• 397.20 KB
  • 2022-04-22 11:41:42 发布

某城镇生活污水处理工程设计

  • 41页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'某城镇生活污水处理工程设计3摘要:XX市XX镇生活污水处理厂设计处理规模12000m/d,采用氧化沟工艺作为废水脱氮除磷阶段核心处理工艺,该工艺流程简单、构筑物少、处理效率高、投资省。经处理后出水水质达到城镇污水处理厂污染物排放标准(GB18918-2002)的一级B标,总投资约1600万元。关键词:生活废水;氧化沟工艺;前言XX镇位于四川XX市境内中部平原地区。东邻XX镇、XX乡,南接XX乡、XX镇,西连XX镇,北靠XX镇。1985年并乡入镇,仍名XX镇。幅员面积50.7平方公里,耕地面积3975亩。XX镇历来是XX市商贸重镇,享有"大蒜之乡"、"川剧之乡"和"兰花之乡"的美誉。1992年被XX市列为优先发展经济"一条线"乡镇,1995年被列为成都市小城镇建设试点镇,同时被评为四川省文化先进乡镇,并首批被命名为成都市特色文化之乡,连续4年被列为国家级农业综合开发区。隆丰镇基础设施完备,初步形成了工业、农业和第三产业综合发展的格局,已由农业经济向城乡型经济发展。基于新农村建设的要求,基础配套设施的完善,新建污水处理站是必须的也是必备的。为改善该城镇及下游地区的环境质量,保障人民身体健康,建立污水处理厂是完全必要的,也是十分迫切的;该污水处理站将收集该镇八成以上的生活污水,处理后出水水质达到城[1]镇污水处理厂污染物排放标准(GB18918-2002)的一级B标,满足排水和环保的要求。同时与农民居住区环境的改善和新农村建设的总体思路完全吻合。1.1设计任务及依据1.1.1设计任务312000m/d乡镇生活污水站初步设计。1.1.2设计依据及原则1.1.2.1设计依据1 《地表水环境质量标准》(GB3838-2002)《污水综合排放标准》(GB8978-1996)《生活饮用水卫生标准》(GB5749-2006)《污水排入城市下水道水质标准》(CJ3082-1999)《城市污水处理厂污水污泥排放标准》(CJ3025-93)《中华人民共和国环境保护法》;《建设项目环境保护设计规定》;《彭州市建设项目环境管理》;《水污染物排放限值》(DB44/26-2001)中的一级标准;《污水综合排排放标准》(GB8978-1996)中的一级标准;《建筑给水排水设计规范》(GBJ15-88);1.1.2.2设计原则(1)选用运行安全可靠、经济合理的工艺流程。(2)采用先进的技术和设备,合理利用资金,提高污水处理站的自动化程度和管理水平。(3)根据基础设施统一规划、分步实施的方针,在方案设计中充分考虑远、近期结合,为发展留有余地。(4)污水处理厂的位置,应符合城市规划要求,位于城市下游,与周边有一定的卫生防护带,靠近受纳水体,少占农田。(5)严格执行国家和地方现行有关标准、规范和规定。1.1.3设计范围本方案设计范围为:通过对类似生活污水水质情况的综合分析,提出可行性方案,最终推荐最优方案;内容主要包括污水处理工艺流程、设备选型、污水构筑物及附属工程等进行综合规划设计。2 1.2设计水量及水质1.2.1设计人口0根据统计,隆丰镇2005年人口共43000人,结合当地7/00的人口年增长速度,以等比[2]数列推算法预计到2020年人口总数达48000人左右。1.2.2设计水量[2]3根据居民生活污水定额145L/(人·d),设计水量平均总流量为6525m/d,平均时流量33272m/h,即75L/s。所以时变化系数Kz=1.7,小时最大流量Qmax=12000m/d。1.2.3设计水质根据本地城镇污水的原始资料,和该污水处理厂出水直接排放到河流内,而该河流是饮用水源保护区,所以,处理出水应该达到城镇污水处理厂污染物排放标准(GB18918-2002)的一级B标。表1设计水质BOD5CODcrSST-NNH3-NTP水温pH进水水质20035030040308(mg/L)高25℃出水水质6~920602020151低12℃(mg/L)处理程度(%)9082.893.35050872处理工艺方案选择2.1工艺方案选择原则作为乡镇基础设施的重要组成部分和水污染控制的关键环节,乡镇污水处理厂工程的建设和运行意义重大。由于乡镇污水处理厂的建设和运行不但耗资较大,而且受多种因素的制约和影响,其中处理工艺方案的优化选择对确保处理厂的运行性能和降低费用最为关键,因此有必要根据确定的标准和一般原则,从整体优化的观念出发,结合设计规模、污水水质特性以及当地的实际条件和要求,选择切实可行且经济合理的处理工艺方案,经全[3]面技术经济比较后优选出最佳的总体工艺方案和实施方式。在污水处理厂工艺方案确定中,将遵循以下原则:(1)技术成熟,处理效果稳定,保证出水水质达到国家规定的排放要求。(2)基建投资和运行费用低,以尽可能少的投入取得尽可能多的效益。3 (3)运行管理方便,运转灵活,并可根据不同的进水水质和出水水质要求调整运行方式和工艺参数,最大限度的发挥处理装置和处埋构筑物的处理能力。(4)选定工艺的技术及设备先进、可靠。(5)便于实现工艺过程的自动控制,提高管理水平,降低劳动强度和人工费用。本工程要求的污水处理程度较高,对污水处理工艺选择应十分慎重。本方案设计的污水处理工艺选择针对该城镇污水量和污水水质以及经济条件考虑适应力强、调节灵活、低[4]能耗、低投入、少占地和操作管理方便的成熟先进工艺。下面将对各种工艺的特点进行论述,以便选择切实可行的方案。2.2污水处理工艺流程的确定2.2.1厂址及地形资料XX镇污水处理站选址应综合考虑管网布置和现有人口分布特点,将其分别布置在龟背型场镇的两边。2.2.2气象及水文资料2.2.2.1水文地质资料该地区地处成都平原。地形复杂,有低山、丘陵和平原,多条河流直贯其中,地势北高南低。2.2.2.2气象资料(1)风向及风速:常风向为北风,最大风速1.2m/s;(2)气温:月平均最高气温37.3℃,最低气温-2.7℃2.2.3可行性方案的确定本项目污水处理的特点为:①污水以有机污染为主,BOD/COD=0.5,可生化性较好,重金属及其他难以生物降解的有毒物一般不超标;②污水中主要污染物指标BOD5、CODcr、SS值比国内一般城市污水高;针对以上特点,以及出水要求,现有城市污水处理技术的特点,以采用生化处理最为经济。4 生活污水的生物处理技术是以污水中含有的污染物作为营养源,利用微生物的代谢作[5]用使污染物降解,它是生活污水处理的主要手段,是水资源可持续发展的重要保证。根据国内外已运行的大、中型污水处理厂的调查,要达到确定的治理目标,可采用:普通活性污泥法、氧化沟法、A/O工艺法、AB法、SBR法等等。a.普通活性污泥法方案普通活性污泥法,也称传统活性污泥法,推广年限长,具有成熟的设计及运行经验,处理效果可靠。自20世纪70年代以来,随着污水处理技术的发展,本方法在艺及设备等2方面又有了很大改进。在工艺方面,通过增加工艺构筑物可以成为“A/O”或“A/O”工艺,从面实现脱N和除P。在设备方面,开发了各种微孔曝气池,使氧转移效率提高到20%以上,从面节省了运行费用。3国内已运行的大中型污水处理厂,如西安邓家村(12万m/d)、天津纪庄子(26万333m/d)、北京高碑店(50万m/d)、成都三瓦窑(20万m/d)普通活性污泥法如设计合理、运行管理得当,出水BOD5可达10~20mg/L。它的缺点是工艺路线长,工艺构筑物及设备多而复杂,运行管理管理困难,基建投资及运行费均3较高。国内已建的此类污水处理厂,单方基建投资一般为1000~1300元/(m/d),运行费为30.2~0.4元/(m/d)或更高。b.氧化沟方案氧化沟污水处理技术,是20世纪50年代由荷兰人首创。60年代以来,这项技术在欧洲、北美、南非、澳大利亚等国已被广泛采用,工艺及构造有了很大的发展和进步。随着对该技术缺点(占地面积大)的克服和对其优点(基建投资及运行费用相对较低,运行效果高且稳定,维护管理简单等)的逐步深入认识,目前已成为普遍采用的一项污水处理技术。目前常用的几种商业性氧化沟有荷兰DHV公司60年代开发的Carrousel氧化沟,美国Envirex公司开发的Orbal氧化沟,丹麦Kruger公司发明的DE氧化沟等。在我国,氧[4]化沟工艺是使用较多的工艺。氧化沟工艺一般可不设初沉池,在不增加构筑物及设备的情况下,氧化沟内不仅可完2成碳源的氧化,还可实现硝化和脱硝,成为A/O工艺;氧化沟前增加厌氧池可成为A/O(A-A-O)工艺,实现除磷。由于氧化沟内活性污泥已经好氧稳定,可直接浓缩脱水,不必厌氧消化。5 氧化沟污水处理技术已被公认为一种较成功的革新的活性污泥法工艺,与传统活性污泥系统相比,它在技术、经济等方面具有一系列独特的优点。①工艺流程简单、构筑物少,运行管理方便。一般情况下,氧化沟工艺可比传统活性污泥法少建初沉池和污泥厌氧消化系统,基建投资少。另外,由于不采用鼓风曝气的空气扩散器,不建厌氧消化系统,运行管理要方便。②处理效果稳定,出水水质好。实际运行效果表明,氧化沟在去除BOD5和SS方面均可取得比传统活性污泥法更高质量的出水,运行也更稳定可靠。同时,在不增加曝气池容积时,能方便地实现硝化和一定的反硝化处理,且只要适当扩大曝气池容积,能更方便地实现完全脱氮的深度处理。③基建投资省,运行费用低。实际运行证明,由于氧化沟工艺省去初沉池和污泥厌氧消化系统,且比较容易实现硝化和反硝化,当处理要求脱氮时,氧化沟工艺在基建投资方面比传统活性污泥法节省很多(当只需去除BOD5时,可能节省不多)。同样,当仅要求去除BOD5时,对于大规模污水厂采用氧化沟工艺运行费用比传统活性污泥法略低或相当,而要求去除BOD5且去除NH3-N时,氧化沟工艺运行费用就比传统活性污泥法节省较多。④污泥量少,污泥性质稳定。由于氧化沟所采用的污泥龄一般长达20~30d,污泥在沟内得到了好氧稳定,污泥生成量就少,因此使污泥后处理大大简化,节省处理厂运行费用,且便于管理。⑤具有一定承受水量、水质冲击负荷的能力。水流在氧化沟中流速为0.3~0.4m/s,氧化沟的总长为L,则水流完成一个循环所需时间t=L/S,当L=90~600m时,t=5~20min。由于废水在氧化沟中设计水力停留时间T为10~24h,因此可计算出废水在整个停留时间内要完成的循环次数为30~280次不等。可见原污水一进入氧化沟,就会被几十倍甚至上百倍的循环量所稀释,因此具有一定承受冲击负荷的能力。⑥占地面积少。由于氧化沟工艺所采用的污泥负荷较小、水力停留时间较长,使氧化沟容积会大于传统活性污泥法曝气池容积,占地面积可能会大些,但因为省去了初沉池和污泥厌氧消化池,占地面积总的来说会少于传统活性污泥法。2c.A/O和A/O法A/O工艺自被开发以来,就因为其特有的经济技术优势和环境效益,愈来愈受到人们的广泛重视.通常称为A/O工艺的实际上可分为两类,一类是厌氧/好氧工艺,另一类是缺氧/好6 氧工艺.厌氧状态和缺氧状态之间存在着根本的差别:在厌氧状态下既有无分子态氧,也没有化合态氧,而在缺氧状态下则存在微量的分子态氧(DO浓度<0.5mg/L),同时还存在化合态的氧,如硝酸盐.。2A/O法的特点有:2①A/O法在去除有机碳污染物的同时,还能去除污水中的氮磷,与传统活性污泥法二级处理后再进行深度处理相比,不仅投资少、运行费用低,而且没有大量的化学污泥,具有良好的环境效益。2②A/O法厌氧、缺氧、好氧交替进行,有利于抑制丝状菌的膨胀,改善污泥沉降性能。2③A/O法工艺流程简单,总水力停留时间少于其他同样功能的工艺,节省基建投资。2④A/O法缺点是受泥龄、回流污泥中溶解氧和硝酸盐氮的限制,不可能同时取得脱氮和除磷都好的双重效果。d.A-B法工艺AB工艺是一种生物吸附―降解两段活性污泥工艺,A段负荷高,曝气时间短,0.5h左右,污泥负荷高2~6kgBOD5/(kgMLSS·d),B段污泥负荷较低,为0.15~0.30kgBOD5/(kgMLSS·d),该段工艺有机物、氮和磷都有一定的去除率,适用于处理浓度较[4]高,水质水量较大的污水,通常要求进水BOD5≥250mg/L,AB工艺才有明显优势。AB工艺的优点:具有优良的污染物去除效果,较强的抗冲击负荷能力,良好的脱氮除磷效果和投资及运转费用较低等。①对有机底物去除效率高。②系统运行稳定。主要表现在:出水水质波动小,有极强的耐冲击负荷能力,有良好的污泥沉降性能。③有较好的脱氮除磷效果。④节能。运行费用低,耗电量低,可回收沼气能源。经试验证明,AB法工艺较传统的一段法工艺节省运行费用20%~25%.AB工艺的缺点7 ①A段在运行中如果控制不好,很容易产生臭气,影响附近的环境卫生,这主要是由于A段在超高有机负荷下工作,使A段曝气池运行于厌氧工况下,导致产生硫化氢、大粪素等恶臭气体。②当对除磷脱氮要求很高时,A段不宜按AB法的原来去处有机物的分配比去除BOD55%~60%,因为这样B段曝气池的进水含碳有机物含量的碳/氮比偏低,不能有效的脱氮。③污泥产率高,A段产生的污泥量较大,约占整个处理系统污泥产量的80%左右,且剩余污泥中的有机物含量高,这给污泥的最终稳定化处置带来了较大压力。e.SBR工艺SBR实际上是最早出现的活性污泥法,早期局限于实验研究阶段,但近十年来,由于自动控制、生物选择器、机械制造方面的技术突破才使得这一工艺真正应用于生产实践,[5]目前该工艺的应用正在我国逐步兴起。它是一个完整的操作过程,包括进水、反应、沉淀、排水排泥和闲置5个阶段。SBR工艺有以下特点:①生物反应和沉淀池在一个构筑物内完成,节省占地,土建造价低。②具有完全混合式和推流式曝气池的优势,承受水量,水质冲击负荷能力强。③污泥沉降性能好,不易发生污泥膨胀。④对有机物和氮的去除效果好。但传统的SBR工艺除磷的效果不理想,主要表现在:对脱氮除磷处理要求而言,传统SBR工艺的基本运行方式虽充分考虑了进水基质浓度及有毒有害物质对处理效果的影响而采取了灵活的进水方式,但由于这种考虑与脱氮或除磷所需要的环境条件相背,因而在实际运行中往往削弱脱氮除磷效果。就除磷而言,采用非限量或半限量曝气进水方式,将影响磷的释放;对脱氮而言,则将影响硝化态氮的反硝化作用而影响脱氮效果。8 表2生物处理方案技术经济比较技术经济指标运行情况方指标备案BOD5去基建能占运行管理适应负荷注除率%费耗地稳定情况波动需脱氮除磷的污水A/O85~95>100>100>100一般一般一般处理厂适用于中小型污水氧化沟90~95<100>100>100稳定简便适应厂,需要脱氮除磷地区适应可分期建设达AB法85~95<100<100约100一般简便适应到不同的要求适用于中、小型污SBR法90~99<100100<100稳定简便适应水处理厂注:*将传统活性污泥法100作为相对经济指标基准。从上面的对比中我们可以得到如下结论:根据综合分析,为使该废水达到排放标准则应考虑使用具有脱氮除磷功能的生物处理工艺。由以上内容知,处理工艺上优先选择A/O法和氧化沟法,两种工艺都能达到预期的处理效果,且都为成熟工艺,但经分析比较,氧化沟法工艺方案在以下方面具有明显优势。①氧化沟法方案在达到与传统活性污泥法同样的去除BOD5效果时,还能有更充分的硝化和一定的反硝化效果;②氧化沟法管理较简单,适合该污水处理管理技术水平现状;[6]③氧化沟法相对A/O法具有更强的适应符合波动能力。综合以上对比分析,本工程以氧化沟法污水处理厂工艺方案作为推荐方案,如图1所示。9 图1氧化沟法污水处理厂工艺流程渣包外运栅渣打包机原污水农灌格栅提升泵沉砂池厌氧池氧化沟二沉池接触池分水井至砂外运回砂水分离器砂泵回流泵集泥井加氯机用水深度泥饼外运液氯处污泥脱水机贮泥池浓缩池污泥泵理系统10 3污水处理工艺设计计算3.1污水处理系统3.1.1格栅格栅主要是为了拦截废水中的较大颗粒和漂浮物,以确保后续处理的顺利进行。主要是对水泵起保护作用,拟采用中格栅,格栅栅条选用圆钢,栅条宽度S=0.01m,间隙拟定[2]为0.02m。设计参数:栅条间隙e=20.00mm,栅前水深h=0.4m,过栅流速υ=0.9m/s,安装倾角δ=60°,φ10圆钢为栅条阻力系数=1.79。图2格栅示意图①栅条间隙数nQsinamaxn=ehu式中:n——栅条间隙数,个;3Qmax——最大设计流量,Qmax=0.129m/s;11 oa——格栅倾角,取60;b——栅条间隙,m,取0.02m;h——栅前水深,m,取0.4m;v——过栅流速,m/s,取0.9m/s;则:Qsina0.129sin60maxn===16.67条取17条ehv0.02´0.4´0.9②栅槽宽度BB=S(n-1)+bn式中:S——栅条宽度,m,取0.01m。则:B=S(n-1)+bn=0.01×(17-1)+0.02×17=0.5m③通过格栅的水头损失h1=h0k2vh=xsina02g4æsö3x=bç÷èbø式中:h1——设计水头损失,m;h0——计算水头损失,m;22G——重力加速度,m/s,取g=9.8m/s;K——系数,格栅受污物堵塞时水头损失增大倍数,一般采用=3;x——阻力系数,其值与栅条断面形状有关;b——形状系数,取b=1.79(由于选用断面为锐边矩形的栅条)。44æsö3æ0.01ö3则:x=bç÷=1.79ç÷=0.71èbøè0.02ø12 22v0.9h=xsina=0.71sin60=0.03m02g2´9.8h1=h0k=0.03×3=0.09m④栅后槽总高度HH=h+h1+h2式中:h2——栅前渠道超高,取=0.3m。则:H=h+h1+h2=0.4+0.09+0.3=0.79。⑤栅槽总长度LH1L=ll++1.0++0.512tanaBB-1l=12tana1l1l=22H=+hh11式中:l——进水渠道渐宽部分的长度,m;1B1——进水渠宽,m,取B1=0.35m;oa1——进水渠道渐宽部分的展开角度,取a1=20;l——栅槽与进水渠道连接处的渐窄部分长度,m;2H1——栅前渠道深,m.则:B-B0.5-0.351l==»0.22m12tana2´tan201l1l==0.11m22H1=h+h2=0.4+0.3=0.7m13 H0.71L=l1+l2+0.5+1.0+=0.22+0.11+0.5+1.0+=2.23mtanatan60⑥每日栅渣量W86400QWmax1W=1000K总333333式中:W1——栅渣量,m/(10m)污水,取W1=0.07m/(10m)污水。则:W=86400QmaxW186400´0.129´0.07=0.45m3/d>0.2m3/d,宜采用机械清渣=1000K1000´1.7Z3.1.2污水提升泵池设计计算①设计流量:Q=301L/s,泵房工程结构按远期流量设计②泵房设计计算采用氧化沟工艺方案,污水处理系统简单,对于新建污水处理厂,工艺管线可以充分优化,故污水只考虑一次提升。污水经提升后入平流沉砂池,然后自流通过厌氧池、氧化沟、二沉池及接触池,最后由出水管道排入关渠堰。[7]3根据最大流量设计,选用4台150QW-180-6-5.5潜污泵(3用1备),Q=180m/h,H=6m;采用高、中、低水位分别启动水泵,通过液位计来实现自动控制;出水管上设置管式流量计,对出水流量进行监测和控制。污水提升泵池尺寸:1000mm×900mm×1500mm数量:1座材质:钢筋混凝土构造:全地埋3.1.3平流式沉砂池①设计说明污水经提升泵提升后进入平流沉砂池,共两组对称于提升泵房中轴线[4]布置,每组分为两格。每格宽度B1=0.65m沉砂池池底采用多斗集砂,沉砂由螺旋离心泵自斗底抽送至高架砂水分离器,砂水分离通入压缩空气洗砂,污水回至提升泵前,净砂直接卸入自卸汽车外运。14 33设计流量为Qmax=464m/h=0.129m/s,设计水力停留时间t=30s,水平最大流速υ363=0.25m/s,城市污水沉砂量X=30m/(10m),清除沉砂的间隔时间T=2d。Qmax0.1292每格池平面面积为A===0.516mv0.25②沉砂池水流部分的长度(L)L=V´t式中:L——沉砂池水流部分的长度,L;3V——曝气沉砂池有效容积,m;t——设计水力停留时间t=40s则:L=V´t=0.25´30=7.5m③池宽度BB=n×B1=2×0.65=1.3m式中:B——沉砂池总宽度;B1——单个沉砂池宽度;n——沉砂池个数。则:B=n×B1=2×0.65=1.3m④有效水深h2Ah2=B式中:h2——有效水深;A——池平面面积;B——沉砂池总宽。则:15 A0.516h2===0.4mB1.3⑤沉砂斗所需容积(V)QXT´86400maxV=6K´10Z式中:V——沉砂斗所需容积;3Qmax——最大设计流量,Qmax=0.129m/s;363X——城市污水沉砂量,m/(10m);T——清除沉砂的间隔时间,d。K——水流量变化系数,取1.7。Z则:QmaxXT´864000.129´30´2´864003V===0.399»0.4m66K´101.7´10Z⑥池总高度(H)H=h1+h2+h3式中:h1——沉砂池超高,取0.3m;h2——有效深度,h2=0.4m;h3——沉砂室高度,取0.5m则:H=h1+h2+h3=0.3+0.4+0.5=1.2m3.1.4厌氧池a.设计参数设计流量:最大日平均时流量为Qmax=129L/s水力停留时间:T=2.5h污泥浓度:X=3000mg/L污泥回流液浓度:Xr=10000mg/L考虑到厌氧池与氧化沟为一个处理单元,总的水力停留时间超过15h,所以设计水量按16 [8]最大日平均时考虑。b.设计计算①厌氧池容积:-33V=Q1′T=129×10×2.5×3600=1161m②厌氧池尺寸:水深取为h=4.0m。则厌氧池面积:V11612A===290mh4厌氧池直径:4A4´290D==m(取D=20m)p3.14考虑0.3m的超高,故池总高为H=h+0.3=4+0.3=4.3m。③污泥回流量计算:回流比计算X33R==´10=0.43X-X10-3r污泥回流量3QR=0.43×129=55.47L/s=4792m/d3.1.5氧化沟3.1.5.1设计参数(进水水质如表1所示)进水BOD5=200mg/L出水BOD5=20mg/L进水NH3-N=30mg/L出水NH3-N=15mg/L污泥负荷Ns=0.14KgBOD5/(KgVSS·d)污泥浓度MLVSS=5000mg/L污泥f=0.6,MLSS=3000mg/L。拟用卡罗塞(Carrousel)氧化沟,去除BOD5与COD之外,还具备硝化和一定的脱氮17 除磷作用,使出水NH3-N低于排放标准。氧化沟按设计分2座,按最大日平均时流量设计33Qmax=11092m/d=129m/s,每座氧化沟设计流量为QmaxQ1==65L/s。2总污泥龄:20dMLSS=3600mg/L,MLVSS/MLSS=0.75则MLSS=2700曝气池:DO=2mg/LNOD=4.6mgO2/mgNH3-N氧化,可利用氧2.6mgO2/NO3-N还原α=0.9β=0.98-1其他参数:a=0.6kgVSS/kgBOD5b=0.07d脱氮速率:qdn=0.0312kgNO3-N/kgMLVSS·dK1=0.23d-1Ko2=1.3mg/L剩余碱度100mg/L(保持PH≥7.2):所需碱度7.1mg碱度/mgNH3-N氧化;产生碱度3.0mg碱度/mgNO3-N还原硝化安全系数:2.5脱硝温度修正系数:1.083.1.5.2设计计算①.碱度平衡计算:出水处理水中非溶解性BOD5值BOD5f;-0.23×5BOD5f=0.7×Ce×1.42(1-e)式中:BOD5f——出水处理水中非溶解性BOD5值,mg/L;Ce——出水中BOD5的浓度,mg/L;-0.23×5则:BOD5f=0.7×20×1.42(1-e)=13.6mg/L则出水处理水中溶解性BOD5值,BOD5=20-BOD5f=6.4mg/L②.设采用污泥龄20d,日产污泥量Xc18 aQLrXc=1+bqc3式中:Q——为氧化沟设计流量,11092m/d;a——为污泥增长系数,取0.6kg/kg;b——污泥自身氧化率,取0.05L/d;Lr——为(L0-Le)去除的BOD5浓度,mg/L;L0——进水BOD5浓度,mg/L;Le——出水BOD5浓度,mg/L;q——污泥龄,d。caQL0.6´11092´(200-6.4)r则Xc===644kg/d1+bq1000´(1+0.05´20)c[9]根据一般情况,设其中有12.4%为氮,近似等于总凯式氮(TKN)中用于合成部分,即:0.124´644=79.8kg/d79.8´1000即:TKN中有=7.19mg/L用于合成。11092需用于氧化的NH3-N=34-7.19-2=24.81mg/L需用于还原的NO3-N=24.81-11.1=13.71mg/L③.碱度平衡计算一般去除BOD5所产生的碱度(以CaCO3计)约为0.1mg/L碱度去除1mgBOD5,设进水中碱度为250mg/L。所需碱度为7.1mg碱度/mgNH3-N氧化,即7.1×24.81=176.15mg/L氮产生碱度3.0mg碱度/mgNO3-N还原,即3.0×13.71=41.1mg/L计算所得的剩余碱度=250-176.15+41.1+0.1×Lr=32.75+0.1×193.6=133.9mg/L计算所得剩余碱度以CaCO3计,此值可使PH≥7.2mg/L④.硝化区容积计算:19 曝气池:DO=2mg/L硝化所需的氧量NOD=4.6mg/mgNH3-N氧化,可利用氧2.6mg/mg/NO3-N还原α=0.9β=0.98其他参数:a=0.6kgVSS/kgBOD5b=0.07d-1脱氮速率:qdn=0.0312kgNO3-N/(kgMLVSS·d)-1K1=0.23dKo2=1.3mg/L剩余碱度100mg/L(保持PH≥7.2):所需碱度7.1mg碱度/mgNH3-N氧化;产生碱度3.0mg碱度/mgNO3-N还原硝化安全系数:2.5脱硝温度修正系数:1.08硝化速率为[0.098(T-15)]éNùéO2ùmn=0.47e´ê0.05T-1.158ú´êúëN+10ûêKO+O2úë2û0.098(15-15)é2ùé2ù=[0.47e]´´ê0.05´15-1.158úêúë2+10ûë1.3+2û-1=0.204d11故泥龄:t===4.9dwm0.204n采用安全系数为2.5,故设计污泥龄为:2.5´4.9=12.5d原假定污泥龄为20d,则硝化速率为:1m==0.05L/dn20单位基质利用率:m+b0.05+0.05nu===0.167kgBOD5/kgMLVSS.da0.6式中:a——污泥增长系数,0.6;20 b——污泥自身氧化率,0.051/d。在一般情况下,MLVSS与MLSS的比值是比较固定的,这里取为0.75则:MLVSS=f×MLSS=0.75´3600=2700mg/L(200-6.4)´10000所需的MLVSS总量==11000Kg0.167´1000110003硝化容积:V=´1000=4074mn27004074水力停留时间:t=´24=8.81hn11092⑤.反硝化区容积:12℃时,反硝化速率为:éFù(T-20)q=0.03()+0.029qdnêúëMû式中:F——有机物降解量,即BOD5的浓度,mg/LM——微生物量,mg/L;q——脱硝温度修正系数,取1.08。T——温度,12℃。则:éæöùêç200÷ú()12-20qdn=ê0.03´ç÷+0.029ú´1.08êç16÷úç3600´÷êëè24øúû=0.017kgNO3-N/kgMLVSS.d13.71还原NO3-N的总量=´11092=152kg/d1000152脱氮所需MLVSS==8000kg0.01980003脱氮所需池容:V=´1000=2962.9mdn270021 2962.9水力停留时间:t=´24=6.4hdn11092⑥.氧化沟的总容积:总水力停留时间:t=tn+tdn=8.81+6.4=15.2h总容积:3V=Vn+Vdn=4074+2962.9=7036.9m⑦.氧化沟的尺寸:氧化沟采用4廊道式卡鲁塞尔氧化沟,取池深3.5m,宽7m,则氧化沟总7036.940742962.9长:=287.2m。其中好氧段长度为=166.2m,缺氧段长度为=121m。3.5´73.5´73.5´7p´7p´21弯道处长度:3´+=21p=66m22287.2-66则单个直道长:=55.3m(取54m)4故氧化沟总池长=54+7+14=75m,总池宽=7´4=28m(未计池壁厚)。⑧需氧量计算:采用如下经验公式计算:O(kg/d)=A´L+B´MLSS+4.6´N-2.6´NO氧量2rr3式中:A——经验系数,取0.5;Lr——去除的BOD5浓度,mg/L;B——经验系数,取0.1;3Nr——需要硝化的氧量,24.81´11092´10=275.2kg/d其中:第一项为合成污泥需氧量,第二项为活性污泥内源呼吸需氧量,第三项为硝化污泥需氧量,第四项为反硝化污泥需氧量。需要硝化的氧量:22 Nr=24.81´11092´10-3=275.2kg/dR02=0.5´11092´(0.19-0.0064)+0.1´4074´2.7+4.6´275.2-2.6´152=2988.95kg/d=124.54kg/h30℃时,采用表面机械曝气时脱氮的充氧量为:RCs(20°)R=0(T-20)a[brC-C]´1.024s(T)式中:α——经验系数,取0.8;β——经验系数,取0.9r——相对密度,取1.0;Cs(20°)——20℃时水中溶解氧饱和度,取9.17mg/L;Cs(30°)——30℃时水中溶解氧饱和度,取7.63mg/L;C——混合液中溶解氧的浓度,取2mg/L;T——温度,30℃。则:RCs(20o)124.54´9.17R===0(T-20)[](30-20)a[brCs()T-C]´1.0240.8´0.9´1´7.63-2´1.024=231.4kg/h[10]查手册,选用DY325型倒伞型叶轮表面曝气机,直径Ф=3.5m,电机功率N=55kW,2单台每小时最大充氧能力为125kgO/h,每座氧化沟所需数量为n,则R0231.4n===1.85125125取n=2台⑨回流污泥量:X可由公式R=求得。X-Xr式中:X——MLSS=3.6g/L,X——回流污泥浓度,取10g/L。r23 则:3.6R==0.56(50%~100%,实际取60%)10-3.6考虑到回流至厌氧池的污泥为11%,则回流到氧化沟的污泥总量为49%Q。⑩剩余污泥量:644240´0.25Q=+´11092=1524.1kg/dw0.751000如由池底排除,二沉池排泥浓度为10g/L,则每个氧化沟产泥量为:1524.13=152.41m/d103.1.5.3氧化沟计算草草图如下:备用曝气机栏杆可暂不安装图3氧化沟设计草图(1)上走道板进水管接自提升泵房及沉砂池走道板上钢梯出水管至流量计井及二沉池图4氧化沟设计草图(2)3.1.6二沉池[11]该沉淀池采用中心进水,周边出水的幅流式沉淀池,采用刮泥机。3.1.6.1设计参数3设计进水量:Q=11092m3/d=463.2m/h32.32.表面负荷:qb范围为1.0—1.5m/mh,取q=1.0m/mh24 2.固体负荷:qs一般范围为120=140kg/md水力停留时间(沉淀时间):T=2.5h..堰负荷:取值范围为1.5—2.9L/sm,取2.0L/(sm)3.1.6.2.设计计算①沉淀池面积:Q463.22按表面负荷算:A===463.2mqb14A4´463.2D===24.2m>16m②沉淀池直径:p3.14QT③沉淀部分有效水深为h2==qbT=1.0´2.5=2.5m<4mA④沉淀部分有效容积22pD3.14´24.33V=´h=´2.5=1150m244⑤沉淀池底坡落差,设池底坡度i=0.05æDöæ24.3ö则:h4=i´ç-2÷=0.05´ç-2÷=0.5075mè2øè2ø⑥沉淀池周边水深其中缓冲层高度取h3=0.5m刮泥板高度取h5=0.5mH0=h2+h3+h5=2.5+0.5+0.5=3.5mm⑦沉淀池总高度H设沉淀池超高h1=0.3mH=H0+h4+h1=3.5+0.51+0.3=4.31m3.1.6.3校核堰负荷:径深比25 D24.3==8.1h+h2.5+0.513D24.3==6.94h+h+h2.5+0.5+0.5123堰负荷Q110923==145m/(d.m)=1.67L/(s.m)<2L/(s.m)pD3.14´24.3以上各项均符合要求3.1.6.4辐流式二沉池计算草图如下:出水进水排泥图5辐流式沉淀池出水进水图6辐流式沉淀池计算草图3.1.7接触消毒池与加氯间[10]采用隔板式接触反应池3.1.7.1.设计参数3设计流量:Q′=11092m/d=129L/s(设一座)水力停留时间:T=0.5h=30minr设计投氯量为:max=4.0mg/L26 平均水深:h=2.0m隔板间隔:b=3.5m3.1.7.2.设计计算①接触池容积:3V=Q′T=0.129´30´60=232mV2322Þ表面积A===116mh2隔板数采用2个,则廊道总宽为B=(2+1)´3.5=10.5m取11mA116接触池长度L==11mB10.5L11长宽比==3.14b3.53实际消毒池容积为V′=BLh=11´11´2=242m池深取2+0.3=2.3m(0.3m为超高)经校核均满足有效停留时间的要求②加氯量计算:设计最大加氯量为r=4.0mg/L,每日投氯量为maxω=rQ=4´11092´10-3=44.3kg/d=1.85kg/hmax选用贮氯量为120kg的液氯钢瓶,每日加氯量为3/8瓶,共贮用10瓶,每日加氯机一台,投氯量为1.5~2.5kg/h。3配置注水泵两台,一用一备,要求注水量Q=1—3m/h,扬程不小于10mH2O③混合装置在接触消毒池第一格和第二格起端设置混合搅拌机2台(立式)。混合搅拌机动率N0为27 2mQTGN=02103式中:QT——混合池容积,m;2m——水力粘度,20℃时,m=1.06×10-4Kg·s/m;G——搅拌速度梯度,对于机械混合G=500s-1。21.06´0.129´30´500N==0.068KW023´5´10实际选用JBK-2200框式调速搅拌机,搅拌器直径φ2200,高度H=2000mm,电动机功率为4.0KW。接触消毒池设计为纵向折流反应池。在第一格,每隔3.8m设纵向垂直折流板,第二格每隔6.33m设垂直折流板,第三格不设。④接触消毒池计算草图如下:图7接触消毒池工艺计算图3.2污泥处理系统3.2.1污泥回流泵房3.2.1.1.设计说明二沉池活性污泥由吸泥管吸入,由池中心落泥管及排泥管排入池外套筒阀井中,然后由管道输送至回流泵房,其他污泥由刮泥板刮入污泥井中,再由排泥管排入剩余污泥泵房集泥井中。28 设计回流污泥量为QR=RQ,污泥回流比R=50%-100%。3按最大考虑,即QR=100%Q=129L/s=11145.6m/d回流污泥泵设计选型3.2.1.2扬程:二沉池水面相对地面标高为0.6m,套筒阀井泥面相对标高为0.2m,回流污泥泵房泥面相对标高为-0.2-0.2=-0.4m,氧化沟水面相对标高为1.5m,则污泥回流泵所需提升高度为:1.5-(-0.4)=1.9m3.2.1.3流量:33两座氧化沟设一座回流污泥泵房,泵房回流污泥量为11145.6m/d=464.4m/h3.2.1.4选泵:3选用LXB-900螺旋泵2台(1用1备),单台提升能力为480m/h,提升高度为2.0m[11]-2.5m,电动机转速n=48r/min,功率N=5.5kW.回流污泥泵房占地面积为9m×5.5m3.2.2剩余污泥泵房3.2.2.1设计说明二沉池产生的剩余活性污泥及其它处理构筑物排出污泥由地下管道自流入集泥井,剩余污泥泵(地下式)将其提升至污泥浓缩池中。处理厂设一座剩余污泥泵房(两座二沉池共用)污水处理系统每日排出污泥干重为2×1524.1kg/d,即为按含水率为99%计的污泥流量3332Qw=2×152.4m/d=304.8m/d=12.7m/h3.2.2.2.设计选型①污泥泵扬程:辐流式浓缩池最高泥位(相对地面为)-0.4m,剩余污泥泵房最低泥位为-4.53m,则污泥泵静扬程为H0=4.53-0.4=4.13m,污泥输送管道压力损失为4.0m,自由水头为1.0m,则污泥泵所需扬程为H=H0+4+1=9.13m。②污泥泵选型:29 2Qw33选两台,1用1备,单泵流量Q>=6.35m/h。选用1PN污泥泵Q=7.2-16m/h,2H=14-12m,N=3kW③剩余污泥泵房:1占地面积L×B=4m×3m,集泥井占地面积F3.0m´H3.0m23.2.3污泥浓缩池采用两座幅流式圆形重力连续式污泥浓缩池,用带栅条的刮泥机刮泥,采用静压排泥,剩余污泥泵房将污泥送至浓缩池。3.2.3.1设计参数进泥浓度:10g/L污泥含水率P1=99.0%,每座污泥总流量:33Qw=1524.1kg/d=152.4m/d=6.35m/h设计浓缩后含水率P2=96.0%2污泥固体负荷:qs=45kgSS/(m.d)污泥浓缩时间:T=13h贮泥时间:t=4h3.2.3.2设计计算①浓缩池池体计算:每座浓缩池所需表面积Qw1524.12A===33.86mqs45Þ浓缩池直径4A4´33.86D===6.5mp3.14Qw152.43232u===5.05m/(m.d)=0.21m/(m.h)2水力负荷Ap3.130 Þ有效水深h´13=2.73m取h1=uT=0.211=2.8m3浓缩池有效容积V1=A´h1=33.86´2.8=94.8m②排泥量与存泥容积:浓缩后排出含水率P2=96.0%的污泥,则100-P1100-9933Qw′=Q=´152.41=38.1m/d=1.54m/hw100-P100-962按4h贮泥时间计泥量,则贮泥区所需容积3V2=4Qw′=4´1.54=6.16m泥斗容积ph422V=(r+rr+r)3112233.14´1.2223=´(1.1+1.1´0.6+0.6)=2.8m3式中:h4——泥斗的垂直高度,取1.2mr1——泥斗的上口半径,取1.1mr2——泥斗的下口半径,取0.6m设池底坡度为0.08,池底坡降为:0.08(D-2r)0.08(6.5-2´1.1)1h5===0.172m22故池底可贮泥容积:ph522V=(R+Rr+r)4111133.14´0.172223=´(3.25+3.25´1.1+1.1)=2.28m3式中:R1——浓缩池半径,m;r1——泥斗的上口半径,m。31 因此,总贮泥容积为33V=V+V=2.8+2.85=5.68m»V=6.16mw342(满足要求)③浓缩池总高度:浓缩池的超高h2取0.30m,缓冲层高度h3取0.30m,则浓缩池的总高度H为H=h+h+h+h+h12345=2.8+0.30+0.30+1.2+0.17=4.77m④浓缩池排水量:’3Q=Qw-Qw=6.35-1.54=4.81m/h⑤浓缩池计算草图:上清液出泥进泥图7浓缩池计算草图3.2.4贮泥池及污泥泵3.2.4.1设计参数3进泥量:经浓缩排出含水率P2=96%的污泥2Qw′=2´38.1=76.2m/d,设贮泥池1座,贮泥时间T=0.5d=12h3.2.4.2设计计算池容为32 3V=2Qw′T=76.2´0.5=38.1m贮泥池尺寸(将贮泥池设计为正方形)3L´B´H=3.6´3.6´3.6m有效容积V=46.66m浓缩污泥输送至泵房剩余污泥经浓缩处理后用泵输送至处理厂南面的苗圃作肥料之用污泥提升泵33泥量Q=76.2m/d=3.17m/h扬程H=2.3-(-1.5)+4+1=7.8m[11]3选用1PN污泥泵两台,一用一备,单台流量Q=7.2~16m/h,扬程H=14~12mH2O,功率N=3kW泵房平面尺寸L×B=4m×3m4厂区平面及高程设计4.1厂区平面布置4.1.1各处理单元构筑物的平面布置:处理构筑物是污水处理厂的主体建筑物,在对它们进行平面布置时,应根据各构筑物[13]的功能和水力要求结合当地地形地质条件,确定它们在厂区内的平面布置应考虑:①贯通,连接各处理构筑物之间管道应直通,应避免迂回曲折,造成管理不便。②土方量做到基本平衡,避免劣质土壤地段④在各处理构筑物之间应保持一定产间距,以满足放工要求,一般间距要求5~10m,如有特殊要求构筑物其间距按有关规定执行。④各处理构筑物之间在平面上应尽量紧凑,在减少占地面积。4.1.2平面布置本着尽量节约用地,并考虑发展预留用地的原则,进行厂区的总平面布置,本期工程总占地面积约4.5亩,包括污水处理构筑物、建筑物、附属构筑物、道路绿化,按功能分为污水预处理区、污水主处理区、污泥处理区、生活管理区、预留的回用水处理区。33 4.1.3管线布置厂区内还应有给水管,生活水管,雨水管,消化气管管线。辅助建筑物:污水处理厂的辅助建筑物有泵房,鼓风机房,办公室,集中控制室,水质分析化验室,变电所,存储间,其建筑面积按具体情况而定,辅助建筑物之间往返距离应短而方便,安全,变电所应设于耗电量大的构筑物附近,化验室应机器间和污泥干化场,以保证良好的工作条件,化验室应与处理构筑物保持适当距离,并应位于处理构筑物夏季主风向所在的上风中处。在污水厂内主干道应尽量成环,方便运输。主干宽6~9m次干道宽3~4m,人行道宽1.5m~2.0m曲率半径9m,有30%以上的绿化。4.2高程设计4.2.1高程布置原则①保证处理水在常年绝大多数时间里能自流排放水体,同时考虑污水厂扩建时的预留储备水头。②应考虑某一构筑物发生故障,其余构筑物须担负全部流量的情况,还应考虑管路的迂回,阻力增大的可能。因此,必须留有充分的余地。③处理构筑物避免跌水等浪费水头的现象,充分利用地形高差,实现自流。④在仔细计算预留余量的前提下,全部水头损失及原污水提升泵站的全扬程都应力求缩小。⑤应考虑土方平衡,并考虑有利排水。4.2.2高程布置时的注意事项在对污水处理厂污水处理流程的高程布置时,应考虑下列事项。①选择一条距离最长、水头损失最大的流程进行水力计算,并应适当留有余地,以保证在任何情况下处理系统能够正常运行。②污水尽量经一次提升就应能靠重力通过处理构筑物,而中间不应再经加压提升。③计算水头损失时,一般应以近期最大流量作为处理构筑物和管(渠)的设计流量。34 ④污水处理后应能自流排入下水道或者水体。4.2.3污水污泥处理系统高程布置①厂区设计地面标高暂定厂区自然地平标高为地面标高,可根据厂区现场实际情况对土方适当平衡。②工艺流程竖向设计处理厂进水管道管底标高暂定为-2.500m,以此为依据,进行污水处理流程的竖向设计。4.2.4高程确定计算污水厂处关渠堰的设计水面标高根据式设计资料,关渠堰自本镇西南方向流向东北方向,关渠堰底标高为-3.75m,河床水位控制在0.5-1.0m。而污水厂厂址处的地坪标高基本上在2.25m左右(2.10-2.40),大于关渠堰最高水位1.0m(相对污水厂地面标高为-1.25)。污水经提升泵后自流排出,由于不设污水厂终点泵站,从而布置高程时,确保接触池的水面标高大于0.8m【即关渠堰最高水位(-1.25+0.154+0.3)=-0.796≈0.8m】,同时考虑挖土埋深。各处理构筑物的高程确定设计氧化沟处的地坪标高为2.25m(并作为相对标高±0.00),按结构稳定的原则确定池底埋深-2.0m,再计算出设计水面标高为3.5-2.0=1.5m,然后根据各处理构筑物的之间的水头损失,推求其它构筑物的设计水面标高。经过计算各污水处理构筑物的设计水面标高见下表。再根据各处理构筑物的水面标高、结构稳定的原理推求各构筑物地面标高及池底标高。具体结果见污水、污泥处理流程图。表3各污水处理构筑物的设计水面标高及池底标高构筑物名称水面标高(m)池底标高(m)构筑物名称水面标高(m)池底标高(m)进水管-0.19沉砂池3.002.10中格栅-0.39-0.79厌氧池2.00-2.00泵房吸水井-1.00-1.30氧化沟1.5-2.00接触池-0.67-2.97二沉池0.60-4.5335 4.3厂区给排水设计4.3.1给水设计厂址在规划区内,自来水直接接入厂区内供全厂的消防、生活和部分生产用水。消防、生产、生活水管道共用,管道在厂区内布置成环状。4.3.2厂区排水设计[2]厂区排水按雨污分流设计。生产、生活污水经厂区污水管道收集后排入粗格栅前的进水井,与原污水一并处理。厂区雨水经雨水管道,汇集排至厂外河道。5技术经济分析5.1工程投资估算5.1.1土建工程造价土建工程造价见表4。表4土建部分投资估算序号工程名称数量单价/万元一期价/万元1格栅井1座10000元/座1.032提升泵房1座600元/m2.4233平流沉砂池1座400元/m4.834厌氧池1座500元/m4.2535氧化沟沟体2座400元/m96035二沉池1座400元/m4.066集泥井1间5000元/间0.57污泥回流泵房1间10000元/间1.08污泥泵房1间10000元/间1.09污泥浓缩池1间5000元/间0.510加氯间1间3000元/间0.311变配电间1间64500元/间4.453312中心控制室64.00m400元/m3.5613土建工程造价合计987.845.1.2设备工程造价主要设备投资估算见表5。表5主要设备投资估算序名称规格、型号单位数量价格/万元1格栅中格栅、不锈钢座13.52提升泵150QW-180-6-5.5台43.036 3污泥泵LXB-900台33.34回流污泥泵LXB1400台10.65污泥输送机套11.56脱水机台11.47刮泥机2GC型支座式中心驱台12.28自动化控制系统套1239电控部分套1810管道及附件套1511工程管道、阀门套1412曝气转盘D=1000mm,L=900mm24个每池3用2.413变压器QZB自藕变压器台10.814电缆米8401215自动加药装置国产TP26601套216配电箱GGD套20.217其他配件85.2由于一些设备以及设备附件资料不全并且所需数量有所波动,还包括一部分不可遇见费用无法确定,所以无法给出明确细节,根据经验参数并参见同水量同工艺污水厂基本设[14]备费,故在此设备总投资粗略估计在450万元左右。5.1.3其他投资及工程总价估算其他投资及工程造价估算见表6。表6其他投资及工程总价估算序号名称取费标准价格(万元)1土建工程造价987.142设备工程造价4503小记(1)+(2)1537.144设计费(3)×5%71.855运输管理费(2)×3%41.116安装调试费(2)×8%447税金(3+4+5+6)×6%848总计1581.375.2运行成本概算(单座污水处理站)5.2.1基础资料电费:0.80元/(kw.h)ClO2生产成本费:3元/kg人工费:900元/月5.2.2运行成本概算成本估算见表7。37 表7成本估算表序号费用名单单位计算公式费用价格1电费万元/年E1=519×0.5/1.42182.72药剂费万元/年E2=8.0t×30000元/t×10-424.03工资福利费万元/年E3=12000元/(人·年)×38人×10-445.64固定资产折旧万元/年E4=1781×4.8%84.485大修费万元/年E5=1781×1.7%30.26检修维护费万元/年E6=1781×1.0%17.817管理和其他费用万元/年E7=(E1+E2+……+E6)×10%43.088年经营成本万元/年Ec=E1+E2+E3+E5+E6+E7347.749年总成本万元/年Yc=Ec+E4391.7410单位水成本元/tT1=Yc/365Q0.5311单位水经营成本元/tT2=Ec/365Q0.34由于氧化沟工艺的特点,本次设计没有设计初沉池,但是在不增加构筑物及设备的情况下,氧化沟内不仅可完成碳源的氧化,还可实现硝化和脱硝,由于氧化沟活性污泥已经好氧稳定,可直接浓缩脱水,不必厌氧消化。本次设计工艺流程简单、构筑物少,运行管理方便。而且处理效果稳定,出水水质好。3基建投资省总投资控制在2000万以内,运行费用低,单位水成本为0.53元/m。6.环境保护和安全生产6.1环境保护环境保护不仅要提供合理利用、保护自然资源的一整套技术途径和技术措施,而且还要研究开发废物资源化技术、改革生产工艺、发展无废或少废的闭路生产系统,其主要任务为:①保护自然资源和能源,消除资源的浪费,控制和减少污染。②研究防治环境污染的机理和有效途径,保护和改善环境,保护人们自身健康。③综合利用废水、废物、废渣,促进工农业生产的发展。水污染控制的主要任务是从技术和工程上解决预防和控制污染的问题,还要提供保护水环境质量、合理利用水资源的方法。以及满足不同用途和要求的用水工艺技术和工程措施。6.1.1气味控制污水处理厂处理过程中产生对环境的影响主要在气味和噪声这两方面。采取的主要措施是隔离。38 处理厂会产生各种气味,特别是原生污水,栅渣及污泥气味更为严重,其中硫化氢气味尤为敏感。本工程在污泥泵房,污泥脱水机房等室内部分,考虑采用机械通风的方式,减少气味危害,在露天的水池及采用自然通风清除气味,在总平面布置图中,充分考虑把易产生恶臭的处理机构布置在下风向,远离生活区,厂区空地充分绿化,并栽种对污染气体有吸收作用的植物。6.1.2厂区废水、废渣处置①污水处理厂厂内的排水体制采用量污分流制。厂内的生活污水经厂区管道收集,输送到污水处理系统中间和原污水一起处理,达标排放。②厂内格栅、沉砂池和脱水机房均有固体废物产生,对此,在运行管理中要按要求在指定的场所堆放,外运时要用半封闭式子卸专用车辆,运送到指定区域外置,栅渣、沉渣应榨干后打包,污泥脱水后的泥饼含水率应小于80%。[15]6.1.3防止事故性排放①采用二类负荷的供电等级,双回路供电,以防止污水处理厂因停电而造成处理厂丧失处理能力。②构筑物应考虑维修清理,设备应要有备份。③加强处理设施的维护管理,确保设备正常运转,减少事故性排放的机率。6.2安全生产6.2.1劳动保护按照《中华人民共和国劳动法》的要求,对操作人员安全卫生设施必须符合国家的规定标准。①在污水处理厂运转之前,须对操作人员,管理人员进行安全教育,制定必要的安全操作规程和管理制度,操作人员必须持证上岗。②各处理构筑物走道和临空天桥的位置均要设置保护栏杆,且采用不锈钢制作,其走道宽度和栏杆高度及它们的强度均要符合国家劳动保护规定。③在生产有毒气体的工段,要设置硫化氢测定仪器,报警仪和通风系统,并配有防毒面具。39 ④对于结构密封,通风条件差的场所,采用机械通风。⑤厂区各构筑物边应配置救生衣、救生圈、安全带、安全帽等劳动防护品。6)厂区管道,闸阀均须考虑阀门井,或采用操作杆至地面,以便操作。⑦易燃、易爆及有毒物品,须设专用仓库、专人保管。满足劳动保护规定。⑧所有电气设备的安装、防护,均须满足电器的有关安全规定,必须有接地措施和安全操作距离。⑨机械设备的危险部分,如传送带、明齿轮、砂轮等必须安装防护装置。6.2.2消防6.2.2.1防火等级①变电站根据国家规定,丙类防火标准。②其他厂区建筑设计均按国家建筑防火规范规定。6.2.2.2防水措施①厂区设置消防系统,有消防水泵和室外消火组成,采用高压给水系统,②主要建筑物每层室内消火栓及消防通道,仪表控制室设有自动喷水灭火装置。③变电所、污泥泵房内设置干粉灭火器。中控室、档案室、自料室、打字间等要配置KYZ型灭火器。6.3结论和建议6.3.1结论为改善该城镇及下游地区的环境质量,保障人民身体健康,建立污水处理厂是完全必要的,也是十分迫切的;3根据总体规划和水量调查分析,将兴建12000m/d的污水处理厂(不含厂外截流管道);经技术经济比较,采用卡式氧化沟工艺,具有运行稳定、投资省、管理方便等优点,故推荐采用;根据综合分析,单座污水处理站的主要技术经济指标如下:①单座工程总投资:1600万元3②单位投资:1333元/m40 3③单位运行费:0.53元/m④占地面积:14.5亩6.3.2建议为保证拟建的污水处理厂能正常运转,达到预期的处理程度,建议有关部门对工业废水的排放加强监测和控制,严格执行国家颁布的《污水综合排放标准》(GB8978-1996)和《污水排放城市下水道水质标准》(CJ3082-1999)。参考文献[1]高廷耀等.水污染控制工程(第二版)[M].北京:高等教育出版社,1999[2]陶俊杰,于军亭编.城市污水处理技术及工程实例[M].北京:化学工业出版社2005[3]杨岳平等.废水处理工程及实例分析[M].北京:化学工业出版社,2002[4]高峻发,王社平编.污水处理厂工艺设计手册[M].北京:化学工业出版社.2003[5]Fkunaga,Masami.Treatmentofwastewatercontainingstarch[P].Japanpatent,JP05096281A2,1993.[6]张希衡主编.水污染控制工程(第2版)[M].北京:冶金工业出版社.2002[7]闪红光主编.环境保护设备选用手册-水处理设备[M].北京:化学工业出版社.2002[8]魏先勋等.环境工程设计手册[M].长沙:湖南科技出版社,2002[9]王兴康,李亚新.Carrousel氧化沟理论与设计计算[J].科技情报开发与经济.2005.15(17);3-5[10]娄金生,王宇编.水污染治理新工艺与设计[M].北京:化学工业出版社.2002[11]史忠祥主编.实用环境工程手册-污水处理设备[M].北京:化学工业出版社.2002[12]丁尔捷,张杰主编.给排水工程快速设计手册2-排水工程[M].北京:中国建筑工业出版社,1998[13]高峻发,王彤编.城镇污水处理及回用技术[M].北京:化学工业出版社.2003[14]王海山等.给水与排水常用数据手册[M].北京:化学工业出版社,1994[15]黄柏,马金虎编安全技术基础[M].北京:化学工业出版社200541'