• 243.04 KB
  • 2022-04-22 11:28:32 发布

大豆生产蛋白污水处理工艺

  • 28页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'大豆分离蛋白生产新工艺的研究   大豆分离蛋白是国际上80年代发展起来的一种高纯度大豆蛋白制品,它具有两大特性:一是营养价值高,蛋白质含量高达90%以上,且含人体所需的八种必需氨基酸,是最为理想的植物蛋白;二是作为一种食品添加剂,大豆分离蛋白具有诸多功能特性如乳化性、吸油性、持水性、凝胶性、起泡性、粘结性等,可以大大改善食品的加工特性,如肉制品中加人3%-6%的大豆分离蛋白可使肉制品的蛋白质含量提高,利用吸油性可使汁液流失减少,利用其持水性可增加出品率,降低成本,同时改善口感,增加弹性。如乳粉中添加20%左右的大豆分离蛋白可起到动植物蛋白互补的作用,提高营养价值,还具软化血管功能,所以大豆分离蛋白是一种很有前途的大豆蛋白制品。目前国内生产大豆分离蛋白仍以碱提酸沉法为主,该法虽然简单易行,却存在着许多难以克服的不足,如可溶性成分去除不彻底,耗酸耗碱较多,产品纯度低、灰分高、色泽深、蛋白得率低等。本文将深人探讨大豆分离蛋白的生产中存在的问题,并对大豆分离蛋白的生产新工艺进行研究。1、大豆分离蛋白生产中存在问题的剖析   生产大豆分离蛋白是以低变性的豆粕为原料,不但要去除低变性豆粕中的不可溶性的高分子成分如纤维素,还要去除低分子可溶性的非蛋白质成分如大豆低聚糖等,目前国内所采用的分离蛋白生产工艺都是碱提酸沉法,即将低变性的豆粕粉用稀碱浸提后,经过滤或离心分离除去豆粕中的不溶性物质,然后用食用盐酸将浸出液的pH值调至4.5左右,蛋白质处于等电点状态而凝集沉淀下来,经中和、调浆、干燥即得成品大豆分离蛋白粉,其生产工艺如下:原料豆粕→粉碎→浸提→过滤→酸沉→离心分离→中和、调浆→杀菌→喷雾干燥                     ↓             ↓                     豆渣          乳清液以下对传统工艺流程中存在的问题加以分析:⑴蛋白质得率低   在大豆分离蛋白生产中蛋白质得率与豆粕原料质量、研磨方法及浸提条件等因素有关。原料豆粕质量对大豆蛋白的得率及品质有显著影响,豆粕应含杂质少,蛋白质变性程度低,豆粕的NSI值必须大于70%,并且NSI值越高则蛋白得率就越高,因此生产大豆分离蛋白的原料豆粕必须选用低变性的脱脂豆粕,这就要求油脂脱溶技术采用低温脱溶或闪蒸脱溶技术以满足生产低变性豆粕的需要。      蛋白得率与研磨方法有关。千法粉碎是指豆粕在干燥的情况下研磨粉碎,此时豆粕比较坚硬,细胞结构致密使蛋白质不易溶出,降低了蛋白得率,延长了溶出浸提时间,同时使粉碎机易磨损。粉碎前对豆粕进行充分浸泡(浸泡效果与浸泡水的温度、水量、pH值及浸泡时间有关),可以软化细胞结构,降低研磨时的能耗与磨损,提高胶体分散程度和悬浮性,显著缩短了蛋白溶出时间,提高了蛋白质得率.    在浸提工序中,蛋白质得率和浸提效率与浆料粒度、浸提水量、温度、pH值及浸提时间有关。   a)一般来说浆料粒度越细则蛋白得率与浸提效率都越高,但当浆料粒度过小时反而使蛋白质得率和浸提效率下降,同时又使过滤分离增加难度;b)浸提水量越多,蛋白得率和浸提效率均越高,但加水量过多时,使得后续各工序增加难度;c)浸提水温度越高,则浸提效率越高,而对蛋白质得率影响并不显著,但温度过高时,可使浸提液粘度增大,造成分离、浓缩、干燥困难,同时大豆蛋白质易变性,影响产品的功能特性;   d)蛋白质得率随着浸提时间的增加而提高,但当浸提达到一定时间后,蛋白质得率随浸提时间的延长而无显著变化;e)浸提水的pH值选择恰当时,将显著提高蛋白质得率。⑵产品灰分高、色泽深、纯度低   国内大豆分离蛋白生产厂家生产的大豆分离蛋白普遍存在着产品灰分高、色泽深、纯度低的问题,主要原因是由碱提酸沉中和工序中残留部分柠檬酸、焦性麸氨酸等有机酸的盐类和植酸磷脂等含磷化合物引起的。过去通常采用水洗的方法来去除这些物质但效果不能令人满意,并且会造成蛋白质的损失,有的企业用离子交换法可以有效提高产品质量,但增加了设备投资和生产成本,因此在大豆分离蛋白的生产工艺上应尽量避免酸沉水洗法,而采用较先进的分离浓缩技术—超滤技术来生产大豆分离蛋白。      国内大豆分离蛋白生产厂家生产的大豆分离蛋白普遍存在着产品灰分高、色泽深、纯度低的问题,主要原因是由碱提酸沉中和工序中残留部分柠檬酸、焦性麸氨酸等有机酸的盐类和植酸磷脂等含磷化合物引起的。过去通常采用水洗的方法来去除这些物质但效果不能令人满意,并且会造成蛋白质的损失,有的企业用离子交换法可以有效提高产品质量,但增加了设备投资和生产成本,因此在大豆分离蛋白的生产工艺上应尽量避免酸沉水洗法,而采用较先进的分离浓缩技术—超滤技术来生产大豆分离蛋白。 ⑶产品的溶解性、速溶性较差    影响大豆分离蛋白的溶解性、速溶性的主要因素有:原料豆粕的变性程度、杀菌、浓缩方法和喷雾干燥的工艺条件等。要改善大豆分离蛋白的溶解性、速溶性,除要选用低变性的豆粕作原料外还要考虑选用先进的浓缩、杀菌方法和喷雾干燥中较合理的工艺参数,尽量降低大豆蛋白的变性。2、大豆分离蛋白生产新工艺   在深入分析了大豆分离蛋白生产中所存在问题的基础上,对各关键单元操作进行切实可行的改进,由此即得大豆分离蛋白生产的一种新工艺,其新工艺流程如下:                                     水碱               水碱                         ↓                 ↓                                                                                 原料豆粕→浸泡→粉碎→一次浸提→微细粉碎→二次浸提→过滤→离心分离→中和→超滤处理→杀菌→喷雾干燥→成品新工艺的特点为:⑴二次湿磨浸提   本工艺采用20℃的饮用水对低变性的豆粕进行1.5-2h的浸泡,使细胞结构充分胀润软化,提高蛋白质浸提效率和得率,降低磨浆时的能耗和磨损。浸提后的豆粕与12倍重量的水一起均匀加入磨浆机内进行一次湿磨,磨浆细度为60目/2.54cm左右,由磨浆机出来的浆液浆渣一起注人浸提罐,并将浆液pH值调至8.5左右,进行2h的浸提,再将一次浸提的提取液通过过滤筒放出,浆渣与8倍重量的水均匀加入胶体磨进行二次湿磨,随后进行二次浸提,时间为90min,其它参数同一次浸提;两次浸提液合并后通过离心分离除去浸提液中的微细豆渣,然后进人超滤装置进行分离浓缩。⑵超滤分离浓缩    超滤技术是近代发展起来的一种新型分离技术,它是借助于特殊的高分子半透膜,以压差为动力,使液体中的组分进行有效分离。一些高分子有机成分如蛋白质、脂肪、高聚糖等被截留,而一些低分子成分如寡糖、无机盐类、有机酸类等则透过半透膜,这样可以达到分离、浓缩、净化之目的,特别适用于大分子物质及热敏性物质的分离浓缩。旦粕经湿磨、碱性浸提、分离、中和后所得的溶液含有大量的高分子量的大豆蛋白质和少量的低分子量物质如大豆低聚糖、酸类和无机盐类,而生产大豆分离蛋白就是要除去这些低分了成分而使大豆分离蛋白得以分离浓缩,因此超滤技术是生产大豆分离蛋白的最佳方法,不但可以提高产品质量还可以降耗减污,改善环境。   超滤方式一般有板式、管式、卷式和中空纤维式四种,其中中空纤维超滤器以膜面积大,体积小,工作效率高,制作成本低等优点而获得最为广泛的使用。      超滤法生产大豆分离蛋白的关键是超滤膜的选择和超滤处理技术参数的确定。一般大豆蛋白质分子量都在2万以上,因此我们选用截留分子量为2万的聚砜膜或聚砜酰胺膜,超滤膜的形式采用中空纤维式。超滤处理的生产率与料液的浓度、pH值、压力、流速等有关,一般料液pH值为7.0-8.0,压力为0.2MPa,料液流速为8m/min较为合理。   超滤法用于生产大豆分离蛋白时的主要问题是膜污染问题,膜污染导致膜通量下降,分离性能发生变化从而使生产能力下降。国内外研究表明,造成膜污染的原因是:部分膜孔被堵塞,溶质在膜表面吸附发生浓差极化现象并导致凝胶层形成,从而导致通量下降。防止膜污染的有效措施有:a)提高进料量,增大膜面流速促使膜面料液紊动现象的发生,以阻止溶质与膜面发生吸附现象;b)及时使溶质分子被水流带走;c)要定时进行清洗;d)根据具体情况采取有效措施降低料液粘度。⑶杀菌与干燥   大豆分离蛋白生产中的杀菌工序要考虑将酶钝化、细菌失活,同时,又要防止大豆蛋白质变性的发生以保证产品的氮溶指数不受影响,为此杀菌工艺采用超高温瞬时杀菌法即杀菌温度为135-140℃,杀菌时间为2-4s,杀菌过程要在高压下进行,防止料液发生沸腾现象。   大豆分离蛋白生产中采用喷雾干燥,但这时所采用的工艺条件应与豆乳粉生产的工艺条件有所不同,因为此时料液中的固形物几乎全部都是大豆蛋白质而此时蛋白质易发生热变性。我们知道喷雾干燥的进风温度愈高,大豆蛋白粉水分愈低,但随着温度的升高,溶解度、速溶性下降,大豆蛋白粉由于加热过度而褐色化,由此可见浓缩杀菌后的料液以100-110℃之进口温度进行喷雾干燥,出风温度为60-65℃,这样才能保证大豆蛋白粉有较好的溶解性和速溶性以及较佳的色泽。   大豆分离蛋白生产新工艺采用二次湿磨浸提技术显著提高了浸提效率和蛋白得率;采用中空纤维超滤装置对料液进行分离浓缩,避免使用酸沉水洗法,大大提高了产品质量和蛋白得率,同时减少废水排放和酸碱用量。采用超高温杀菌工艺和较佳的喷雾干燥条件保证了大豆分离蛋白粉的溶解度、速溶性和色泽俱佳。 大豆分离蛋白产品质量探讨目前大豆分离蛋白产品在我国应用范围愈来愈广,用户对产品质量的要求也愈来愈高。国内的一些产品和国外一些大生产厂家的产品相比,存在的差距也愈加突出。除主要的功能性指标外,感观指标也是不容忽视的问题。几年来,对大豆分离蛋白生产理论及实践的摸索中,总结了一定的经验,愿共同探讨。   目前,大豆分离蛋白产品还无国家标准而是引用国外的质量标准,大致如下:   感观指标:外观呈乳白色粉状,细腻,无霉变,无异味。   质量指标:蛋白质(N×6.25)≥90%(干基),脂肪≤0.8%,水分≤6.0%,纤维≤0.5%(干基),糖类及矿物质(灰分)≤8%(干基),PDI≥80%。   卫生指标:细菌总数,大肠菌群,致病菌等细菌指标符合食品卫生标准。   功能性指标:确保产品应用的溶解性、粘结性、凝胶性、吸水性、吸油性、分散性、乳化性等。   以上指标中,关于蛋白产品的功能性因其检测方法和手段不统一,各生产厂家也只是定性地表示其功能性的好坏。如凝胶性,可用蛋白液组织胶凝后的弹性、粘合性,硬度、脆度等多参数表述。   市场上销售的大豆分离蛋白是以大豆浸出脱脂低温脱溶粕为原料,经过酸、碱处理,去除大部分碳水化合物,使蛋白质含量达90%以上的产品。大豆蛋白质由于氨基酸种类齐全,故称“完全蛋白质”,内含人体所必需的18种氨基酸,最合乎人类和禽畜的需要。大豆分离蛋白的生产工艺,各家不尽相同,各工序的控制也有差异,而且控制手段也各不相同,但大家追求高的蛋白质含量(>88%的蛋白质含量)和得率,以保证分离蛋白质量标准的最基本条件和生产效率的目标是一致的。但实际生产过程中各生产厂家的分离蛋白其PDI值、功能性指标、以及产品颜色、口感、味道却差异较大,在这些方面进口的蛋白质具有明显的优势。而感观指标恰是蛋白使用厂家对蛋白产品质量的第一印象。功能性指标是对添加蛋白质后食品内在质量的表现,如添加后可增加火腿肠和各种肉制品的口感、弹性、切片性、保水保油性;对奶粉、饮料可增强其溶解性、分散性及颗粒均匀程度等。同时蛋白功能特性又是食品中添加分离蛋白的一个主要目的所在,可以改善食品的结构组织,为用户增加经济效益,并可提高食品中蛋白含量,增强营养价值。所以在蛋白生产中要全面控制大豆分离蛋白的各项指标。1、产品的颜色    大豆分离蛋白(没有加任何添加剂)应是浅白色或乳白色粉末。在向任何食品添加都不会改变食品原有的颜色,相反还可以增加其光泽度。有些蛋白产品颜色呈褐色、黄色、灰土色、暗红色等都是不正常的,这说明在其生产过程中存在一定的问题。比如:所用的原料质量,酸、碱等辅料质量不符合要求,水洗不完善,漂白效果不好,干燥温度过高,时间过长等原因,这些都可影响色泽。2、产品的口感、味道    对大豆分离蛋白粉品尝,或将其溶解在水中嗅其味道,正常的都不应存在异味。将其加到食品中不影响食品的口感,保持食品风味。有些蛋白产品,溶解在热水中会挥发出异味,或品尝时感觉到有咸味或涩味。针对这一情况,应加强对生产车间,生产线的清洁卫生工作,各种辅料加强食品级检验,另外蛋白提取的时间也不宜过长。3、产品的功能性   大豆分离蛋白功能较多,具有吸水性、保油性、溶解性、粘结性、凝胶性、乳化性、发泡性等等。但产品的不同应用,对其功能性表现也各不相同,所以针对蛋白产品的不同用途,生产相适应功能的蛋白产品尤为重要。在肉制品中使用大豆分离蛋白,要突出大豆蛋白的吸水保油性、乳化性、凝胶性;在乳制品、饮料中使用大豆分离蛋白,要保证蛋白的溶解性、分散性,使产品均匀稳定;在面包、糕点中使用大豆分离蛋白,要体现蛋白的增白、色泽膜、起泡、松散结构的作用。故产品的功能性要适应用户的需要,根据用户使用要求强化产品的某一种或两种功能性。   各家的生产工艺各不相同,生产手段也不相同,但其原理大致是相同的,所以应从以下几方面解决:   从工艺上改进或强化 调整水料比,增加水洗和漂白工艺,或增加除盐装置,保证工艺的完整性,以改进产品的蛋白含量、颜色、味道。对蛋白进行磷酸盐化等反应处理时,一定要注意精确添加金属盐的含量、添加位置和添加条件(温度、反应时间等),可保证其一定的功能性。   选择好设备  保证主体设备的优良性,离心机的分离因数应3000以上,分离能力要选大些,以适应大的水料比,豆粕和蛋白浆液分离以及蛋白液水洗后浓缩,宜采用可调差速的卧式离心机,对不同浓度、粘性的物料都有较好的分离效果。乳清回收、提纯也可采用碟片式离心机。反应罐的搅拌器要保证良好的搅拌效果,同时亦应减少泡沫的产生。泵的选择要考虑对物料的混合解碎作用及输送双重作用,同时也要考虑不同工段,蛋白浆液的粘度不同。配置均质机可使物料均质、乳化效果更好,保证产品的均匀稳定,粒度一致,增进溶解效果和乳化性能。   配置适宜的控制手段 在大豆分离蛋白生产中,需控制的参数较多,如碱浸的温度、时间、水料比,分离机的进料量,老化的时间、温度,中和的pH值,喷雾干燥的温度、进料浓度。其中酸沉点pH值=4.4-4.6和改性杀菌温度135℃—140℃,时间2s的控制要精确,它们是保证大豆分离蛋白得率和质量好坏的必要条件,连续化生产流程中,水洗比例1∶1也要控制精确,它可保证蛋白含量高和色泽好。    总之,大豆分离蛋白的工厂化生产是一个复杂的过程,在生产中各种物理、化学变化较多,大豆蛋白质受到多种因素的影响,要想生产合格大豆分离蛋白产品是不容易的。要在理论上研究开发,实践中不断摸索,才能生产出适应市场需求的大豆分离蛋白,推进我国的大豆深加工工业的发展。国内大豆分离蛋白生产的现状、差距及建议1、现状   大豆分离蛋白(SoyProteinIsolate,简称SPI)是以大豆为原料,采用先进的加工技术制取的一种蛋白质含量高达90%以上的功能性食品的添加剂由于它具有良好的溶解性,乳化性、起泡性、持水性和粘弹性等特性,又兼有蛋白质含量高的营养性,所以被广泛地应用于肉制品(例如西式火腿、火腿肠午餐肉,三文治、灌肠、香肠及肉馅等),冷饮制品(例如冰淇淋、奶油、雪糕、布丁等),烘焙食品(例如面包、糕点等)。目前世界大豆分离蛋白的年产量约40~50万t,增长势头十分强劲。   早在50年代初,美国已研究开发出大豆分离蛋白,但是由于技术难度大,直到70年代其生产技术才趋于完善和成熟。目前,国际上居垄断地位的大豆分离蛋白生产厂商主要有美国,日本、巴西生产的大豆分离蛋白在国际市场上也占有一定份额。   我国80年代初开始生产大豆分离蛋白,迄今为止,已建、自建、合资和独资的大豆分离蛋白生产厂已有10多家,年生产能力约3万t,主要在黑龙江、吉林,在哈尔滨,开封,山东、河南等地已建和正在筹建的生产厂。我国大豆分离蛋白的生产与发展是和食品工业,尤其是肉食品(例如西式火腿)等的迅速发展,需求量大增密切相关。由于国内生产的大豆分离蛋白的质量与国外相比有较大差距,所以每年大约进口大豆分离蛋白达2万t左右,给国内大豆分离蛋白市场造成严重冲击,给企业带来很大压力。当前,如何提高大豆分离蛋白的功能特性,使之达到国际上同类产品的质量指标要求,乃是急待解决的任务。2、大豆分离蛋白的功能特性    大豆籽粒中约含蛋白质38%~42%,碳水化合物(包括粗纤维)25%~27%,脂肪16%~20%,水分10%~12%,灰分3%~5%。可将大豆籽粒加工成大豆蛋白粉(含蛋白质50%),浓缩蛋白(含蛋白质70%),分离蛋白(含蛋白质90%)以及组织蛋白,纤维蛋白等产品。大豆蛋白经修饰!改性制取的高纯度大豆分离蛋白具有良好的溶解性、乳化性、起泡性、持水性和粘弹性等功能性乃是大豆分离蛋白非常重要的性质,而大豆蛋白的组成和结构是决定大豆分离蛋白功能特性的重要因素。   大豆蛋白质是由一系列氨基酸通过肽键结合而成的高分子有机聚合物,它主要由清蛋白和球蛋白组成,其中清蛋白约占5%,球蛋白约占90%。由于大豆球蛋白是椭园球形,故此命名。球蛋白溶于水或碱溶液,加酸调pH值的等电点4、5,则沉淀析出,故又称酸沉蛋白,而清蛋白无此特性,故又称为非酸沉蛋白。球蛋白中主要为11S和7S蛋白,约占总蛋白的70%,其余为2S和15S等,11S球蛋白的分子量为17~35万,为疏水性聚合体。7S球蛋白的分子量为14~17万,为疏水性聚合体。7S和11S球蛋白对大豆蛋白的功能特性起着十分重要的主导作用。国外对7S和11S球蛋白的分子结构!功能特性,蛋白质修饰技术以及高品质多功能系列大豆分离蛋白产品的生产工艺进行了大量深入细致的研究,并取得了重大成果,属于绝密高科技。球蛋白和清蛋白均属于贮藏蛋白,它与大豆加工性能关系密切,而大豆生物活性蛋白,例如胰蛋白酶抑制剂、血球凝集素,脂肪氧化酶等,在总蛋白中所占比例虽然很少,但对大豆制品的质量却关系重大。3、大豆分离蛋白的生产工艺   目前,大豆分离蛋白的生产工艺基本上可分为全湿法和半干半湿法。从大豆蛋白浆液中分离提纯制取蛋白质的方法主要有碱提酸沉法和膜分离浓缩法两种。目的是既要从低温豆粕中除去低分子可溶性非蛋白质部分,又要去掉不溶性高分子成分,最终获得高纯度的分离大蛋白。4差距   当前我国生产的大豆分离蛋白的功能特性与国外有较大差距,主要表现在:⑴对大豆原料加工处理不重视   目前国内的低变性豆粕主要存在两个问题,一是脱皮不好;二是NSI(氮溶解指数)低,原料中豆皮含量越多,就愈影响最终产品的质量(色泽、风味等)。原料的NSI值对产品的得率以及产品的功能性有很大的影响,所以如何得到豆皮少,NSI值高的豆粕原料是生产SPI的重要前提。因为不论何种脱皮工艺,其原理都是利用豆皮和豆仁的温差产生不同的收缩膨胀效应,以达到壳仁分离目的。目前国内大豆脱皮工艺基本上采用两种方法:热脱皮和冷脱皮。不论是热脱皮还是冷脱皮,事先都要对大豆进行预热(50~55℃ ),热脱皮工艺则是在原料预热的基础上使豆皮急剧升温,达到壳仁分离;而冷脱皮工艺则是将预热的大豆送到缓苏仓内慢慢冷却,使壳仁分离。具体采用的工艺设备形式很多,国产设备的脱皮率大都在80%左右,个别的甚至在60%~70%,而国外技术先进的工厂则对豆皮控制较严格,要求在95%以上,甚至达到99%。应重视低变性豆粕的研究,生产分离蛋白除了要求低变性豆粕的蛋白质含量高外,NSI值也是一个非常重要的指标,它对产品的得率以及产品的内在质量有很大的影响,所以如何生产出NSI高值的豆粕是一个重要的课题。我国目前的低变性豆粕的NSI值基本上都在75以下,而日、美等国均在85以上,甚至超过了90,所以国内在生产低变性豆粕的工艺和设备上还需加大力度进行研究。在生产过程中引起蛋白质变性的因素主要有加热温度、时间和水分含量,为了脱除豆粕中的残留溶剂就要使豆粕具有一定温度,并保持一定的时间是必须的,而温度和时间对NSI的负作用很大,所以实际生产中则是寻求其最佳组合。生产低变性豆粕的方法比较多,采用闪蒸气流技术和低温真空脱溶工艺相结合乃是最佳的工艺。⑵产品的功能差   所谓蛋白质的功能性(Functionality)是指蛋白质在贮藏、加工、销售以及在食品体系中发生作用的一系列物理化学特性。其中包括在水中,在盐性、碱性、酸性介质中的溶解度,不均一性,同其他组分的相溶性,稳定悬浮液、乳状液、泡沫的本领,当分散体被加热时形成凝胶体的本领,具有较强粘结性、持水性和其他一些特性,以及对最终食品的颜色、气味的影响等。所以功能性这个概念具有极广泛的性质,包含溶液、分散性、凝胶体和其他蛋白质形态的各种物理化学特性。国内SPI的功能性差主要表现在两个方面:一是具体功能性指标的差距,例如ProminD在12%时,其粘度为38000CP,而相同浓度的国内产品其粘度只有350CP。Supro590的持水性为7.08ml/g,而国内产品仅为4.86ml/g.在分散稳定性方面,国内产品就更差了。二是在使用产品时,对它在最终产品中将要起的作用不清楚,例如,同样应用于肉制品,当用于午餐肉时,要求产品具有良好的乳化性和凝胶性,而用于盐水注射的西式火腿肠时,则要求SPI具有良好的分散稳定性和低的粘性。大豆分离蛋白还不是最终食品,还要和其他食品组分组合在一起,即进行二次加工才能转变为最终消费的产品。所以大豆蛋白质和传统的以及新兴的食品有个接合点问题,这个接合点不单单是蛋白质的营养价值,更重要的是它的功能性,换句话说决定蛋白质经济价值的主要因素是它的功能性,而不是它的营养生理价值"应克服只注重产品的生产,得率以及它的营养价值,而忽视了产品功能性的研究。⑶综合效益差   目前国内的工厂基本上是从原料中提取了1/3的蛋白质,还有1/3的碳水化合物变成了废渣被低价处理,1/3的乳清蛋白和可溶性碳水化合物的混合物被白白地排掉了,造成严重的环境污染,应高度重视大豆分离蛋白的综合效益,必须对其进行综合加工利用,尽量降低从废水中流失蛋白质及其他营养物质,进行回收,综合利用。 ⑷应用高新技术不够   应该大力采用酶工程,蛋白质工程、膜技术以及高效低耗,低成本生产大豆分离蛋白以及蛋白质修饰、改质技术,副产物的回收、综合利用等高新技术。⑸大豆分离蛋白的应用技术急待开发研究   大豆分离蛋白如何更好地应用到食品体系中是一个非常复杂的问题:一方面,它的应用范围很广,几乎可以添加到任何食品中去;另一方面,它的结构复杂性和易变性,使我们在应用时感到非常困难。国内近几年大豆分离蛋白的需求量猛增的主要原因是我们引进了一些西式肉制品加工生产线,而这些西式肉制品,如高温火腿、火腿肠、午餐肉、三文治等的配方中均离不开大豆分离蛋白.仅春都、双汇、金锣三家每年就需要2万多t大豆分离蛋白,所以目前国内大豆分离蛋白主要消费在这些引进的生产线上,对于食品工业的其他行业也存在着巨大的市场潜力,这就需要我们研究出许多实用配方,来拓展这一市场。5、建议⑴应重视工艺理论的研究   目前国内现有的生产厂,只有分离设备和国外还有某些差距,需进一步完善"当前突出的问题是工艺理论的不足,SPI的生产属高技术范围,技术层次高、涉及面广,我国的分离蛋白厂对高技术的重视和研究不够。应重视SPI产品的质量,它包括一系列的功能性质,这是当前我国和国际先进水平的差距,SPI的生产只有走高科技的道路,对SPI产品应从大豆育种,栽培到生产、储存、加工、应用等进行全面的、系统的、科学的研究,才能生产出高质量产品。⑵应重视功能性的研究   蛋白质的功能及其影响因素比较复杂,加上最终食品体系的复杂性,其难度更大"蛋白质功能性质的评价或检测,归根到底还是由最终产品决定。首先应研究加工工艺对产品功能性质的影响,然后以蛋白质分子理论及蛋白质和其他组分相互作用的理论为基础,对模拟体系研究,最后才是最终产品的研究。每一步都根据研究的情况向前反馈,最后就能找到适合这种最终产品的SPI。⑶积极采用新技术下列高新技术应予以重视和积极应用① 闪蒸脱皮技术 原料豆粕的质量对SPI关系重大。在大豆原料的预处理!浸出!脱溶的整个工艺中,应力求获得含皮少、NSI值高的豆粕。为此应重点研究脱皮工艺和脱溶工艺,皇冠公司和布勒公司的热脱皮系统,是目前世界上最先进的脱皮系统,应加紧消化吸收。②膜技术在分离蛋白的生产中采用膜技术可以解决两个主要问题,一是利用膜技术来生产分离蛋白,从而改变传统的碱溶酸沉法,这将是分离蛋白生产上的一场革命;二是乳清回收,过去由于乳清的量大、浓度低,尽管其中含有很多的有用成分,但始终没有找到经济合理的方法回收,现在可以利用膜技术将乳清蛋白和低聚糖回收,这不但回收了有用成分,而且还解决了严重的环保问题,可谓一举两得。③大豆蛋白的低分子化技术对大豆蛋白进行低分子化处理,可以大大地提高产品的分散性和分散稳定性,现代科学已经证明人体对低分子的肽可以直接吸收,且有较高的吸收率,低分子化的大豆分离蛋白在饮料中应用的前景很大。④蛋白质修饰技术SPI作为食品添加剂,需要具有各种各样的功能性质,为此除了对蛋白质进行热处理外,最重要的手段则是对蛋白质进行修饰,以增加其功能性,所谓蛋白质的修饰就是利用化学方法在蛋白质的分子上引入我们需要的基团,以弥补其缺陷。⑤速溶技术传统的SPI粒子非常小,100μm以下的粒子占80%以上,表面能非常大,产品的缺点是粉尘大,速溶性不好,为此应对产品进行速溶性处理。目前有两种可行的方法,一是凝聚法,即采用多级干燥系统,二是在制品中添加磷脂,使雾化的磷脂和产品混合以降低表面能,增加速溶性,为此可以采用气流雾化法和无气雾化法,其中以美国Shaklee公司开发的无气高压雾化系统比较好。⑥豆渣的利用现代“文明病”的原因之一是膳食中缺少纤维素,所以有人提出将纤维素列入营养素中。除此而外,豆渣中还含有20%~30%的蛋白质,所以将豆渣添加到食品中去,直接为人利用,是非常有效的途径。⑦重视节省能源分离蛋白生产厂是耗能大户,喷雾干燥部分的操作费用占总操作费的80%左右,所以必须加强能源管理,降低能耗污水處理工藝流程工業廢水處理理論一、工業廢水(IndustrialWastewater)的含義和分類定義:指工業企業各行業生產過程中產生和排放的廢水。包括:生產污水(包括生活污水)和生產廢水兩大類。二、工業廢水的分類、種類、指標1分類 按行業的產品加工物件:冶金、造紙、紡織、印染等。按工業廢水中主要污染物分:無機廢水(電鍍、礦物加工),有機廢水(食品加工)按廢水中污染物的主要成分:酸性、鹼性、含酚等按處理難易程度和危害性分:易處理危害性小的廢水,易生物降解無明顯毒性的廢水,難生物降解又有毒性的廢水。2工業廢水造成環境污染的種類1)含無毒物質的有機廢水和無機廢水的污染;2)含有毒物質的有機廢水和無機廢水的污染;3)含有大量不溶性懸浮物廢水的污染;4)含油廢水產生的污染;5)含高濁度和高色度廢水產生的污染;6)酸性和鹼性廢水產生的污染;7)含有多種污染物質廢水產生的污染;8)含有氮、磷等工業廢水產生的污染。三、工業廢水處理方法概述1工業廢水的物理處理 (PhysicalTreatment)定義:應用物理作用沒有改變廢水成分的處理方法稱為物理處理法;操作單元(OperatingUnits):調節(Adjust)、離心分離(CentrifugalSeparation)、除油(OilElimination)、過濾(Filtration)等。廢水經過物理處理過程後並沒有改變污染物的化學本性,而僅使污染物和水分離。2工業廢水的化學處理(ChemicalTreatment)定義:應用化學原理和化學作用將廢水中的污染物成分轉化為無害物質,使廢水得到淨化的方法稱為化學處理。操作單元(OperatingUnits):中和(Neutralization)、化學沉澱(ChemicalPrecipitation)、藥劑氧化還原(ChemicalOxidationReduction)、臭氧氧化(OzoneOxidation)、電解(Electrolysis)、光氧化法(Photo-Oxidation)等。污染物在經過化學處理過程後改變了化學本性,處理過程中總是伴隨著化學變化。3工業廢水的物理化學處理(Physic-chemicalTreatment)定義:廢水中的污染物在處理過程中是通過相轉移的變化而達到去除的目的的處理方法稱為物理化學處理。操作單元(OperatingUnits):混凝(Coagulation)、氣浮(Floatation)、吸附(Adsorption)、離子交換(IonExchange)、電滲析(Electro-dialysis)、擴散滲析(DiffusionDialysis)、反滲透(ReverseOsmosis)、超濾(UltraFiltrate)等。污染物在物化過程中可以不參與化學變化或化學反應,直接從一相轉移到另一相,也可以經過化學反應後再轉移。4工業廢水的生物處理(BiologicalTreatment)定義:是利用微生物的代謝作用氧化、分解、吸附廢水中可溶性的有機物及部分不溶性有機物,並使其轉化為無害的穩定物質從而使水得到淨化的方法稱為生物處理。操作單元(OperatingUnits):好氧生物處理(AerobicBiologicalTreatment)、厭氧生物處理(AnaerobicBiologicalTreatment).  生物處理過程的實質是一種由微生物參與進行的有機物分解過程,分解有機物的微生物主要是細菌,其他微生物如藻類和原生動物也參與該過程,但作用較小。 污水處理工藝流程  現代污水處理技術,按處理程度劃分,可分為一級、二級和三級處理。  一級處理,主要去除污水中呈懸浮狀態的固體污染物質,物理處理法大部分只能完成一級處理的要求。經過一級處理的污水,BOD一般可去除30%左右,達不到排放標準。一級處理屬於二級處理的預處理。  二級處理,主要去除污水中呈膠體和溶解狀態的有機污染物質(BOD,COD物質),去除率可達90%以上,使有機污染物達到排放標準。  三級處理,進一步處理難降解的有機物、氮和磷等能夠導致水體富營養化的可溶性無機物等。主要方法有生物脫氮除磷法,混凝沉澱法,砂率法,活性炭吸附法,離子交換法和電滲分析法等。整個過程為通過粗格刪的原污水經過污水提升泵提升後,經過格刪或者篩率器,之後進入沉砂池,經過砂水分離的污水進入初次沉澱池,以上為一級處理(即物理處理),初沉池的出水進入生物處理設備,有活性污泥法和生物膜法,(其中活性污泥法的反應器有曝氣池,氧化溝等,生物膜法包括生物濾池、生物轉盤、生物接觸氧化法和生物流化床),生物處理設備的出水進入二次沉澱池,二沉池的出水經過消毒排放或者進入三級處理,一級處理結束到此為二級處理,三級處理包括生物脫氮除磷法,混凝沉澱法,砂濾法,活性炭吸附法,離子交換法和電滲析法。二沉池的污泥一部分回流至初次沉澱池或者生物處理設備,一部分進入污泥濃縮池,之後進入污泥消化池,經過脫水和乾燥設備後,污泥被最後利用。以上是污水處理廠處理工藝的基本流程,流程圖見下頁圖一。二.各個處理構築物的能耗分析1.污水提升泵房  進入污水處理廠的污水經過粗格刪進入污水提升泵房,之後被污水泵提升至沉砂池的前池。水泵運行要消耗大量的能量,占污水廠運行總能耗相當大的比例,這與污水流量和要提升的揚程有關。2.沉砂池   沉砂池的功能是去除比重較大的無機顆粒。沉砂池一般設於泵站前、倒虹管前,以便減輕無機顆粒對水泵、管道的磨損;也可設于初沉池前,以減輕沉澱池負荷及改善污泥處理構築物的處理條件。常用的沉砂池有平流沉砂池、曝氣沉砂池、多爾沉砂池和鐘式沉砂池。沉砂池中需要能量供應的主要是砂水分離器和吸砂機,以及曝氣沉砂池的曝氣系統,多爾沉砂池和鐘式沉砂池的動力系統。3.初次沉澱池  初次沉澱池是一級污水處理廠的主題處理構築物,或作為二級污水處理廠的預處理構築物設在生物處理構築物的前面。處理的物件是SS和部分BOD5,可改善生物處理構築物的運行條件並降低其BOD5負荷。初沉池包括平流沉澱池,輻流沉澱池和豎流沉澱池。  初沉池的主要能耗設備是排泥裝置,比如鏈帶式刮泥機,刮泥撇渣機,吸泥泵等,但由於排泥週期的影響,初沉池的能耗是比較低的。圖一城市污水處理典型流程4.生物處理構築物  污水生物處理單元過程耗能量要占污水廠直接能耗相當大的比例,它和污泥處理的單元過程耗能量之和占污水廠直接能耗的60%以上。活性污泥法的曝氣系統的曝氣要消耗大量的電能,其基本上是聯繫運行的,且功率較大,否則達不到較好的曝氣效果,處理效果也不好。氧化溝處理工藝安裝的曝氣機也是能耗很大的設備。生物膜法處理設備和活性污泥法相比能耗較低,但目前應用較少,是以後需要大力推廣的處理工藝。5.二次沉澱池  二次沉澱池的能力消耗主要是在污泥的抽吸和污水表明漂浮物的去除上,能耗比較低。6.污泥處理  污泥處理工藝中的濃縮池,污泥脫水,乾燥都要消耗大量的電能,污泥處理單元的能量消耗是相當大的,這些設備的電耗功率都很大。三.針對各個處理構築物的節能途徑1.污水提升泵房  污水提升泵房要節省能耗,主要是考慮污水提升泵如何進行電能節約,正確科學的選泵,讓水泵工作在高效段是有效的手段,合理利用地形,減少污水的提升高度來降低水泵軸功率N也是有效的辦法,定期對水泵進行維護,減少摩擦也可以降低電耗。2.沉砂池  採用平流沉砂,避免採用需要動力設備的沉砂池,如平流沉砂池。採用重力排砂,避免使用機械排砂,這些措施都可大大節省能耗。3.初次沉澱池  初次沉澱池的能耗較低,主要能量消耗在排泥設備上,採用靜水壓力法無疑會明顯降低能量的消耗。4.生物處理構築物  國外的學者通過能耗和費用效益分析比較了生物處理工藝流程,他們認為處理設施大部分的能量消耗是發生在電機這類單一的設備上,因而節能應從提高全廠功率因數、選擇高效機電設備及減少高峰用電要求等方面入手。他們提出的節能措施既包括改善電機的電氣性能,也包括解決運轉的工藝問題,還包括污水廠產物中的能量回收(EnergyRecovery)。   曝氣系統的能耗相當大,對曝氣系統能耗能效的研究總是涉及到曝氣設備的改造和革新。新型的曝氣設備雖然層出不窮,但目前仍然可劃分為2類:第1種是採用淹沒式的多孔擴散頭或空氣噴嘴產生空氣泡將氧氣傳遞進水溶液的方法,第2種是採用機械方法攪動污水促使大氣中的氧溶于水的方法。微孔曝氣,曝氣擴散頭的佈局和曝氣系統的調節這些都是節能的有效措施。在傳統活性污泥處理廠曝氣池中辟出前端厭氧區,用淹沒式攪拌器混合的節能、生物除磷方案。這一簡單的改造可以節省近20%的曝氣能耗,如果算上混合用能,節能也達到12%。自動控制系統的應用於污水處理節能,曝氣系統進行階段曝氣,溶解氧存在濃度梯度,既減少了能耗,又可以改善處理效果,減少污泥量。  生物膜法處理工藝採用厭氧處理可以明顯降低能量的消耗。5.二次沉澱池  二次沉澱池中對排泥設備的研究和排泥方式的改善是降低能耗的有效方法。6.污泥處理  污泥處理系統節能研究主要集中於污泥處理的能量回收。從污水污泥有機污染物中回收能量用於處理過程早在上世紀初就已投入實踐,但能源危機之前一直不受重視。目前有兩種回收途徑:一是污泥厭氧消化氣利用,一是污泥焚燒熱的利用。  消化氣性質穩定、易於貯存,它可通過內燃機或燃料電池轉化為機械能或電能,廢熱還可回收於消化污泥加熱。因此利用消化氣能解決污水廠不同程度的能量自給問題。林榮忱等人比較了沼氣發電機和燃料電池兩種利用形式,認為燃料電池能量利用率高,具有很好的發展前途。對消化氣的最大化利用是提高能效的主要方式。沼氣發電機組並網發電的研究和應用在國內已有應用實例,是大型污水處理廠的沼氣綜合利用的可行途徑。  另外一種能量回收方式是將城市固體廢物焚燒場建在污水處理廠旁,將固廢與污水污泥一起焚燒,獲得的電能用於處理廠的運轉。  城市污水處理的能耗分析研究與節能技術和手段的發展往往並不同步。由於污水處理能量平衡分析方法研究的欠缺,節能措施的制訂和實施常常超前。而多數節能途徑和手段常常由處理廠的操作管理人員結合各處理設施實際情況提出,具有經驗性和個別性,不一定能適用於其他污水廠甚至是工藝相似的污水廠;另一方面,從廣義上說,污水處理學科領域的技術創新、新材料和新設備的使用都蘊涵著節能增效的潛力,因而節能的途徑和手段往往是很寬泛的。四.結論  污水處理是能源密集(energyintensity)型的綜合技術。一段時期以來,能耗大、運行費用高一定程度上阻礙了我國城市污水處理廠的建設,建成的一些處理廠也因能耗原因處於停產和半停產狀態。在今後相當長的一段時期內,能耗問題將成為城市污水處理的瓶頸。能否解決耗污水廠的能耗問題,合理進行能源分配,已經成為決定污水處理廠運行效益好壞的關鍵因素。能耗是否較低,也是未來新的污水處理廠可行性分析的決定性因素,開發能效較高的污水處理技術,合理設計及運行污水處理廠,必將是未來污水處理廠設計和運行的必由之路。几种先进的污水处理技术介绍一、连续循环曝气系统(CCAS)         A、CCAS工艺简介   CCAS工艺,即连续循环曝气系统工艺(ContinuousCycleAerationSystem),是一种连续进水式SBR曝气系统。这种工艺是在SBR(SequencingBatchReactor,序批式处理法)的基础上改进而成。SBR工艺早于1914年即研究开发成功,但由于人工操作管理太烦琐、监测手段落后及曝气器易堵塞等问题而难以在大型污水处理厂中推广应用。SBR工艺曾被普遍认为适用于小规模污水处理厂。进入60年代后,自动控制技术和监测技术有了飞速发展,新型不堵塞的微孔曝气器也研制成功,为广泛采用间歇式处理法创造了条件。1968年澳大利亚的新南威尔士大学与美国ABJ公司合作开发了“采用间歇反应器体系的连续进水,周期排水,延时曝气好氧活性污泥工艺”。1986年美国国家环保局正式承认CCAS工艺属于革新代用技术(I/A),成为目前最先进的电脑控制的生物除磷、脱氮处理工艺。   CCAS工艺对污水预处理要求不高,只设间隙15mm的机械格栅和沉砂池。生物处理核心是CCAS反应池,除磷、脱氮、降解有机物及悬浮物等功能均在该池内完成,出水可达标排放。   经预处理的污水连续不断地进入反应池前部的预反应池,在该区内污水中的大部分可溶性BOD被活性污泥微生物吸附,并一起从主、预反应区隔墙下部的孔眼以低流速(0.03-0.05m/min)进入反应区。在主反应区内依照“曝气(Aeration)、闲置(Idle)、沉淀(Settle)、排水(Decant)”程序周期运行,使污水在“好氧-缺氧”的反复中完成去碳、脱氮,和在“好氧-厌氧”的反复中完成除磷。各过程的历时和相应设备的运行均按事先编制,并可调整的程序,由计算机集中自控。   CCAS工艺的独特结构和运行模式使其在工艺上具有独特的优势:   (1)曝气时,污水和污泥处于完全理想混合状态,保证了BOD、COD的去除率,去除率高达95%。   (2)“好氧-缺氧”及“好氧-厌氧”的反复运行模式强化了磷的吸收和硝化-反硝化作用,使氮、磷去除率达80%以上,保证了出水指标合格。   (3)沉淀时,整个CCAS反应池处于完全理想沉淀状态,使出水悬浮物(SS)极低,低的SS值也保证了磷的去除效果。   CCAS工艺的缺点是各池子同时间歇运行,人工控制几乎不可能,全赖电脑控制,对处理厂的管理人员素质要求很高,对设计、培训、安装、调试等工作要求较严格。     B、国内外城市污水处理厂发展概况   水是经济发展和社会可持续发展的一个重要因素。随着城市规模的不断扩大和人口的增加,水环境污染成了一大难题。城市污水是目前江河湖泊水域污染的重要原因,是制约许多城市可持续发展的主要原因之一。“环境保护”是我国的基本国策,中国可持续发展的战略与对策制定的2000年治理目标,要求城市污水集中处理率达20%。目前,我国正处于城市污水处理事业的大发展时期,尤其随着国家西部大开发战略的实施,中国中西部环境与生态保护已被提上首要议事日程。    城市生活污水处理自200年前工业革命以来,越来越受到人们的重视。城市污水处理率已成为一个地区文明与否的一个重要标志。近200年来,城市污水处理已从原始的自然处理、简单的一级处理发展到利用各种先进技术、深度处理污水,并回用。处理工艺也从传统活性污泥法、氧化沟工艺发展到A/O、A2/O、AB、SBR(包括CCAS工艺)等多种工艺,以达到不同的出水要求。我国城市污水处理相对于国外发达国家、起步较晚,目前城市污水处理率只有6.7%。在我们大力引起国外先进技术、设备和经验的同时,必须结合我国发展,尤其是当地实际情况,探索适合我国实际的城市污水处理系统。   结合我国实际情况,参考国外先进技术和经验,建设城市污水处理厂应符合以下几个发展方向:   (1)总投资省。我国是一个发展中国家,经济发展所需资金非常庞大,因此严格控制总投资对国民经济大有益处。   (2)运行费用低。运行费用是污水处理厂能否正常运行的重要因素,是评判一套工艺优劣的主要指标之一。   (3)占地省。我国人口众多,人均土地资源极其紧缺。土地资源是我国许多城市发展和规划的一个重要因素。   (4)脱氮除磷效果。随着我国大面积水体环境的富营养化,污水的脱氮除磷已经成为一个迫切的问题。我国最新实施的国家《污水综合排放标准》(GB8978-1996)也明确规定了适用于所有排污单位,非常严格地规定了磷酸盐排放标准和氨氮排放标准。这就意味着今后绝大多数城市污水处理厂都要考虑脱氮除磷的问题。   (5)现代先进技术与环保工程的有机结合。现代先进技术,尤其是计算机技术和自控系统设备的出现和完善,为环保工程的发展提供了有力的支持。目前,国外发达国家的污水处理厂大都采用先进的计算机管理和自控系统,保证了污水处理厂的正常运行和稳定的合格出水,而我国在这方面还比较落后。计算机控制和管理也必将是我国城市污水处理厂发展的方向。          C、几种处理系统的工艺比较   为了选择出工艺上最可靠,投资上最经济,管理上最方便的城市污水处理系统,结合当地的实际情况,我们调研了国内外污水处理厂的成熟经验和发展趋势,并进行了比较。   目前,国内外城市污水处理厂处理工艺大都采用一级处理和二级处理。一级处理是采用物理方法,主要通过格栅拦截、沉淀等手段去除废水中大块悬浮物和砂粒等物质。这一处理工艺国内外都已成熟,差别不大。二级处理则是采用生化方法,主要通过微生物的生命运动等手段来去除废水中的悬浮性,溶解性有机物以及氮、磷等营养盐。目前,这一处理工艺有多种方法,归结起来,有代表性的工艺主要有传统活性污泥、氧化沟、A/O或A2/O工艺、SBR及CCAS工艺等。目前,这几种代表工艺在国内外都有实际应用。二、SPR高浊度污水处理技术    在天然淡水资源已被充分开发、自然灾害日益频繁暴发的今天,缺水已经对世界各国众多城市的经济和市民生活构成了十分严重的威胁,缺水危机已经是我们面临的现实,解决城市缺水问题的重要途径应该是将城市污水变为城市供水水源。城市污水就近可得,来源稳定,容易收集,是可靠且稳定的供水水源。城市污水经净化后回用主要可作为市政绿化、景观用水和工业用水。   城市污水再生回用工程包括污水收集系统、污水净化处理技术及其系统、出水输配系统、回用水应用技术和监测系统。其中污水净化再生技术及其系统是关键,污水净化处理的流程要简单可靠,投资和运行费用要为该城市经济实力所能承受,处理后出水的水质要满足回用的要求。   沿用了许多年的传统的“一级处理”及“二级处理”水处理工艺技术和设备已经难以适应当今的高浊度和高浓度污水的净化处理要求,处理后出水更不能满足城市对水回用的水质要求。沿着传统的工艺技术路线只能进一步附加传统的“三级处理”设备系统,既回避不了庞大复杂的传统二级生化处理系统,也回避不了投资和运行费用都十分昂贵的传统三级过滤吸附处理系统。这些恰恰是实现污水回用的忌讳之处。所以,环保市场十分迫切需要净化效率更高、处理后出水能满足现有环保标准并且能回用于城市,投资和运行费用又要为现有城市的经济实力所能接受的污水处理新技术和新设备。   最新发明的“SPR高浊度污水净化系统”(美国发明专利)将污水的“一级处理”和“三级处理”程序合并设计在一个SPR污水净化器罐体内,在30分钟流程里快速完成。它容许直接吸入悬浮物(浊度)高达500毫克/升至5000毫克/升的高浊度污水,处理后出水的悬浮物(浊度)低于3毫克/升(度);它容许直接吸入CODcr为200毫克/升至800毫克/升的高浓度有机污水,处理后出水CODcr可降为40毫克/升以下。只需用相当于常规的一、二级污水处理厂的工程投资和低于常规二级处理的运行费用,就能够获得三级处理水平的效果,实现城市污水的再生和回用。   SPR污水处理系统首先采用化学方法使溶解状态的污染物从真溶液状态下析出,形成具有固相界面的胶粒或微小悬浮颗粒;选用高效而又经济的吸附剂将有机污染物、色度等从污水中分离出来;然后采用微观物理吸附法将污水中各种胶粒和悬浮颗粒凝聚成大块密实的絮体;再依靠旋流和过滤水力学等流体力学原理,在自行设计的SPR高浊度污水净化器内使絮体与水快速分离;清水经过罐体内自我形成的致密的悬浮泥层过滤之后,达到三级处理的水准,出水实现回用;污泥则在浓缩室内高度浓缩,定期靠压力排出,由于污泥含水率低,且脱水性能良好,可以直接送入机械脱水装置,经脱水之后的污泥饼亦可以用来制造人行道地砖,免除了二次污染。   最新发明的SPR污水净化技术以其流程简单可靠、投资和运行费用低、占地少、净化效果好的众多优势将为当今世界的城市污水的再利用开创一条新路。城市污水实现再利用之后,为城市提供了第二淡水水源,为城市的可持续发展提供了必不可少的条件,其经济效益和社会效益是不可估量的.   SPR污水处理系统与众不同的技术特点   1。城市生活污水和处理药剂的混合主要是在泵前吸药管道、污水泵叶轮、蛇形反应管和瓷球反应罐的组合作用下完成的,依照紊流速度、混合时间、和水力学结构数据设计,得以十分充分的混合,为取得最佳混凝净化效果和最大限度地节省药剂创造了前提条件。这是过去常规的一级处理和二级处理之水工结构所做不到的。   2。SPR系统处理城市污水时,采用五种以上污水处理药剂及其最佳配方组合使用,靠化学反应使污水中溶解状态的有机污染物、重金属离子和有害的盐类从水中析出 ,成为有固相界面的微小颗粒(它包含有污水三级处理的作用)。其中还选用了一种吸附效果很好而价钱又很便宜的吸附剂,以吸附有机污染物和色度。靠消毒剂在30分钟的流程内杀灭细菌和大肠杆菌。靠混凝的物理化学吸附作用将悬浮物及各类杂质凝聚成大而且密实的絮团。这样发挥各药剂的单独作用和它们之间的交联作用的用药方式是与常规的物理化学法不相同的。而且SPR系统使用的组合药剂配方,只能在具有十分精细的水动力学参数设计的SPR污水净化器及其系统里才能充分发挥作用,在常规的水工系统里是无法使用的。   3。SPR系统装置能够依照模拟试验得出的配方,借助大气压力和流量计,十分精确地投加混凝药剂和絮凝药剂,不致因加药过量而造成药剂残留在净化后的出水中,而且动力消耗很少。   4。SPR污水净化器内部结构是完全按照混凝机理精确设计的,形成的涡旋流动和各部位恰当的水流速度,使得胶体颗粒之间有最多的碰撞次数,并且有凝聚吸附所需的最佳流速环境。从而在极小的容积内获得了极充分的凝聚效果。这也是常规水工装置无法比拟的。   5。根据混凝形成的絮团实际状况,准确确定了SPR污水净化器内部的水动力学数据,使得在罐体中上部形成了一个有几十厘米厚的、十分致密的悬浮泥层。所有经过混凝的出水都必须通过此悬浮泥层的过滤,才能升流到罐体上部的清水汇集区。它十分成功地起到了污水高级处理工艺中极为重要的过滤作用。   这个致密的悬浮泥层是由污水中的污泥及混凝药剂形成的絮体本身组成的。随着絮体由下向上运动,使泥层的下表层不断增加、变厚;同时,随着过滤水力学原理形成的罐体的旁路流动,引导着悬浮泥层的上表层不断流入中心接泥桶,上表层不断减少、变薄。这样,悬浮泥层的厚度达到一个动态的平衡。当混凝后的出水由下向上穿过此悬浮泥层时,此絮体滤层靠界面物理吸附和电化学特性及范德华力的作用,将悬浮胶体颗粒、絮体、细菌菌体等等杂质全部拦截在此悬浮泥层上,使出水水质达到三级处理的水平。由于泥层是由絮体组成,致密度高,过滤效率远远高于常规的沙粒层过滤;由于是处于悬浮状态的絮体泥层作滤层,其过滤的水头(阻力)损失非常小,所以动力消耗远远低于常规的砂层过滤、微孔过滤、或反渗透膜过滤;又由于过滤泥层是净化过程中由污水中的污泥自动补充添加,又自动被引走,即过滤泥层自身在不断地更新,过滤泥层总是保持着稳定的厚度,而且总是保持着稳定的物理吸附和电化学吸附性能,因此能获得稳定的过滤效果。而且完全免去了常规系统中必不可少的过滤层的反冲洗以及反冲洗带来的众多麻烦。这种结构和原理与常规的三级污水处理的过滤装置是完全不同的,这里没有价格昂贵的反渗透膜过滤、微孔过滤、或活性炭过滤等装置。所以,投资省、动力消耗小、运行费用低是SPR系统的必然优势。   6。SPR系统选用的絮凝剂,同时也是良好的污泥助滤剂,所以,系统最后排出的污泥浆,其脱水性能良好,可以不另外添加助滤剂,就直接泵入压滤机脱水。泥饼可以制成人行道地砖再利用,不会带来二次污染的问题。它没有传统的生化法产生的污泥含水率很高、脱水性能很差的致命弱点。   7。本类型污水净化器曾开机运行处理过养猪场污水、养鸡场污水、煤矿矿井坑道污水、生猪屠宰场污水、高粱酿酒厂酒糟污水、纺织印染污水、再生纸造纸污水和城市生活污水等等含有大量有机污染物和氨氮的污水;也成功应用于陶瓷厂污水、墙地砖厂污水、大理石水磨抛光污水、洗煤污水、燃煤锅炉湿法除尘污水、石英砂洗砂污水等悬浮物含量极高的污水的净化和回用。各地权威检测部门测试了污水净化器进水和出水的有关数据。测试报告单表明:氨氮去除率可以达到85%,总氮去除率可达95%,有机氮去除率可达96%,BOD去除率可达95% ,悬浮物的去除率则高达98.3%~99.6%,出水浊度达到3度(3毫克/升)以下。这是本净水系统在低投资、低运转费的前提下所获得的出水指标。这是常规的物化法和生物化学法的一级、二级处理系统都无法达到的。   除发达国家有专门的城市生活污水管路系统外,实际的城市污水往往混入有许多工业污水,可生化性差和污染物成分不规则地快速变化是我们面临的现实,而针对降解某种有机污染物的微生物生长、繁殖的过程却太长,所以,传统生化系统难以适应当今愈来愈工业化了的城市的污水。SPR系统已拥有处理众多工业污水的适应能力和物化法具有的快速应变能力,容易通过自动化的手段应付系统入口污水水质的变化,保持稳定的净化效果。   8。在SPR系统中投放杀菌消毒药剂时,只要增加一些投氯量(无需另外增加设备)就可以起到用氯来氧化除氨的作用,进一步提高污水处理系统去除氨氮的效率。   9。假如经过SPR系统处理后的出水氨氮含量还未达到较严格的要求(如某些发达国家或发达地区将排水标准定为含氨氮1毫克/升以下),也可以后续再串联设置一级离子交换装置,靠斜发沸石离子交换柱最终达到除氨氮的目标。   因为斜发沸石离子交换系统要求进口水质的悬浮物含量要低于35毫克/升,否则会影响离子交换柱的功能和寿命,从而大大增加离子交换的运行费用。过去,常规的一、二级污水处理装置是难以长期稳定地达到这样的前处理水平的,因而限制了离子交换法除氨氮技术的广泛应用。现在,SPR污水处理系统绝对可以保证净化后出水的悬浮物含量低于3毫克/升(实际运行中出水的悬浮物含量多为1毫克/升),使得后续的斜发沸石离子交换系统去除氨氮的负荷减轻很多,交换柱的使用寿命会大大延长,即离子交换的运行费用会大大降低,将使离子交换法除氨氮技术的优点得到更充分的发挥。   早在七十年代,美国Minnesota州Minneapolis市的罗兹芒污水厂就是用纯粹的物理化学法处理城市生活污水的,其工艺流程是:化学混凝----沉淀----过滤和活性炭吸附----斜发沸石离子交换。其最后出水水质标准为:氨氮1毫克/升,BOD10毫克/升,磷1毫克/升,悬浮物10毫克/升,pH8.5。证明纯粹的物理化学法处理城市污水在技术上是可行的。现在,依靠新发明的SPR净水技术,将使这项工艺的经济性更为圆满。   10。其实,经过SPR污水净化系统处理后的出水,其悬浮物的含量小于3毫克/升,浊度也小于3度(毫克/升),达自来水标准,不再会堵塞输水管路,并且已经经过了良好的消毒。将此出水回送到城市各地,作为城市草坪绿地和树木绿化浇灌用水是十分安全、可靠的。经过SPR系统处理后的出水中,残存的氮含量已经很低,氮作为植物生长的营养物是不必去除、或不必去除得那么干净的。从而可以免去除氮的深度处理投资及其运行费用,既保证了环境质量,又为社会节省了大笔资金。用此回用水取代自来水作为城市绿化用水,将大大节省城市的淡水资源,减轻城市市政部门的供水压力,对城市的整体经济发展定会产生十分巨大的效益。这是城市污水回用的新概念。   11。这种纯粹的物理化学法污水处理系统,受天气、环境及人为因素的影响少,操作人员控制处理系统的能力和灵活性都大大优越于生物化学法,这是众所周知的。     城市生活污水处理厂的工艺流程可采用下列新模式:    方案〔1〕:一般的城市:污水经SPR系统处理后,回用于城市绿化、浇灌草地树木,或作为工业用水。   城市生活污水储存调节池:SPR污水处理系统----污泥脱水------污泥制成人行道地   出水回用于浇灌城市草地、树木,或作为工业用水   方案〔2〕:特殊要求的城市:生活污水经SPR系统处理后,再进行离子交换除氨氮,最后排海,或回用。   城市生活污水储存调节池:SPR污水处理系统------污泥脱水------污泥制成人行道地砖   斜发沸石离子交换除氨氮,出水排入近海、或回用于浇灌城市草地、树木,或作为工业用水。   如果有关部门能协助创造一些现场表演的简易条件,将可以运送一台处理水量为10~20立方米/日的SPR污水净化器及其完整的配套系统到现场作城市污水净化处理的连续开机运行操作表演,并通过播放录像和幻灯片详细讲解有关的净化机理,同时请当地水质检测的权威部门进行净化效果的水质测试。全套装置轮廓最大尺寸为长3米,宽1.4米,高2.4米,总重量为一吨以下。   在技术展示成功的基础上,与当地的环保部门及环保产业密切合作,依靠当地自身的科技力量和自身的制造能力,建造城市生活污水处理厂。另外,SPR系统也可用于市区内的公园湖水的净化及自循环。希望将要兴建的城市污水处理厂采用SPR污水处理技术后,能成为全球城市生活污水处理技术的典范。如果在已有的城市污水一级和二级处理系统的基础上,附加采用SPR污水处理系统作为最后的深度处理装置,使出水达到工业自来水的标准,以实现最后出水回用的目标,也是现有城市污水处理系统升级换代的极佳方案。 三、BIOLAK污水处理技术              l、百乐卡(BIOLA)工艺特点   百乐卡工艺是一种具有除磷脱氮功能的多级活性污泥污水处理系统。它是由最初采用天然土池作反应池而发展起来的污水处理系统。自1972年以来,经多年研究形成了采用土池结构、利用浮在水面的移动式曝气链、底部挂有微孔曝气头的一种具有一定特色的活性污泥处理系统。   由于采用土池而大大减少了建设投资,采用曝气链曝气系统进一步强化了氧的砖移效率,并减少运行费用,大大提高了处理效果。工艺设计简捷,不需复杂的管理,在适宜的条件下具有较大的经济和社会效益.   1.1低负荷活性污泥工艺   百乐卡工艺污泥回流量大,污泥浓度较高,生物量大,相对曝气时间较长,所以污泥负荷较低。龙田污水厂BOD5污泥负荷率为0?05kgBOD/kgMLSS.d,污泥浓度为400Omg/L,污泥龄为29d,所以剩余污泥虽很少。    1.2曝气池采用士池结构   根据国家环保局1992年《工业废水处理设施的调查与研究》,我国工业废水处理设施资金的54%用于土建工程设施,而只有36%用于设备,造成这种投资分配格局的主要原因是工艺池大都采用价格昂贵的钢筋混凝土池。而龙田污水厂土建工程造价500万元,仅占总投资的20%。   大的钢筋混凝土池不仅价格昂贵,而且施工难度大。但对于许多种曝气工艺来讲,都不考虑采用土池,因为土池会造成地下水的侵蚀,同时也由于在土池基础上安装曝气头是十分困难的。   为了减少投资,百乐卡技术在研究土池结构的曝气池上做了大量工作,首先是使用HDPE防渗膜隔绝污水和地下水,其次是悬挂在浮管上的微孔曝气头避免了在池底池壁穿孔安装。   这种敷设HDPE防渗膜的土池不仅易于开挖、投资低廉,而且完全能满足污水处理池功能上的要求,并能因地制宜,极好地适应现场的地形,存某些特殊的地质条件下,如地震多发地区、土质疏松地区,其优点得到更充分的体现。敷设HDPE防渗膜的土池使用寿命远远超过钢筋混凝土池。   1.3高效的曝气系统   百乐卡曝气系统的结构是,曝气头悬挂在浮链上,停留在水深4一5m处,气泡在其表面逸出时,直径约为50um。如此微小的气泡意味着氧气接触面积的增大和氧气传送效率的提高。同时,因为气泡向上运动的过程中,不断受到水流流动,浮链摆动等扰动,因此气泡并不是垂直向上的运动,而是斜向运动,这样延长了在水中的停留时间,同时也提高氧气传递效率。运行表明:百乐卡悬挂链的氧气传递率,远远高于一般的曝气工艺以及固定在底部的微孔曝气工艺。百乐卡曝气头悬挂在浮动链上,浮动链被松弛地固定在曝气池两侧,每条浮链可在池中的一定区域蛇形运动。在曝气链的运动过程中,自身的自然摆动就可以达到很好的混合效果,节省了混合所需的能耗。   采用百乐卡系统的曝气池中混合作用所需的能耗仅为1?5W/m3,而一般的传统曝气法中混合作用的能耗为l0一l5W/m3。由于百乐卡曝气头(BIOLAK)-Friox)特殊的结构,即使在很复杂的环境里曝气头也不至于阻塞,这意味着曝气装置可运行几年不维修,所需维护费用很少。   曝气系统与配套的高效鼓风机保证了很高的氧气传递效率,供氧能力为2?5kgO2/kW?h),而传统的污水处理厂该值为lkgO2/lkW?h)。鼓风机就设在池边,减少了鼓风机房和空气输送管道的费用。   1.4简单而有效的污泥处理   百乐卡工艺的另一特点是回流污泥量大,其剩余污泥比传统工艺少许多。   在恒定的负荷条件下,百乐卡工艺的污泥在曝气池中的停留时间是传统工艺的几倍。由于污泥池中的污泥是完全稳定的,它不会再腐烂,即使长期存放也不会产生气味,这就是它同传统工艺相比污泥更容易处理的原因。而且污泥池完全可以做成土池结构,节省厂土建费用。   1.5简单易行的维修   百乐卡系统没有水下固定部件,维修时不用排干池中的水,而用小船到维修地点将曝气链下的曝气头提起即可。实践表明,曝气头运行几年也不用任何维修,这主要是因为曝气管是由很细的纤维(直径约0?003mm )做成,并用聚合物充填,以达到防水和防脏物的目的。同时,曝气头有大约80%的自由空隙和20%的表面,和传统曝气头刚好相反。因此,微生物可生长的面积很小,并很容易被去除。当曝气头必须维修时,也不影响整个污水处理场的运行。该工艺的移动部件和易老化部件都很少。在选择设备和材料时,都采用了可靠耐用的材料。该工艺无需太多的自动化。它既不需要任何易损的探测器,也不需要任何复杂的控制系统,而操作这些控制系统还需要专门的技术和昂贵的配件。   1.6二次曝气和安全池   为了保证负荷变化时用水质量,百乐卡工艺利用一个相对独立的池来进行二次曝气,以保证出水清洁,保证水中有足够的溶解氧。   1.7二沉池   曝气池中产生的污泥在二沉池中被分离,并重新回到曝气池参与污水净化。有的百乐卡工艺的二沉池和曝气池合并到一起,进一步节省了土建费用和占地面积。二沉池沉淀污泥由漂浮式刮泥机、吸泥机排入污泥槽回流。   1.8土地的利用   尽管百乐卡系统需要的曝气池体积比所谓密集型的大,但所需的总面积并不大,有时甚至更小,这主要有以下原因:a不需初沉池;b二沉池可以和曝气池合建在一起;c池的设计和布置的自由度大,对地形的适应性强。   2、龙田污水处理厂工艺流程   污水在厂内首先经过粗格栅去除大的漂浮物,然后自流入集水池。污水经立式污水泵提升至组合式旋转细格栅,组合式旋转细格栅可把杂物及砂粒从废水中分离出来,并浓缩址理。旋转细格栅处理出水先进入厌氧池,由推进器将进水和厌氧污泥混合进行厌氧处理,然后自流入BIOLAK生化池,利用悬链式曝气器曝气充氧进行好氧处理,处理后的污水,经沉淀后再进行曝气充氧稳定,污水自流入消毒池,消毒后排放。Bl0lAk反应池产生的剩余污泥用污泥泵送入污泥浓缩池,污泥经浓缩后再由螺杆泵送人带式压滤机脱水。污泥浓缩池产生的上清液和压滤机产生的滤液自流入集水池二次处理。BlOLAK反应池需要的氧气由风机供给,预处理设施产生的机械杂物外运填埋处置,产生的剩余污泥外运用作农肥。   3、山东招远百乐卡工艺处理效果   一位哲学家曾经说过:所有的技术都是由简单到复杂,再由复杂到简单,百乐卡技术正是这样一种由复杂到简单的工艺,但这种高效、简单的工艺,是在传统活性污泥法的基础上,集合了大量研究工作的先进成果,并在数百例工程实践中不断地完善改进提出的,它是一种较为成熟的工艺。  四、“WT--FG”生物法技术简介    美国富美生物工程有限公司运用具有世界先进水平的“WT一FG”微生物技术成功地对中国的高浓度的工业污水和城市污水以及被污染的河流进行了卓有成效的治理,这是生物工程在污水治理中的实际运用。“WT--FG”生物技术,为中国环保事业走出一条投资省。见效快。运行费用低的路子作出了贡献。最近,该技术得到中国一批著名的生物专家的一致肯定,被中国政府列为“中国政府采购技术。”   “WT--12”固体微生物具有高度浓缩和高度组合的特点,具备1200种微生物,可以针对不同的污水组合为不同的微生物菌剂,这种高效的微生物菌群,每克中含有10亿--60亿个微生物。利用它治理污水后,不会产生第二次污染,不会有新的活性污泥产生。“FG--12”专用助剂,它在水中具有吸收、蓄存。释放氧气的作用,因此“WT一FG”生物法完全抛弃了传统的机械曝气设备,采取了用电量极少的循环喷水装置和”FG一21”专用助剂来增加水中的溶解氧,这就大大节约了投资成本和运行费用。   美国富美公司三年来在中国作了大量的实验和实际工程,取得了突出的成绩。首先在海南省环保厅的直接支持、领导下,用低成本的“WT--FG”生物法攻克了用生物法治理河流污染的重大课题,开创了中国用生物法彻底治理被污染河流的先例,达到既治标又治本的目的,这为中国的旧城镇的改造有着重大的现实意义。   经海南省环保厅批准,1999年11月在万宁市环保局监督下,还对兴隆污水厂进行了工程技术改造,即不用原有的曝气设备和生化池而改用“WT--FG”生物法,对排放量为每天1200m3的城市污水进行治理运行,此次技改试验工程取得了成功,其污水出水水质达到国家一级排放标准, COD=40mg/L、B0D5=8mg/L, NH-N=4mg/L、运行费节约30%左右,没有活性污泥产生,其出水水质无色、无味、透明。该项工程的成功,在技术上是对传统的污泥法的挑战,是一场技术革命,在经济上走出了一条投资省、见效快、易操作的路子。由于兴隆污水厂的治理成功,海南省国家旅游区三亚市亚龙湾污水处理厂也马上用“WT--FG”生物法对旧污水厂进行了技术改造。一个月后,该厂处理成功, COD从300mg/L降至15mg/L以下, BOD从150mg/L降至5mg/L。P从2mg/L降至0.2mg/L,完全达到海南省对该污水厂的要求,因该厂的污水要排人风景区的大海,运行成本较旧厂降低了70%,经过半年的运行,污水处理质量十分稳定,该厂现在要建造15000T/日的污水处理厂。基础建设投资与原活性污泥法相比节约50%以上的资金。   我国的各大中城市都有被污染的河流,因河水流动性大、变化大,采用常规的方法,即用人工和机械疏通河道,都不能根治河流的污染问题,在世界上治理河流的污染是属于前沿技术。1999年10月经省环保厅的批准,在海口市环保局的大力支持下,于10月27日开始在海日市大同沟银河路地段的30米长、20米宽,2.0米深的河段上进行生产性的工程试运行。该河流位于海口市区内,全长近5公里,由于有大量的城市生活污水排人河中,河水严重污染,污泥大量产主,海水倒流,兰藻不断繁殖,臭气很浓,河水变黑,多年来老百姓称之为“臭水沟”。近年来市政府对河流也多次清掏河床,但成效不显著,治标未治本。这次运用“WT--FG”生物法处理后,三天内臭气全部消除,经过二个月的处理,河水变成无味,无色。透明的河水,污泥由45公分,减少至8公分,每天有2000--2400吨上游被污染的河水,通过该河段;污水得到有效的治理,河水水质达到国家“地表水环境质量标准”4类标准,溶解氧为5--6mg/L, COD=20--3Omg/L、BOD5=5--6mg/L,透明度为0.5--1.2米,目前处理后的河水已经可以养鱼,有200多条红金鱼和红鲤鱼已在河中健康的生存了4个多月,海口市人民广泛称赞这为老百姓作了一件了不起的好事。    在海南省的治理成功后,该技术得到国家环保总局的肯定、得到不少省市环保部门的认可和支持,中央电视台、海南省电视台、上海电视台以及有关省市报纸均作专题报导。海南省治理成功后,接着,广东、上海、北京的政府已决定用“WT--FG”生物法治理被污染的河流。现已成功治理了上海同济大学的校内河流,上海浦东新区的中槽港河流以及广东东莞的河流,均达到地表水4类水的标准。    “WT--FG”生物法也能有效治理高浓度的工业污水,如皮革厂、造纸厂、印染厂、石油化工厂的污水和垃圾渗透液,经广州市环卫局批准,对广州垃圾渗沥液作了10aT/日的生产运行,效果十分理想,进水水质十分恶劣,原水的COD为3000Omg/L,BOD为1531Omg/L,NH-N为200Omg/L,又黑又臭,我公司用“WT?FG”生物法辅之以物化法,使出水指标达到当地政府要求的二级排放标准。   COD为253mg/L, BOD5为47mg/L, NH--N为24mg/L,出水质的DO=5--6mg/L,色度从1230倍降为16倍,出水为无色,无味、无臭、透明的水体。特别指出,我们已将原有的曝气设备,去NH--N的设备,全部停止,而用FG--21助剂, DO>3mg/L。此结果得到市环卫局好评,已决定在广州大田山垃圾场用此技术进行生产运行,日处理500T污水,这是用生物彻底治理垃圾渗沥液的典型。   1999年8月我们在三门峡市对口排放量为3000T的棉浆黑液进行了有效地治理,COD从2000mg/L降为150mg/L,BOD5从800mg/L降为10mg/L,黑水变成无色透明的出水。   1999年4月,我们对山西省黄河造纸厂的污水进行了生产性试验,取得完满成功。COD由50000一2000mg/L降至150mg/L,达到二级排放标准。  五、EWP高效污水净化器在造纸污水治理的应用   造纸污水水量大,浓度高,可生化性差。传统采用的生化法处理这类造纸污水,投资大、运行费高,去除率低。近年的治理情况表明,较为经济实用的是物化法[1],在一些国家,已把处理技术的重点转到物化凝聚法的研究和开发[2]。EWP高效污水净化器是只有一级物化处理工艺的设备系统,对利用废纸再生桨料造纸的污水进行治理,达到以污染物去除率COD在90%以上;BOD在70%能上能下;SS在95%以上,经处理污水还可回用到生产上。        1、试验研究   1.1设备原理   造纸污水经絮凝反应后能分离出大量的污泥,这些含有纤维的絮状泥有类似活性碳的很好的吸附能力,以往的沉淀或气浮工艺,只把这些固形物分离,没有再充分发挥这些污泥的只附过滤作用。则EWP高效污水净化器就是利用这些絮凝反应后生成的絮凝沉淀物在净化器内形成一个稳定的、可连续自动更新的只附过港督流化床,令污染物起到活性碳的作用,使进入的污水除了得到平常混凝反应之后的固液分离效果外,还让污水得到过滤和吸附的净化处理,即可达到比普通的气浮或沉淀的物化处理工艺提高10-20%的去除率。由于EWP高效污水净化器没有用任何的滤料或填料作为滤床,不会堵塞,所以免除了砂滤池或其他过滤装置必需的反冲洗的麻烦和额外的动力消耗,更解决了处理装置偶然停用后滤料干涸板结造成的堵塞问题。EWP高效污水净化器是集污水絮凝反应、沉淀、吸附、过滤、污泥浓缩等功能于一体的设备。    1.2试验效果   在试验的五个月中,分六个阶段进行测试,表1结果表明试验达到要求目标。        2、工程应用   2.1处理规模   珠江纸厂治理工程中,采用两台处理量100m3/h(高13m)和两台50m3/h(高11m),共4台净化器,分别处理黄板纸和白纸的制桨、抄纸废水。人民纸厂采用六台处理量100(高15)的净化器,处理黄板纸和灰板纸的制桨、抄纸废水。配有污泥浓缩槽和加药系统2套、调节池刮泥机、污泥脱水机等设备。两个工程处理量分别为7200和15000,总投资分别为590万元和980万元,占地1600和2800。广州头号城纸箱厂应用EWP高效污水净化器,污水处理后回用到造纸生产中,使得该厂达到1吨水造1吨纸的先进水平。   2.2工艺流程   对比试验流程增加了调节池刮泥李、泵后加药系统、污泥脱水机等设备。   2.3运行效果   EWP高效污水净化器的技术特点是没有用任何的滤料或填料,而利用先进生产方式的污水中的悬浮与絮凝剂反应后生成的絮凝沉淀物形成吸附过滤订对连续进入的污水进行净化。其关键是EWP高效污水净化器能把污水中的絮凝沉淀物形成稳定的流化,今污染物起到活性碳的作用,并能由新鲜进入的絮凝沉淀物推动老的絮凝沉淀物排出,始终保持净化器的治理效果。虽然只是一级物化处理工艺,却可比气浮、沉淀等同类工艺提高效率10-20%。   经过三年多的运行,尽管进水浓度变化较大,但出水仍然比较好和稳定。表2监测结果表明,可达到去降率COD为92.5%,BOD78.5%,SS98.9%,达到项目的设计要求和国家标准。直接运行费用(药剂费0.25元,电耗0.2度)为0.38元/吨水。   对以废纸再生桨料造纸的废水,采用一级物化处理工艺的EWP高效污水净化器治理,具有工艺简单、设备可靠、管理方便、投资省、占地少、效率高、运行费用低、经处理废水能达标排放并可回用等优点。六、高效垂直流人工湿地系统水质净化技术介绍       工艺原理   人工湿地系统水质净化技术是一种生态工程方法,其基本原理是在一定的填料上种植特定的湿地植物,从而建立起一个人工湿地生态系统,当污水通过系统时,其中的污染物质和营养物质被系统吸收或分解,使水质得到净化。      方法特点   人工湿地系统具有建造成本较低、运行成本很低、出水水质非常好、操作简单等优点,同时如果选择合适的植物品种还有美化环境的作用。但另一方面具有占地面积较大的缺点。    适用范围   经过人工湿地系统系统处理后的出水水质可以达到地面水水质标准,因此它实际上是一种深度处理的方法。特别适用于饮用水源和景观用水保护,处理后的水可以直接排入饮用水源或景观用水的湖泊、水库或河流中。因此特别适合处理饮用水源或景观用水区附近的生活污水或直接对受污染水体的水进行处理,或者为这些水体提供清洁的水源补充。    基建与运行费用   基建费用与很多因素有关:地形特征、地层结构、选用的前处理方法、进水水质情况、出水水质要求、外观要求等等因素有关。因而根据情况的不同有很大差异,但比二级污水处理厂低很多。人工湿地系统运行费用特别低,如果仅以电费计,通常不会超过0.05元/吨/天(主要用于提高进水水位,如果水位不需提升则没有此项费用),另外需要工人进行简单的操作和维护管理。    处理效果   出水水质可以因进水水质或停留时间的不同达到地面水水质标准(GB3838-88)II至V类标准。系统可以根据进水水质状况和出水水质要求进行设计。    研究与应用实例             1.研究工作   1996年以来,深圳市环境科学研究所开展了热带和亚热带区域水质改善、回用与水生态系重建的生物工艺学对策研究(1996.9-1999.9)项目,此项目为为欧盟科学,研究与发展部主管的与第三世界国家和国际组织合作项目,是由中国、德国和奥地利的六个研究单位合作开展的。该课题研究的主导思想是利用能耗低、运行费用低的人工湿地系统和生态学方法净化地面水,可应用于饮用水、景观用水的净化和污水处理。1997年5月到11月,深圳市环境科学研究建成了人工湿地研究试验点,修建了小试和中试试验工程,不仅在理论上作了大量研究工作,同时在技术上积累了很多宝贵的经验。对严重受污染的超过地面水标准GB3838-88V类标准的水经系统处理后,出水可达到III类标准。表1.深圳市环科所人工湿地试验点中试系统水质净化效果(采样时间99.6.16) pHSSCODMnBOD5T-NT-P进水水质7.733315.7611.937.670.700出水水质6.744.03.261.121.120.032                 2.应用实例   2.1洪湖人工湿地系统处理污染严重的布吉河水   在上述小试和中试试验取得了阶段性成果后,深圳市环境科学研究所于1999年初开始设计和修建了洪湖人工湿地系统水质净化工程,此项目为实现深圳市环境双达标任务的污染治理工程,受到市政府和市环保局各级领导的高度重视。洪湖冬季严重缺水,缺水量全部由周边的生活污水作为水量补充,因此长期以来洪湖水质一直不能达到景观用水标准。此项目宗旨是将高效渗滤人工湿地系统水质净化技术应用到洪湖的污染治理,从布吉河取水经系统净化后为洪湖补充清洁水量,同时截去洪湖周边的污水排入,从而达到改善洪湖水质的目的。此项工程1999年9月建成,出水水质优于景观用水标准,可补充洪湖公园湖面的蒸发水量,缓解了洪湖冬季严重缺水的问题,可停止使用沿湖的污水作水源补充,达到逐步改善洪湖水质的目的。表2.洪湖人工湿地系统水质净化效果(采样时间1999.11.30) DOCODMnBOD5TP非离子氨布吉河(系统取水口)0.4738.4738.653.0820.172系统出水6.826.715.470.3610.030去除率-82.6%85.8%86.2%82.6%  2.2人工湿地系统处理生活污水   2000年五月至2000年八月中旬修建了深圳观澜湖高尔夫球会有限公司职工宿舍生活污水人工湿地处理系统。生活污水经过化粪池处理后直接进入人工湿地处理系统,出水水质同样非常好,溶解氧大大增加,出水池中很快有鱼出现。八月二十四日对进出水水质进行了化验,污染物的去除率在75-95%之间,出水水质能达到景观用水水质标准。监测结果见表3。表3.人工湿地系统处理生活污水水质净化效果采样时间:2000.8.24 PHSSDOCODcrBOD5T-NNH4-NT-P进水水质(二次测定)-18-965030.9-4.1797.19340.7878.124.823.32.902.74出水水质7.85254.446.44.985.370.8100.089注:采样地点:深圳观澜湖高尔夫球会有限公司职工宿舍生活污水人工湿地处理系统 '