1l1.Whenthewireisdrawnouttothenewlengthwehavel2=3l1,butthevolumeofthewireshouldbeconstantsoA2l2=A1l1;A2(3l1)=A1l1;课后答案网A2=A1=3:Theoriginalresistanceisl1R1=:A1Thenewresistanceisl23l1R2===9R1;A2A1=3orR2=54.P29-10(a)i=(35:8V)=(935)=3:8310 2A:(b)j=i=A=(3:8310 2A)=(3:5010 4m2)=109A=m2.(c)v=(109A=m2)=(1:610 19C)(5:331022=m3)=1:2810 2m=s.(d)E=(35:8V)=(0:158m)=227V=m:khdaw.com65若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP29-11(a)=(1:0910 3)(5:510 3m)2=4(1:6m)=1:6210 8m.Thisispossiblysilver.(b)R=(1:6210 8m)(1:3510 3m)4=(2:1410 2m)2=6:0810 8:P29-12(a)L=L=1:710 5foratemperaturechangeof1:0C.Areachangesaretwicethis,orA=A=3:410 5.TakethedierentialofRA=L:RdA+AdR=dL+Ld,ordR=dL=A+Ld=A RdA=A.FornitechangesthiscanbewrittenasRLA=+ :RLA==4:310 3.Sincethistermissomuchlargerthantheothertwoitistheonlysignicanteect.P29-13WewillusetheresultsofExercise29-17,khdaw.comR R0=R0av(T T0):Tosaveonsubscriptswewilldroptheav"notation,andjustspecifywhetheritiscarbonc"orironi".Thediskswillbeeectivelyinseries,sowewilladdtheresistancestogetthetotal.Lookingonlyatonediskpair,wehaveRc+Ri=R0;c(c(T T0)+1)+R0;i(i(T T0)+1);=R0;c+R0;i+(R0;cc+R0;ii)(T T0):Thislastequationwillonlybeconstantifthecoecientfortheterm(T T0)vanishes.Thenwww.khdaw.comR0;cc+R0;ii=0;butR=L=A,andthediskshavethesamecrosssectionalarea,soLccc+Liii=0;orL(9:6810 8m)(6:510 3=C)ciiL= = (350010 8m)( 0:5010 3=C)=0:036:iccP29-14Thecurrententeringtheconeis课后答案网i.Thecurrentdensityasafunctionofdistancexfromtheleftendisthenij=:[a+x(b a)=L]2TheelectriceldisgivenbyE=j.ThepotentialdierencebetweentheendsisthenZLZLiiLV=Edx=dx=00[a+x(b a)=L]2abTheresistanceisR=V=i=L=ab.66khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP29-15ThecurrentisfoundfromEq.29-5,Zi=~jdA~;wheretheregionofintegrationisoverasphericalshellconcentricwiththetwoconductingshellsbutbetweenthem.ThecurrentdensityisgivenbyEq.29-10,~j=E~=;andwewillhaveanelectriceldwhichisperpendiculartothesphericalshell.Consequently,ZZ11i=E~dA~=EdABysymmetryweexpecttheelectriceldtohavethesamemagnitudeanywhereonasphericalshellwhichisconcentricwiththetwoconductingshells,sowecanbringitoutoftheintegralsign,andthenZkhdaw.com14r2Ei=EdA=;whereEisthemagnitudeoftheelectriceldontheshell,whichhasradiusrsuchthatb>r>a.Theaboveexpressioncanbeinvertedtogivetheelectriceldasafunctionofradialdistance,sincethecurrentisaconstantintheaboveexpression.ThenE=i=4r2ThepotentialisgivenbyZaV= E~d~s;bwewillintegratealongaradialline,whichisparalleltotheelectriceld,sowww.khdaw.comZaV= Edr;bZai= dr;4r2bZaidr= ;4bri11= :4abWedividethisexpressionbythecurrenttogettheresistance.Then课后答案网11R= 4abP29-16Since=p=vd,p/vd.Foranidealgasthekineticenergyisproportionaltothetemperature,so/K/T.67khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE30-1WeapplyEq.30-1,q=CV=(5010 12F)(0:15V)=7:510 12C;E30-2(a)C=V=q=(73:010 12C)=(19:2V)=3:8010 12F:(b)Thecapacitancedoesn"tchange!(c)V=q=C=(21010 12C)=(3:8010 12F)=55:3V:E30-3q=CV=(26:010 6F)(125V)=3:2510 3C:E30-4(a)C=A=d=(8:8510 12F=m)(8:2210 2m)2=(1:3110 3m)=1:4310 10F:0(b)q=CV=(1:4310 10F)(116V)=1:6610 8C.E30-5Eq.30-11givesthecapacitanceofacylinder,L 12(0:0238m) 13khdaw.comC=20=2(8:8510F=m)=5:4610F:ln(b=a)ln((9:15mm)=(0:81mm))E30-6(a)A=Cd==(9:7010 12F)(1:2010 3m)=(8:8510 12F=m)=1:3210 3m2:0(b)C=Cd=d=(9:7010 12F)(1:2010 3m)=(1:1010 3m)=1:0610 11F.00(c)V=q0=C=[V]0C0=C=[V]0d=d0.Usingthisformula,thenewpotentialdierencewouldbe[V]=(13:0V)(1:1010 3m)=(1:2010 3m)=11:9V:Thepotentialenergyhaschanged0by(11:9V) (30:0V)= 1:1V.E30-7(a)FromEq.30-8, 12(0:040m)(0www.khdaw.com:038m) 11C=4(8:8510F=m)=8:4510F:(0:040m) (0:038m)(b)A=Cd==(8:4510 11F)(2:0010 3m)=(8:8510 12F=m)=1:9110 2m2:0E30-8Leta=b+d,wheredisthesmallseparationbetweentheshells.Thenab(b+d)bC=40=40;a bdb240=0A=d:课后答案网dE30-9Thepotentialdierenceacrosseachcapacitorinparallelisthesame;itisequalto110V.Thechargeoneachofthecapacitorsisthenq=CV=(1:0010 6F)(110V)=1:1010 4C:IfthereareNcapacitors,thenthetotalchargewillbeNq,andwewantthistotalchargetobe1:00C.Then(1:00C)(1:00C)N===9090:q(1:1010 4C)68khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE30-10Firstndtheequivalentcapacitanceoftheparallelpart:C=C+C=(10:310 6F)+(4:8010 6F)=15:110 6F:eq12Thenndtheequivalentcapacitanceoftheseriespart:1115 1=+=3:2310F:Ceq(15:110 6F)(3:9010 6F)Thentheequivalentcapacitanceoftheentirearrangementis3:1010 6F.E30-11Firstndtheequivalentcapacitanceoftheseriespart:1115 1=+=3:0510F:Ceq(10:310 6F)(4:8010 6F)Theequivalentcapacitanceis3:2810 6F.Thenndtheequivalentcapacitanceoftheparallelpart:C=C+C=(3:2810 6F)+(3:9010 6F)=7:1810 6F:eq12Thisistheequivalentcapacitancefortheentirearrangement.khdaw.comE30-12Foronecapacitorq=CV=(25:010 6F)(4200V)=0:105C.Therearethreecapaci-tors,sothetotalchargetopassthroughtheammeteris0:315C.E30-13(a)TheequivalentcapacitanceisgivenbyEq.30-21,111115=+=+=CeqC1C2(4:0F)(6:0F)(12:0F)orCeq=2:40F.(b)Thechargeontheequivalentcapacitoriswww.khdaw.comq=CV=(2:40F)(200V)=0:480mC.Forseriescapacitors,thechargeontheequivalentcapacitoristhesameasthechargeoneachofthecapacitors.ThisstatementiswrongintheStudentSolutions!(c)Thepotentialdierenceacrosstheequivalentcapacitorisnotthesameasthepotentialdierenceacrosseachoftheindividualcapacitors.Weneedtoapplyq=CVtoeachcapacitorusingthechargefrompart(b).Thenforthe4:0Fcapacitor,q(0:480mC)V===120V;C(4:0F)andforthe6:0Fcapacitor,q(0:480mC)V===80V:课后答案网C(6:0F)Notethatthesumofthepotentialdierencesacrosseachofthecapacitorsisequaltothepotentialdierenceacrosstheequivalentcapacitor.E30-14(a)TheequivalentcapacitanceisCeq=C1+C2=(4:0F)+(6:0F)=(10:0F):(c)Forparallelcapacitors,thepotentialdierenceacrosstheequivalentcapacitoristhesameasthepotentialdierenceacrosseitherofthecapacitors.(b)Forthe4:0Fcapacitor,q=CV=(4:0F)(200V)=8:010 4C;andforthe6:0Fcapacitor,q=CV=(6:0F)(200V)=12:010 4C:69khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE30-15(a)Ceq=C+C+C=3C;0A0Addeq===:Ceq3C3(b)1=Ceq=1=C+1=C+1=C=3=C;0A0Adeq===3d:CeqC=3E30-16(a)Themaximumpotentialacrossanyindividualcapacitoris200V;sotheremustbeatleast(1000V)=(200V)=5seriescapacitorsinanyparallelbranch.ThisbranchwouldhaveanequivalentcapacitanceofC=C=5=(2:010 6F)=5=0:4010 6F:eq(b)Forparallelbranchesweadd,whichmeansweneed(1:210 6F)=(0:4010 6F)=3parallelbranchesofthecombinationfoundinpart(a).E30-17khdaw.comLookbackatthesolutiontoEx.30-10.IfC3breaksdownelectricallythenthecircuitiseectivelytwocapacitorsinparallel.(b)V=115Vafterthebreakdown.(a)q=(10:310 6F)(115V)=1:1810 3C:1E30-18The108Fcapacitororiginallyhasachargeofq=(10810 6F)(52:4V)=5:6610 3C.Afteritisconnectedtothesecondcapacitorthe108Fcapacitorhasachargeofq=(10810 6F)(35:8V)=3:8710 3C.Thedierenceinchargemustresideonthesecondcapacitor,sothecapacitanceisC=(1:7910 3C)=(35:8V)=5:0010 5F:E30-19ConsideranyjunctionotherthanAorwww.khdaw.comB.Callthisjunctionpoint0;labelthefournearestjunctionstothisaspoints1,2,3,and4.Thechargeonthecapacitorthatlinkspoint0topoint1isq1=CV01;whereV01isthepotentialdierenceacrossthecapacitor,soV01=V0 V1;whereV0isthepotentialatthejunction0,andV1isthepotentialatthejunction1.Similarexpressionsexistfortheotherthreecapacitors.Forthejunction0thenetchargemustbezero;thereisnowayforchargetocrosstheplatesofthecapacitors.Thenq1+q2+q3+q4=0;andthismeansCV01+CV02+CV03+CV04=0or课后答案网V01+V02+V03+V04=0:LetV0i=V0 Vi,andthenrearrange,4V0=V1+V2+V3+V4;or1V0=(V1+V2+V3+V4):4E30-20U=uV=E2V=2,whereVisthevolume.Then01 1223 7U=(8:8510F=m)(150V=m)(2:0m)=1:9910J:270khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE30-21Thetotalcapacitanceis(2100)(5:010 6F)=1:0510 2F:Thetotalenergystoredis121 2327U=C(V)=(1:0510F)(5510V)=1:5910J:22Thecostis7$0:03(1:5910J)=$0:133:3600103JE30-22(a)U=1C(V)2=1(0:061F)(1:0104V)2=3:05106J.22(b)(3:05106J)=(3600103J=kWh)=0:847kWh:E30-23(a)Thecapacitanceofanairlledparallel-platecapacitorisgivenbyEq.30-5,A(8:8510 12F=m)(42:010 4m2)C=0==2:8610 11F:khdaw.comd(1:3010 3m)(b)Themagnitudeofthechargeoneachplateisgivenbyq=CV=(2:8610 11F)(625V)=1:7910 8C:(c)ThestoredenergyinacapacitorisgivenbyEq.30-25,regardlessofthetypeorshapeofthecapacitor,so121 112U=C(V)=(2:8610F)(625V)=5:59J:22(d)Assumingaparallelplatearrangementwithnofringingeects,themagnitudeoftheelectriceldbetweentheplatesisgivenbyEd=V,wheredistheseparationbetweentheplates.Thenwww.khdaw.com5E=V=d=(625V)=(0:00130m)=4:8110V=m:(e)TheenergydensityisEq.30-28,121 12523u=0E=((8:8510F=m))(4:8110V=m)=1:02J=m:22E30-24Theequivalentcapacitanceisgivenby1=C=1=(2:1210 6F)+1=(3:8810 6F)=1=(1:3710 6F):eqTheenergystoredis课后答案网U=1(1:3710 6F)(328V)2=7:3710 2J:2E30-25V=r=q=4r2=E,sothatifVisthepotentialofthespherethenE=V=risthe0electriceldonthesurface.Thentheenergydensityoftheelectriceldnearthesurfaceis 12212(8:8510F=m)(8150V) 23u=0E==7:4110J=m:22(0:063m)E30-26ThechargeonC3canbefoundfromconsideringtheequivalentcapacitance.q3=(3:1010 6F)(112V)=3:4710 4C:ThepotentialacrossCisgivenby[V]=(3:4710 4C)=(3:903310 6F)=89:0V.Thepotentialacrosstheparallelsegmentisthen(112V) (89:0V)=23:0V.So[V]1=[V]2=23:0V.Thenq=(10:310 6F)(23:0V)=2:3710 4Candq=(4:8010 6F)(23:0V)=1:1010 4C:.12khdaw.com71若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE30-27Thereisenoughworkonthisproblemwithoutderivingonceagaintheelectriceldbetweenchargedcylinders.IwillinsteadreferyoubacktoSection26-4,andstate1qE=;20LrwhereqisthemagnitudeofthechargeonacylinderandListhelengthofthecylinders.TheenergydensityasafunctionofradialdistanceisfoundfromEq.30-28,11q2u=E2=2082L2r20ThetotalenergystoredintheelectriceldisgivenbyEq.30-24,1q2q2ln(b=a)U==;2C220LwherewesubstitutedintothelastpartEq.30-11,thecapacitanceofacylindricalcapacitor.pkhdaw.comWewanttoshowthatintegratingavolumeintegralfromr=ator=abovertheenergydensityfunctionwillyieldU=2.Sincewewanttodothisproblemthehardway,wewillpretendwedon"tknowtheanswer,andintegratefromr=ator=c,andthenndoutwhatcis.ThenZ1U=udV;2ZcZ2ZL21q=rdrddz;a00820L2r22ZcZ2ZLqdr=ddz;820L2awww.khdaw.com00r2Zcqdr=;40Larq2c=ln:40LaNowweequatethistothevalueforUthatwefoundabove,andwesolveforc.1q2ln(b=a)q2c=ln;2220L40La课后答案网ln(b=a)=2ln(c=a);(b=a)=(c=a)2;pab=c:E30-28(a)d=0A=C,ord=(8:8510 12F=m)(0:350m2)=(51:310 12F)=6:0410 3m:(b)C=(5:60)(51:310 12F)=2:8710 10F.E30-29Originally,C1=0A=d1.Afterthechanges,C2=0A=d2.DividingC2byC1yieldsC2=C1=d1=d2,so=dC=dC=(2)(2:5710 12F)=(1:3210 12F)=3:89:2211khdaw.com72若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE30-30TherequiredcapacitanceisfoundfromU=1C(V)2,or2C=2(6:6110 6J)=(630V)2=3:3310 11F:Thedielectricconstantrequiredis=(3:3310 11F)=(7:4010 12F)=4:50.Trytransformeroil.E30-31CapacitancewithdielectricmediaisgivenbyEq.30-31,e0AC=:dThevarioussheetshavedierentdielectricconstantsanddierentthicknesses,andwewanttomaximizeC,whichmeansmaximizing=d.Formicathisratiois54mm 1,forglassthisratioise35mm 1,andforparanthisratiois0.20mm 1.Micawins.E30-32Theminimumplateseparationisgivenbykhdaw.comd=(4:13103V)=(18:2106V=m)=2:2710 4m:TheminimumplateareaisthendC(2:2710 4m)(68:410 9F)A===0:627m2:0(2:80)(8:8510 12F=m)E30-33ThecapacitanceofacylindricalcapacitorisgivenbyEq.30-11,1:0103mC=2(8:8510 12F=m)(2:6)=8:6310 8F:ln(0:588=0:11)E30-34(a)U=C0(V)2=2,C0=A=d,andV=dislessthanorequaltothedielectrice0www.khdaw.comstrength(whichwewillcallS).ThenV=Sdand12U=e0AdS;2sothevolumeisgivenbyV=2U=S2:e0Thisquantityisaminimumformica,soV=2(250103J)=(5:4)(8:8510 12F=m)(160106V=m)2=0:41m3:(b)=2U=VS2,soe0课后答案网=2(250103J)=(0:087m3)(8:8510 12F=m)(160106V=m)2=25:eE30-35(a)ThecapacitanceofacylindricalcapacitorisgivenbyEq.30-11,LC=20e:ln(b=a)Thefactorofeisintroducedbecausethereisnowadielectric(thePyrexdrinkingglass)betweentheplates.WecanlookbacktoTable29-2togetthedielectricpropertiesofPyrex.Thecapacitanceofourglass"isthen 12(0:15m) 10C=2(8:8510F=m)(4:7)=7:310F:ln((3:8cm)=(3:6cm)(b)Thebreakdownpotentialis(14kV/mm)(2mm)=28kV.khdaw.com73若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE30-36(a)C0=C=(6:5)(13:510 12F)=8:810 11F.e(b)Q=C0V=(8:810 11F)(12:5V)=1:110 9C.(c)E=V=d,butwedon"tknowd.(d)E0=E=,butwecouldn"tndE.eE30-37(a)Inserttheslabsothatitisadistanceaabovethelowerplate.Thenthedistancebetweentheslabandtheupperplateisd a b.Insertingtheslabhasthesameeectashavingtwocapacitorswiredinseries;theseparationofthebottomcapacitorisa,whilethatofthetopcapacitorisd a b.ThebottomcapacitorhasacapacitanceofC1=0A=a;whilethetopcapacitorhasacapacitanceofC2=0A=(d a b):Addingtheseinseries,111=+;CeqC1C2ad a b=+;khdaw.com0A0Ad b=:0ASothecapacitanceofthesystemafterputtingthecopperslabinisC=0A=(d b):(b)Theenergystoredinthesystembeforetheslabisinsertedisq2q2dUi==2Ci20Awhiletheenergystoredaftertheslabisinsertedisq2www.khdaw.comq2d bUf==2Cf20ATheratioisUi=Uf=d=(d b):(c)Sincetherewasmoreenergybeforetheslabwasinserted,thentheslabmusthavegoneinwillingly,itwaspulledin!.Togettheslabbackoutwewillneedtodoworkontheslabequaltotheenergydierence.q2dq2d bq2bUi Uf= =:20A20A20AE30-38(a)Inserttheslabsothatitisadistance课后答案网aabovethelowerplate.Thenthedistancebetweentheslabandtheupperplateisd a b.Insertingtheslabhasthesameeectashavingtwocapacitorswiredinseries;theseparationofthebottomcapacitorisa,whilethatofthetopcapacitorisd a b.ThebottomcapacitorhasacapacitanceofC1=0A=a;whilethetopcapacitorhasacapacitanceofC2=0A=(d a b):Addingtheseinseries,111=+;CeqC1C2ad a b=+;0A0Ad b=:0ASothecapacitanceofthesystemafterputtingthecopperslabiniskhdaw.comC=0A=(d b):74若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.com(b)TheenergystoredinthesystembeforetheslabisinsertedisC(V)2(V)2Ai0Ui==22dwhiletheenergystoredaftertheslabisinsertedisC(V)2(V)2Af0Uf==22d bTheratioisUi=Uf=(d b)=d:(c)Sincetherewasmoreenergyaftertheslabwasinserted,thentheslabmustnothavegoneinwillingly,itwasbeingrepelled!.Togettheslabinwewillneedtodoworkontheslabequaltotheenergydierence.(V)2A(V)2A(V)2Ab000Uf Ui= =:khdaw.com2d b2d2d(d b)E30-39C=e0A=d,sod=e0A=C.(a)E=V=d=CV=e0A,or(11210 12F)(55:0V)E==13400V=m:(5:4)(8:8510 12F=m)(96:510 4m2)(b)Q=CV=(11210 12F)(55:0V)=6:1610 9C:.(c)Q0=Q(1 1=)=(6:1610 9C)(1 1=(5:4))=5:0210 9C.eE30-40(a)E=q=e0A,sowww.khdaw.com 9(89010C)e==6:53(1:40106V=m)(8:8510 12F=m)(11010 4m2)(b)q0=q(1 1=)=(89010 9C)(1 1=(6:53))=7:5410 7C:eP30-1ThecapacitanceofthecylindricalcapacitorisfromEq.30-11,20LC=:ln(b=a)Ifthecylindersareveryclosetogetherwecanwrite课后答案网b=a+d,whered,theseparationbetweenthecylinders,isasmallnumber,so20L20LC==:ln((a+d)=a)ln(1+d=a)Expandingaccordingtothehint,20L2a0LC=d=adNow2aisthecircumferenceofthecylinder,andListhelength,so2aListheareaofacylindricalplate.Hence,forsmallseparationbetweenthecylinderswehave0AC;dwhichistheexpressionfortheparallelplates.khdaw.com75若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP30-2(a)C=0A=x;takethederivativeanddC0dA0Adx= ;dTxdTx2dT1dA1dx=C :AdTxdT(b)Since(1=A)dA=dT=2aand(1=x)dx=dT=s,weneed=2=2(2310 6=C)=4610 6=C:saP30-3Inserttheslabsothatitisadistancedabovethelowerplate.Thenthedistancebetweentheslabandtheupperplateisa b d.Insertingtheslabhasthesameeectashavingtwocapacitorswiredinseries;theseparationofthebottomcapacitorisd,whilethatofthetopcapacitorisa b d.ThebottomcapacitorhasacapacitanceofC1=0A=d;whilethetopcapacitorhasacapacitanceofkhdaw.comC2=0A=(a b d):Addingtheseinseries,111=+;CeqC1C2da b d=+;0A0Aa b=:0ASothecapacitanceofthesystemafterputtingtheslabinisC=0A=(a b):P30-4Thepotentialdierencebetweenanytwoadjacentplatesiswww.khdaw.comV.Eachinteriorplatehasachargeqoneachsurface;theexteriorplate(onepink,onegray)hasachargeofqontheinteriorsurfaceonly.Thecapacitanceofonepink/grayplatepairisC=0A=d.Therearenplates,butonlyn 1platepairs,sothetotalchargeis(n 1)q.ThismeansthetotalcapacitanceisC=0(n 1)A=d.P30-5LetV0=96:6V.Asfaraspointeisconcernedpointalookslikeitisoriginallypositivelycharged,andpointdisoriginallynegativelycharged.Itisthenconvenienttodenethechargesonthecapacitorsintermsofthechargesonthetopsides,sotheoriginalchargeonC1isq1;i=C1V0whiletheoriginalchargeonC2isq2;i= C2V0.Notethenegativesignre
ectingtheoppositepolarityofC2.(a)Conservationofchargerequires课后答案网q1;i+q2;i=q1;f+q2;f;butsinceq=CVandthetwocapacitorswillbeatthesamepotentialaftertheswitchesareclosedwecanwriteC1V0 C2V0=C1V+C2V;(C1 C2)V0=(C1+C2)V;C1 C2V0=V:C1+C2Withnumbers,(1:16F) (3:22F)V=(96:6V)= 45:4V:(1:16F)+(3:22F)khdaw.com76若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comThenegativesignmeansthatthetopsidesofbothcapacitorwillbenegativelychargedaftertheswitchesareclosed.(b)ThechargeonC1isC1V=(1:16F)(45:4V)=52:7C:(c)ThechargeonC2isC2V=(3:22F)(45:4V)=146C:P30-6C2andC3formaneectivecapacitorwithequivalentcapacitanceCa=C2C3=(C2+C3).ThechargeonC1isoriginallyq0=C1V0.AfterthrowingtheswitchthepotentialacrossC1isgivenbyq1=C1V1.ThesamepotentialisacrossCa;q2=q3,soq2=CaV1.Chargeisconserved,soq1+q2=q0.Combiningsomeoftheabove,q0C1V1==V0;C1+CaC1+CaandthenC2C2(C+C)q=1V=123V:100C1+CaC1C2+C1C3+C2C3Similarly,khdaw.com 1CaC1111q2=V0=++V0:C1+CaC1C2C3q3=q2becausetheyareinseries.P30-7(a)Ifterminalaismorepositivethanterminalbthencurrentcan
owthatwillchargethecapacitorontheleft,thecurrentcan
owthroughthediodeonthetop,andthecurrentcanchargethecapacitorontheright.Currentwillnot
owthroughthediodeontheleft.Thecapacitorsareeectivelyinseries.Sincethecapacitorsareidenticalandseriescapacitorshavethesamecharge,weexpectthewww.khdaw.comcapacitorstohavethesamepotentialdierenceacrossthem.Butthetotalpotentialdierenceacrossbothcapacitorsisequalto100V,sothepotentialdierenceacrosseithercapacitoris50V.Theoutputpinsareconnectedtothecapacitorontheright,sothepotentialdierenceacrosstheoutputis50V.(b)Ifterminalbismorepositivethanterminalathecurrentcan
owthroughthediodeontheleft.Ifweassumethediodeisresistancelessinthiscongurationthenthepotentialdierenceacrossitwillbezero.Thenetresultisthatthepotentialdierenceacrosstheoutputpinsis0V.Inreallifethepotentialdierenceacrossthediodewouldnotbezero,evenifforwardbiased.Itwillbesomewherearound0.5Volts.P30-8Dividethestripofwidth课后答案网aintoNsegments,eachofwidthx=a=N.ThecapacitanceofeachstripisC=0ax=y.Ifissmallthen111d=1 x=d):yd+xsind+x(Sinceparallelcapacitancesadd,XZa20a0aaC=C=(1 x=d)dx=1 :d0d2d77khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP30-9(a)WhenS2isopenthecircuitactsastwoparallelcapacitors.Thebranchonthelefthasaneectivecapacitancegivenby1111=+=;Cl(1:010 6F)(3:010 6F)7:510 7Fwhilethebranchontherighthasaneectivecapacitancegivenby1111=+=:Cl(2:010 6F)(4:010 6F)1:3310 6FThechargeoneithercapacitorinthebranchontheleftisq=(7:510 7F)(12V)=9:010 6C;whilethechargeoneithercapacitorinthebranchontherightiskhdaw.comq=(1:3310 6F)(12V)=1:610 5C:(b)AfterclosingS2thecircuitiseectivelytwocapacitorsinseries.ThetopparthasaneectivecapacitanceofC=(1:010 6F)+(2:010 6F)=(3:010 6F);twhiletheeectivecapacitanceofthebottompartisC=(3:010 6F)+(4:010 6F)=(7:010 6F):bTheeectivecapacitanceoftheseriescombinationisgivenby11www.khdaw.com11=+=:Ceq(3:010 6F)(7:010 6F)2:110 6FThechargeoneachpartisq=(2:110 6F)(12V)=2:5210 5C.ThepotentialdierenceacrossthetoppartisV=(2:5210 5C)=(3:010 6F)=8:4V;tandthenthechargeonthetoptwocapacitorsisq=(1:010 6F)(8:4V)=8:410 6Cand1q=(2:010 6F)(8:4V)=1:6810 5C.Thepotentialdierenceacrossthebottompartis2V=(2:5210 5C)=(7:010 6F)=3:6V;tandthenthechargeonthetoptwocapacitorsis课后答案网q=(3:010 6F)(3:6V)=1:0810 5Cand1q=(4:010 6F)(3:6V)=1:4410 5C.2P30-10LetV=Vxy.BysymmetryV2=0andV1=V4=V5=V3=V=2.Suddenlytheproblemisveryeasy.Thechargesoneachcapacitorisq1,exceptforq2=0.Thentheequivalentcapacitanceofthecircuitisqq1+q4 6Ceq===C1=4:010F:V2V178khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP30-11(a)ThechargeonthecapacitorwithstoredenergyU0=4:0Jisq0,whereq20U0=:2CWhenthiscapacitorisconnectedtoanidenticalunchargedcapacitorthechargeissharedequally,sothatthechargeoneithercapacitorisnowq=q0=2.Thestoredenergyinonecapacitoristhenq2q2=410U===U0:2C2C4Buttherearetwocapacitors,sothetotalenergystoredis2U=U0=2=2:0J.(b)Goodquestion.Currenthadto
owthroughtheconnectingwirestogetthechargefromonecapacitortotheother.Originallythesecondcapacitorwasuncharged,sothepotentialdierenceacrossthatcapacitorwouldhavebeenzero,whichmeansthepotentialdierenceacrossthecon-nectingwireswouldhavebeenequaltothatoftherstcapacitor,andtherewouldthenhavebeenenergydissipationinthewiresaccordingtokhdaw.comP=i2R:That"swherethemissingenergywent.P30-12R=L=AandC=0A=L.Combining,R=0=C,orR=(9:40m)(8:8510 12F=m)=(11010 12F)=0:756:P30-13(a)u=1E2=e2=322r4.R200(b)U=udVwheredV=4r2dr.Thenwww.khdaw.comZ122e2e1U=4pirdr=:R3220r480R(c)R=e2=8mc2,or0(1:6010 19C)2R==1:4010 15m:8(8:8510 12F=m)(9:1110 31kg)(3:00108m=s)2P30-14U=1q2=C=q2x=2A.F=dU=dx=q2=2A.200课后答案网P30-15AccordingtoProblem14,theforceonaplateofaparallelplatecapacitorisq2F=:20ATheforceperunitareaisthenFq22==;A20A220where=q=Aisthesurfacechargedensity.ButweknowthattheelectriceldnearthesurfaceofaconductorisgivenbyE==0,soF12=0E:A279khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP30-16AsmallsurfaceareaelementdAcarriesachargedq=qdA=4R2.Therearethreeforcesontheelementswhichbalance,sop(V=V)dA+qdq=4R2=pdA;00orpR3+q2=162R=pR3:00Thiscanberearrangedasq2=162pR(R3 R3):00P30-17ThemagnitudeoftheelectriceldinthecylindricalregionisgivenbyE==20r;whereisthelinearchargedensityontheanode.ThepotentialdierenceisgivenbyV=(=20)ln(b=a);whereaistheradiusoftheanodebtheradiusofthecathode.Combining,E=V=rln(b=a),thiswillbeamaximumwhenr=a,sokhdaw.comV=(0:18010 3m)ln[(11:010 3m)=(0:18010 3m)](2:20106V=m)=1630V:P30-18Thisiseectivelytwocapacitorsinparallel,eachwithanareaofA=2.Then0A=20A=20Ae1+e2Ceq=e1+e2=:ddd2P30-19Wewilltreatthesystemastwocapacitorsinseriesbypretendingthereisaninnitesi-mallythinconductorbetweenthem.Theslabsare(Iassume)thesamethickness.ThecapacitanceofoneoftheslabsisthengivenbyEq.30-31,e10AC1=;www.khdaw.comd=2whered=2isthethicknessoftheslab.Therewouldbeasimilarexpressionfortheotherslab.TheequivalentseriescapacitancewouldbegivenbyEq.30-21,111=+;CeqC1C2d=2d=2=+;e10Ae20Ade2+e1=;20Ae1e2课后答案网20Ae1e2Ceq=:de2+e1P30-20Treatthisasthreecapacitors.Findtheequivalentcapacitanceoftheseriescombinationontheright,andthenaddontheparallelpartontheleft.Therighthandsideis1dd2de2+e3=+=:Ceqe20A=2e30A=20Ae2e3Addthistothelefthandside,ande10A=20Ae2e3Ceq=+;2d2de2+e30Ae1e2e3=+:2d2e2+e3khdaw.com80若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP30-21(a)qdoesn"tchange,butC0=C=2.ThenV0=q=C=2V.(b)U=C(V)2=2=A(V)2=2d.U0=C0(V0)2=2=A(2V)2=4d=2U.00(c)W=U0 U=2U U=U=A(V)2=2d:0P30-22ThetotalenergyisU=qV=2=(7:0210 10C)(52:3V)=2=1:8410 8J.(a)IntheairgapwehaveE2V(8:8510 12F=m)(6:9103V=m)2(1:1510 2m2)(4:610 3m)U=00==1:1110 8J:a22Thatis(1:11=1:85)=60%ofthetotal.(b)Theremaining40%isintheslab.P30-23(a)C=A=d=(8:8510 12F=m)(0:118m2)=(1:2210 2m)=8:5610 11F.0(b)UsetheresultsofProblem30-24.(4:8)(8:8510 12F=m)(0:118m2)khdaw.comC0==1:1910 10F(4:8)(1:2210 2m) (4:310 3m)(4:8 1)(c)q=CV=(8:5610 11F)(120V)=1:0310 8C;sincethebatteryisdisconnectedq0=q.(d)E=q=A=(1:0310 8C)=(8:8510 12F=m)(0:118m2)=9860V=minthespacebetween0theplates.(e)E0=E==(9860V=m)=(4:8)=2050V=minthedielectric.e(f)V0=q=C0=(1:0310 8C)=(1:1910 10F)=86:6V.(g)W=U0 U=q2(1=C 1=C0)=2,or(1:0310 8C)2W=[1=(8:5610 11F)www.khdaw.com 1=(1:1910 10F)]=1:7310 7J:2P30-24Theresultiseectivelythreecapacitorsinseries.Twoareairlledwiththicknessesofxandd b x,thethirdisdielectriclledwiththicknessb.AllhaveanareaA.Theeectivecapacitanceisgivenby1xd b xb=++;C0A0Ae0A1b=(d b)+;0Ae0A课后答案网C=;d b+b=ee0A=:e b(e 1)81khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE31-1(5:12A)(6:00V)(5:75min)(60s/min)=1:06104J:E31-2(a)(12:0V)(1:6010 19C)=1:9210 18J.(b)(1:9210 18J)(3:401018=s)=6:53W.E31-3Iftheenergyisdeliveredatarateof110W,thenthecurrentthroughthebatteryisP(110W)i===9:17A:V(12V)Currentisthe
owofchargeinsomeperiodoftime,soq(125Ah)t===13:6h;i(9:2A)whichisthesameas13hoursand36minutes.E31-4khdaw.com(100W)(8h)=800Wh.(a)(800Wh)=(2:0Wh)=400batteries,atacostof(400)($0:80)=$320.(b)(800Wh)($0:1210 3Wh)=$0:096:E31-5Goallofthewayaroundthecircuit.Itisasimpleoneloopcircuit,andalthoughitdoesnotmatterwhichwaywegoaround,wewillfollowthedirectionofthelargeremf.Then(150V) i(2:0) (50V) i(3:0)=0;whereiispositiveifitiscounterclockwise.Rearranging,100V=www.khdaw.comi(5:0);ori=20A.AssumingthepotentialatPisVP=100V,thenthepotentialatQwillbegivenbyVQ=VP (50V) i(3:0)=(100V) (50V) (20A)(3:0)= 10V:E31-6(a)Req=(10)+(140)=150.i=(12:0V)=(150)=0:080A.(b)Req=(10)+(80)=90.i=(12:0V)=(90)=0:133A.(c)Req=(10)+(20)=30.i=(12:0V)=(30)=0:400A.E31-7(a)Req=(3课后答案网:0V 2:0V)=(0:050A)=20.ThenR=(20) (3:0) (3:0)=14.(b)P=iV=i2R=(0:050A)2(14)=3:510 2W.E31-8(5:0A)R1=V.(4:0A)(R1+2:0)=V.Combining,5R1=4R1+8:0,orR1=8:0.E31-9(a)(53:0W)=(1:20A)=44:2V.(b)(1:20A)(19:0)=22:8VisthepotentialdierenceacrossR.Thenanadditionalpotentialdierenceof(44:2V) (22:8V)=21:4VmustexistacrossC.(c)Theleftsideispositive;itisareverseemf.pE31-10(a)Thecurrentintheresistoris(9:88W)=(0:108)=9:56A.Thetotalresistanceofthecircuitis(1:50V)=(9:56A)=0:157.Theinternalresistanceofthebatteryisthen(0:157) (0:108)=0:049.(b)(9:88W)=(9:56A)=1:03V.khdaw.com82若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE31-11Weassigndirectionstothecurrentsthroughthefourresistorsasshowninthegure.12ab34Sincetheammeterhasnoresistancethepotentialataisthesameasthepotentialatb.Con-sequentlythepotentialdierence(Vb)acrossbothofthebottomresistorsisthesame,andthepotentialdierence(Vt)acrossthetwotopresistorsisalsothesame(butdierentfromthebottom).Wethenhavethefollowingrelationships:khdaw.comVt+Vb=E;i1+i2=i3+i4;Vj=ijRj;wherethejsubscriptinthelastlinereferstoresistor1,2,3,or4.Forthetopresistors,V1=V2implies2i1=i2;whileforthebottomresistors,V3=V4impliesi3=i4:Thenthejunctionrulerequiresi4=3i1=2,andthelooprulerequireswww.khdaw.com(i1)(2R)+(3i1=2)(R)=Eori1=2E=(7R):Thecurrentthat
owsthroughtheammeteristhedierencebetweeni2andi4,or4E=(7R) 3E=(7R)=E=(7R).E31-12(a)Denethecurrenti1asmovingtotheleftthroughr1andthecurrenti2asmovingtotheleftthroughr2.i3=i1+i2ismovingtotherightthroughR.Thentherearetwoloopequations:E1=i1r1+i3R;课后答案网E2=(i3 i1)r2+i3R:Multiplythetopequationbyr2andthebottombyr1andthenadd:r2E1+r1E2=i3r1r2+i3R(r1+r2);whichcanberearrangedasr2E1+r1E2i3=:r1r2+Rr1+Rr2(b)Thereisonlyonecurrent,soE1+E2=i(r1+r2+R);orE1+E2i=:r1+r2+Rkhdaw.com83若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE31-13(a)Assumethatthecurrent
owsthrougheachsourceofemfinthesamedirectionastheemf.ThethelooprulewillgiveusthreeequationsE1 i1R1+i2R2 E2 i1R1=0;E2 i2R2+i3R1 E3+i3R1=0;E1 i1R1+i3R1 E3+i3R1 i1R1=0:Thejunctionrule(looksatpointa)givesusi1+i2+i3=0.Usethistoeliminatei2fromthesecondloopequation,E2+i1R2+i3R2+2i3R1 E3=0;andthencombinethiswiththethethirdequationtoeliminatei3,ER ER+2iRR+2ER+2iRR+4iR2 2ER=0;1232312213123131or2E3R1+E3R2 E1R2 2E2R1i3=2=0:582A:khdaw.com4R1R2+4R1Thenwecanndi1fromE3 E2 i3R2 2i3R1i1== 0:668A;R2wherethenegativesignindicatesthecurrentisdown.Finally,wecanndi2= (i1+i3)=0:0854A:(b)Startataandgotob(nalminusinitial!),+i2R2 E2= 3:60V:E31-14(a)Thecurrentthroughthecircuitiswww.khdaw.comi=E=(r+R).ThepowerdeliveredtoRisthenP=iV=i2R=E2R=(r+R)2:EvaluatedP=dRandsetitequaltozerotondthemaximum.ThendP2r R0==ER;dR(r+R)3whichhasthesolutionr=R.(b)Whenr=Rthepoweris1E2P=E2R=:(R+R)24r课后答案网E31-15(a)WerstuseP=Fvtondthepoweroutputbytheelectricmotor.ThenP=(2:0N)(0:50m=s)=1:0W.ThepotentialdierenceacrossthemotorisVm=E ir:Thepoweroutputfromthemotoristherateofenergydissipation,soPm=Vmi:Combiningthesetwoexpressions,Pm=(E ir)i;=Ei i2r;0= i2r+Ei P;m0=(0:50)i2 (2:0V)i+(1:0W):Rearrangeandsolvefori,p(2:0V)(2:0V)2 4(0:50)(1:0W)i=;2(0:50)khdaw.com84若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comwhichhassolutionsi=3:4Aandi=0:59A.(b)ThepotentialdierenceacrosstheterminalsofthemotorisVm=E irwhichifi=3:4AyieldsVm=0:3V,butifi=0:59AyieldsVm=1:7V.Thebatteryprovidesanemfof2.0V;itisn"tpossibleforthepotentialdierenceacrossthemotortobelargerthanthis,butbothsolutionsseemtosatisfythisconstraint,sowewillmovetothenextpartandseewhathappens.(c)Sowhatisthesignicanceofthetwopossiblesolutions?Itisaconsequenceofthefactthatpowerisrelatedtothecurrentsquared,andwithanyquadraticsweexpecttwosolutions.Botharepossible,butitmightbethatonlyoneisstable,oreventhatneitherisstable,andasmallperturbationtothefrictioninvolvedinturningthemotorwillcausethesystemtobreakdown.Wewilllearninalaterchapterthattheeectiveresistanceofanelectricmotordependsonthespeedatwhichitisspinning,andalthoughthatwon"taecttheproblemhereasworded,itwillaectthephysicalproblemthatprovidedthenumbersinthisproblem!E31-16req=4r=4(18)=72.Thecurrentisi=(27V)=(72)=0:375A.E31-17khdaw.comInparallelconnectionsoftworesistorstheeectiveresistanceislessthanthesmallerresistancebutlargerthanhalfthesmallerresistance.Inseriesconnectionsoftworesistorstheeectiveresistanceisgreaterthanthelargerresistancebutlessthantwicethelargerresistance.Sincetheeectiveresistanceoftheparallelcombinationislessthaneithersingleresistanceandtheeectiveresistanceoftheseriescombinationsislargerthaneithersingleresistancewecanconcludethat3:0musthavebeentheparallelcombinationand16musthavebeentheseriescombination.Theresistorsarethen4:0and12resistors.E31-18PointsBandCareeectivelythesamepoint!(a)Thethreeresistorsareinparallel.Thenrwww.khdaw.comeq=R=3.(b)See(a).(c)0,sincethereisnoresistancebetweenBandC.E31-19Focusontheloopthroughthebattery,the3:0,andthe5:0resistors.Theloopruleyields(12:0V)=i[(3:0)+(5:0)]=i(8:0):Thepotentialdierenceacrossthe5:0resistoristhenV=i(5:0)=(5:0)(12:0V)=(8:0)=7:5V:E31-20Eachlampdrawsacurrentof(500W)课后答案网=(120V)=4:17A.Furthermore,thefusecansupport(15A)=(4:17A)=3:60lamps.Thatisamaximumof3.E31-21Thecurrentintheseriescombinationisis=E=(R1+R2).ThepowerdissipatedisP=iE=E2=(R+R):s12InaparallelarrangementRdissipatesP=iE=E2=R.AsimilarexpressionexistsforR,11112sothetotalpowerdissipatedisP=E2(1=R+1=R):p12Theratiois5,so5=P=P=(1=R+1=R)(R+R),or5RR=(R+R)2.Solvingforps12121212R2yields2:618R1or0:382R1.ThenR2=262orR2=38:2.85khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE31-22Combiningnidenticalresistorsinseriesresultsinanequivalentresistanceofreq=nR.Combiningnidenticalresistorsinparallelresultsinanequivalentresistanceofreq=R=n.Iftheresistorsarearrangedinasquarearrayconsistingofnparallelbranchesofnseriesresistors,thentheeectiveresistanceisR.EachwilldissipateapowerP,togethertheywilldissipaten2P.Sowewantnineresistors,sincefourwouldbetoosmall.E31-23(a)Workthroughthecircuitonestepatatime.Werstadd"R2,R3,andR4inparallel:11111=++=Re42:061:675:018:7Wethenadd"thisresistanceinserieswithR1,Re=(112)+(18:7)=131:(b)Thecurrentthroughthebatteryisi=E=R=(6:22V)=(131)=47:5mA.ThisisalsothecurrentthroughR1,sinceallthecurrentthroughthebatterymustalsogothroughR1.khdaw.comThepotentialdierenceacrossR1isV1=(47:5mA)(112)=5:32V.Thepotentialdierenceacrosseachofthethreeremainingresistorsis6:22V 5:32V=0:90V.Thecurrentthrougheachresistoristheni2=(0:90V)=(42:0)=21:4mA;i3=(0:90V)=(61:6)=14:6mA;i4=(0:90V)=(75:0)=12:0mA:E31-24Theequivalentresistanceoftheparallelpartisr0=RR=(R+R):Theequivalent22resistanceforthecircuitisr=R+RR=(R+R):Thecurrentthroughthecircuitisi0=E=r.122ThepotentialdierenceacrossRisV=E i0R,orwww.khdaw.com1V=E(1 R1=r);R2+R=E1 R1;R1R2+R1R+RR2RR2=E:R1R2+R1R+RR2SinceP=iV=(V)2=R,RR2P=E22:(R1R2+R1R+RR2)2SetdP=dR=0,thesolutionis课后答案网R=R1R2=(R1+R2).E31-25(a)Firstadd"thelefttworesistorsinseries;theeectiveresistanceofthatbranchis2R.Thenadd"therighttworesistorsinseries;theeectiveresistanceofthatbranchisalso2R.Nowwecombinethethreeparallelbranchesandndtheeectiveresistancetobe11114=++=;Re2RR2R2RorRe=R=2.(b)Firstweadd"therighttworesistorsinseries;theeectiveresistanceofthatbranchis2R.WethencombinethisbranchwiththeresistorwhichconnectspointsFandH.Thisisaparallelconnection,sotheeectiveresistanceis1113=+=;Re2RR2Rkhdaw.com86若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comor2R=3.ThisvalueiseectivelyinserieswiththeresistorwhichconnectsGandH,sothetotal"is5R=3.Finally,wecancombinethisvalueinparallelwiththeresistorthatdirectlyconnectsFandGaccordingto1138=+=;ReR5R5RorRe=5R=8.E31-26Theresistanceofthesecondresistorisr2=(2:4V)=(0:001A)=2400.Thepotentialdierenceacrosstherstresistoris(12V) (2:4V)=9:6V.Theresistanceoftherstresistoris(9:6V)=(0:001A)=9600.E31-27SeeExercise31-26.Theresistanceratioisr1(0:950:1V)=;khdaw.comr1+r2(1:50V)orr2(1:50V)= 1:r1(0:950:1V)Theallowedrangefortheratior2=r1isbetween0:5625and0:5957.Wecanchooseanystandardresistorswewant,andwecoulduseanytolerance,butthenwewillneedtocheckourresults.22and39wouldwork;aswould27and47.Thereareotherchoices.E31-28ConsideranyjunctionotherthanAwww.khdaw.comorB.Callthisjunctionpoint0;labelthefournearestjunctionstothisaspoints1,2,3,and4.Thecurrentthroughtheresistorthatlinkspoint0topoint1isi1=V01=R;whereV01isthepotentialdierenceacrosstheresistor,soV01=V0 V1;whereV0isthepotentialatthejunction0,andV1isthepotentialatthejunction1.Similarexpressionsexistfortheotherthreeresistor.Forthejunction0thenetcurrentmustbezero;thereisnowayforchargetoaccumulateonthejunction.Theni1+i2+i3+i4=0;andthismeansV01=R+V02=R+V03=R+V04=R=0or课后答案网V01+V02+V03+V04=0:LetV0i=V0 Vi,andthenrearrange,4V0=V1+V2+V3+V4;or1V0=(V1+V2+V3+V4):4E31-29Thecurrentthroughtheradioisi=P=V=(7:5W)=(9:0V)=0:83A.Theradiowasleftonefor6hours,or2:16104s.Thetotalchargeto
owthroughtheradiointhattimeis(0:83A)(2:16104s)=1:8104C.E31-30Thepowerdissipatedbytheheadlightsis(9:7A)(12:0V)=116W.Thepowerrequiredbytheengineis(116W)=(0:82)=142W,whichisequivalentto0:khdaw.com190hp.87若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE31-31(a)P=(120V)(120V)=(14:0)=1030W:(b)W=(1030W)(6:42h)=6:61kWh:Thecostis$0:345.E31-32E31-33WewanttoapplyeitherEq.31-21,P=i2R;RorEq.31-22,P=(V)2=R;RRdependingonwhetherweareinseries(thecurrentisthesamethrougheachbulb),orinparallel(thepotentialdierenceacrosseachbulbisthesame.ThebrightnessofabulbwillbemeasuredbyP,eventhoughPisnotnecessarilyameasureoftherateradiantenergyisemittedfromthebulb.(b)IfthebulbsareinparallelthenP=(V)2=Rishowwewanttocomparethebrightness.RRThepotentialdierenceacrosseachbulbisthesame,sothebulbwiththesmallerresistanceiskhdaw.combrighter.(b)IfthebulbsareinseriesthenP=i2Rishowwewanttocomparethebrightness.BothRbulbshavethesamecurrent,sothelargervalueofRresultsinthebrighterbulb.Onedirectconsequenceofthiscanbetriedathome.Wireupa60W,120Vbulbanda100W,120Vbulbinseries.Whichisbrighter?Youshouldobservethatthe60Wbulbwillbebrighter.E31-34(a)j=i=A=(25A)=(0:05in)=3180A/in2=4:93106A=m2.(b)E=j=(1:6910 8m)(4:93106A=m2)=8:3310 2V=m.(c)V=Ed=(8:3310 2V=m)(305m)=25V.(d)P=iV=(25A)(25V)=625W.www.khdaw.comE31-35(a)Thebulbisonfor744hours.Theenergyconsumedis(100W)(744h)=74:4kWh,atacostof(74:4)(0:06)=$4:46.(b)r=V2=P=(120V)2=(100W)=144.(c)i=P=V=(100W)=(120V)=0:83A.E31-36P=(V)2=randr=r(1+T).Then0P0(500W)P===660W1+T1+(4:010 4=C)( 600C)课后答案网E31-37(a)n=q=e=it=e,son=(48510 3A)(9510 9s)=(1:610 19C)=2:881011:(b)i=(520=s)(48510 3A)(9510 9s)=2:410 5A.av(c)P=iV=(48510 3A)(47:7106V)=2:3106W;whileP=iV=(2:410 5A)(47:7ppaa106V)=1:14103W.E31-38r=L=A=(3:510 5m)(1:9610 2m)=(5:1210 3m)2=8:3310 3.pp(a)i=P=r=(1:55W)=(8:3310 3)=13:6A,soj=i=A=(13:6A)=(5:1210 3m)2=1:66105A=m2:pp(b)V=Pr=(1:55W)(8:3310 3)=0:114V:khdaw.com88若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE31-39(a)Thecurrentthroughthewireisi=P=V=(4800W)=(75V)=64A;TheresistanceofthewireisR=V=i=(75V)=(64A)=1:17:ThelengthofthewireisthenfoundfromRA(1:17)(2:610 6m2)L===6:1m:(5:010 7m)Onecouldeasilywindthismuchnichrometomakeatoasteroven.Ofcourseallowing64Ampstobedrawnthroughhouseholdwiringwilllikelyblowafuse.(b)Wewanttocombinetheabovecalculationsintooneformula,soRAAV=iA(V)2khdaw.comL===;Pthen(2:610 6m2)(110V)2L==13m:(4800W)(5:010 7m)Hmm.Weneedmorewireifthepotentialdierenceisincreased?Doesthismakesense?Yes,itdoes.Weneedmorewirebecauseweneedmoreresistancetodecreasethecurrentsothatthesamepoweroutputoccurs.E31-40(a)Theenergyrequiredtobringthewatertoboilingiswww.khdaw.comQ=mCT.ThetimerequiredisQ(2:1kg)(4200J=kg)(100C 18:5C)t===2:22103s0:77P0:77(420W)(b)TheadditionaltimerequiredtoboilhalfofthewaterawayismL=2(2:1kg)(2:26106J=kg)=2t===7340s:0:77P0:77(420W)E31-41(a)IntegratebothsidesofEq.31-26;课后答案网ZqZtdqdt= ;0q EC0RCtqtln(q EC)j= ;0RC0q ECtln= ; ECRCq EC t=RC=e; ECq=EC1 e t=RC:Thatwasn"tsobad,wasit?89khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.com(b)RearrangeEq.31-26inordertogetqtermsontheleftandttermsontheright,thenintegrate;ZqZtdqdt= ;q0q0RCtqtlnqj= ;q0RC0qtln= ;q0RCq t=RC=e;q0q=qe t=RC:0Thatwasn"tsobadeither,wasit?E31-42(a)=RC=(1:42106)(1:8010 6F)=2:56s.Ckhdaw.com(b)q=CV=(1:8010 6F)(11:0V)=1:9810 5C.0(c)t= Cln(1 q=q0),sot= (2:56s)ln(1 15:510 6C=1:9810 5C)=3:91s:E31-43Solven=t=C= ln(1 0:99)=4:61.E31-44(a)V=E(1 e t=C),so= (1:2810 6s)=ln(1 5:00V=13:0V)=2:6410 6sC(b)C==R=(2:6410 6s)=(15:2103)=1:7310 10FCwww.khdaw.comE31-45(a)V=Ee t=C,soC= (10:0s)=ln(1:06V=100V)=2:20s(b)V=(100V)e 17s=2:20s=4:410 2V.E31-46V=Ee t=Cand=RC,soCtttR= = =:Cln(V=V0)(22010 9F)ln(0:8V=5V)4:0310 7FIftisbetween10:0课后答案网sand6:0ms,thenRisbetweenR=(1010 6s)=(4:0310 7F)=24:8;andR=(610 3s)=(4:0310 7F)=14:9103:E31-47ThechargeonthecapacitorneedstobuilduptoapointwherethepotentialacrossthecapacitorisVL=72V,andthisneedstohappenwithin0.5seconds.ThismeansthatwewanttosolveCV=CE1 eT=RCLforRknowingthatT=0:5s.ThisexpressioncanbewrittenasT(0:5s)6R= = =2:3510:Cln(1 VL=E)(0:15C)ln(1 (72V)=(95V))khdaw.com90若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comppE31-48(a)q=2UC=2(0:50J)(1:010 6F)=110 3C.0(b)i=V=R=q=RC=(110 3C)=(1:0106)(1:010 6F)=110 3A.000(c)V=Ve t=C,soC0 3(110C) t=(1:0106)(1:010 6F) t=(1:0s)VC=e=(1000V)e(1:010 6F)NotethatVR=VC.(d)P=(V)2=R,soRRP=(1000V)2e 2t=(1:0s)=(1106!)=(1W)e 2t=(1:0s):RE31-49(a)i=dq=dt=Ee t=C=R,so(4:0V) (1:0s)=(3:0106)(1:010 6F) 7i=e=9:5510A:(3:0106)(b)P=iV=(E2=R)e t=C(1 e t=C),sokhdaw.comC2(4:0V) (1:0s)=(3:0106)(1:010 6F) (1:0s)=(3:0106)(1:010 6F) 6PC=e1 e=1:0810W:(3:0106)(c)P=i2R=(E2=R)e 2t=C,soR2(4:0V) 2(1:0s)=(3:0106)(1:010 6F) 6PR=e=2:7410W:(3:0106)(d)P=PR+PC,orP=2:7410 6W+1:08www.khdaw.com10 6W=3:8210 6WE31-50TherateofenergydissipationintheresistorisP=i2R=(E2=R)e 2t=C:REvaluatingZ12Z12E 2t=RCEPRdt=edt=C;0R02butthatistheoriginalenergystoredinthecapacitor.P31-1TheterminalvoltageofthebatteryisgivenbyV=E ir;sotheinternalresistanceis课后答案网E V(12:0V) (11:4V)r===0:012;i(50A)sothebatteryappearswithinspecs.TheresistanceofthewireisgivenbyV(3:0V)R===0:06;i(50A)sothecableappearstobebad.Whataboutthemotor?Tryingit,V(11:4V) (3:0V)R===0:168;i(50A)soitappearstobewithinspec.khdaw.com91若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP31-2TraversingthecircuitwehaveE ir1+E ir2 iR=0;soi=2E=(r1+r2+R):Thepotentialdierenceacrosstherstbatteryisthen2r1r2 r1+RV1=E ir1=E1 =Er1+r2+Rr1+r2+RThisquantitywillonlyvanishifr2 r1+R=0,orr1=R+r2.Sincer1>r2thisisactuallypossible;R=r1 r2.P31-3V=E iriandi=E=(ri+R),soRV=E;ri+RTherearethentwosimultaneousequations:(0:10V)(500)+(0:10V)ri=E(500)andkhdaw.com(0:16V)(1000)+(0:16V)ri=E(1000);withsolution(a)r=1:5103andi(b)E=0:400V.(c)Thecellreceivesenergyfromthesunatarate(2:0mW/cm2)(5:0cm2)=0:010W.ThecellconvertsenergyatarateofV2=R=(0:16V)2=(1000)=0:26%P31-4(a)TheemfofthebatterycanbefoundfromE=iri+Vl=(10A)(0www.khdaw.com:05)+(12V)=12:5V(b)Assumethatresistanceisnotafunctionoftemperature.Theresistanceoftheheadlightsisthenrl=(12:0V)=(10:0A)=1:2:ThepotentialdierenceacrossthelightswhenthestartermotorisonisVl=(8:0A)(1:2)=9:6V;andthisisalsothepotentialdierenceacrosstheterminalsofthebattery.ThecurrentthroughthebatteryisthenE V(12:5V) (9:6V)i===58A;课后答案网ri(0:05)sothecurrentthroughthemotoris50Amps.P31-5(a)Theresistivitiesare=rA=L=(76:210 6)(91:010 4m2)=(42:6m)=1:6310 8m;AAand=rA=L=(35:010 6)(91:010 4m2)=(42:6m)=7:4810 9m:BB(b)Thecurrentisi=V=(r+r)=(630V)=(111:2)=5:67106A.ThecurrentdensityABisthenj=(5:67106A)=(91:010 4m2)=6:23108A=m2:(c)E=j=(1:6310 8m)(6:23108A=m2)=10:2V=mandE=j=(7:4810 9AABBm)(6:23108A=m2)=4:66V=m.(d)VA=EAL=(10:2V=m)(42:6m)=435VandVB=EBkhdaw.comL=(4:66V=m)(42:6m)=198V.92若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP31-6SetuptheproblemwiththetraditionalpresentationoftheWheatstonebridgeproblem.Thenthesymmetryoftheproblem(
ipitoveronthelinebetweenxandy)impliesthatthereisnocurrentthroughr.Assuch,theproblemisequivalenttotwoidenticalparallelbrancheseachwithtwoidenticalseriesresistances.EachbranchhasresistanceR+R=2R,sotheoverallcircuithasresistance1111=+=;Req2R2RRsoReq=R.P31-7P31-8(a)TheloopthroughR1istrivial:i1=E2=R1=(5:0V)=(100)=0:05A.TheloopthroughR2isonlyslightlyharder:i2=(E2+E3 E1)=R2=0:06A.khdaw.com(b)Vab=E3+E2=(5:0V)+(4:0V)=9:0V.P31-9(a)Thethreewaylight-bulbhastwolaments(orsowearetoldinthequestion).Therearefourwaysforthesetwolamentstobewired:eitheronealone,bothinseries,orbothinparallel.Wiringthelamentsinserieswillhavethelargesttotalresistance,andsinceP=V2=Rthisarrangementwouldresultinthedimmestlight.Butwearetoldthelightstilloperatesatthelowestsetting,andifalamentburnedoutinaseriesarrangementthelightwouldgoout.Wethenconcludethatthelowestsettingisonelament,themiddlesettingisanotherlament,andthebrightestsettingisbothlamentsinparallel.(b)Thebeautyofparallelsettingsisthatthenpowerisadditive(itisalsoaddictive,butthat"sadierenteld.)Onelamentdissipates100Wat120V;theotherlament(theonethatburnsout)dissipates200Wat120V,andbothtogetherdissipate300Wat120V.www.khdaw.comTheresistanceofonelamentisthen(V)2(120V)2R===144:P(100W)Theresistanceoftheotherlamentis(V)2(120V)2R===72:P(200W)P31-10Wecanassumethat课后答案网Rcontains"alloftheresistanceoftheresistor,thebatteryandtheammeter,thenR=(1:50V)=(1:0m=A)=1500:ForeachofthefollowingpartsweapplyR+r=V=i,so(a)r=(1:5V)=(0:1mA) (1500)=1:35104,(b)r=(1:5V)=(0:5mA) (1500)=1:5103,(c)r=(1:5V)=(0:9mA) (1500)=167.(d)R=(1500) (18:5)=1482P31-11(a)TheeectiveresistanceoftheparallelbranchesonthemiddleandtherightisR2R3:R2+R393khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comTheeectiveresistanceofthecircuitasseenbythebatteryisthenR2R3R1R2+R1R3+R2R3R1+=;R2+R3R2+R3ThecurrentthroughthebatteryisR2+R3i=E;R1R2+R1R3+R2R3ThepotentialdierenceacrossR1isthenR2+R3V1=ER1;R1R2+R1R3+R2R3whileV3=E V1,orR2R3V3=E;khdaw.comR1R2+R1R3+R2R3sothecurrentthroughtheammeterisV3R2i3==E;R3R1R2+R1R3+R2R3or(4)i3=(5:0V)=0:45A:(2)(4)+(2)(6)+(4)(6)(b)ChangingthelocationsofthebatteryandtheammeterisequivalenttoswappingR1andR3.Butsincetheexpressionforthecurrentdoesn"tchange,thenthecurrentisthesame.www.khdaw.comP31-12V1+V2=VS+VX;ifVa=Vb,thenV1=VS.Usingtherstexpression,ia(R1+R2)=ib(RS+RX);usingthesecond,iaR1=ibR2:Dividingtherstbythesecond,1+R2=R1=1+RX=RS;orRX=RS(R2=R1课后答案网).P31-13P31-14Lv=Q=mandQ=t=P=iV,soiV(5:2A)(12V)6Lv===2:9710J=kg:m=t(2110 6kg=s)P31-15P=i2R.W=pV,whereVisvolume.p=mg=AandV=Ay,whereyistheheightofthepiston.ThenP=dW=dt=mgv.Combiningallofthis,i2R(0:240A)2(550)v===0:274m=s:mg(11:8kg)(9:8m=s2)khdaw.com94若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP31-16(a)Sinceq=CV,thenq=(3210 6F)(6V)+(4V=s)(0:5s) (2V=s2)(0:5s)2=2:410 4C:(b)Sincei=dq=dt=CdV=dt,theni=(3210 6F)(4V=s) 2(2V=s2)(0:5s)=6:410 5A:(c)SinceP=iV,P=[(4V=s) 2(2V=s2)(0:5s)(6V)+(4V=s)(0:5s) (2V=s2)(0:5s)2=4:810 4W:P31-17(a)WehaveP=30P0andi=4i0.ThenP30P030R===R0:i2(4i0)216Wedon"treallycarewhathappenedwiththepotentialdierence,sinceknowingthechangeinkhdaw.comresistanceofthewireshouldgivealltheinformationweneed.Thevolumeofthewireisaconstant,evenupondrawingthewireout,soLA=L0A0;theproductofthelengthandthecrosssectionalareamustbeaconstant.ResistanceisgivenbyR=L=A,butA=L0A0=L,sothelengthofthewireisssA0L0R30A0L0R0L===1:37L0:16(b)WeknowthatA=L0A0=L,sowww.khdaw.comLA0A=A0==0:73A0:L01:37P31-18(a)ThecapacitorchargeasafunctionoftimeisgivenbyEq.31-27,q=CE1 e t=RC;whilethecurrentthroughthecircuit(andtheresistor)isgivenbyEq.31-28,E t=RCi=e:课后答案网RTheenergysuppliedbytheemfisZZU=Eidt=Edq=Eq;buttheenergyinthecapacitorisUC=qV=2=Eq=2.(b)Integrating,ZZE2E2EqU=i2Rdt=e 2t=RCdt==:RR2C295khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP31-19ThecapacitorchargeasafunctionoftimeisgivenbyEq.31-27,q=CE1 e t=RC;whilethecurrentthroughthecircuit(andtheresistor)isgivenbyEq.31-28,E t=RCi=e:RTheenergystoredinthecapacitorisgivenbyq2U=;2CsotheratethatenergyisbeingstoredinthecapacitorisdUqdqqPC===i:khdaw.comdtCdtCTherateofenergydissipationintheresistorisP=i2R;RsothetimeatwhichtherateofenergydissipationintheresistorisequaltotherateofenergystorageinthecapacitorcanbefoundbysolvingPC=PR;2qiR=i;Cwww.khdaw.comiRC=q;ECe t=RC=CE1 e t=RC;e t=RC=1=2;t=RCln2:课后答案网96khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE32-1ApplyEq.32-3,F~=q~vB~.Allofthepathswhichinvolvelefthandturnsarepositiveparticles(path1);thosepathswhichinvolverighthandturnsarenegativeparticle(path2andpath4);andthosepathswhichdon"tturninvolveneutralparticles(path3).E32-2(a)ThegreatestmagnitudeofforceisF=qvB=(1:610 19C)(7:2106m=s)(8310 3T)=9:610 14N.Theleastmagnitudeofforceis0.(b)TheforceontheelectronisF=ma;theanglebetweenthevelocityandthemagneticeldis,givenbyma=qvBsin.Then(9:110 31kg)(4:91016m=s2)=arcsin=28:(1:610 19C)(7:2106m=s)(8310 3T)E32-3(a)v=E=B=(1:5103V=m)=(0:44T)=3:4103m=s.E32-4(a)v=F=qBsin=(6:4810 17N=(1:6010 19C)(2:6310 3T)sin(23:0)=3:94105m=s:khdaw.com(b)K=mv2=2=(938MeV=c2)(3:94105m=s)2=2=809eV:E32-5ThemagneticforceontheprotonisF=qvB=(1:610 19C)(2:8107m=s)(30eex 6T)=1:310 16N:BThegravitationalforceontheprotonismg=(1:710 27kg)(9:8m=s2)=1:710 26N:Theratioisthen7:6109.If,however,youcarrythenumberofsignicantdigitsfortheintermediateanswersfartheryouwillgettheanswerwhichisinthebackofthebook.www.khdaw.compE32-6Thespeedoftheelectronisgivenbyv=2qV=m,orpv=2(1000eV)=(5:1105eV=c2)=0:063c:TheelectriceldbetweentheplatesisE=(100V)=(0:020m)=5000V=m.TherequiredmagneticeldisthenB=E=v=(5000V=m)=(0:063c)=2:610 4T:E32-7Bothhavethesamevelocity.ThenK=K=mv2=mv2=m=m=.pepepe课后答案网pE32-8Thespeedoftheionisgivenbyv=2qV=m,orpv=2(10:8keV)=(6:01)(932MeV=c2)=1:9610 3c:TherequiredelectriceldisE=vB=(1:9610 3c)(1:22T)=7:17105V=m.E32-9(a)ForachargedparticlemovinginacircleinamagneticeldweapplyEq.32-10;mv(9:1110 31kg)(0:1)(3:00108m=s)r===3:410 4m:jqjB(1:610 19C)(0:50T)(b)The(non-relativistic)kineticenergyoftheelectronis1212 3K=mv=(0:511MeV)(0:10c)=2:610MeV:22khdaw.com97若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comppE32-10(a)v=2K=m=2(1:22keV)=(511keV=c2)=0:0691c.(b)B=mv=qr=(9:1110 31kg)(0:0691c)=(1:6010 19C)(0:247m)=4:7810 4T:(c)f=qB=2m=(1:6010 19C)(4:7810 4T)=2(9:1110 31kg)=1:33107Hz:(d)T=1=f=1=(1:33107Hz)=7:4810 8s:ppE32-11(a)v=2K=m=2(350eV)=(511keV=c2)=0:037c.(b)r=mv=qB=(9:1110 31kg)(0:037c)=(1:6010 19C)(0:20T)=3:1610 4m:E32-12Thefrequencyisf=(7:00)=(1:2910 3s)=5:43103Hz.Themassisgivenbym=qB=2f,or(1:6010 19C)(45:010 3T)m==2:1110 25kg=127u:2(5:43103Hz)E32-13(a)ApplyEq.32-10,butrearrangeitasjqjrB2(1:610 19C)(0:045m)(1:2T)khdaw.comv===2:6106m=s:m4:0(1:6610 27kg)(b)Thespeedisequaltothecircumferencedividedbytheperiod,so2r2m24:0(1:6610 27kg)T====1:110 7s:vjqjB2(1:610 19C)(1:2T)(c)The(non-relativistic)kineticenergyisjqj2r2B(21:610 19C)2(0:045m)2(1:2T)2K===2:2410 14J:2m2(4:01:66www.khdaw.com10 27kg))Tochangetoelectronvoltsweneedmerelydividethisanswerbythechargeononeelectron,so(2:2410 14J)K==140keV:(1:610 19C)(d)V=K=(140keV)=(2e)=70V:qE32-14(a)R=mv=qB=(938MeV=c2)(0:100c)=e(1:40T)=0:223m:(b)f=qB=2m=e(1:40T)=2(938MeV=c2)=2:13107Hz:课后答案网E32-15(a)K=K=(q2=m)=(q2=m)=22=4=1:ppp(b)K=K=(q2=m)=(q2=m)=12=2=1=2:dpddppE32-16(a)K=qV.ThenKp=eVp,Kd=eV,andKp=2eV.(b)r=sqrt2mK=qB.Thenrd=rp=(2=1)(1=1)=(1=1)=2:pp(c)r=sqrt2mK=qB.Thenr=rp=(4=1)(2=1)=(2=1)=2:pppE32-17r=2mK=jqjB=(m=jqj)(2K=B):Allthreeparticlesaretravelingwiththesamekineticenergyinthesamemagneticeld.Therelevantfactorsareinfront;wejustneedtocomparethemassandchargeofeachofthethreeparticles.p(a)Theradiusofthedeuteronpathis2r:1pp(b)Theradiusofthealphaparticlepathis4r=r.2ppkhdaw.com98若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE32-18Theneutron,beingneutral,isunaectedbythemagneticeldandmovesoinalinetangenttotheoriginalpath.Theprotonmovesatthesameoriginalspeedasthedeuteronandhasthesamecharge,butsinceithashalfthemassitmovesinacirclewithhalftheradius.E32-19(a)Theprotonmomentumwouldbepc=qcBR=e(3:0108m=s)(4110 6T)(6:4106m)=7:9104MeV:Since79000MeVismuch,muchgreaterthan938MeVtheprotonisultra-relativistic.ThenEpc,andsince=E=mc2wehave=p=mc.Inverting,rsv1m2c2m2c2=1 =1 1 0:99993:c2p22p2pE32-20(a)Classically,R=2mK=qB,orpR=2(0:511MeV=c2)(10:0MeV)=e(2:20T)=4:8410 3m:khdaw.com(b)Thiswouldbeanultra-relativisticelectron,soKEpc,thenR=p=qB=K=qBc,orR=(10:0MeV)=e(2:2T)(3:00108m=s)=1:5210 2m:(c)Theelectroniseectivelytravelingatthespeedoflight,soT=2R=c,orT=2(1:5210 2m)=(3:00108m=s)=3:1810 10s:Thisresultdoesdependonthespeed!E32-21UseEq.32-10,exceptwerearrangeforthemass, 19www.khdaw.comjqjrB2(1:6010C)(4:72m)(1:33T) 27m===9:4310kgv0:710(3:00108m=s)However,ifitismovingatthisvelocitythenthemass"whichwehavehereisnotthetruemass,butarelativisticcorrection.Foraparticlemovingat0:710cwehave11=p=p=1:42;1 v2=c21 (0:710)2sothetruemassoftheparticleis(9:4310 27kg)=(1:42)=6:6410 27kg:Thenumberofnucleonspresentinthisparticleisthen(6课后答案网:6410 27kg)=(1:6710 27kg)=3:974:Thechargewas+2,whichimpliestwoprotons,theothertwonucleonswouldbeneutrons,sothismustbeanalphaparticle.E32-22(a)Since950GeVismuch,muchgreaterthan938MeVtheprotonisultra-relativistic.=E=mc2,sorrv1m2c4m2c4=1 =1 1 0:9999995:c2E22E2(b)Ultra-relativisticmotionrequirespcE,soB=pc=qRc=(950GeV)=e(750m)(3:00108m=s)=4:44T:99khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE32-23Firstuse2f=qB=m.TheuseK=q2B2R2=2m=mR2(2f)2=2.Thenumberofpturnsisn=K=2qV,onaveragetheparticleislocatedatadistanceR=2fromthecenter,sotheppdistancetraveledisx=n2R=2=n2R.Combining,pp23R3mf223(0:53m)3(2932103keV=c2)(12106=s)2x===240m:qVe(80kV)E32-24Theparticlemovesinacircle.x=Rsin!tandy=Rcos!t.E32-25WewilluseEq.32-20,EH=vdB,exceptwewillnottakethederivationthroughtoEq.32-21.Instead,wewillsetthedriftvelocityequaltothespeedofthestrip.Wewill,however,setEH=VH=w.ThenEV=w(3:910 6V)=(0:8810 2m)v=H=H==3:710 1m=s:BB(1:210 3T)E32-26khdaw.com(a)v=E=B=(4010 6V)=(1:210 2m)=(1:4T)=2:410 3m=s:(b)n=(3:2A)(1:4T)=(1:610 19C)(9:510 6m)(4010 6V)=7:41028=m3:;Silver.E32-27EH=vdBandvd=j=ne.Combineandrearrange.E32-28(a)UsetheresultofthepreviousexerciseandEc=j.(b)(0:65T)=(8:491028=m3)(1:6010 19C)(1:6910 8m)=0:0028:E32-29SinceL~isperpendiculartoB~canusewww.khdaw.comFB=iLB:Equatingthetwoforces,iLB=mg;mg(0:0130kg)(9:81m=s2)i===0:467A:LB(0:620m)(0:440T)Useofanappropriaterighthandrulewillindicatethatthecurrentmustbedirectedtotherightinordertohaveamagneticforcedirectedupward.课后答案网3 6E32-30F=iLBsin=(5:1210A)(100m)(5810T)sin(70)=27:9N.Thedirectionishorizontallywest.E32-31(a)WeuseEq.32-26again,andsincethe(horizontal)axleisperpendiculartotheverticalcomponentofthemagneticeld,F(10;000N)8i===3:310A:BL(10T)(3:0m)(b)ThepowerlostperohmofresistanceintherailsisgivenbyP=r=i2=(3:3108A)2=1:11017W:(c)Ifsuchatrainweretobedevelopedtherailswouldmeltwellbeforethetrainleftthestation.khdaw.com100若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE32-32F=idB,soa=F=m=idB=m.Sinceaisconstant,v=at=idBt=m.Thedirectionistotheleft.RRE32-33Onlythe^jcomponentofB~isofinterest.ThenF=dF=iBydx,orZ3:2F=(5:0A)(810 3T=m2)x2dx=0:414N:1:2Thedirectionis k^.E32-34Themagneticforcewillhavetwocomponents:onewillliftvertically(Fy=Fsin),theotherpushhorizontally(Fx=Fcos).TherodwillmovewhenFx>(W Fy).WeareinterestedintheminimumvalueforFasafunctionof.ThisoccurswhendFdW==0:ddcos+sinThishappenswhenkhdaw.com=tan.Then=arctan(0:58)=30,and(0:58)(1:15kg)(9:81m=s2)F==5:66Ncos(30)+(0:58)sin(30)istheminimumforce.ThenB=(5:66N)=(53:2A)(0:95m)=0:112T.E32-35Wechoosethattheeldpointsfromtheshortersidetothelongerside.(a)Themagneticeldisparalleltothe130cmsidesothereisnomagneticforceonthatside.Themagneticforceonthe50cmsidehasmagnitudeFB=iLBwww.khdaw.comsin;whereistheanglebetweenthe50cmsideandthemagneticeld.Thisangleislargerthan90,butthesinecanbefounddirectlyfromthetriangle,(120cm)sin==0:923;(130cm)andthentheforceonthe50cmsidecanbefoundby 3(120cm)FB=(4:00A)(0:50m)(75:010T)=0:138N;(130cm)andisdirectedoutoftheplaneofthetriangle.Themagneticforceonthe120cmsidehasmagnitude课后答案网FB=iLBsin;whereistheanglebetweenthe1200cmsideandthemagneticeld.Thisangleislargerthan180,butthesinecanbefounddirectlyfromthetriangle,( 50cm)sin== 0:385;(130cm)andthentheforceonthe50cmsidecanbefoundby 3( 50cm)FB=(4:00A)(1:20m)(75:010T)= 0:138N;(130cm)andisdirectedintotheplaneofthetriangle.(b)Lookatthethreenumbersabove.khdaw.com101若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE32-36=NiABsin,so=(20)(0:1A)(0:12m)(0:05m)(0:5T)sin(90 33)=5:010 3Nm:E32-37Theexternalmagneticeldmustbeintheplaneoftheclock/wireloop.Theclockwisecurrentproducesamagneticdipolemomentdirectedintotheplaneoftheclock.(a)Sincethemagneticeldpointsalongthe1pmlineandthetorqueisperpendiculartoboththeexternaleldandthedipole,thenthetorquemustpointalongeitherthe4pmorthe10pmline.ApplyingEq.32-35,thedirectionisalongthe4pmline.Itwilltaketheminutehand20minutestogetthere.(b)=(6)(2:0A)(0:15m)2(0:07T)=0:059Nm:pP32-1SinceF~mustbeperpendiculartoB~thenB~mustbealongpk^.Themagnitudeofvis(40)2+(35)2km/s=53:1km/s;themagnitudeofFis( 4:2)2+(4:8)2fN=6:38fN:ThenB=F=qv=(6:3810 15N)=(1:610 19C)(53:1103m=s)=0:75T:orkhdaw.comB~=0:75Tk^:P32-2~a=(q=m)(E~+~vB~).Fortheinitialvelocitygiven,~vB~=(15:0103m=s)(40010 6T)^j (12:0103m=s)(40010 6T)k^:Butsincethereisnoaccelerationinthe^jork^directionthismustbeosetbytheelectriceld.Consequently,twooftheelectriceldcomponentsareEy= 6:00V=mandEz=4:80V=m.Thethirdcomponentoftheelectriceldisthesourceoftheacceleration,soE=ma=q=(9:1110 31kg)(2:001012m=s2)=( 1:6010 19C)= 11:4V=m:xxwww.khdaw.comP32-3(a)Considerrstthecrossproduct,~vB~.Theelectronmoveshorizontally,thereisacomponentoftheB~whichisdown,sothecrossproductresultsinavectorwhichpointstotheleftoftheelectron"spath.ButtheforceontheelectronisgivenbyF~=q~vB~,andsincetheelectronhasanegativechargetheforceontheelectronwouldbedirectedtotherightoftheelectron"spath.(b)Thekineticenergyoftheelectronsismuchlessthantherestmassenergy,sothisisnon-prelativisticmotion.Thespeedoftheelectronisthenv=2K=m,andthemagneticforceontheelectronisFB=qvB,whereweareassumingsin=1becausetheelectronmoveshorizontallythroughamagneticeldwithaverticalcomponent.Wecanignoretheeectofthemagneticeld"shorizontalcomponentbecausetheelectronismovingparalleltothiscomponent.Theaccelerationoftheelectronbecauseofthemagneticforceisthen课后答案网rqvBqB2Ka==;mmms(1:6010 19C)(55:010 6T)2(1:9210 15J)==6:271014m=s2:(9:1110 31kg)(9:1110 31kg)(c)Theelectrontravelsahorizontaldistanceof20.0cminatimeof(20:0cm)(20:0cm) 9t=p=p=3:0810s:2K=m2(1:9210 15J)=(9:1110 31kg)Inthistimetheelectronisacceleratedtothesidethroughadistanceof121142 92d=at=(6:2710m=s)(3:0810s)=2:98mm:22khdaw.com102若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP32-4(a)dneedstobelargerthantheturnradius,soRd;but2mK=q2B2=R2d2,orpB2mK=q2d2:(b)Outofthepage.P32-5Onlyunde
ectedionsemergefromthevelocityselector,sov=E=B.Theionsarethende
ectedbyB0witharadiusofcurvatureofr=mv=qB;combiningandrearranging,q=m=E=rBB0.P32-6TheionsaregivenakineticenergyK=qV;theyarethende
ectedwitharadiusofcurvaturegivenbyR2=2mK=q2B2.Butx=2R.Combinealloftheabove,andm=B2qx2=8V:P32-7(a)StartwiththeequationinProblem6,andtakethesquarerootofbothsidestoget1pB2q2m=x;khdaw.com8Vandthentakethederivativeofxwithrespecttom,11dmB2q2p=dx;2m8Vandthenconsidernitedierencesinsteadofdierentialquantities,1mB2q2m=x;2V(b)Inverttheaboveexpression,www.khdaw.com12V2x=m;mB2qandthenputinthegivenvalues,12(7:33103V)2x=(2:0)(1:6610 27kg);(35:0)(1:6610 27kg)(0:520T)2(1:6010 19C)=8:02mm:Notethatweused35.0uforthemass;ifwehadused37.0utheresultwouldhavebeencloserto课后答案网theanswerinthebackofthebook.ppP32-8(a)B=2Vm=qr2=2(0:105MV)(238)(932MeV=c2)=2e(0:973m)2=5:2310 7T:(b)Thenumberofatomsinagramis6:021023=238=2:531021.Thecurrentisthen(0:090)(2:531021)(2)(1:610 19C)=(3600s)=20:2mA:P32-9(a) q.(b)Regardlessofspeed,theorbitalperiodisT=2m=qB.Buttheycollidehalfwayaroundacompleteorbit,sot=m=qB.P32-10103khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP32-11(a)TheperiodofmotioncanbefoundfromthereciprocalofEq.32-12,2m2(9:1110 31kg)T===7:8610 8s:jqjB(1:6010 19C)(45510 6T)(b)Weneedtondthevelocityoftheelectronfromthekineticenergy,ppv=2K=m=2(22:5eV)(1:6010 19J/eV)=(9:1110 31kg)=2:81106m=s:Thevelocitycanwrittenintermsofcomponentswhichareparallelandperpendiculartothemagneticeld.Thenvjj=vcosandv?=vsin:Thepitchistheparalleldistancetraveledbytheelectroninonerevolution,sop=vT=(2:81106m=s)cos(65:5)(7:8610 8s)=9:16cm:jj(c)TheradiusofthehelicalpathisgivenbyEq.32-10,exceptthatweusetheperpendicularvelocitycomponent,sokhdaw.commv(9:1110 31kg)(2:81106m=s)sin(65:5)?R===3:20cmjqjB(1:6010 19C)(45510 6T)RbP32-12F~=id~lB~.d~lhastwocomponents,thoseparalleltothepath,sayd~xandthoseaperpendicular,sayd~y.ThentheintegralcanbewrittenasZbZbF~=d~xB~+d~yB~:aawww.khdaw.comRbButB~isconstant,andcanberemovedfromtheintegral.d~x=~l,avectorthatpointsfromatoRabb.d~y=0,becausethereisnonetmotionperpendicularto~l.aP32-13qvyB=Fx=mdvx=dt; qvxB=Fy=mdvy=dt.Takingthetimederivativeofthesecondexpressionandinsertingintotherstwegetmd2vyqvyB=m ;qBdt2whichhassolutionvy= vsin(mt=qB),wherevisaconstant.Usingthesecondequationwendthatthereisasimilarsolutionfor课后答案网vx,exceptthatitisoutofphase,andsovx=vcos(mt=qB):Integrating,ZZqBvx=vxdt=vcos(mt=qB)=sin(mt=qB):mSimilarly,ZZqBvy=vydt= vsin(mt=qB)=cos(mt=qB):mThisistheequationofacircle.P32-14dL~=^idx+^jdy+k^dz.B~isuniform,sothattheintegralcanbewrittenasIIIIF~=i(^idx+^jdy+k^dz)B~=i^iB~dx+i^jB~dy+ik^B~dz;HHHbutsincedx=dy=dz=0,theentireexpressionvanishes.khdaw.com104若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP32-15ThecurrentpulseprovidesanimpulsewhichisequaltoZZZFdt=BiLdt=BLidt=BLq:Thisgivesaninitialvelocityofv0=BLq=m,whichwillcausetherodtohoptoaheightofh=v2=2g=B2L2q2=2m2g:0Solvingforq,mp(0:013kg)pq=2gh=2(9:8m=s2)(3:1m)=4:2C:BL(0:12T)(0:20m)P32-16P32-17Thetorqueonacurrentcarryingloopdependsontheorientationoftheloop;themaximumtorqueoccurswhentheplaneoftheloopisparalleltothemagneticeld.Inthiscasethekhdaw.commagnitudeofthetorqueisfromEq.32-34withsin=1|=NiAB:TheareaofacircularloopisA=r2whereristheradius,butsincethecircumferenceisC=2r,wecanwriteC2A=:4Thecircumferenceisnotthelengthofthewire,becausetheremaybemorethanoneturn.Instead,C=L=N,whereNisthenumberofturns.Finally,wecanwritethetorqueaswww.khdaw.comL2iL2B=NiB=;4N24NwhichisamaximumwhenNisaminimum,orN=1.P32-18dF~=idL~B~;thedirectionofdF~willbeupwardandsomewhattowardthecenter.L~andB~arearightangles,butonlytheupwardcomponentofdF~willsurvivetheintegrationasthecentralcomponentswillcanceloutbysymmetry.HenceZ课后答案网F=iBsindL=2riBsin:P32-19Thetorqueonthecylinderfromgravityisg=mgrsin;whereristheradiusofthecylinder.Thetorquefrommagnetismneedstobalancethis,somgrsin=NiABsin=Ni2rLBsin;ormg(0:262kg)(9:8m=s2)i===1:63A:2NLB2(13)(0:127m)(0:477T)105khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE33-1(a)ThemagneticeldfromamovingchargeisgivenbyEq.33-5.Iftheprotonsaremovingsidebysidethentheangleis==2,so0qvB=4r2andweareinterestedisadistancer=d.Theelectriceldatthatdistanceis1qE=;40r2whereinbothoftheaboveexpressionsqisthechargeofthesourceproton.Onthereceivingendistheotherproton,andtheforceonthatprotonisgivenbyF~=q(E~+~vB~):Thevelocityisthesameasthatoftherstproton(otherwisetheywouldn"tbemovingsidebyside.)Thisvelocityisthenperpendiculartothemagneticeld,andtheresultingdirectionforthecrossproductwillbeoppositetothedirectionofkhdaw.comE~.Thenforbalance,E=vB;1q0qv=v;40r24r212=v:00Wecansolvethiseasilyenough,andwendv3108m=s.(b)Thisisclearlyarelativisticspeed!E33-2B=i=2d=(410 7Tm=A)(120A)=2(6:3m)=3:810 6T:Thiswillde
ectthe0www.khdaw.comcompassneedlebyasmuchasonedegree.However,thereisunlikelytobeaplaceontheEarth"ssurfacewherethemagneticeldis210T.Thiswaslikelyatypo,andshouldprobablyhavebeen21.0T.Thede
ectionwouldthenbesometendegrees,andthatissignicant.E33-3B=i=2d=(410 7Tm=A)(50A)=2(1:310 3m)=37:710 3T:0E33-4(a)i=2dB==2(8:1310 2m)(39:010 6T)=(410 7Tm=A)=15:9A:0(b)DueEast.E33-5UseB=0课后答案网i=(410 7N=A2)(1:610 19C)(5:61014s 1)=1:210 8T:2d2(0:0015m)E33-6Zero,bysymmetry.Anycontributionsfromthetopwireareexactlycanceledbycontribu-tionsfromthebottomwire.E33-7B=i=2d=(410 7Tm=A)(48:8A)=2(5:210 2m)=1:8810 4T:0F~=q~vB~.Allcasesareeitherparallelorperpendicular,soeitherF=0orF=qvB.(a)F=qvB=(1:6010 19C)(1:08107m=s)(1:8810 4T)=3:2410 16N.ThedirectionofF~isparalleltothecurrent.(b)F=qvB=(1:6010 19C)(1:08107m=s)(1:8810 4T)=3:2410 16N.ThedirectionofF~isradiallyoutwardfromthecurrent.(c)F=0.khdaw.com106若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE33-8WewantB1=B2,butwithoppositedirections.Theni1=d1=i2=d2,sinceallconstantscancelout.Theni2=(6:6A)(1:5cm)=(2:25cm)=4:4A,directedoutofthepage.E33-9Forasinglelongstraightwire,B=0i=2dbutweneedafactorof2"sincetherearetwowires,theni=dB=0:FinallydB(0:0405m)(296;T)i===30A0(410 7N=A2)E33-10(a)Thesemi-circlepartcontributeshalfofEq.33-21,or0i=4R.EachlongstraightwirecontributeshalfofEq.33-13,or0i=4R.Addthethreecontributionsandgeti2(410 7N=A2)(11:5A)2B=0+1=+1=1:1410 3T:a4R4(5:2010 3m)Thedirectionisoutofthepage.(b)EachlongstraightwirecontributesEq.33-13,or0i=2R.Addthetwocontributionsandgetkhdaw.comi(410 7N=A2)(11:5A)B=0==8:8510 4T:aR(5:2010 3m)Thedirectionisoutofthepage.E33-11z3=iR2=2B=(410 7N=A2)(320)(4:20A)(2:4010 2m)2=2(5:010 6T)=9:73010 2m3.Thenz=0:46m.E33-12ThecircularpartcontributesafractionofEq.33-21,or0i=4R.EachlongstraightwirecontributeshalfofEq.33-13,or0i=4R.Addthethreecontributionsandgetwww.khdaw.com0iB=( 2):4RThegoalistogetB=0thatwillhappenif=2radians.E33-13Therearefourcurrentsegmentsthatcouldcontributetothemagneticeld.Thestraightsegments,however,contributenothingbecausethestraightsegmentscarrycurrentseitherdirectlytowardordirectlyawayfromthepointP.Thatleavesthetworoundedsegments.EachcontributiontoB~canbefoundbystartingwithEq.33-21,or0i=4b.Thedirectionisoutofthepage.Thereisalsoacontributionfromthetoparc;thecalculationsarealmostidenticalexceptthat课后答案网thisispointingintothepageandr=a,so0i=4a.ThenetmagneticeldatPisthen0i11B=B1+B2= :4baE33-14ForeachstraightwiresegmentuseEq.33-12.WhenthelengthofwireisL,thedistancetothecenterisW=2;whenthelengthofwireisWthedistancetothecenterisL=2.Therearefourterms,buttheyareequalinpairs,so!0i4L4WB=p+p;4WL2=4+W2=4LL2=4+W2=4p2iL2W22iL2+W200=p+=:L2+W2WLWLkhdaw.comWL107若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE33-15Weimaginetheribbonconductortobeacollectionofthinwires,eachofthicknessdxandcarryingacurrentdi.dianddxarerelatedbydi=dx=i=w.ThecontributionofoneofthesethinwirestothemagneticeldatPisdB=0di=2x;wherexisthedistancefromthisthinwiretothepointP.Wewanttochangevariablestoxandintegrate,soZZZ0idx0idxB=dB==:2wx2wxThelimitsofintegrationarefromdtod+w,so0id+wB=ln:2wdE33-16TheeldsfromeachwireareperpendicularatP.EachcontributesanamountB0=pp0i=2d,butsincetheyareperpendicularthereisaneteldofmagnitudeB=2B02=20i=2d:pNotethata=2d,soB=0i=a.(a)B=(410 7Tm=A)(115A)=(0:122m)=3:7710 4T:Thedirectionistotheleft.khdaw.com(b)Samenumericalresult,exceptthedirectionisup.E33-17FollowalongwithSampleProblem33-4.Reversingthedirectionofthesecondwire(sothatnowbothcurrentsaredirectedoutofthepage)willalsoreversethedirectionofB2.Then0i11B=B1 B2= ;2b+xb x0i(b x) (b+x)=;2b2 x20ix=:x2 b2www.khdaw.comE33-18(b)Bysymmetry,onlythehorizontalcomponentofB~survives,andmustpointtotheright.(a)Thehorizontalcomponentoftheeldcontributedbythetopwireisgivenby0i0ib=20ibB=sin==;2h2hh(4R2+b2)psincehisthehypotenuse,orh=R2+b2=4.Buttherearetwosuchcomponents,onefromthetopwire,andanidenticalcomponentfromthebottomwire.课后答案网E33-19(a)WecanuseEq.33-21tondthemagneticeldstrengthatthecenterofthelargeloop,i(410 7Tm=A)(13A)B=0==6:810 5T:2R2(0:12m)(b)ThetorqueonthesmallerloopinthecenterisgivenbyEq.32-34,~=NiA~B~;butsincethemagneticeldfromthelargeloopisperpendiculartotheplaneofthelargeloop,andtheplaneofthesmallloopisalsoperpendiculartotheplaneofthelargeloop,themagneticeldisintheplaneofthesmallloop.ThismeansthatjA~B~j=AB.Consequently,themagnitudeofthetorqueonthesmallloopis=NiAB=(50)(1:3A)()(8:210 3m)2(6:810 5T)=9:310 7Nm:108khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE33-20(a)Therearetwocontributionstotheeld.Oneisfromthecircularloop,andisgivenby0i=2R.Theotherisfromthelongstraightwire,andisgivenby0i=2R.Thetwoeldsareoutofthepageandparallel,so0iB=(1+1=):2R(b)Thetwocomponentsarenowatrightangles,so0ipB=1+1=2:2RThedirectionisgivenbytan=1=or=18.E33-21TheforcepermeterforanypairofparallelcurrentsisgivenbyEq.33-25,F=L=i2=2d,0wheredistheseparation.Thedirectionoftheforceisalongthelineconnectingtheintersectionofthecurrentswiththeperpendicularplane.Eachcurrentexperiencesthreeforces;twoareatrightppanglesandequalinmagnitude,sojF~+F~j=L=F2+F2=L=2i2=2a.Thethirdforcep121412140pointsparalleltothissum,butkhdaw.comd=a,sotheresultantforceispF2i2i2410 7N=A2(18:7A)2pp=0+p0=(2+1=2)=6:0610 4N=m:L2a22a2(0:245m)Itisdirectedtowardthecenterofthesquare.E33-22Bysymmetryweexpectthemiddlewiretohaveanetforceofzero;thetwoontheoutsidewilleachbeattractedtowardthecenter,buttheanswerswillbesymmetricallydistributed.Forthewirewhichisthefarthestleft,Fi21111410 7N=A2(3:22A)2111=0+++=www.khdaw.com1+++=5:2110 5N=m:L2a2a3a4a2(0:083m)234Forthesecondwireover,thecontributionsfromthetwoadjacentwiresshouldcancel.ThisleavesFi211410 7N=A2(3:22A)211=0++=+=2:0810 5N=m:L22a3a2(0:083m)23E33-23(a)Theforceontheprojectileisgivenbytheintegralof课后答案网dF~=id~lB~overthelengthoftheprojectile(whichisw).Themagneticeldstrengthcanbefoundfromaddingtogetherthecontributionsfromeachrail.IftherailsarecircularandthedistancebetweenthemissmallcomparedtothelengthofthewirewecanuseEq.33-13,0iB=;2xwherexisthedistancefromthecenteroftherail.Thereisoneproblem,however,becausethesearenotwiresofinnitelength.Sincethecurrentstopstravelingalongtherailwhenitreachestheprojectilewehavearodthatisonlyhalfofaninniterod,soweneedtomultiplybyafactorof1/2.Buttherearetworails,andeachwillcontributetotheeld,sothenetmagneticeldstrengthbetweentherailsis0i0iB=+:4x4(2r+w x)khdaw.com109若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comInthatlasttermwehaveanexpressionthatisameasureofthedistancefromthecenterofthelowerrailintermsofthedistancexfromthecenteroftheupperrail.ThemagnitudeoftheforceontheprojectileisthenZr+wF=iBdx;r2Zr+w0i11=+dx;4rx2r+w xi2r+w0=2ln4rThecurrentthroughtheprojectileisdownthepage;themagneticeldthroughtheprojectileisintothepage;sotheforceontheprojectile,accordingtoF~=i~lB~;istotheright.(b)Numericallythemagnitudeoftheforceontherailis(450103A)2(410 7N=A2)(0:067m)+(0:012m)khdaw.comF=ln=6:65103N2(0:067m)Thespeedoftherailcanbefoundfromeitherenergyconservationsowerstndtheworkdoneontheprojectile,W=Fd=(6:65103N)(4:0m)=2:66104J:Thisworkresultsinachangeinthekineticenergy,sothenalspeedisppv=2K=m=2(2:66104J)=(0:010kg)=2:31103m=s:E33-24Thecontributionsfromtheleftendandtherightendofthesquarecancelout.Thisleaveswww.khdaw.comthetopandthebottom.Thenetforceisthedierence,or(410 7N=A2)(28:6A)(21:8A)(0:323m)11F= ;2(1:1010 2m)(10:3010 2m)=3:2710 3N:E33-25Themagneticforceontheupperwirenearthepointdis0iaibL0iaibL0iaibLFB= x;2(d+x)2d2d2wherexisthedistancefromtheequilibriumpoint课后答案网d.Theequilibriummagneticforceisequaltotheforceofgravitymg,soneartheequilibriumpointwecanwritexFB=mg mg:dThereisthenarestoringforceagainstsmallperturbationsofmagnitudemgx=dwhichcorrespondstoaspringconstantofk=mg=d.Thiswouldgiveafrequencyofoscillationof1p1pf=k=m=g=d;22whichisidenticaltothependulum.E33-26B=(410 7N=A2)(3:58A)(1230)=(0:956m)=5:7910 3T:110khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE33-27ThemagneticeldinsideanidealsolenoidisgivenbyEq.33-28B=0in;wherenistheturnsperunitlength.Solvingforn,B(0:0224T)3 1n===1:0010=m:0i(410 7N=A2)(17:8A)Thesolenoidhasalengthof1.33m,sothetotalnumberofturnsisN=nL=(1:00103=m 1)(1:33m)=1330;andsinceeachturnhasalengthofonecircumference,thenthetotallengthofthewirewhichmakesupthesolenoidis(1330)(0:026m)=109m:E33-28FromthesolenoidwehaveBs=0nis=0(11500=m)(1:94mA)=0(22:3A=m):Fromthewirewehavekhdaw.com0iw0(6:3A)0Bw===(1:002A)2r2rrTheseeldsareatrightangles,soweareinterestedinwhentan(40)=B=B,orws(1:002A) 2r==5:3510m:tan(40)(22:3A=m)E33-29Letu=z d.Then2Zd+L=20niRduB=;2d L=2[R2+www.khdaw.comu2]3=22d+L=20niRu=p;2R2R2+u2d L=2!0nid+L=2d L=2=p p:2R2+(d+L=2)2R2+(d L=2)2IfLismuch,muchgreaterthanRanddthenjL=2dj>>R,andRcanbeignoredinthedenominatoroftheaboveexpressions,whichthensimplifyto!课后答案网0nid+L=2d L=2B=p p:2R2+(d+L=2)2R2+(d L=2)2!0nid+L=2d L=2=p p:2(d+L=2)2(d L=2)2=0in:ItisimportantthatweconsidertherelativesizeofL=2andd!HE33-30Thenetcurrentintheloopis1i0+3i0+7i0 6i0=5i0.ThenB~d~s=50i0:E33-31(a)Thepathisclockwise,soapositivecurrentisintopage.Thenetcurrentis2.0Aout,HsoB~d~s= i= 2:510 6Tm.00H(b)Thenetcurrentiszero,soB~d~s=0.khdaw.com111若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE33-32LetR0betheradiusofthewire.OnthesurfaceofthewireB0=0i=2R0.OutsidethewirewehaveB=0i=2R,thisishalfB0whenR=2R0.InsidethewirewehaveB=iR=2R2,thisishalfBwhenR=R=2.0000E33-33(a)Wedon"twanttoreinventthewheel.TheanswerisfoundfromEq.33-34,exceptitlookslike0irB=:2c2(b)IntheregionbetweenthewiresthemagneticeldlookslikeEq.33-13,0iB=:2rThisisderivedontherighthandsideofpage761.H(c)Ampere"slaw(Eq.33-29)isB~d~s=0i;whereiisthecurrentenclosed.OurAmperianloopwillstillbeacirclecenteredontheaxisoftheproblem,sothelefthandsideoftheaboveequationwillreduceto2khdaw.comrB,justlikeinEq.33-32.Therighthandside,however,dependsonthenetcurrentenclosedwhichisthecurrentiinthecenterwireminusthefractionofthecurrentenclosedintheouterconductor.Thecrosssectionalareaoftheouterconductoris(a2 b2);sothefractionoftheoutercurrentenclosedintheAmperianloopis(r2 b2)r2 b2i=i:(a2 b2)a2 b2Thenetcurrentintheloopisthenr2 b2a2 r2i i=i;a2 b2www.khdaw.coma2 b2sothemagneticeldinthisregionisia2 r20B=:2ra2 b2(d)Thispartiseasysincethenetcurrentiszero;consequentlyB=0.HE33-34(a)Ampere"slaw(Eq.33-29)isB~d~s=0i;whereiisthecurrentenclosed.OurAmperianloopwillstillbeacirclecenteredontheaxisoftheproblem,sothelefthandsideoftheaboveequationwillreduceto2课后答案网rB,justlikeinEq.33-32.Therighthandside,however,dependsonthenetcurrentenclosedwhichisthefractionofthecurrentenclosedintheconductor.Thecrosssectionalareaoftheconductoris(a2 b2);sothefractionofthecurrentenclosedintheAmperianloopis(r2 b2)r2 b2i=i:(a2 b2)a2 b2Themagneticeldinthisregionisir2 b20B=:2ra2 b2(b)Ifr=a,thenia2 b2i00B==;2aa2 b22awhichiswhatweexpect.112khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comIfr=b,thenib2 b20B==0;2ba2 b2whichiswhatweexpect.Ifb=0,thenir2 02ir00B==2ra2 022a2whichiswhatIexpected.E33-35Themagnitudeofthemagneticeldduetothecylinderwillbezeroatthecenterofthecylinderand0i0=2(2R)atpointP.Themagnitudeofthemagneticeldeldduetothewirewillbe0i=2(3R)atthecenterofthecylinderbut0i=2RatP.Inorderfortheneteldtohavedierentdirectionsinthetwolocationsthecurrentsinthewireandpipemustbeindierentdirection.Theneteldatthecenterofthepipeis0i=2(3R),whilethatatPisthen0i0=2(2R) 0i=2R.Settheseequalandsolvefori;khdaw.comi=3=i0=2 i;ori=3i0=8.E33-36(a)B=(410 7N=A2)(0:813A)(535)=2(0:162m)=5:3710 4T.(b)B=(410 7N=A2)(0:813A)(535)=2(0:162m+0:052m)=4:0710 4T.E33-37(a)Apositiveparticlewouldexperienceamagneticforcedirectedtotherightforamagneticeldoutofthepage.Thisparticleisgoingtheotherway,soitmustbenegative.(b)ThemagneticeldofatoroidisgivenbyEq.33-36,www.khdaw.com0iNB=;2rwhiletheradiusofcurvatureofachargedparticleinamagneticeldisgivenbyEq.32-10mvR=:jqjBWeusetheRtodistinguishitfromr.Combining,2mvR=r;0iNjqjsothetworadiiaredirectlyproportional.Thismeans课后答案网R=(11cm)=(110cm)=(125cm);soR=9:7cm.P33-1TheeldfromonecoilisgivenbyEq.33-19iR20B=:2(R2+z2)3=2ThereareNturnsinthecoil,soweneedafactorofN.TherearetwocoilsandweareinterestedinthemagneticeldatP,adistanceR=2fromeachcoil.Themagneticeldstrengthwillbetwicetheaboveexpressionbutwithz=R=2,so2NiR28Ni00B==:2(R2+(R=2)2)3=2(5)3=2Rkhdaw.com113若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP33-2(a)ChangethelimitsofintegrationthatleadtoEq.33-12:ZL0iddzB=;40(z2+d2)3=2L0idz=4(z2+d2)1=2;00idL=:4(L2+d2)1=2(b)TheangleinEq.33-11wouldalwaysbe0,sosin=0,andthereforeB=0.P33-3ThisproblemistheallimportantderivationoftheHelmholtzcoilproperties.(a)ThemagneticeldfromonecoilisNiR20B1=:khdaw.com2(R2+z2)3=2Themagneticeldfromtheothercoil,locatedadistancesaway,butforpointsmeasuredfromtherstcoil,isNiR20B2=:2(R2+(z s)2)3=2Themagneticeldontheaxisbetweenthecoilsisthesum,NiR2NiR200B=+:2(R2+z2)3=22(R2+(z s)2)3=2Takethederivativewithrespecttozandgetwww.khdaw.comdB3NiR23NiR200= z (z s):dz2(R2+z2)5=22(R2+(z s)2)5=2Atz=s=2thisexpressionvanishes!Weexpectthisbysymmetry,becausethemagneticeldwillbestrongestintheplaneofeithercoil,sothemid-pointshouldbealocalminimum.(b)Takethederivativeagainandd2B3NiR215NiR2002= +zdz22(R2+z2)5=22(R2+z2)5=2课后答案网3NiR215NiR2002 +(z s):2(R2+(z s)2)5=22(R2+(z s)2)5=2Wecouldtryandsimplifythis,butwedon"treallywantto;weinsteadwanttosetitequaltozero,thenletz=s=2,andthensolvefors.Thesecondderivativewillequalzerowhen 3(R2+z2)+15z2 3(R2+(z s)2)+15(z s)2=0;andisz=s=2thisexpressionwillsimplifyto30(s=2)2=6(R2+(s=2)2);4(s=2)2=R2;s=R:114khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP33-4(a)Eachofthesideofthesquareisastraightwiresegmentoflengthawhichcontributesaeldstrengthof0iaB=p;4ra2=4+r2whereristhedistancetothepointontheaxisoftheloop,sopr=a2=4+z2:Thiseldisnotparalleltothezaxis;thezcomponentisBz=B(a=2)=r.Therearefourofthesecontributions.Theoaxiscomponentscancel.Consequently,theeldforthesquareis0iaa=2B=4p;4ra2=4+r2ria20=p;2r2a2=4+r2ia2khdaw.com0=p;2(a2=4+z2)a2=2+z24ia20=p:(a2+4z2)2a2+4z2(b)Whenz=0thisreducesto4ia24i00B=p=p:(a2)2a22aP33-5(a)Thepolygonhasnsides.Aperpendicularbisectorofeachsidecanbedrawntothewww.khdaw.comcenterandhaslengthxwherex=a=cos(=n):EachsidehasalengthL=2asin(=n).Eachofthesideofthepolygonisastraightwiresegmentwhichcontributesaeldstrengthof0iLB=p;4xL2=4+x2Thiseldisparalleltothezaxis.Therearenofthesecontributions.Theoaxiscomponentscancel.Consequently,theeldforthepolygon0iLB=np;课后答案网4xL2=4+x20i2=nptan(=n);4L2=4+x20i1=ntan(=n);2asince(L=2)2+x2=a2.(b)Evaluate:limntan(=n)=limnsin(=n)n=n=:n!1n!1Thentheanswertopart(a)simpliesto0iB=:2a115khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP33-6ForasquareloopofwirewehavefournitelengthsegmentseachcontributingatermwhichlookslikeEq.33-12,exceptthatLisreplacedbyL=4anddisreplacedbyL=8.Thenatthecenter,0iL=4160iB=4p=p:4L=8L2=64+L2=642LForacircularloopR=L=2so0i0B==:2RLpSince16=2>,thesquarewins.Butonlybysome7%!P33-7WewanttousethedierentialexpressioninEq.33-11,exceptthatthelimitsofintegra-tionaregoingtobedierent.Wehavefourwiresegments.Fromthetopsegment,3L=40idB1=p;4z2+d2 L=4khdaw.com!0i3L=4 L=4=p p:4d(3L=4)2+d2( L=4)2+d2Forthetopsegmentd=L=4,sothissimpliesevenfurtherto0ippB1=2(35+5):10LThebottomsegmenthasthesameintegral,butd=3L=4,so0ipwww.khdaw.compB3=2(5+5):30LBysymmetry,thecontributionfromtherighthandsideisthesameasthebottom,soB2=B3,andthecontributionfromthelefthandsideisthesameasthatfromthetop,soB4=B1.Addingallfourterms,20ippppB=32(35+5)+2(5+5);30L20ipp=(22+10):3LP33-8Assumeacurrentringhasaradius课后答案网randawidthdr,thechargeontheringisdq=2rdr,where=q=R2.Thecurrentintheringisdi=!dq=2=!rdr.TheringcontributesaelddB=0di=2r.Integrateoveralltherings:ZRB=0!rdr=2r=0!R=2=!q=2R:0P33-9B=0inandmv=qBr.Combine,andmv(5:11105eV=c2)(0:046c)i===0:271A:0qrn(410 7N=A2)e(0:023m)(10000=m)116khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP33-10ThisshapeisatrianglewithareaA=(4d)(3d)=2=6d2.Theenclosedcurrentistheni=jA=(15A=m2)6(0:23m)2=4:76AThelineintegralistheni=6:010 6Tm:0P33-11AssumethatBdoesvaryasthepictureimplies.Thenthelineintegralalongthepathshownmustbenonzero,sinceB~~lontherightisnotzero,whileitisalongthethreeothersides.HHenceB~d~lisnonzero,implyingsomecurrentpassesthroughthedottedpath.Butitdoesn"t,soB~cannothaveanabruptchange.P33-12(a)SketchanAmperianloopwhichisarectanglewhichenclosedNwires,hasaverticalHsideswithheighth,andhorizontalsideswithlengthL.ThenB~d~l=0Ni:Evaluatetheintegralalongthefoursides.Theverticalsidecontributenothing,sinceB~isperpendicularto~h,andthenB~~h=0.Iftheintegralisperformedinacounterclockwisedirection(itmust,sincethesenseofintegrationwasdeterminedbyassumingthecurrentispositive),wegetkhdaw.comBLforeachhorizontalsection.Then0iN1B==0in:2L2(b)Asa!1thentan 1(a=2R)!=2.ThenB!i=2a.Ifweassumethatiismadeupof0severalwires,eachwithcurrenti0,theni=a=i0n.P33-13ApplyAmpere"slawwithanAmperianloopthatisacirclecenteredonthecenterofthewire.ThenIIIB~d~s=Bds=Bds=2rB;becauseB~istangenttothepathandBisuniformalongthepathbysymmetry.Thecurrentwww.khdaw.comenclosedisZienc=jdA:Thisintegralisbestdoneinpolarcoordinates,sodA=(dr)(rd),andthenZrZ2ienc=(j0r=a)rdrd;00Zr=2j=ar2dr;00课后答案网2j03=r:3aWhenr=athecurrentenclosedisi,so2ja23i0i=orj0=:32a2ThemagneticeldstrengthinsidethewireisfoundbygluingtogetherthetwopartsofAmpere"slaw,2j032rB=0r;3ajr200B=;3air20=:2a3khdaw.com117若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP33-14(a)AccordingtoEq.33-34,themagneticeldinsidethewirewithoutaholehasmagnitudeB=ir=2R2=jr=2andisdirectedradially.Ifwesuperimposeasecondcurrenttocreatethe00hole,theadditionaleldatthecenteroftheholeiszero,soB=0jb=2.Butthecurrentintheremainingwireisi=jA=j(R2 a2);so0ibB=:2(R2 a2)khdaw.comwww.khdaw.com课后答案网118khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE34-1=B~A~=(4210 6T)(2:5m2)cos(57)=5:710 5Wb:BE34-2jEj=jd=dtj=AdB=dt=(=4)(0:112m)2(0:157T=s)=1:55mV:BE34-3(a)ThemagnitudeoftheemfinducedinaloopisgivenbyEq.34-4,dBjEj=N;dt=N(12mWb=s2)t+(7mWb=s)Thereisonlyoneloop,andwewanttoevaluatethisexpressionfort=2:0s,sojEj=(1)(12mWb=s2)(2:0s)+(7mWb=s)=31mV:(b)Thispartisn"tharder.Themagnetic
uxthroughtheloopisincreasingwhent=2:0s.Theinducedcurrentneedsto
owinsuchadirectiontocreateasecondmagneticeldtoopposethisincrease.Theoriginalmagneticeldisoutofthepageandweopposetheincreasebypointingtheotherway,sothekhdaw.comsecondeldwillpointintothepage(insidetheloop).Bytherighthandrulethismeanstheinducedcurrentisclockwisethroughtheloop,ortotheleftthroughtheresistor.E34-4E= dB=dt= AdB=dt.(a)E= (0:16m)2(0:5T)=(2s)= 2:010 2V:(b)E= (0:16m)2(0:0T)=(2s)=0:010 2V:(c)E= (0:16m)2( 0:5T)=(4s)=1:010 2V:E34-5(a)R=L=A=(1:6910 8m)[()(0:104m)]=[(=4)(2:5010 3m)2]=1:1210 3:(b)E=iR=(9:66A)(1:1210 3)=1:0810www.khdaw.com 2V.TherequireddB=dtisthengivenbydBE 22==(1:0810V)=(=4)(0:104m)=1:27T=s:dtAE34-6E= AB=t=AB=t.ThepowerisP=iE=E2=R.TheenergydissipatedisE2tA2B2E=Pt==:RRtE34-7(a)Wecouldre-derivethestepsinthesampleproblem,orwecouldstartwiththeendresult.We"llstartwiththeresult,课后答案网diE=NA0n;dtexceptthatwehavegoneaheadandusedthederivativeinsteadofthe.Therateofchangeinthecurrentisdi2=(3:0A=s)+(1:0A=s)t;dtsotheinducedemfis E=(130)(3:4610 4m2)(410 7Tm=A)(2:2104=m)(3:0A=s)+(2:0A=s2)t;=(3:7310 3V)+(2:4810 3V=s)t:(b)Whent=2:0stheinducedemfis8:6910 3V,sotheinducedcurrentisi=(8:6910 3V)=(0:15)=5:810 2A:119khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE34-8(a)i=E=R=NAdB=dt.NotethatAreferstotheareaenclosedbytheoutersolenoidwhereBisnon-zero.ThisAisthenthecrosssectionalareaoftheinnersolenoid!Then1di(120)(=4)(0:032m)2(410 7N=A2)(220102=m)(1:5A)i=NAn==4:710 3A:0Rdt(5:3)(0:16s)E34-9P=Ei=E2=R=(AdB=dt)2=(L=a),whereAistheareaoftheloopandaisthecrosssectionalareaofthewire.Buta=d2=4andA=L2=4,soL3d2dB2(0:525m)3(1:110 3m)2P==(9:8210 3T=s)2=4:9710 6W:64dt64(1:6910 8m)E34-10=BA=B(2:3m)2=2.E= d=dt= AdB=dt,orBBB(2:3m)2EB= [ (0:87T=s)]=2:30V;khdaw.com2soE=(2:0V)+(2:3V)=4:3V.E34-11(a)Theinducedemf,asafunctionoftime,isgivenbyEq.34-5,E(t)= dB(t)=dtThisemfdrivesacurrentthroughtheloopwhichobeysE(t)=i(t)RCombining,1dB(t)i(t)= :RdtSincethecurrentisdenedbyi=dq=dtwecanwritedq(t)www.khdaw.com1dB(t)= :dtRdtFactoroutthedtfrombothsides,andthenintegrate:1dq(t)= dB(t);RZZ1dq(t)= dB(t);R1q(t) q(0)=(B(0) B(t))R(b)No.Theinducedcurrentcouldhaveincreasedfromzerotosomepositivevalue,thendecreased课后答案网tozeroandbecamenegative,sothatthenetchargeto
owthroughtheresistorwaszero.Thiswouldbelikesloshingthechargebackandforththroughtheloop.E34-12PhiB=2B=2NBA.Thenthechargeto
owthroughisq=2(125)(1:57T)(12:210 4m2)=(13:3)=3:6010 2C:E34-13Thepartabovethelongstraightwire(adistanceb aaboveit)cancelsoutcontributionsbelowthewire(adistanceb abeneathit).The
uxthroughtheloopisthenZa0i0ibaB=bdr=ln:2a b2r22a b120khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comTheemfintheloopisthendB0ba2E= =ln[2(4:5A=s)t (10A=s)]:dt22a bEvaluating,410 7N=A2(0:16m)(0:12m)E=ln[2(4:5A=s2)(3:0s) (10A=s)]=2:2010 7V:22(0:12m) (0:16m)E34-14UseEq.34-6:E=BDv=(5510 6T)(1:10m)(25m=s)=1:510 3V:E34-15Iftheangledoesn"tvarythenthe
ux,givenby=B~A~isconstant,sothereisnoemf.khdaw.comE34-16(a)UseEq.34-6:E=BDv=(1:18T)(0:108m)(4:86m=s)=0:619V:(b)i=(0:619V)=(0:415)=1:49A:(c)P=(0:619V)(1:49A)=0:922W.(d)F=iLB=(1:49A)(0:108m)(1:18T)=0:190N.(e)P=Fv=(0:190V)(4:86m=s)=0:923W.E34-17Themagneticeldisoutofthepage,andthecurrentthroughtherodisdown.ThenEq.32-26F~=iL~B~showsthatthedirectionofthemagneticforceistotheright;furthermore,sinceeverythingisperpendiculartoeverythingelse,wecangetridofthevectornatureoftheproblemwww.khdaw.comandwriteF=iLB.Newton"ssecondlawgivesF=ma,andtheaccelerationofanobjectfromrestresultsinavelocitygivenbyv=at.Combining,iLBv(t)=t:mE34-18(b)Therodwillaccelerateaslongasthereisanetforceonit.ThisnetforcecomesfromF=iLB.ThecurrentisgivenbyiR=E BLv,soasvincreasesidecreases.Wheni=0therodstopsacceleratingandassumesaterminalvelocity.(a)E=BLvwillgivetheterminalvelocity.Inthiscase,v=E=BL.课后答案网E34-19E34-20Theaccelerationisa=R!2;sinceE=B!R2=2,wecannda=4E2=B2R3=4(1:4V)2=(1:2T)2(5:310 2m)3=3:7104m=s2:E34-21WewillusetheresultsofExercise11thatwereworkedoutabove.Allweneedtodoisndtheinitial
ux;
ippingthecoilup-side-downwillsimplychangethesignofthe
ux.So(0)=B~A~=(59T)()(0:13m)2sin(20)=1:110 6Wb:B121khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comThenusingtheresultsofExercise11wehaveNq=(B(0) B(t));R950 6 6=((1:110Wb) ( 1:110Wb));85=2:510 5C:E34-22(a)The
uxthroughtheloopisZvtZa+L0i0ivta+LB=dxdr=ln:0a2r2aTheemfisthendB0iva+LE= = ln:dt2aPuttinginthenumbers,khdaw.com(410 7N=A2)(110A)(4:86m=s)(0:0102m)+(0:0983m)E=ln=2:5310 4V:2(0:0102m)(b)i=E=R=(2:5310 4V)=(0:415)=6:1010 4A.(c)P=i2R=(6:1010 4A)2(0:415)=1:5410 7W.R(d)F=Bildl,orZa+L0i0ia+LF=ildr=illn:a2r2aPuttinginthenumbers,(410 7N=A2)(110A)www.khdaw.com(0:0102m)+(0:0983m)F=(6:1010 4A)ln=3:1710 8N:2(0:0102m)(e)P=Fv=(3:1710 8N)(4:86m=s)=1:5410 7W.E34-23(a)Startingfromthebeginning,Eq.33-13gives0iB=:2yThe
uxthroughtheloopisgivenby课后答案网ZB=B~dA~;butsincethemagneticeldfromthelongstraightwiregoesthroughtheloopperpendiculartotheplaneoftheloopthisexpressionsimpliestoascalarintegral.Theloopisarectangular,sousedA=dxdy,andletxbeparalleltothelongstraightwire.Combiningtheabove,ZD+bZa0iB=dxdy;D02yZD+b0idy=a;2Dy0iD+b=aln2Dkhdaw.com122若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.com(b)The
uxthroughtheloopisafunctionofthedistanceDfromthewire.Iftheloopmovesawayfromthewireataconstantspeedv,thenthedistanceDvariesasvt.TheinducedemfisthendBE= ;dt0ib=a:2t(vt+b)ThecurrentwillbethisemfdividedbytheresistanceR.Theback-of-the-book"answerissomewhatdierent;theanswerisexpressedintermsofDinsteadift.Thetwoanswersareotherwiseidentical.E34-24(a)TheareaofthetriangleisA=x2tan=2.Inthiscasex=vt,so=B(vt)2tan=2;BandthenE=2Bv2ttan=2;khdaw.com(b)t=E=2Bv2tan=2;so(56:8V)t==2:08s:2(0:352T)(5:21m=s)2tan(55)E34-25E=NBA!,so(24V)!==39:4rad=s:(97)(0:33T)(0:0190m2)That"s6.3rev/second.www.khdaw.comE34-26(a)Thefrequencyoftheemfisthesameasthefrequencyofrotation,f.(b)The
uxchangesbyBA=Ba2duringahalfarevolution.Thisisasinusoidalchange,sotheamplitudeofthesinusoidalvariationintheemfisE=!=2.ThenE=B2a2f.BE34-27WecanuseEq.34-10;theemfisE=BA!sin!t;Thiswillbeamaximumwhensin!t=1.Theangularfrequency,!isequalto!=(1000)(2)=(60)rad/s=105rad/sThemaximumemfisthenE=(3:5T)[(100)(0:5m)(0:3m)](105rad/s)=5:5kV:E34-28(a)Theamplitudeoftheemfis课后答案网E=BA!,soA=E=2fB=(150V)=2(60=s)(0:50T)=0:798m2:(b)Dividethepreviousresultby100.A=79:8cm2.E34-29dB=dt=AdB=dt=A( 8:50mT=s).(a)ForthispathIE~d~s= d=dt= (0:212m)2( 8:50mT=s)= 1:20mV:B(b)ForthispathIE~d~s= d=dt= (0:323m)2( 8:50mT=s)= 2:79mV:Bkhdaw.com123若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.com(c)ForthispathIE~d~s= d=dt= (0:323m)2( 8:50mT=s) (0:323m)2( 8:50mT=s)=1:59mV:BHE34-30dB=dt=AdB=dt=A( 6:51mT=s),whileE~d~s=2rE.(a)Thepathofintegrationisinsidethesolenoid,so r2( 6:51mT=s)(0:022m)( 6:51mT=s)E===7:1610 5V=m:2r2(b)Thepathofintegrationisoutsidethesolenoid,so r2( 6:51mT=s)(0:063m)2( 6:51mT=s)E===1:5810 4V=m2R2(0:082m)E34-31khdaw.comTheinducedelectriceldcanbefoundfromapplyingEq.34-13,IE~d~s= dB:dtWestartwiththelefthandsideofthisexpression.Theproblemhascylindricalsymmetry,sotheinducedelectriceldlinesshouldbecirclescenteredontheaxisofthecylindricalvolume.Ifwechoosethepathofintegrationtoliealonganelectriceldline,thentheelectriceldE~willbeparalleltod~s,andEwillbeuniformalongthispath,soIIIE~d~s=Eds=Eds=2rE;www.khdaw.comwhereristheradiusofthecircularpath.Nowfortherighthandside.The
uxiscontainedinthepathofintegration,so=Br2.BAllofthetimedependenceofthe
uxiscontainedinB,sowecanimmediatelywrite2dBrdB2rE= rorE= :dt2dtWhatdoesthenegativesignmean?Thepathofintegrationischosensothatifourrighthandngerscurlaroundthepathourthumbgivesthedirectionofthemagneticeldwhichcutsthroughthepath.Sincetheeldpointsintothepageapositiveelectriceldwouldhaveaclockwiseorientation.SinceBisdecreasingthederivativeisnegative,butwegetanothernegativefromtheequation课后答案网above,sotheelectriceldhasapositivedirection.Nowforthemagnitude.E=(4:8210 2m)(10:710 3T=s)=2=2:5810 4N=C:Theaccelerationoftheelectronateitheraorcthenhasmagnitudea=Eq=m=(2:5810 4N=C)(1:6010 19C)=(9:1110 31kg)=4:53107m=s2:P34-1Theinducedcurrentisgivenbyi=E=R.TheresistanceoftheloopisgivenbyR=L=A,whereAisthecrosssectionalarea.Combining,andwritingintermsoftheradiusofthewire,wehaver2Ei=:Lkhdaw.com124若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comThelengthofthewireisrelatedtotheradiusofthewirebecausewehaveaxedmass.Thetotalvolumeofthewireisr2L,andthisisrelatedtothemassanddensitybym=r2L.EliminatingrwehavemEi=:L2Thelengthofthewireloopisthesameasthecircumference,whichisrelatedtotheradiusRoftheloopbyL=2R.Theemfisrelatedtothechanging
uxbyE= dB=dt,butiftheshapeoftheloopisxedthisbecomesE= AdB=dt.Combiningallofthis,mAdBi=:(2R)2dtWedroppedthenegativesignbecauseweareonlyinterestedinabsolutevalueshere.NowA=R2,sothisexpressioncanalsobewrittenasmR2dBmdBi==:(2R)2dt4dtP34-2khdaw.comForthelowersurfaceB~A~=(7610 3T)(=2)(0:037m)2cos(62)=7:6710 5Wb:FortheuppersurfaceB~A~=(7610 3T)(=2)(0:037m)2cos(28)=1:4410 4Wb:.TheinducedemfisthenE=(7:6710 5Wb+1:4410 4Wb)=(4:510 3s)=4:910 2V:P34-3(a)Weareonlyinterestedintheportionoftheringintheyzplane.ThenE=(3:3210 3T=s)(=4)(0:104m)2=2:8210 5V.(b)Fromctob.Pointyourrightthumbalong xtoopposetheincreasingB~eld.Yourrightngerswillcurlfromctob.2www.khdaw.comP34-4E/NA,butA=randN2r=L,soE/1=N.Thismeansuseonlyonelooptomaximizetheemf.P34-5Thisisaintegralbestperformedinrectangularcoordinates,thendA=(dx)(dy).Themagneticeldisperpendiculartothesurfacearea,soB~dA~=BdA.The
uxisthenZZB=B~dA~=BdA;ZaZa=(4T=ms2)t2ydydx;00课后答案网2212=(4T=ms)taa;2=(2T=ms2)a3t2:Buta=2:0cm,sothisbecomes=(2T=ms2)(0:02m)3t2=(1:610 5Wb=s2)t2:BTheemfaroundthesquareisgivenbydB 52E= = (3:210Wb=s)t;dtandatt=2:5sthisis 8:010 5V.Sincethemagneticeldisdirectedoutofthepage,apositiveemfwouldbecounterclockwise(holdyourrightthumbinthedirectionofthemagneticeldandyourngerswillgiveacounterclockwisesensearoundtheloop).Buttheanswerwasnegative,sotheemfmustbeclockwise.khdaw.com125若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP34-6(a)Farfromtheplaneofthelargeloopwecanapproximatethelargeloopasadipole,andtheniR20B=:2x3The
uxthroughthesmallloopistheni2r2R220B=rB=:2x3(b)E= dB=dt,so3i2r2R20E=v:2x4(c)Anti-clockwisewhenviewedfromabove.P34-7Themagneticeldisperpendiculartothesurfacearea,soB~dA~=BdA.The
uxisthenZZkhdaw.comB=B~dA~=BdA=BA;sincethemagneticeldisuniform.TheareaisA=r2,whereristheradiusoftheloop.TheinducedemfisdBdrE= = 2rB:dtdtItisgiventhatB=0:785T,r=1:23m,anddr=dt= 7:5010 2m=s.Thenegativesignindicateadecreasingradius.ThenE= 2(1:23m)(0:785T)( 7:5010 2m=s)=0:455V:www.khdaw.comP34-8(a)dB=dt=BdA=dt,butdA=dtisA=t,whereAistheareasweptoutduringonerotationandt=1=f.ButtheareasweptoutisR2,sodB2jEj==fBR:dt(b)IftheoutputcurrentisithenthepowerisP=Ei.ButP=!=2f,soP2==iBR=2:2f课后答案网P34-9(a)E= dB=dt,andB=B~A~,soE=BLvcos:ThecomponentoftheforceofgravityontherodwhichpullsitdowntheinclineisFG=mgsin.ThecomponentofthemagneticforceontherodwhichpullsituptheinclineisFB=BiLcos.Equating,BiLcos=mgsin;andsinceE=iR,EmgRsinv==:BLcosB2L2cos2(b)P=iE=E2=R=B2L2v2cos2=R=mgvsin.Thisisidenticaltotherateofchangeofgravitationalpotentialenergy.khdaw.com126若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP34-10Letthecrosssectionofthewirebea.(a)R=L=a=(r+2r)=a;withnumbers,R=(3:410 3)(2+):(b)=Br2=2;withnumbers,B=(4:3210 3Wb):B(c)i=E=R=B!r2=2R=Ba!r=2(+2),orBatri=:(t2+4)Takethederivativeandsetitequaltozero,4 at20=;khdaw.com(t2+4)2soat2=4,or=1at2=2rad.p2(d)!=2,soq(0:15T)(1:210 6m2)2(12rad/s2)(2rad)(0:24m)i==2:2A:(1:710 8m)(6rad)P34-11Itdoessayapproximate,sowewillbemakingsomeratherboldassumptionshere.Firstwewillndanexpressionfortheemf.SinceBisconstant,theemfmustbecausedbyachangeinwww.khdaw.comthearea;inthiscaseashiftinposition.ThesmallsquarewhereB6=0hasawidthaandsweepsaroundthediskwithaspeedr!.AnapproximationfortheemfisthenE=Bar!:Thisemfcausesacurrent.Wedon"tknowexactlywherethecurrent
ows,butwecanreasonablyassumethatitoccursnearthelocationofthemagneticeld.Letusassumethatitisconstrainedtothatregionofthedisk.Theresistanceofthisportionofthediskistheapproximately1L1a1R===;Aattwherewehaveassumedthatthecurrentis
owingradiallywhendeningthecrosssectionalareaoftheresistor".Theinducedcurrentisthen(ontheorderof)课后答案网EBar!==Bar!t:R1=(t)ThiscurrentexperiencesabreakingforceaccordingtoF=BIl,soF=B2a2r!t;wherelisthelengththroughwhichthecurrent
ows,whichisa.Finallywecanndthetorquefrom=rF,and=B2a2r2!t:127khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP34-12TheinducedelectriceldintheringisgivenbyEq.34-11:2RE=jdB=dtj.Thiselectriceldwillresultinaforceonthefreechargecarries(electrons?),givenbyF=Ee.Theaccelerationoftheelectronsisthena=Ee=me.ThenedBa=:2RmedtIntegratebothsideswithrespecttotimetondthespeedoftheelectrons.ZZedBadt=dt;2RmedtZedBv=2Rme;e=B:2RmeThecurrentdensityisgivenbykhdaw.comj=nev,andthecurrentbyiA=ia2.Combining,ne2a2i=PhiB:2RmeActually,itshouldbepointedoutthatPhiBreferstothechangein
uxfromexternalsources.Thecurrentinducedinthewirewillproducea
uxwhichwillexactlyosetPhiBsothatthenet
uxthroughthesuperconductingringisxedatthevaluepresentwhentheringbecamesuperconducting.P34-13AssumethatEdoesvaryasthepictureimplies.Thenthelineintegralalongthepathshownmustbenonzero,sinceE~~lontherightisnotzero,whileitisalongthethreeothersides.HHenceE~d~lisnonzero,implyingachangeinthemagnetic
uxthroughthedottedpath.Butitdoesn"t,soE~cannothaveanabruptchange.www.khdaw.comP34-14Theelectriceldadistancerfromthecenterisgivenbyr2dB=dTrdBE==:2r2dtThiseldisdirectedperpendiculartotheradiallines.Denehtobethedistancefromthecenterofthecircletothecenteroftherod,andevaluateRE=E~d~s,Z课后答案网dBrhE=dx;dt2rdBL=h:dt2Buth2=R2 (L=2)2,sodBLpE=R2 (L=2)2:dt2P34-15(a)=r2B,soBavE(0:32m)E==2(0:28T)(120)=34V=m:2r2(b)a=F=m=Eq=m=(33:8V=m)(1:610 19C)=(9:110 31kg)=6:01012m=s2.128khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE35-1IftheEarth"smagneticdipolemomentwereproducedbyasinglecurrentaroundthecore,thenthatcurrentwouldbe(8:01022J=T)i===2:1109AA(3:5106m)2E35-2(a)i==A=(2:33Am2)=(160)(0:0193m)2=12:4A.(b)=B=(2:33Am2)(0:0346T)=8:0610 2Nm:E35-3(a)Usingtherighthandruleaclockwisecurrentwouldgenerateamagneticmomentwhichwouldbeintothepage.Bothcurrentsareclockwise,soaddthemoments:=(7:00A)(0:20m)2+(7:00A)(0:30m)2=2:86Am2:(b)Reversingthecurrentreversesthemoment,sokhdaw.com=(7:00A)(0:20m)2 (7:00A)(0:30m)2= 1:10Am2:E35-4(a)=iA=(2:58A)(0:16m)2=0:207Am2.(b)=Bsin=(0:207Am2)(1:20T)sin(41)=0:163Nm:E35-5(a)TheresultfromProblem33-4forasquareloopofwirewas4ia20B(z)=:(4z2+a2)(4z2+2a2)1=2Forzmuch,muchlargerthanawecanignoreanyatermswhichareaddedtoorsubtractedfromzterms.Thismeansthatwww.khdaw.com4z2+a2!4z2and(4z2+2a2)1=2!2z;butwecan"tignorethea2inthenumerator.TheexpressionforBthensimpliestoia20B(z)=;2z3whichcertainlylookslikeEq.35-4.(b)Wecanrearrangethisexpressionandget课后答案网02B(z)=ia;2z3whereitisratherevidentthatia2mustcorrespondto~,thedipolemoment,inEq.35-4.Sothatmustbetheanswer.E35-6=iA=(0:2A)(0:08m)2=4:0210 3Am2;~=n^.(a)Forthetorque,~=~B~=( 9:6510 4Nm)^i+( 7:2410 4Nm)^j+(8:0810 4Nm)k^:(b)Forthemagneticpotentialenergy,U=~B~=[(0:60)(0:25T)]=0:60310 3J:129khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE35-7=iA=i(a2+b2=2)=i(a2+b2)=2:E35-8IfthedistancetoPisverylargecomparedtoaorbwecanwritetheLawofBiotandSavartasB~=0i~s~r:4r3~sisperpendicularto~rfortheleftandrightsides,sotheleftsidecontributes0ibB1=;4(x+a=2)2andtherightsidecontributes0ibB3= :4(x a=2)2Thetopandbottomsideseachcontributeanequalamount0iasin0ia(b=2)khdaw.comB2=B4=4x2+b2=44x3:Addthefourterms,expandthedenominators,andkeeponlytermsinx3,0iab0B= = :4x34x3Thenegativesignindicatesthatitisintothepage.E35-9(a)Theelectriceldatthisdistancefromtheprotoniswww.khdaw.com 191(1:6010C)11E==5:1410N=C:4(8:8510 12C2=Nm2)(5:2910 11m)2(b)Themagneticeldatthisfromtheprotonisgivenbythedipoleapproximation,0B(z)=;2z3(410 7N=A2)(1:4110 26A=m2)=;2(5:2910 11m)3课后答案网=1:9010 2TE35-101:50gofwaterhas(2)(6:021023)(1:5)=(18)=1:001023hydrogennuclei.Ifallarealignedthenetmagneticmomentwouldbe=(1:001023)(1:4110 26J=T)=1:4110 3J=T.Theeldstrengthisthen(1:4110 3J=T)B=0=(1:0010 7N=A2)=9:310 13T:4x3(5:33m)3E35-11(a)Thereiseectivelyacurrentofi=fq=q!=2.Thedipolemomentisthen=iA=(q!=2)(r2)=1q!r2:2(b)Therotationalinertiaoftheringismr2soL=I!=mr2!.Then(1=2)q!r2q==:Lmr2!2mkhdaw.com130若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE35-12Themassofthebaris32m=V=(7:87g/cm)(4:86cm)(1:31cm)=50:1g:ThenumberofatomsinthebarisN=(6:021023)(50:1g)=(55:8g)=5:411023:Thedipolemomentofthebaristhen=(5:411023)(2:22)(9:2710 24J=T)=11:6J=T:(b)Thetorqueonthemagnetis=(11:6J=T)(1:53T)=17:7Nm:E35-13Themagneticdipolemomentisgivenby=MV,Eq.35-13.Thenkhdaw.com=(5;300A=m)(0:048m)(0:0055m)2=0:024Am2:E35-14(a)TheoriginaleldisB0=0in.TheeldwillincreasetoB=mB0,sotheincreaseisB=( 1)in=(3:310 4)(410 7N=A2)(1:3A)(1600=m)=8:610 7T:10(b)M=( 1)B==( 1)in=(3:310 4)(1:3A)(1600=m)=0:69A=m.1001E35-15Theenergyto
ipthedipolesisgivenbyU=2B.Thetemperatureisthen2B4(1:210 23J=T)(0:5T)T===0:58K:3k=23(1:38www.khdaw.com10 23J=K)E35-16TheCurietemperatureofironis770C,whichis750Chigherthanthesurfacetemper-ature.Thisoccursatadepthof(750C)=(30C=km)=25km.E35-17(a)Lookatthegure.At50%(whichis0.5ontheverticalaxis),thecurveisatB0=T0:55T=K.SinceT=300K,wehaveB0165T.(b)Samegure,butnowlookatthe90%mark.B0=T1:60T=K,soB0480T.(c)Goodquestion.Ithinkbotheldsarefarbeyondourcurrentabilities.E35-18(a)Lookatthegure.At50%(whichis0.5ontheverticalaxis),thecurveisat课后答案网B0=T0:55T=K.SinceB0=1:8T,wehaveT(1:8T)=(0:55T=K)=3:3K.(b)Samegure,butnowlookatthe90%mark.B0=T1:60T=K,soT(1:8T)=(1:60T=K)=1:1K.E35-19Since(0:5T)=(10K)=0:05T=K,andallhighertemperatureshavelowervaluesoftheratio,andthisputsallpointsintheregionnearwhereCurie"sLaw(thestraightline)isvalid,thentheanswerisyes.E35-20UsingEq.35-19,VMMM(108g/mol)(511103A=m)==r==8:7410 21A=m2nNA(10490kg=m3)(6:021023/mol)131khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE35-21(a)B==2z3,so0(410 7N=A2)(1:510 23J=T)B==9:410 6T:2(1010 9m)3(b)U=2B=2(1:510 23J=T)(9:410 6T)=2:8210 28J.E35-22=(4310 6T)(295;000106m2)=1:3107Wb:BE35-23(a)We"llassume,however,thatalloftheironatomsareperfectlyaligned.ThenthedipolemomentoftheearthwillberelatedtothedipolemomentofoneatombyEarth=NFe;whereNisthenumberofironatomsinthemagnetizedsphere.IfmAistherelativeatomicmassofiron,thenthetotalmassisNmAmAEarthm==;khdaw.comAAFewhereAisAvogadro"snumber.Next,thevolumeofasphereofmassmismmAEarthV==;AFewhereisthedensity.Andnally,theradiusofaspherewiththisvolumewouldbe1=31=33V3EarthmAr==:44FeANowwendtheradiusbysubstitutingintheknownvalues,www.khdaw.com!1=33(8:01022J=T)(56g/mol)r==1:8105m:4(14106g/m3)(2:110 23J=T)(6:01023/mol)(b)Thefractionalvolumeisthecubeofthefractionalradius,sotheansweris(1:8105m=6:4106)3=2:210 5:E35-24(a)AtmagneticequatorLm=0,so(1:0010 7N=A2)(8:01022J=T)0B===31T:课后答案网4r3(6:37106m)3Thereisnoverticalcomponent,sotheinclinationiszero.(b)HereL=60,somq 7222q02(1:0010N=A)(8:010J=T)2B=1+3sinLm=1+3sin(60)=56T:4r3(6:37106m)3Theinclinationisgivenbyarctan(B=B)=arctan(2tanL)=74:vhm(c)AtmagneticnorthpoleL=90,som2(1:0010 7N=A2)(8:01022J=T)0B===62T:2r3(6:37106m)3Thereisnohorizontalcomponent,sotheinclinationis90.khdaw.com132若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE35-25Thisproblemiseectivelysolving1=r3=1=2forrmeasuredinEarthradii.Thenr=1:26r,andthealtitudeabovetheEarthis(0:26)(6:37106m)=1:66106m:EE35-26Theradialdistancefromthecenterisr=(6:37106m) (2900103m)=3:47106m:Theeldstrengthis2(1:0010 7N=A2)(8:01022J=T)0B===380T:2r3(3:47106m)3E35-27HereL=90 11:5=78:5,somq 7222q02(1:0010N=A)(8:010J=T)2B=1+3sinLm=1+3sin(78:5)=61T:4r3(6:37106m)3Theinclinationisgivenbyarctan(B=B)=arctan(2tanL)=84:khdaw.comvhmE35-28The
uxouttheother"endis(1:610 3T)(0:13m)2=85Wb.Thenet
uxthroughthesurfaceiszero,sothe
uxthroughthecurvedsurfaceis0 (85Wb) ( 25Wb)= 60Wb:.Thenegativeindicatesinward.E35-29Thetotalmagnetic
uxthroughaclosedsurfaceiszero.Thereisinward
uxonfacesone,three,andveforatotalof-9Wb.Thereisoutward
uxonfacestwoandfourforatotalof+6Wb.Thedierenceis+3Wb;consequentlytheoutward
uxonthesixthfacemustbe+3Wb.E35-30Thestablearrangementsare(a)and(c).Thetorqueineachcaseiszero.www.khdaw.comE35-31Theeldonthexaxisbetweenthewiresis0i11B=+:22r+x2r xHSinceB~dA~=0,wecanassumethe
uxthroughthecurvedsurfaceisequaltothe
uxthroughthexzplanewithinthecylinder.This
uxisZr0i11B=L+dx; r22r+x2r x0i3rr课后答案网=Lln ln;2r3r0i=Lln3:P35-1Wecanimaginetherotatingdiskasbeingcomposedofanumberofrotatingringsofradiusr,widthdr,andcircumference2r.Thesurfacechargedensityonthediskis=q=R2,andconsequentlythe(dierential)chargeonanyringis2qrdq=(2r)(dr)=drR2Theringsrotate"withangularfrequency!,orperiodT=2=!.Theeective(dierential)currentforeachringisthendqqr!di==dr:TR2khdaw.com133若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comEachringcontributestothemagneticmoment,andwecanglueallofthistogetherasZ=d;Z=r2di;ZR3qr!=dr;R20qR2!=:4P35-2(a)Thespherecanbeslicedintodisks.Thediskscanbeslicedintorings.Eachringhassomechargeqi,radiusri,andmassmi;theperiodofrotationforaringisT=2=!,sothecurrentintheringisqi=T=!qi=2.Themagneticmomentis=(!q=2)r2=!qr2=2:khdaw.comiiiiiNotethatthisiscloselyrelatedtotheexpressionforangularmomentumofaring:l=!mr2.iiiEquating,i=qili=2mi:Ifbothmassdensityandchargedensityareuniformthenwecanwriteqi=mi=q=m,ZZ=d=(q=2m)dl=qL=2mForasolidsphereL=!I=2!mR2=5,so=q!Rwww.khdaw.com2=5:(b)Seepart(a)P35-3(a)TheorbitalspeedisgivenbyK=mv2=2:Theorbitalradiusisgivenbymv=qBr,orr=mv=qB.Thefrequencyofrevolutionisf=v=2r.Theeectivecurrentisi=qf.Combiningalloftheabovetondthedipolemoment,vvrmv2K=iA=qr2=q=q=:2r22qBB(b)Sinceqandmcanceloutoftheaboveexpressiontheansweristhesame!(c)Workitout:课后答案网(5:281021=m3)(6:2110 20J)(5:281021=m3)(7:5810 21J)M==+=312A=m:V(1:18T)(1:18T)P35-4(b)Pointthethumboryourrighthandtotheright.Yourngerscurlinthedirectionofthecurrentinthewireloop.(c)InthevicinityofthewireoftheloopB~hasacomponentwhichisdirectedradiallyoutward.ThenB~d~shasacomponentdirectedtotheleft.Hence,thenetforceisdirectedtotheleft.P35-5(b)Pointthethumboryourrighthandtotheleft.Yourngerscurlinthedirectionofthecurrentinthewireloop.(c)InthevicinityofthewireoftheloopB~hasacomponentwhichisdirectedradiallyoutward.ThenB~d~shasacomponentdirectedtotheright.Hence,thenetforceisdirectedtotheright.khdaw.com134若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comP35-6(a)Letx=B=kT.AdopttheconventionthatN+referstotheatomswhichhaveparallelalignmentandN thosewhichareanti-parallel.ThenN++N =N,soN=Nex=(ex+e x);+andN=Ne x=(ex+e x); NotethatthedenominatorsarenecessarysothatN++N =N.Finally,ex e xM=(N+ N )=N:ex+e x(b)IfBkTthenxisverysmallandex1x.Theaboveexpressionreducesto(1+x) (1 x)2BM=N=Nx=:(1+x)+(1 x)kTkhdaw.com(c)IfBkTthenxisverylargeandex!1whilee x!0.TheaboveexpressionreducestoN=N:P35-7(a)Centripetalaccelerationisgivenbya=r!2.Thena a=r(!+!)2 r!2;000=2r!!+r(!)2;002r!0!:www.khdaw.com(b)Thechangeincentripetalaccelerationiscausedbytheadditionalmagneticforce,whichhasmagnitudeFB=qvB=er!B:Thena a0eB!==:2r!02mNotethatweboldlycanceled!against!0inthislastexpression;weareassumingthat!issmall,andfortheseproblemsitis.P35-8(a)i==A=(8:01022J=T)=(6:37106m)2=6:3108A:(b)Farenoughawaybotheldsactlikeperfectdipoles,andcanthencancel.课后答案网(c)Closeenoughneithereldactslikeaperfectdipoleandtheeldswillnotcancel.pP35-9(a)B=Bh2+Bv2,soqq02202B=4r3cosLm+4sinLm=4r31+3sinLm:(b)tani=Bv=Bh=2sinLm=cosLm=2tanLm:135khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE36-1TheimportantrelationshipisEq.36-4,writtenasiL(5:0mA)(8:0mH) 7B===1:010WbN(400)E36-2(a)=(34)(2:6210 3T)(0:103m)2=2:9710 3Wb:(b)L==i=(2:9710 3Wb)=(3:77A)=7:8810 4H:E36-3n=1=d,wheredisthediameterofthewire.ThenLA(410 7H=m)(=4)(4:1010 2m)2=n2A=0==2:6110 4H=m:l0d2(2:5210 3m)2E36-4(a)Theemfsupportsthecurrent,sothecurrentmustbedecreasing.khdaw.com(b)L=E=(di=dt)=(17V)=(25103A=s)=6:810 4H:E36-5(a)Eq.36-1canbeusedtondtheinductanceofthecoil.EL(3:0mV) 4L===6:010H:di=dt(5:0A=s)(b)Eq.36-4canthenbeusedtondthenumberofturnsinthecoil.iL(8:0A)(6:010 4H)N===120B(40Wb)E36-6UsetheequationbetweenEqs.36-9and36-10.www.khdaw.com(410 7H=m)(0:81A)(536)(5:210 2m)(5:210 2m)+(15:310 2m)B=ln;2(15:310 2m)=1:3210 6Wb:E36-7L=n2Al=N2A=l,orm0m0L=(968)(410 7H=m)(1870)2(=4)(5:4510 2m)2=(1:26m)=7:88H:E36-8IneachcaseapplyE=Li=t.(a)E=(4:6H)(7A)课后答案网=(210 3s)=1:6104V:(b)E=(4:6H)(2A)=(310 3s)=3:1103V:(c)E=(4:6H)(5A)=(110 3s)=2:3104V:E36-9(a)Iftwoinductorsareconnectedinparallelthenthecurrentthrougheachinductorwilladdtothetotalcurrentthroughthecircuit,i=i1+i2;Takethederivativeofthecurrentwithrespecttotimeandthendi=dt=di1=dt+di2=dt;Thepotentialdierenceacrosseachinductoristhesame,soifwedividebyEandapplywegetdi=dtdi1=dtdi2=dt=+;EEEButdi=dt1=;ELkhdaw.com136若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comsothepreviousexpressioncanalsobewrittenas111=+:LeqL1L2(b)Iftheinductorsarecloseenoughtogetherthenthemagneticeldfromonecoilwillinducecurrentsintheothercoil.Thenwewillneedtoconsidermutualinductioneects,butthatisatopicnotcoveredinthistext.E36-10(a)Iftwoinductorsareconnectedinseriesthentheemfacrosseachinductorwilladdtothetotalemfacrossboth,E=E1+E2;Thenthecurrentthrougheachinductoristhesame,soifwedividebydi=dtandapplywegetEE1E2=+;di=dtdi=dtdi=dtButEkhdaw.com=L;di=dtsothepreviousexpressioncanalsobewrittenasLeq=L1+L2:(b)Iftheinductorsarecloseenoughtogetherthenthemagneticeldfromonecoilwillinducecurrentsintheothercoil.Thenwewillneedtoconsidermutualinductioneects,butthatisatopicnotcoveredinthistext.E36-11UseEq.36-17,butrearrange:www.khdaw.comt(1:50s)L===0:317s:ln[i0=i]ln[(1:16A)=(10:210 3A)]ThenR=L=L=(9:44H)=(0:317s)=29:8:E36-12(a)Thereisnocurrentthroughtheresistor,soER=0andthenEL=E.(b)E=Ee 2=(0:135)E.L(c)n= ln(EL=E)= ln(1=2)=0:693.E36-13(a)FromEq.36-4wendtheinductancetobe课后答案网 3NB(26:210Wb) 3L===4:7810H:i(5:48A)NotethatBisthe
ux,whilethequantityNBisthenumberof
uxlinkages.(b)WecanndthetimeconstantfromEq.36-14,=L=R=(4:7810 3H)=(0:745)=6:4210 3s:LThewecaninvertEq.36-13togetRi(t)t= Lln1 ;E 3(0:745A)(2:53A) 3= (6:4210s)ln1 =2:4210s:(6:00V)khdaw.com137若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE36-14(a)Rearrange:diE=iR+L;dtELdi i=;RRdtRdidt=:LE=R i(b)Integrate:ZtZiRdi dt=;0L0i E=RRi+E=R t=ln;LE=RE t=Le=i+E=R;Rkhdaw.comE1 e t=L=i:RE36-15di=dt=(5:0A=s).ThendiE=iR+L=(3:0A)(4:0)+(5:0A=s)t(4:0)+(6:0H)(5:0A=s)=42V+(20V=s)t:dtE36-16(1=3)=(1 e t=L),sot(5:22s)L= =www.khdaw.com =12:9s:ln(2=3)ln(2=3)E36-17WewanttotakethederivativeofthecurrentinEq.36-13withrespecttotime,di=E1e t=L=Ee t=L:dtRLLThen=(5:010 2H)=(180)=2:7810 4s.UsingthiswendtherateofchangeinthecurrentLwhent=1:2mstobedi(45V) (1:210 3s)=(2:7810 4s)=e=12A=s:课后答案网dt((5:010 2H)E36-18(b)Considersometimeti:E(t)=Ee ti=L:LiTakingaratiofortwodierenttimes,EL(t1)=e(t2 t1)=L;EL(t2)ort2 t1(2ms) (1ms)L===3:58msln[EL(t1)=EL(t2)]ln[(18:24V)=(13:8V)](a)Chooseanytime,andE=Eet=L=(18:24V)e(1ms)=(3:58ms)=24V:Lkhdaw.com138若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE36-19(a)Whentheswitchisjustclosedthereisnocurrentthroughtheinductor.Soi1=i2isgivenbyE(100V)i1===3:33A:R1+R2(10)+(20)(b)Alongtimelaterthereiscurrentthroughtheinductor,butitisasiftheinductorhasnoeectonthecircuit.Thentheeectiveresistanceofthecircuitisfoundbyrstndingtheequivalentresistanceoftheparallelpart1=(30)+1=(20)=1=(12);andthenndingtheequivalentresistanceofthecircuit(10)+(12)=22:Finally,i1=(100V)=(22)=4:55Aandkhdaw.comV2=(100V) (4:55A)(10)=54:5V;consequently,i2=(54:5V)=(20)=2:73A:Itdidn"task,buti2=(4:55A) (2:73A)=1:82A:(c)Aftertheswitchisjustopenedthecurrentthroughthebatterystops,whilethatthroughtheinductorcontinueson.Theni2=i3=1:82A.(d)Allgotozero.E36-20(a)FortoroidsL=N2hln(b=a)=2.Thenumberofturnsislimitedbytheinnerradius:0Nd=2a.Inthiscase,N=2(0:10m)=(0:00096m)=654:Theinductanceisthen(410 7H=m)(654)2(0:02m)www.khdaw.com(0:12m)L=ln=3:110 4H:2(0:10m)(b)Eachturnhasalengthof4(0:02m)=0:08m.TheresistanceisthenR=N(0:08m)(0:021=m)=1:10Thetimeconstantis=L=R=(3:110 4H)=(1:10)=2:810 4s:LE36-21(I)Whentheswitchisjustclosedthereis课后答案网nocurrentthroughtheinductororR2,sothepotentialdierenceacrosstheinductormustbe10V.ThepotentialdierenceacrossR1isalways10Vwhentheswitchisclosed,regardlessoftheamountoftimeelapsedsinceclosing.(a)i1=(10V)=(5:0)=2:0A.(b)Zero;readtheaboveparagraph.(c)Thecurrentthroughtheswitchisthesumoftheabovetwocurrents,or2:0A.(d)Zero,sincethecurrentthroughR2iszero.(e)10V,sincethepotentialacrossR2iszero.(f)LookattheresultsofExercise36-17.Whent=0therateofchangeofthecurrentisdi=dt=E=L.Thendi=dt=(10V)=(5:0H)=2:0A=s:(II)Aftertheswitchhasbeenclosedforalongperiodoftimethecurrentsarestableandtheinductornolongerhasaneectonthecircuit.Thenthecircuitisasimpletworesistorparallelnetwork,eachresistorhasapotentialdierenceof10Vacrossit.khdaw.com139若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.com(a)Still2.0A;nothinghaschanged.(b)i2=(10V)=(10)=1:0A.(c)Addthetwocurrentsandthecurrentthroughtheswitchwillbe3.0A.(d)10V;seetheabovediscussion.(e)Zero,sincethecurrentisnolongerchanging.(f)Zero,sincethecurrentisnolongerchanging.E36-22U=(71J=m3)(0:022m3)=1:56J.ThenusingU=i2L=2wegetppi=2U=L=2(1:56J)=(0:092H)=5:8A:E36-23(a)L=2U=i2=2(0:0253J)=(0:062A)2=13:2H.(b)Sincethecurrentissquaredintheenergyexpression,doublingthecurrentwouldquadrupletheenergy.Theni0=2i=2(0:062A)=0:124A.0E36-24(a)B=inandu=B2=2,orkhdaw.com00u=i2n2=2=(410 7N=A2)(6:57A)2(950=0:853m)2=2=33:6J=m3:0(b)U=uAL=(33:6J=m3)(17:210 4m2)(0:853m)=4:9310 2J:E36-25u=B2=2,andfromSampleProblem33-2weknowB,henceB0(12:6T)2u==6:32107J=m3:B2(410 7N=A2)E36-26(a)u=B2=2,sowww.khdaw.comB0(10010 12T)21u==2:510 2eV/cm3:B2(410 7N=A2)(1:610 19J/eV)(b)x=(10)(9:461015m)=9:461016m.Usingtheresultsfrompart(a)expressedinJ/m3wendtheenergycontainedisU=(3:9810 15J=m3)(9:461016m)3=3:41036JE36-27TheenergydensityofanelectriceldisgivenbyEq.36-23;thatofamagneticeldis课后答案网givenbyEq.36-22.Equating,0212E=B;220BE=p:00TheansweristhenqE=(0:50T)=(8:8510 12C2=Nm2)(410 7N=A2)=1:5108V=m:140khdaw.com若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comE36-28TherateofinternalenergyincreaseintheresistorisgivenbyP=iVR.TherateofenergystorageintheinductorisdU=dt=Lidi=dt=iVL.SincethecurrentisthesamethroughbothwewanttondthetimewhenVR=VL.UsingEq.36-15wend1 e t=L=e t=L;ln2=t=L;sot=(37:5ms)ln2=26:0ms:E36-29(a)StartwithEq.36-13:i=E(1 e t=L)=R;iR t=L1 =e;E tL=;ln(1 iR=E)khdaw.com (5:2010 3s)=;ln[1 (1:9610 3A)(10:4103)=(55:0V)]=1:1210 2s:ThenL=R=(1:1210 2s)(10:4103)=116H:L(b)U=(1=2)(116H)(1:9610 3A)2=2:2310 4J:RE36-30(a)U=Eq;q=idt.ZE t=LU=Ewww.khdaw.com1 edt;RE22=t+e t=L;LR0E2E2L=t+(e t=L 1):RR2Usingthenumbersprovided,L=(5:48H)=(7:34)=0:7466s:Then2hi课后答案网(12:2V) (2s)=0:7466s)U=(2s)+(0:7466s)(e 1)=26:4J(7:34)(b)TheenergystoredintheinductorisU=Li2=2,orLLE2Z2U=1 e t=Ldt;L2R2=6:57J:(c)UR=U UL=19:8J.E36-31Thisshellhasavolumeof4 V=(R+a)3 R3:EE3khdaw.com141若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com
课后答案网www.khdaw.comSincea<