• 272.35 KB
  • 2022-04-22 11:36:00 发布

污水处理工艺(英文文献)

  • 14页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'EnvironMonitAssess(2007)132:453–466DOI10.1007/s10661-006-9548-3EffectivenessofTreatmentTechnologiesforWastewaterPollutionGeneratedbyIndianPulpMillsDeepaK.Tiku&AnilKumar&S.Sawhney&V.P.Singh&RitaKumarReceived:11April2006/Accepted:26September2006/Publishedonline:13February2007#SpringerScience+BusinessMediaB.V.2007AbstractIndiahasalargenumberofpapermanu-unitsofallfourmillswithpvalues<0.01.Thisfacturingunits,withmillsvaryinginsizeofoper-evaluationshowedthatthoughthesemillshaveationsandtypeofproduct,scatteredallovertheeffluenttreatmentfacilitiesinstalledintheirpremises,lengthandbreadthofthecountry.Presentstudydealsimprovementsarestillneededtoincreasetheirwiththesurveyoffourdifferentpulpandpapermillsefficienciesfortreatingthedischargedwastewaters.(MillA,MillB,MillCandMillD)inIndia,differingintheirscaleofoperationaswellasrawmaterialKeywordsBOD.COD.Paper.Pulp.TDSusage.Physico-chemicalcharacterizationofwaste-watersproducedbydifferentprocessingunitslikedigestorhouseliquors,bleachingsection,papermachinebackwaters,combinedinlettotheETPand1IntroductionoutlettoETP,forallthefourmills,wasconducted.DifferentparameterslikepH,Color,COD,BOD,PulpandpaperindustryisquiteoldinIndia,withpercentNa,SAR,TDSandTotalhardnesswereabout406registeredpulpandpapermills,havingananalyzedandcompared.Highlysignificantdiffer-averageinstalledcapacityofabout4.3milliontonsenceswerethusfoundbetweenalltheprocessingperannum(Nagarathanammaetal.1999).Outofthese,only34millshaveaninstalledcapacityofmorethan100tpd(tonsperday)andcanbecalledtheD.K.Tiku:A.Kumar:R.Kumar(*)large-scalepapermills;120millshaveacapacityinEnvironmentalBiotechnologyDivision,therangeof30–100tpdandtherest252mills,haveInstituteofGenomicsandIntegrativeBiology,aninstalledcapacitylessthan30tpd(Bajpaiand506,InstituteofGenomicsandIntegrativeBiology,MallRoad,Delhi110007,IndiaBajpai1994;Makhijanietal.1996).Thoughthee-mail:rita@igib.res.intraditionalrawmaterialremainswoodandbamboo,however,duetogrowingconcernoverthediminish-S.Sawhneyingforestcover,otherwoodyandnon-woodyDepartmentofBotany,UniversityofDelhi,materialsarealsobeingputtouseformanufacturingNorthCampus,Delhi110007,Indiapaperandrelatedproducts.Theseinclude;agriculturalresidueslikebagasse,hemp,riceandwheatstraw,V.P.Singhcottonrags,wastepaper,etc.SometimescottonragsAppliedMicrobiologyandBiotechnologyLaboratory,DepartmentofBotany,arealsousedasasourceofcellulose(Thompsonetal.UniversityofDelhi,Delhi110007,India2001). 454EnvironMonitAssess(2007)132:453–466Thisindustrydischargesmillionsoftonsofhighlydataobtained.Thedatawouldbeusefulindevelop-pollutingeffluentintotheaquaticenvironment,eachinginnovativebioremediationtechniquesformostyearwithvaryingeffects(Lacorteetal.2003;Oralpollutedindustries.etal.2005).Negativeimpactsonwaterqualityincludeincreasesinturbidity,color,nutrientloadsandadditionoftoxicandpersistentcompounds2MaterialsandMethods(Kirkwoodetal.2001).Theindustryconsumeslargevolumeofwater,nextonlytoagricultureandisalso2.1Milldescriptioncountry’ssixthlargestconsumerofenergy(AliandSreekrishnan2001).Theratioofwatertopollutantsis2.1.1Descriptionoftheindustrialunitshigh.Forthisreason,usuallylarge-sizepapermillsarelocatedneartheperennialwatersources.Fourdifferentmills,hereafterdesignatedasMillA,KraftpulpingisthemostcommonlyemployedB,CandD,varyinginscaleofproductionaswellaspulpingtechniqueinIndia,whichutilizessodiumrawmaterialsutilizedforpulpandpaperproductionhydroxideandsodiumsulfidefordissolvingtheligninweresurveyedascasestudiestounderstandtheextentcomponentofwoodtoseparatethefibresforpaper-ofpollutionloadexertedbyeachofthem.MillAandmaking(BajpaiandBajpai1994;Mehnaetal.1995).Careamongthelarge-scalepapermills;MillBisTheeffluentsemanatingfromthistypeofpulpingamongthemediumscaleindustries,whereasMillDhavecharacteristicallyhighlevelsofbiochemicalrepresentsoneofthesmallpapermills.Alltheseoxygendemand(BOD,chemicaloxygendemandindustrialunitsareamongthemajorpaper-producing(COD),suspendedsolids,colorandorganiccom-millsinthecountry.Theprofilesofeachofthemillspounds(AliandSreekrishnan2001).arediscussedinthefollowingsection:Notwopapermillsdischargeidenticalwaste-MillAThisplantissituatedinthenorthIndianstatewaters.Duetothediversityinusageofrawmaterials,ofUttaranchal.Itismuchlargerinareaasscaleofproductionandeffluenttreatmentstrategies,wellasproductioncapacityascomparedtothereisawidevariationinthedischarges(Thompsontheotherthreemills.Ituseshardwoodetal.2001).Whilelargermillshaveaninfrastructure(bambooandeucalyptus),agro-residues(ba-forrecoveryofchemicalsfromthespentliquor,itisgasse)andwastepaper,asrawmaterialsforeconomicallynon-viableforthesmallermillstothemanufactureofdifferentqualitiesofpulp.operatesuchchemicalrecoverysystems(AliandSreekrishnan2001).Asaresult,thesmallscalepaperOnanaverage,themillproducesabout400tonsofmillsandseveralmediumsizedmillsareconsideredpulpeveryday.AbleachingsequenceofC/DEHDtobemorepollutingsincetheydischargetheir(chlorine,chlorinedioxide,causticextraction,hypo-effluentsgeneratedfrompulpingandbleachingchloriteandchlorinedioxide)isemployedtobleachsections,directlyintothereceivingwaterbodiestheproducedpulp.Afterthis,thewhitepulpisthen(Jivendra1993).sentforfinishingwhereadditivesliketalcumpowder,Consideringtheextremediversityandcomplexitystarch,rosin(akindofgum)anddyesareadded.Theofthepulpandpapermilleffluentsandthepaucityofentireprocessutilizes51,185KLD(kilolitresperday)suitabletechnologiesforefficientbioremediationofwateranddischarges37,000KLDofwastewater.technologiesforthesame,itwasimportanttoassesstheactualloadofpollution,intermsofselectMillBThisisanoldmill,almosthalfacenturyoldparameters,exertedbyeachindividualprocessingandhasaninstalled,dailycapacityofunitofmillsdifferinginrawmaterialutilizationas180tonsofpulpproductionperday.Thewellasscaleofoperation(PokhrelandViraraghavanmilluseshardwoodlikepoplar,bambooand2004).Thepresentstudyshowsanoverviewoftheeucalyptusandsmallquantitiesofwastecharacteristicsofwastewateremanatingfromdiffer-paperandwoodpulpforitsproduction.entprocessingunitsoffourdifferenttypesofIndianKraftpulpingisfollowedbythismill.pulpandpapermillsaswellaseffectivenessoftheirBleachingiscarriedoutinfourstages,viz.,effluenttreatmentfacilities,throughcomparisonofchlorinedioxide,causticextraction,hypo- EnvironMonitAssess(2007)132:453–466455chloriteandhypochlorite(CDEHH).EachBleachingsequenceemployedincludesstepisprecededandfollowedbycounter-chlorinegas,hypochlorite,followedbycurrentwashingwithfreshwater.Atotalofhypochlorite.Itdoesnothaveaproper25,000KLDofwaterisconsumedforthechemicalrecoveryunitandthereforetheentireprocessofpulpingandpapermakingspentchemicalsandunusedrawmaterialswhereasaround23,000KLDisdischargedaresenttotheETPwithoutanyrecovery.aswastewater.MillCThismillissituatedinthenorthernIndianstateofHaryana,knownforitsagricultural2.1.2Samplecollectionopulence.Itistypicallyahardwoodutiliz-ingpapermillwithaproductioncapacityofForthepresentstudy,sampleswerecollectedfrom220tpd(tonsofpulpproducedperday)variousprocessingunitsofallthefourmills.TheandutilizestheKraftmethodforpulping.majorsamplingsourceswerethedigesterhouseThismillonanaverage,dischargesapprox-liquors;bleachplantwaste,papermachineback-3imately40,000mofwastewaterperday.waters,combinedpulpmilleffluentandETPoutlet.ChlorinedioxideisusedasthemajorSampleswerecollectedinclean,ambercontainers.bleachingagentandthepapermakingpro-Samplesweretransportedwithin12hunderrefriger-cessinvolvestheadditionofadditiveslikeatedconditionsandstoredbelow4°Ctilluse.opticaldyes,rosins,alum,etc.Theeffluentstreamsemanatingfromthedifferentunits,2.1.3Analysesmergeintoasinglestreamwhichthenflowsintotheeffluenttreatmentplant,whereAllsampleswereanalyzedintriplicatesformajoradditiveslikepoly-electrolytes,alum,calci-physico-chemicalparameters,viz.pH,color,Bio-umoxide,etc.areaddedtopre-treatthechemicalOxygenDemand(BOD),Chemicaloxygeneffluent.demand(COD),percentsodiumandSodiumAbsorp-MillDThisisasmall-scalepapermillwithationRatio(SAR).Theprofileofsolidspresentinproductioncapacityof45–50tpdanddifferentforms,viz.TotalSolids(TS),TotalSus-employsagriculturalresidueslikebagassependedSolids(TSS),TotalDissolvedSolids(TDS),andstraw(wheatandrice)andwastepaper.TotalVolatileSolids(TVS),TotalSuspendedvolatile3Ithasasingledigesterof40mandutilizessolids(TSVS)andTotalDissolvedVolatileSolidstheKraftpulpingmethod.Brownpaperis(TDVS),wasalsostudied.Allanalyseswerecarriedoneofitsmajorproductsbesidesotheroutasperstandardprocedures(APHA1998).Colorpaperproducts,likepaperboard,etc.wasmeasuredbythespectrophotometricmethodTable1pHandcolorofwastewateremanatingfromdifferentunitsofthefourpapermillsSamplepHColor(PCU)MillAMillBMillCMillDMillAMillBMillCMillDDigesterMean10.82±11.92±11.83±11.77±1,879,958.67±756,636.00±25,860.33±378,465.67±houseliquors0.020.070.060.129,078.525967.9513.617,953.35BleachMean6.94±4.93±8.28±9.26±5,008.67±7,647.33±4,543.33±2,031.67±plantwaste0.050.060.250.19105.1966.7115.89118.78PapermachineMean6.15±6.50±6.72±7.24±1,069.00±835.33±185.33±92.00±backwaters0.050.020.180.0627.4015.709.073.00CombinedpulpMean6.92±6.69±6.59±7.45±1,510.33±1,299.33±1,851.67±1,746.33±milleffluent0.080.080.080.1310.5016.265.866.51ETPoutletMean6.79±7.12±6.28±7.53±900.33±764.00±870.33±783.00±0.060.100.030.032.0817.324.166.24 456EnvironMonitAssess(2007)132:453–466Table2CODandBODlevelsofwastewateremanatingfromdifferentunitsofthefourpapermillsabSampleCOD(mg/l)BOD(mg/l)MillAMillBMillCMillDMillAMillBMillCMillDDigestorhouseMean152,424.33±130,808.67±25,026.67±23,331.67±35,940.67±25,338.33±1,512.67±1,450.67±liquors3,169.341,316.51118.46337.153,296.41136.5921.7312.50BleachplantMean1,101.33±984.00±1,009.00±1,508.33±881.33±575.67±121.00±435.00±waste10.697.9417.6917.5665.0457.277.5522.65PapermachineMean1218.33±855.67±435.33±1152.00±492.00±370.33±154.33±232.00±backwaters17.0118.779.0722.0736.3740.0712.6617.58CombinedpulpMean1,009.33±1,025.00±985.00±1,216.33±609.67±620.33±465.67±621.67±milleffluent11.0210.5427.0622.5934.2760.0031.5346.58ETPoutletMean453.67±468.00±535.33±275.00±71.67±69.00±60.33±82.67±30.0916.708.967.006.436.933.215.13aChemicaloxygendemandbBiochemicaloxygendemand(NationalCouncilforAirandStreamImprovement–ColorItwasevidentfromthedatathatallthefourNCASIMethod71.011999).ThestatisticalanalysespapermillsproducehighlycoloreddigestereffluentliketheStandarddeviationandAnova,werecarried(Table1).Amongallthepulpandpapermills,outusingMicrosoftExcel.digestorhouseliquorofMillAhadthehighestlevelofcolor(18,79,959PCU),whereasMillDhadthelowestvalueof25,860PCU(Table1).Allthefour3Resultsmillshadsignificantdifferencesinthesevalues,whichcouldagainbeduetodifferencesinrawThedataobtainedfromanalysesofallthesamplesformaterialsused,byeachmill.ColorlevelsofbleachparameterslikepH,color,COD,BOD,percentNa,plantwastes,werehighestintheMillBbleachingSAR,totalhardnessandprofileofsolidspresenteffluent,goingupto7,600colorunits,followedbytherein,aredepictedinTables1,2,3,4,5and6.TheMillsAandD.Thepapermachinebackwatershadresultsarediscussedinthefollowingsections:variablecolorlevelsinallthepapermills.MillAexhibitedacolorlevelof1,069PCU.MillsCandpHAscanbeseenfromTable1,pHoftheBlackDhadverylowcolorwithvaluesrangingfrom92liquorsamples,fromallthefourpapermills,wasto185PCU;whereasMillBhadacolorlevelofvariablewithinarangeof10.8–11.9.Thebleaching835PCU.TheinletsamplesofallthefourmillswastesgeneratedfromthedifferentpulpandpaperwerehighlycoloredwithMillDhavingthemills,hadapHrangingfrom4.9to9.26,thushighestcolorlevelof1,851PCU,followedbyindicatingawidevariationbetweenthedifferentmills.MillC(1,746PCU),MillA(1,510PCU)andPapermachinebackwatershadanearneutralpH.MillB(1,299PCU).TheoutletsamplesofalltheTable3Color:CODandBOD:CODratiosofwastewateremanatingfromdifferentunitsofthefourpapermillsSampleColor:CODBOD:CODMillAMillBMillCMillDMillAMillBMillCMillDDigestorhouseliquors12.335.781.0316.220.240.190.060.06Bleachplantwaste4.557.774.501.350.800.590.120.29Papermachinebackwaters2.172.261.200.401.330.430.350.20Combinedpulpmilleffluent2.482.093.982.810.600.600.470.51ETPoutlet12.5611.0714.439.470.160.150.110.30 EnvironMonitAssess(2007)132:453–466457Table4PercentNa,SARandtotalhardnessofwastewateremanatingfromdifferentunitsofthefourpapermillsaSamplePercentNaSARTotalhardness(mg/l)MillAMillBMillCMillDMillAMillBMillCMillDMillAMillBMillCMillDDigesterhouseMean63.02±40.94±50.62±41.52±17.63±5.57±5.59±48.27±1,783.33±791.00±354.00±404.33±liquors0.470.581.270.490.080.230.100.5027.159.5411.5314.98BleachplantMean16.93±22.06±41.49±19.23±1.17±1.52±1.70±5.15±238.00±665.00±411.33±54.00±waste0.060.080.100.180.100.020.160.0913.5312.779.025.29PapermachineMean28.7±14.75±37.67±38.83±4.42±1.23±2.17±2.16±675.33±228.33±486.00±273.33±backwaters0.250.160.160.280.140.050.080.0322.729.7111.793.79CombinedpulpMean37.79±22.55±46.64±45.59±3.48±1.53±2.59±2.61±650.67±651.67±627.33±422.67±milleffluent0.210.490.310.800.210.040.140.048.0211.509.6115.57ETPoutletMean21.79±18.13±31.18±27.47±2.05±1.59±1.99±1.78±485.00±554.67±468.00±433.00±0.220.120.170.810.150.060.020.098.8917.9510.006.00aSodiumabsorptionratiofourmillsalsohadhighcolorlevelsrangingfrom1,500mg/landBODfrom121to880mg/l.BOD760to900PCU.ThisreflectedthatnoneofthelevelofMillAsampleswasalmostdoublethanthoseETPswasabletosignificantlylowerthecolorofMillsBandC.CODofpapermakingeffluentswaslevels.particularlyhigh,whichcouldbeduetotheprocess-ingandrefiningchemicalsthatwereusedduringCODandBODCODandBODlevels,rangingaspapermaking.Datafromthecombinedinletandoutlethighas1,50,000mg/land35,000mg/l,respectively,ETPofallthefourmillsshowedthatCODandBODwereobserved(Table2).BODofMillDsampleswaslevelsofMillAsampleswerealmosttwicethoseofalmost20timesashighastheMillA,probablyMillB(Table2).Table3showstheColor:CODratiobecauseofdifferencesinrawmaterialsused.TheaswellasBOD:CODratiosforallthedifferentbleachplantwasteshadCODrangingfrom980tooperationsofthedifferentmills.Table5Profileofsolids(TS,TSS,TDS)ofwastewateremanatingfromdifferentunitsofthefourpapermillsabcSampleTS(mg/l)TSS(mg/l)TDS(mg/l)MillAMillBMillCMillDMillAMillBMillCMillDMillAMillBMillCMillDDigestorMean193,311±138,637±11,646±176,083±1,873±1,019±814±2,618±191,871±138,636±10,832±166,528±house8671,64352111,0042.091248411521345615796liquorsBleachMean1,823±1,989±1,368±5,077±457±624±155±197±1,366±1,364±1,213±4,880±plant10823561.246916752041wastePaperMean2,521±2,442±1,355±839±1,179±1,490±516±205±1,342±918±839±634±machine1514135640.31869251232648backwatersCombinedMean2,654±2,153±2,079±1,796±917±615±455±592±1,737±1,556±1,755±1,261±pulpmill214943210.5610104816303129effluentETPoutletMean1,753±1,650±1,879±1,321±317±133±324±127±1,436±1,517±1,424±1,204±71116421.6272012615727aTotalsolidsbTotalsuspendedsolidscTotaldissolvedsolids 458EnvironMonitAssess(2007)132:453–466Table6Profileofsolids(TVS,TSVS,TDVS)ofwastewateremanatingfromdifferentunitsofthefourpapermillsabcSampleTVS(mg/l)TSVS(mg/l)TDVS(mg/l)MillAMillBMillCMillDMillAMillBMillCMillDMillAMillBMillCMillDDigestorhouseMean81,751±42,396±3,856±55,949±1,475±408±542±2,441±80,276±41,991±3,313±53,509±liquors1053449579223711913511BleachplantMean640±542±937±1,095±386±297±284±139±254±245±653±956±waste90.084281213416512539PapermachineMean789±544±509±279±740±505±260±111±49±42±249±168±backwaters110.161321610612641429CombinedpulpMean922±795±1,218±526±446±256±382±324±476±440±837±248±milleffluent10.493353662055681842ETPoutletMean587±563±911±271±267±102±248±28±320±459±663±202±70.123132621365203020aTotalvolatilesolidsbTotalsuspendedvolatilesolidscTotaldissolvedvolatilesolidsPercentNa,SARandtotalhardnessThedatagivenwatersample.ThecorrespondingpercentNaobtainedforallthemanufacturingunitsofalltheandSARvaluesforallthesampleswerewellwithinfourpapermills,ispresentedinTable4.Thetotalpermissiblelimits,indicatinglowsodicityofthesehardnesslevelsofbleachingeffluentofalltheunitsdischarges.ApercentNalevelof60%andSARlesswereconsiderablyhigh,exceptthatofMillC,wherethan26,areconsideredsafefordischarge(CPCB,theselevelsweresurprisinglylow.TotalhardnessisPCLS2000).2+2+anindexofthepresenceofCaandMgionsinaSolidsTheprofileofsolids(suspended,dissolvedandvolatile)ispresentedinTables5and6.ItisevidentTable7Analysisofvariance(ANOVA)betweenallthefromthedatathatthedigesterhouseliquorshadhighparametersanalysedforcombinedinlettoETPandouletwastewatersamplesofallfourpulpandpapermillslevelsofsolids.ThisisbecauseofthepresenceofmajorityofunusedchemicalsandligninintheirSourceofvariationSampleF-valuedissolvedandsuspendedforms.ThetotalsolidscontentofthebleachplantwastesofMillCwaspHInlet49.10*Outlet234.14*highest(5,000mg/l),withtheothersbeingquiteColorInlet1,623.42*comparablewitheachother(rangingfrom1,300toOutlet145.69*1,900mg/l.CODInlet91.82*ANOVA(analysisofvariance)testindicatedthatOutlet112.93*thereweresignificantdifferencesamongthefourBODInlet8.72*unitsstudied(Table7)withpvalues<0.01indicatingOutlet8.07*veryhighsignificancelevels.PercentNaInlet1,140.93*Outlet540.83*SARInlet110.73*Outlet15.68*4DiscussionTotalhardnessInlet277.50*Outlet540.83*PollutionloadingofthepulpandpapermilleffluentsTSSInlet178.70*dependssignificantlyuponthenatureandcleanlinessOutlet231.70*ofthefeedstock,whetherthepulpandpapermillisTDSInlet217.37*equippedwithachemicalrecoveryplant,thebleach-Outlet296.38*ingsequenceemployedandtheefficiencyofwhite*pvalue<0.01:highlysignificantwaterrecycleinthepaperline. EnvironMonitAssess(2007)132:453–466459pHpHofwastewatersamplesisveryimportanttomillsemployinghardwoodgenerategreatercolor-bemonitoredasitdeterminesthefeasibilityofaladenwastewatersascomparedtodischargesfromparticularsampletobebiologicallytreated(Jivendraagro-residuebasedpapermills(BajpaiandBajpai1993;Pepperetal.1996).Biologicaltreatmentcanbe1994;Subrahmanyam1990).ItisalsoreportedthatsuitablyappliedtowastewateronlyifpHvaluesarepulpandpapermillsequippedwithsodarecovery,nearneutral.Acidicandbasiccharacterofthedischargeabout270–450lofwastewater/kgofpaperwastewaterhasnegativeeffectonthemicroorganismsproducedwithanaverageof305l/kgandtheamountandthusleadstoinefficienttreatment(Atlas1993).oflignindischargedis40–50g/kgofbleachedpaperTheprocessofKraftpulpingwhichentailstheusageproduced(Sastry1986).ofsodiumhydroxideandsodiumsulfide,hasadirectThehighcolorsofbleachingwastesareattribut-effectonthepropertiesofeffluentdischargedbytheabletotheextensiveusageofbleachingchemicalspulpingsection.ThepHdifferencesbetweenthedif-likechlorinetoobtainwhitepulp(Talka1983).Suchferentdigestorhousesamplesmaybeduetothechemicalsquenchoutmostofthecoloredcomponentsdifferencesintheextentofsodiumhydroxideusedforofthedigestedpulp;includingligninandotherpulping,aswellastheproductioncapacityofeachphenolicchromophores.Althoughthehighmolecularplant.DifferencesinpHofbleachplantsamplescouldweight(HMW)fractionofthebleacheryeffluentisbebecauseofvariationintheextentofcausticgenerallybelievedtobederivedfromKraftligninextractionbeingcarriedoutduringbleachingofpulp.extractedfromthepulpduringthechlorination(C)Forexample,thecausticextractionstepwascom-andcausticextraction(E)(Konduruetal.2001),therepletelyabsentincaseofMillB,thereforethepHwasissomeevidencethatcolormayalsobederivedfrommoretowardstheacidicside(pH4.93)ascomparedpulpcarbohydrates(Ziobro1990).AsligninisnotatotheratheralkalinepHofMillD(Table1).MillAdefinedchemicalcompoundofuniformcomposition,hasanelaboratecausticextractionstageforbleachinghenceitisregardedasacollectivetermforawholeitshighlydark-coloredpulp.Thenearneutralcharac-seriesofsimilarlargemoleculeswhicharecloselyterofthepapermachinebackwatersmaybebecauserelatedtoeachother(BajpaiandBajpai1994).nointensechemicalshavingextremepHeffectareSankaranandLudwig(1971),havereportedthattheusedduringthepapermakingprocess(Thompsondoublebondconjugatedwitharomaticring,quinoneetal.2001).AlthoughdigesterhouseliquorsofallmillsmethidesandquinonegroupsareresponsiblefortheshowedalkalinepH,yetthecombinedinletstreamofcolorofitssolution.Goring(1971)inastudy,allpapermillshadanearneutralpH,becauseofthereportedthatligninmoleculeshaveatendencytocompositenatureofthemixedinlet.undergoself-condensation,particularlyinacid-media,explainingitsresistancefordegradationtosimplerColorThedigesterhouseliquorortheBlackliquorismolecularspecies.Papermachinebackwatersformadense-brownincolorasitcontainsmajorityofunusedsizeablequantityofthemills’combinedwastewaterchemicalsandligninthathasbeenseparatedduringandconsistsoffibres,fines,fillers,dyes,sizingpulping(Bajpaietal.1993).Thespentliquorchemicals,grit,etc.Thesedischargesgenerallyhavegenerallycontainssodiumlignatesmixedwithsodi-lowlevelsofcolor,exceptincoloredpaperruns,umthiolignatesalongwithotherchemicalsincludingwhichusedyestoproducecoloredpaper(Thompsonresidualcookingchemicals(SjostromandAllenetal.2001).Colorlevelsofthesesampleswere1994).ThedigestorhouseliquordataimpliedthatvariablewhichcouldbeduetothedifferencesinthealthoughMillDwasasmall-scalepapermill,andtypeandqualityofpaperproducedbyeachmill.Thelackedaproperchemicalrecoverysystem,itcarriedcombinedinlettoETPsamplesofallmillswashighlesscolorascomparedtothepulpingeffluentfromincolor(Table3).Highercolorlevelsofcombinedtheformermill.ThisisbecauseofthedifferenceininleteffluentofMillCandD,reflectstheeffectofthetherawmaterialsemployedforpulping.Thismillisabsenceofaproperchemicalrecoverysystem,duetoessentiallyanagro-residuebasedpapermillanddoeswhichmanycoloredchemicals,mainlyfromtheblacknotutilizehardwoodforitsproduction.Ontheotherliquorandthebleachingsections,mayhavefoundhand,MillAutilizeshardwoodlikebambooandtheirwayintothedischarges(Table3).Noneoftheeucalyptusforitsproduction.Itiswidelyreportedthatmillsemployedanypretreatmenttechniquestolower 460EnvironMonitAssess(2007)132:453–466theinitialcolorlevelsoftheireffluentspriortotantandmajorcomponentofthepulpandpaperbiologicaltreatment.ArcandandArchibald(1991)effluents(Feijooetal.1995).DilekandBese(1999)triedpretreatmentofE1stageeffluentwithozone.havereportedthedecolorizationofpulpingeffluentsTheyobservedthatsuchpretreatmentledtobetterusingamixedcultureofalgae.biologicaltreatmentascomparedtonopretreatment.Acombinationofaerobic–anaerobictreatmentforThehighcolorlevelsoftheoutletETPsamplesalsodecolorizationofpulpmilleffluents,hasalsobeenreflectedtheinadequacyoftheexistingbiologicalreported(Feijooetal.1995).Someworkershavealsotreatmentsystemsforcolorremovalofpulpandpaperusedextracellularoxidativeenzymeslikeligninmills.Thesamehasalsobeenreportedbyseveralperoxidases,manganeseperoxidasesandlaccasesofworkers(ArchibaldandRoy1995;Livernocheetal.fungaloriginfordecolorizingbleachKraftpulpmill1983;MurtedzaandLandner1993).Inastudyeffluents(BajpaiandBajpai1994).conductedonthecolorremovalefficiencyofsecond-Atthispoint,nosinglecolorremovaltechnologyaryprocessesforthetreatmentoffivebleachedkrafthasbeenidentifiedasthemosteffective.Sinceallthemilleffluents,itwasfoundthatthepercentefficien-above-citedtechnologiesarecostintensive,theyciesrangedfromnegativeto32%andweremuchlesswouldhaveadverseeconomicimpactonthemillascomparedtotheCODandBODremoval(Haoinvolved.Moreover,chemicaltreatmentprocessesetal.2000).Itiswellevidentfromthedataobtainedadduptotheever-increasingconcentrationofthatefficientcolorreductionbyconventionalsecond-chemicalsintheenvironment(Kapdametal.2000).arybiologicaltreatmentliketheactivatedsludgetreatmentremainselusive.CODandBODThepulpingprocessplaysacentralroleinthepollutionloadandcompositionoftheTherearetwogeneralstrategiesfortheremovalofwastewaterproducedbythepulpandpapermills(Alicolorfromtheeffluentofapulpandpapermill:andSreekrishnan2001).Digesterhouseliquors(1)Physico-chemicaltreatments:containhighamountsofchemicals,lignin,residualGeneralphysicochemicalcolorremovalmethodsfibres,etc.,whichresultinincreasedlevelsofCODsuchaschemicalprecipitation,rapidsandfiltration,andBODinsuchdischarges.Thedataobtainedwasmembraneprocessesandadsorptionhavebeendevel-incoherencewiththeabovefact,withbothCODandoped(Springer1985).AdsorptionandmembraneBODlevelsgoingashighas1,50,000andprocesses,althoughareefficient,butexpensiveand35,000mg/l,respectively(Table2).Theefficiencytedioustouseforaprocessindustrylikethatofpulpofremovaloftheaboveparametersalsodependsandpaperwherethousandsofgallonsofwastewaterupontheefficiencyofthechemicalrecoveryplant.aredischargedcontinuously(ManjunathandMehrotraMurtedzaandLandner(1993)reportedthatan1981).efficientchemicalrecoverysystemcouldreduceas(2)Biologicaltreatment:muchas96%oftheCODloadfromthepulpcookingInprinciple,biologicaltreatmentgivestheidealliquor.Thebleachplanteffluentsamplesfromthesolutiontocolorremovalaslesssludgeisproducedasmillsstudied,hadCODrangingfrom980tocomparedtochemicaltreatments.Lowerdailyrun-1,500mg/l,whereasBODvaluesrangedfrom121toningcostsarealsoincurred.Pulpandpapereffluents880mg/l.Carpenteretal.(1973)reportedthatareconventionallytreatedwithactivatedsludgemeth-modificationsinthebleachingsequencecouldaswellod.However,secondarybiologicaltreatmentsystemsreducetheloadingofCODandBODtolevelslowercannotremovecoloreffectivelyfromsuchhighlycol-thanthosenormallyfoundintheeffluentsofmillsoredandcomplexeffluentsbecauseoflackofspecificusingconventionalbleachingsequenceslikemicrobialfloraexplored(YosefianandReeve2000).CEHDED.TheyfoundthatwhenthechlorineResearchersaroundtheworldhavetriedtoexploredelignificationstageisprecededbyoxygentreatment,differentbiologicalsystemsfordevelopingeffectivesuchasinOCEDEDbleaching,theresultingBODcolorreductiontechnologies.Amongthese,white-rotandCODlevelswerefoundtobe87and77%lesserfungihavebeenextensivelyresearchedupon,fortheirthanthelevelsrecordedforCEHDEDbleachingcapabilitytodegradelignin,whichformsanimpor-effluents. EnvironMonitAssess(2007)132:453–466461ConventionaltreatmenttechnologiesessentiallyforhighCOD/BODratio.Theyusedananaerobicinvolveaerobicbiologicaltreatmentmethods.Anfilterforthetreatmentofpulpandpapermillwasteoverviewofvariousaerobictreatmentsystemsde-andachievedamaximumCODremovalof84.38%visedbydifferentworkersispresentedinTable8.foraninfluentconcentrationof4,182.5mg/l.Anaer-Researchersacrosstheglobehavetriedtodeviseobicprocessesareoftenprescribedasthefirstinnovativemethodsforachievingmaximumreduc-pretreatmentstepforpulpandpapermillwastewaterstionintheBODandCODloadingsofpulpandwithincreasedCODconcentrations,inordertomeetpapermillwastes.Sincetimeofretentionisanthecorrespondingeffluentrequirements(Babunaimportantfactorforanytreatmenttechnology,notetal.1998).Accordingtothem,themagnitudeofinertmanyofsuchmethodsfindtheirwayactuallyintofractionsintreatmentofeffluentsismoreimportanttheindustry.thanthekineticsofthebiodegradablepartoftheAlthoughnumerousstudieshavelookedatwaystoinfluentCOD.Theydescribedananaerobicapplica-degradeorremoveCODandBODofthepulpandtionbasisofanewlydevelopedmethodthatpapereffluents,theproblemremains(ArcandandidentifiesseparatelythesolubleandparticulateinitialArchibald1993).CODremovalofupto80%byinertandresidualproducts.ItwasconcludedthatLeptothrixochracea,Pseudomonasmultistreataandwiththementionedwastewatersample,havingatotalFlavobacteriumochracea,isolatedfromactivatedCODof13,000mg/l,itisnotpossibletoachieveasludgehasbeenreported(Srivastavaetal.1995).lowerCODvaluethan2,230mg/l,whichisthesumTarlanetal.(2002)reportedtheuseofalgaeforoftheinitiallyinertsolubleCODandthesolubleremovalofCODintherangeof55–60%,however,residualmicrobialproductsunderanaerobiccondi-onlyafteraperiodof20daysofretention.tions.Groveretal.(1999)reportedtheuseofanBelsareandPrasad(1988),reportedthattheanaerobicbaffledreactor(ABR)andeffectofeffluentfrombagassebasedpulpandpapermills,differentpH,temperatures,hydraulicretentiontimeswhentreatedwiththewhiterotfungus,S.commune,andorganicloadingratesoncontinuousanaerobicwasabletoreducetheBODandCODoftheeffluent.digestionofblackliquorfrompulpandpapermills.However,anadditionalC-sourcelikesucrosewasAmaximumCODreductionofabout60%atan−3−1requiredforthesamewitha2-dayincubationperiodorganicloadingrateof5kgmdayatahydraulicandapHof4–5.Manyotherworkershavealsoretentiontimeof2dayswasrecorded.reportedtheuseofwhiterotfungiforreductionofAliandSreekrishnan(2001),reportedreductionofBODandCODloadofsuchwastewaters,inCODandAOXofblackliquorandbleachplantadditiontodecolorization(Eatonetal.1980;Kirkeffluentfromanagroresiduebasedpulpandpaperetal.1976;Nagarathanammaetal.1999;Prasadandmillbyanaerobictreatment.Additionof1%w/vJoyce1991).glucose,however,wasanecessityasinitsabsenceSharmaandBandyopadhyay(1991)reportedthatonlyabout31%ofCODreductioncouldbeachieved.ligninisnoteasilybiodegradableandhenceaccountsWagnerandNicell(2001)reportedthetreatmentofafoulcondensatefromKraftpulping,withhorseradishperoxidaseandhydrogenperoxide.Although,atotalphenolreductionoccurred,theoverallCODremovalTable8Anoverviewofvariousaerobictreatmentsystemswasmarginal.TechnologyResearchgroup/yearModificationsinthebleachingsequencecanalsoleadtoreducingthepollutantloadingtolevelslowerFine-bubbleaerationWoodard1996thanthosenormallyfoundintheeffluentsofmillsPureoxygenWeinzaepfeletal.1996Additionofthermophilic,Dierecksetal.1996usingtheconventionalbleachingsequence,culturedmicroorganisms,CEHDED.CertainstudiesseemtoindicatethatthedirectionalaerationandeffluentresidualcolorinpulpmilleffluentsmaybelinkedwithrecyclingtolagoontherecalcitrantCOD(Babunaetal.1998;SharmaandAeratedbiofiltersKanterdjieffandJones1996Bandyopadhyay1991).KemenyandBanerjee(1997)SubmergedaeratedbiologicalRalph1996observedacorrelationbetweentheend-of-pipeCODfilters(SAF)andcolor,therebysuggestingthattheresidualcolor 462EnvironMonitAssess(2007)132:453–466mightberelatedtotheorganiccomponentthatisnottreatmentplantaretoseparatethewastesfromtheremovedduringtreatment.waterfordisposalelsewhereandtoproduceanTheCentralPollutionControlBoardofIndiaeffluentwhichcanbedischargedtoareceivingwater(CPCB)haslaiddownMinimumNationalStandardsbodywithoutcausingpollution.Theinletandoutlet(MINAS)forBODinthedischargesfrompulpandstreamsofallthefourindustrialunitswerecomparedpapermillwastewatersas30mg/l.However,duetotohaveanideaabouttheefficiencyoftheireffluentnon-availabilityofeffectivetechnologiesforthetreatmentplants(ETPs).Whenappliedtoaconser-properreductionofCODlevelsofsucheffluents,vativesubstancesuchasphosphorus,thetermMINAShasnotsetanylimitforCODinsuch‘efficiency’isusedtoexpressinformationaboutthedischarges.Therefore,thereisanimmensepotentialfractionofthewastematerialpresentinthewastewa-andneedforthedevelopmentofeffectivebioremedi-ter,whichisseparatedduringtreatment.Mostoften,ationtechniquesforreductionoftheaboveparame-removalefficiencyisexpressedaspercentage:ters,especiallyCOD.%efficiency¼ðÞCiCe=Ci100;where;Totalhardness,percentNaandSARThepositivesideCiistheconcentrationofthewastematerialintheofthestudywasthatthepercentsodiumandSARinfluentandCeistheconcentrationintheeffluent.valuesofallthefourindustrialunitswerewellwithinPercentefficiencyvaluesareusedtocomparelimits(Table4).Thisparametergenerallytellsaboutdifferenttreatmentprocessesandtodetermineifathesodicityofaparticularsoilsampleorwaterbody.particulartreatmentplantisaccomplishingthepur-IndustrialwastewatershavingSARlevelsbelow26poseforwhichitwasdesigned(Hurstetal.1997).canbeutilizedforirrigationpurposes(CPCB,PCLSAsisevidentfromFig.1a,thepercentefficiencyof2000,India).Iftheselevelsareslightlyhigh,gypsumMillBETPtoreduceBODwas88.9%followedbyisgenerallyusedtolowerthelevelsformakingthe88.2%incaseofMillA.However,theBODvaluesofwaterssuitableforirrigationpurposes.thetreatedoutletstreamswerestillabovethestandardBODdischargelimitsof30mg/l.Theactualload/unitSolidsHighTDSlevelsareindicativeofthepresencewastewaterdischargedwas51and24kg/toninofhighlevelsofbothinorganicandorganiccom-combinedwastewatersamplesfromMillsAandB,poundspresentinagivenwatersample.Totalrespectively.ThetreatedoutletsampleshadawasteDissolvedSolidswerealsoalarminglyhighinMillloadingof6and3kg/lBODintheabovetwomills,Cwastes,crossingthe2,100mg/llimitsetbytherespectively.ItwasclearthattheMillAwasalmostIndianregulatoryauthorities(Table5).TDSisalsotwiceaspollutedastheMillB.Similarly,theCODoneoftheoften-neglectedparameters,eventhoughitlevelsshowedapercentreductionof55%inMillA,canhavetremendouseffectsontheoverallqualityofwhichwasfarbehindMillCwhichwasabletowater.achievea77.4%CODreductioninitseffluent.ThisHighlysignificantdifferenceswerethusfoundefficiencywasclearlynotverygoodascomparedtobetweenalltheprocessingunitsofallfourmillswiththedatafromafewforeignmills.Forexample,anpvalues<0.01.Itisapparentthatnotwo-papermillsinvestigationconductedonaSwisspulpmillhavingamaydischargeidenticaleffluentssincetheymaytwo-stagebiologicaltreatmentplant,revealedaBODadoptanycombination(s)ofthenumberoftechnol-removalefficiencyofupto95%(Leuenbergeretal.ogiesavailableineachoftheunitprocessesinvolved1985).inthemanufactureofpulpandpaper(AliandTheCODloadofinletETPsamplesofMillsAandSreekrishnan2001).Bwere85and39kg/tonwhereasthetreatedsamplesofthesamemillshadaCODloadof38and18kg/ton.Depletionofdissolvedoxygen(D.O.)inreceiving4.1Efficiencyoftheeffluenttreatmentplantswatersisveryserious,becausedesirableaquaticorganismsareaerobicinnatureandthesolubilityofWastewatertreatmentplantsusuallyincludeaseriesoxygeninwaterisverylow,lessthan9mg/l.ofprocesses,andinmostcases,oneoftheprocessesMicrobialutilizationofonlyafewmilligramsofD.isbiological.TheoverallobjectivesofawastewaterO.canresultintheeliminationofthedesired EnvironMonitAssess(2007)132:453–466463Fig.1aPercentefficiencyofconventionaltreatmentsystemsforreductionofvariouspollutionalparame-ters.bPercentefficiencyofconventionaltreatmentsys-temsforreductionofvari-ouspollutionalparameterspopulationandcommunitiesofaquaticorganismsinTheTotalSuspendedSolids(TSS)aswellasTotalthereceivingwaters.dissolvedSolids(TDS)remainedquitehighintheColorshowedhardlyanyimprovementincaseoftreatedeffluent,withTSSnotcomingdowntotheMillsAandBevenafterclarification(Table1).dischargelimitof100mg/l.TheMillAcombinedHowever,inthecaseofMillD,thetreatedeffluentinlethadaTDSloadofabout145kg/tonwhereastheemanatingfromtheclarifiershowedadecreaseofoutletsampleofthesamemillcarriedaTDSloading53%incolor,more-sosincetherawmaterialsusedinof121kg/ton(Table5).Ontheotherhand,althoughtheindustryareverydifferentfromtheothermills.TDSloadingofMillBwasalmosttwotimeslesserThepHvaluesremainedalmostconstant,therebythanthatofMillA,withaloadof59kg/ton,yetthesuggestingthatanoptimumacid–basebalanceexistedtreatedeffluentshowedhardlyanyimprovementwithinthetreatmentsystems.aTDSloadof58kg/ton.ThusTDSlevelsremained 464EnvironMonitAssess(2007)132:453–466unaffectedevenaftertreatmentandweremorethanthedischargedwastewaters.ThisalsoindicatedthattheEPAregulatorystandardof1,200mg/l,asshownthereisalotofscopeinimprovisingtheexistinginFig.1b.Thoughthereisnostandarddischargelimitactivatedsludgesystem,whichpossiblycouldbeprescribedforTDSofindustrialeffluents,howeveritdonebyutilizingthenaturalwealthofbacteria,isuniversallyknownthathigherTDSisalwaysspecificfortheparticularpollutionalproblem.Lowdeleteriousforaquatichealth.ThoughallthefourpercentsodiumandSARvaluesareapositivemillswereusingactivatedsludgesystemintheirindicationforapurposefulutilizationoftheeffluenttreatmentplants,yettheefficiencieswerenotemanatedwastewatersforcontrolledirrigation.Thisasexpected.Itcouldbearguedthatthetwocriticalwouldbeadvantageousforthemillastheywouldoperationalaspectsofanactivatedsludgeplant,viz.nothavetodischargeitintoriversandcanutilizemaintainingapropercontroloftheDOconcentrationthetreatedwastewatersintheirownlandorintheaerationtankandmaintainingagoodsettlingadjoiningareas.Sincethesewastewatersarerichsludge,arevariableandmayberesponsiblefortheincalciumandmagnesium,theycanbeutilizedforunsatisfactoryperformanceofthetreatmentplants.irrigatingagriculturallands.CentralPollutionCon-Indeedbulkingisonofthemajorproblems,causingtrolBoard,India,recentlypreparedacharteronoperationalproblems(Thompsonetal.2001)andCorporateResponsibilityforEnvironmentalProtec-activatedsludgeplantsareparticularlypronetothis.tion,whichmakesitmandatoryforpulp,andpaperunitsinIndiatocomplywithdifferentstandardswithinspecifiedtimeframes(Table9).Onthebasis5Conclusionsoftheresultsobtained,itwasfeltthattheknowledgeofthepollutionalindexofeachofthemillscouldAllthefourindustrialunitsanalyzedaboveshowedformabasetodeviseappropriatestrategiesforthatthoughtheyhaveeffluenttreatmentfacilitiesmitigatingpotentialenvironmentalhazardsarisinginstalledintheirmills,improvementsarestillduetothese.ItshouldalsobeborneinmindthatneededtoincreasetheirefficienciesfortreatingeachpulpandpapermilliscomplexwithhighlyTable9TargetsforIndianpapermillstoachievecompliancetoregulatorystandardsTargetsImplementationscheduleLargescalepapermillsDischargeofAOX(kg/tonofpaper)1.5kg/tonwithin2years,1.0kg/tonwithin5yearsInstallationoflimekilnWithin4years3Wastewaterdischarge/tonofpaper<140m/tonofpaperwithin2years3<120m/tonofpaperwithin4yearsforunitsinstalledbefore19923<100m/tonofpaperforunitsinstalledafter1992in5yearsOdourcontrolbyburningthereducedsulfurInstallationofodourcontrolsystemwithin4yearsemissionsintheboiler/limekilnUtilizationoftreatedeffluentforirrigationEarliestpossibleColorremovalIndianPaperMaker’sAssociation(IPMA)totakeupprojectsSmallscalepapermillsComplianceofstandardsofBOD,CODandAOXRecoverybyinstallationofrecoveryplantsorutilizationofblackliquorwithin3yearsorshiftcompletelytowastepaperUpgradationofETPsWithin1yearsoastomeetdischargestandards3Wastewaterdischarge/tonofpaper<150m/tonwithin3yearsUtilizationoftreatedeffluentforirrigationWhereverpossibleColorremovalIndianAgroandRecycledPaperManufacturer’sAssociation(IARPMA)totakeupprojectsTakenfromCharteroncorporateresponsibilityforenvironmentalprotection.CentralPollutionControlBoard,MinistryofEnvironmentandForests,GovernmentofIndia,March2003. EnvironMonitAssess(2007)132:453–466465interactiveoperationsandthatanyperturbationinoneEaton,D.,Chang,H.M.,&Kirk,T.K.(1980).Fungaldecolorizationofkraftbleachplanteffluents.Tappiareamayhaveagreatimpactontheotherareas.Journal,63(10),103–106.Feijoo,G.,Vidal,G.,Moreira,M.T.,Mandez,R.,&Lema,J.M.AcknowledgementsTheauthorsacknowledgethefinancial(1995).DegradationofhighmolecularweightcompoundsofhelpprovidedbytheCouncilofScientificandIndustrialkraftpulpmilleffluentsbyacombinedtreatmentwithResearch,India.TheauthorsalsoacknowledgetheCentralbacteriaandfungi.BiotechnologyLetters,17(11),PollutionControlBoard,Delhi,forprovidingnecessaryhelpin1261–1266.collectionofsamplesfromallthefourmills.TheauthorsalsoGoring,D.A.I.(1971).PolymerpropertiesofligninandligninacknowledgeMrD.P.ChandranaandMrR.L.Lakhotiaforderivatives.NewYork:Wiley.extendingtheircooperationforprovidingwastewatersamples,Grover,R.,Marwaha,S.S.,&Kennedy,J.F.(1999).Studieswheneverrequiredandthegeneroushospitalityofferedtousontheuseofananaerobicbaffledreactorfortheuponeachvisit.continuousaerobicdigestionofpulpandpapermillblackliquors.ProcessBiochemistry,34,653–657.Hao,O.J.,Hyunook,K.,&Chiang,P.C.(2000).Decoloriza-Referencestionofwastewaters.CriticalReviewsinEnvironmentalScienceandTechnology,20(4),449–505.Ali,M.,&SreekrishnanT.R.(2001).AquatictoxicityfromHurst,C.J.,Knudsen,G.R.,McInerney,M.J.,Stetzenbach,L.D.,&pulpandpapermilleffluents:Areview.AdvancesinWalter,M.V.(1997).Manualofenvironmentalmicrobiology,EnvironmentalResearch,5,175–196.Americansocietyformicrobiology.Washington,DC:ASM.APHA(1998).StandardmethodsfortheexaminationofwaterJivendra(1993).Waterpollutioncontrolinpulpandpaperandwastewater(20thed.).Washington,DC:Americanindustry(pp.13–47).India:APH.PublicHealthAssociation.Kanterdjieff,A.,&Jones,J.(1996).PracticalexperienceswithArcand,L.R.,&ArchibaldF.S.(1993).Effectsoftime,aerobicbiofiltersinTMP,sulfiteandfine-papermillsindaylightandsettlingpondmicroorganismsonthehighCanada.Paperpresentedat5thIAWQsymposiumformolecularweightfractionofkraftbleacheryeffluents.industrialwastewater.Vancouver,Canada.WaterResearch,27(5),873–881.Kapdam,I.K.,Kargi,F.,McMullan,G.,&Marchant,R.Archibald,F.,&Roy,A.L.(1995).Photodegradationofhigh(2000).Effectofenvironmentalconditionsonbiologicalmolecularweightkraftbleacheryeffluentorganchlorinedecolorizationoftextiledye-stuffbyCoriolusversicolor.andcolor.WaterResearch,29(2),661–669.EnzymeandMicrobialTechnology,26,381–387.Atlas,R.M.(1993).Handbookofmicrobiologicalmedia.Kemeny,T.E.,&Banerjee,S.(1997).RelationshipsamongFlorida,USA:CRC.effluentconstituentsinbleachedkraftpulpmills.WaterBabuna,F.G.,Ince,O.,Orhon,D.,&Simsek,A.(1998).Research,31(7),1589–1594.AssessmentofinertCODinpulpandpapermillKirk,T.K.,Connors,W.J.,&Zeikus,J.G.(1976).wastewaterunderanaerobicconditions.WaterResearch,Requirementforagrowthsubstrateduringlignindecom-32(11),3490–3494.positionbytwowood-rottingfungi.AppliedandEnviron-Bajpai,P.,&Bajpai,P.K.(1994).BiologicalcolorremovalofmentalMicrobiology,32(1),192–194.pulpandpapermillwastewaters.JournalofBiotechnol-Kirkwood,A.E.,Nalewajko,C.,&Fulthorpe,R.R.(2001).Theogy,33,211–220.occurrenceofcyanobacteriainpulpandpaperwasteBajpai,P.,Mehna,A.,&Bajpai,P.K.(1993).Decoloriza-treatment.CanadianJournalofMicrobiology,47,761–766.tionofkraftbleachplanteffluentwiththewhiterotKonduru,R.R,Liss,S.N.,&Allen,D.G.(2001).RecalcitrantfungusTrametesversicolor.ProcessBiochemistry,28,organicsemergingfrombiologicaltreatmentofkraftmill377–384.effluents.WaterQualityResearchJournalCanada,36(4),Belsare,D.K.,&Prasad,D.Y.(1988).Decolorizationofeffluent737–757.fromthebagassebasedpulpmillsbywhiterotfungusLacorte,S.,Latorre,A.,Barcelo,D.,Rigol,A.,Malmqvist,A.,Trametesversicolor.ProcessBiochemistry,46,274–276.&Welander,T.(2003).OrganiccompoundsinpapermillCarpenter,W.,McKean,W.T.,Berger,H.F.,&Gellman,I.processwatersandeffluents.TrendsinAnalyticalChem-(1973).Acomparisonofeffluentcharacteristicsfromistry,22(10),725–737.conventionaloxygenbleachingsequenceresultsofaLeuenberger,C.,Giger,W.,Coney,R.,Graydon,J.W.,&laboratorystudy.Paperpresentedatthe1973InternationalMolanr,E.(1985).Persistentchemicalsinpulpmillpulpbleachingconference,Vancouver,Canada.effluents.WaterResearch,19(7),885–894.CPCB,PCLS(2000).Environmentalstandardsforambientair,Livernoche,D.,Jurasek,L.,Desrochers,M.,&Dorica,J.automobiles,fuels,industriesandnoise.PollutionControl(1983).RemovalofcolorfromkraftmillwastewaterwithLawseries,4,109pp.culturesofwhiterotfungiandwithimmobilizedmyceli-Dierecks,R.,Dunigan,M.,&Christiansen,J.(1996).Optimis-umofCoriolusversicolor.BiotechnologyandBioengi-ingBODremovalunderadverseoperatingconditionsinaneering,25,2055–2065.kraftmill.InTAPPIInternationalenvironmentalconfer-Makhijani,S.D.,Manoharan,A.V.,Gangal,R.,Kumar,A.,enceproceedings,1139.Kumar,R.,SharmaA.,etal.(1996).StabilityofmicrobialDilek,F.B.,&Bese,S.(1999).TreatmentofpulpingeffluentsseedcultureforuseofBODanalysisofenvironmentalbyusingalumandclay–Colorremovalandsludgesamples.Delhi,India:CentralPollutionControlBoardcharacterization.WaterS.A.,27(3),361–366.(CPCB).LATS/10/1997–98,54–59. 466EnvironMonitAssess(2007)132:453–466Manjunath,D.L.,&MehrotraI.(1981).RemovalofreactiveSjostrom,E.,&Allen,R.(1994).Analysisofinorganicdyesusingalumligninsludge.IndianJournalofEnvi-constituents.InAnalyticalmethodsinwoodchemistry,ronmentalHealth,23(4),309–315.pulpingandpapermaking.BerlinHeidelbergNewYork:Mehna,A.,Bajpai,P.,&Bajpai,P.K.(1995).StudiesonSpringer(seriesinwoodscience).decolorizationofeffluentfromasmallpulpmillutilizingSpringer,A.(1985).Industrialenvironmentcontrol,pulpandagriresidueswithTrametesversicolor.EnzymeandMicro-paperindustry.NewYork:Wiley.bialTechnology,17,18–22.Srivastava,S.K.,Srivastava,A.K.,&Jain,N.(1995).Murtedza,M.,&Landner,L.(1993).EnvironmentimpactDegradationofblackliquor,apulpmilleffluent,byassessmentofamixedtropicalhardwood,integratedpulpbacterialstrainPseudomonasputida.IndianJournalofandpapermill–Acasestudy.EnvironmentalImpactExperimentalBiology,33,962–966.AssessmentReview,13,353–374.Subrahmanyam,P.V.R.(1990).WastemanagementinpulpNagarathanamma,R.,Bajpai,P.,&Bajpai,P.K.(1999).andpaperindustry.JournalofIndianAssociationforStudiesondepolarization,degradationanddetoxificationEnvironmentalManagement,7,79–94.ofchlorinatedlignincompoundsinkraftbleachingTalka,E.(1983).DeterminationoflowmolecularweighteffluentsbyCeriporiopsissubvermispora.ProcessBio-chlorinatedcompoundsinpulpmillbleachingeffluentschemistry,34,939–948.bymassspectrometry.InternationalJournalofMassNCASIMethod71.01(1999).ColormeasurementinpulpmillSpectrometryandIonPhysics,48,295–298.wastewaterbyspectrophotometrymethod.USA:NCASI.Tarlan,E.,Dilek,F.B.,&Yetis,U.(2002).EffectivenessofOral,J.,Sikula,J.,Puchyr,R.,Hajny,Z.,Stehlik,P.,&Bebar,algaeinthetreatmentofawood-basedpulpandpaperL.(2005).Processingofwastefrompulpandpaperplant.industrywastewater.BioresourceTechnology,84,1–5.JournalofCleanerProduction,13,509–515.Thompson,G.,Swain,J.,Kay,M.,&Forster,C.F.(2001).ThePepper,I.L.,Gerba,C.P.,&Brusseau,M.L.(1996).Pollutiontreatmentofpulpandpapereffluent:areview.Bioresour-science.Carolina:Academic.cesandBiotechnology,77,275–286.Pokhrel,D.,&Viraraghavan,T.(2004).TreatmentofpulpandWagner,M.,&Nicell,J.A.(2001).Treatmentofafoulpapermillwastewater–Areview.ScienceofTheTotalcondensatefromkraftpulpingwithhorseradishperoxidaseEnvironment,333,37–58.andhydrogenperoxide.WaterResearch,35(2),485–495.Prasad,D.Y.,&Joyce,T.W.(1993).SequentialtreatmentofWeinzaepfel,B.,Ferrand,F.,Du,R.M.,Marchand,D.,&Nim,E1stagekraftbleachplanteffluent.BioresourceTechnol-R.(1996).Recentdevelopmentsandsynergiesintheuseogy,44(2),141–147.ofoxygenforthebiologicaltreatmentofwastewaterfromRalph,B.(1996).Fixedfilmtreatmentofpapermilleffluents,thepulpandpaperindustry.InTAPPIInternationalBiologicaltreatmentofpulpandpaperindustrialefflu-EnvironmentalConferenceProceedings1,115.ent,13.Gatwick,Leatherhead,UK:UKPiraInternational.Woodard,T.(1996).Waterreuselevels–SolidsbuildupbarriersSankaran,K.,&Ludwig,V.(1971).Lignins:Occurrence,anddeinkingplantclosure.PulpandPaper,70(2),4.formation,structureandreactions.NewYork:Wiley.Yosefian,S.,&ReeveD.W.(2000).ClassesofcompoundsSastry,C.A.(1986).ColorremovalfrompulpandpapermillresponsibleforCODandcolorinBKME.InTAPPI–wastewaters.IndianJournalofEnvironmentalProtection,PaptecInternationalConference,Denver,CO.6(2),105–113.Ziobro,G.C.(1990).OriginandnatureofKraftcolor:TheroleSharma,R.R.,&Bandyopadhyay,S.(1991).Treatmentofpulpofbleachingintheformationofextractionstageeffluentandpapermilleffluentbyup-flowanaerobicfilter.Indiancolor.JournalofWoodChemistryandTechnology,10,JournalofEnvironmentalHealth,33(4),456–463.151–168.'