• 967.72 KB
  • 2022-04-22 11:23:16 发布

材料成型基本原理课后答案.doc

  • 40页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'第一章习题1.液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答:(1)液体与固体及气体比较的异同点可用下表说明相同点不同点液体具有自由表面;可压缩性很低具有流动性,不能承受切应力;远程无序,近程有序固体不具有流动性,可承受切应力;远程有序液体完全占据容器空间并取得容器内腔形状;具有流动性远程无序,近程有序;有自由表面;可压缩性很低气体完全无序;无自由表面;具有很高的压缩性(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。金属熔化时典型的体积变化Vm/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。②金属熔化潜热Hm约为气化潜热Hb的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。2.如何理解偶分布函数g(r)的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r)的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。N1表示参考原子周围最近邻(即第一壳层)原子数。r1表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。②从金属熔化过程看物质熔化时体积变化、熵变及焓变一般都不大。金属熔化时典型的体积变化Vm/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。另一方面,金属熔化潜热Hm约为气化潜热Hb的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。可以说,在熔点(或液相线)附近,液态金属(或合金)的原子集团内短程结构类似于固体。③Richter等人利用X衍射、中子及电子衍射手段,对碱金属、Au、Ag、Pb和Tl等熔体进行了十多年的系统研究,认为液体中存在着拓扑球状密排结构以及层状结构,它们的尺寸范围约为10-6-10-7cm。④Reichert观察到液态Pb 局域结构的五重对称性及二十面体的存在,并推测二十面体存在于所有的单组元简单液体。⑤在Li-Pb、Cs-Au、Mg-Bi、Mg-Zn、Mg-Sn、Cu-Ti、Cu-Sn、Al-Mg、Al-Fe等固态具有金属间化合物的二元熔体中均被发现有化学短程序的存在。4.如何理解实际液态金属结构及其三种“起伏”特征?答:理想纯金属是不存在的,即使非常纯的实际金属中总存在着大量杂质原子。实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇、空穴所组成,同时也含有各种固态、液态或气态杂质或化合物,而且还表现出能量、结构及浓度三种起伏特征,其结构相当复杂。能量起伏是指液态金属中处于热运动的原子能量有高有低,同一原子的能量也在随时间不停地变化,时高时低的现象。结构起伏是指液态金属中大量不停“游动”着的原子团簇不断地分化组合,由于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,同时又会有另一些原子组合到该团簇中,此起彼伏,不断发生着这样的涨落过程,似乎原子团簇本身在“游动”一样,团簇的尺寸及其内部原子数量都随时间和空间发生着改变的现象。浓度起伏是指在多组元液态金属中,由于同种元素及不同元素之间的原子间结合力存在差别,结合力较强的原子容易聚集在一起,把别的原于排挤到别处,表现为游动原子团簇之间存在着成分差异,而且这种局域成分的不均匀性随原子热运动在不时发生着变化的现象。5.根据图1-10及式(1-7)说明为动力学粘度η的物理意义,并讨论液体粘度η(内摩擦阻力)与液体的原子间结合力之间的关系。答:物理意义:作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dVX/dy的比例系数。通常液体的粘度表达式为。这里为Bolzmann常数,U为无外力作用时原子之间的结合能(或原子扩散势垒),C为常数,T为热力学温度。根据此式,液体的粘度η随结合能U按指数关系增加,这可以理解为,液体的原子之间结合力越大,则内摩擦阻力越大,粘度也就越高。6.总结温度、原子间距(或体积)、合金元素或微量元素对液体粘度η高低的影响。答:η与温度T的关系受两方面(正比的线性及负的指数关系)所共同制约,但总的趋势随温度T而下降。粘度随原子间距δ增大而降低,与成反比。合金组元或微量元素对合金液粘度的影响比较复杂。许多研究者曾尝试描述二元合金液的粘度规律,其中M-H(Moelwyn-Hughes)模型为:(1-9)式中η1、η2、X1、X2分别为纯溶剂和溶质的粘度及各自在溶液中的mole分数,R为气体常数,Hm为两组元的混合热。按M-H模型,如果混合热Hm为负值,合金元素的增加会使合金液的粘度上升。根据热力学原理,Hm为负值表明异类原子间结合力大于同类原子,因此摩擦阻力及粘度随之提高。M-H模型得到了一些实验结果的验证。当溶质与溶剂在固态形成金属间化合物,由于合金液中存在异类原子间较强的化学结合键,合金液的粘度将会明显高于纯溶剂金属液的粘度。当合金液中存在表面及界面活性微量元素(如Al-Si合金变质元素Na)时,由于冷却过程中微量元素抑制原子集团的聚集长大,将阻碍金属液粘度的上升。通常,表面活性元素使液体粘度降低,非表面活性杂质的存在使粘度提高。 7.过共析钢液η=0.0049Pa﹒S,钢液的密度为7000kg/m3,表面张力为1500mN/m,加铝脱氧,生成密度为5400kg/m3的Al2O3,如能使Al2O3颗粒上浮到钢液表面就能获得质量较好的钢。假如脱氧产物在1524mm深处生成,试确定钢液脱氧后2min上浮到钢液表面的Al2O3最小颗粒的尺寸。答:根据流体力学的斯托克斯公式:,式中:为夹杂物和气泡的上浮速度,r为气泡或夹杂的半径,ρm为液体合金密度,ρB为夹杂或气泡密度,g为重力加速度。m分析物质表面张力产生的原因以及与物质原子间结合力的关系。答:表面张力是由于物体在表面上的质点受力不均所造成。由于液体或固体的表面原子受内部的作用力较大,而朝着气体的方向受力较小,这种受力不均引起表面原子的势能比内部原子的势能高。因此,物体倾向于减小其表面积而产生表面张力。原子间结合力越大,表面内能越大,表面张力也就越大。但表面张力的影响因素不仅仅只是原子间结合力,与上述论点相反的例子大量存在。研究发现有些熔点高的物质,其表面张力却比熔点低的物质低,如Mg与Zn同样都是二价金属,Mg的熔点为650℃,Zn的熔点为420℃,但Mg的表面张力为559mN/m;Zn的表面张力却为782mN/m。此外,还发现金属的表面张力往往比非金属大几十倍,而比盐类大几倍。这说明单靠原子间的结合力是不能解释一切问题的。对于金属来说,还应当从它具有自由电子这一特性去考虑。9.表面张力与界面张力有何异同点?界面张力与界面两侧(两相)质点间结合力的大小有何关系?答:界面张力与界面自由能的关系相当于表面张力与表面自由能的关系,即界面张力与界面自由能的大小和单位也都相同。表面与界面的差别在于后者泛指两相之间的交界面,而前者特指液体或固体与气体之间的交界面,但更严格说,应该是指液体或固体与其蒸汽的界面。广义上说,物体(液体或固体)与气相之间的界面能和界面张力为物体的表面能和表面张力。当两个相共同组成一个界面时,其界面张力的大小与界面两侧(两相)质点间结合力的大小成反比,两相质点间结合力越大,界面能越小,界面张力就越小;两相间结合力小,界面张力就大。相反,同一金属(或合金)液固之间,由于两者容易结合,界面张力就小。10.液态金属的表面张力有哪些影响因素?试总结它们的规律。答:液态金属的表面张力的影响因素有:(1)原子间结合力原子间结合力越大,表面内能越大,表面张力也就越大。但表面张力的影响因素不仅仅只是原子间结合力,研究发现有些熔点高的物质,其表面张力却比熔点低的物质低。此外,还发现金属的表面张力往往比非金属大几十倍,而比盐类大几倍。这说明单靠原子间的结合力是不能解释一切问题的。对于金属来说,还应当从它具有自由电子这一特性去考虑。(2)温度液态金属表面张力通常随温度升高而下降,因为原子间距随温度升高而增大。(3)合金元素或微量杂质元素 合金元素或微量杂质元素对表面张力的影响,主要取决于原子间结合力的改变。向系统中加入削弱原子间结合力的组元,会使表面张力减小,使表面内能降低,这样,将会使表面张力降低。合金元素对表面张力的影响还体现在溶质与溶剂原子体积之差。当溶质的原子体积大于溶剂原子体积,由于造成原子排布的畸变而使势能增加,所以倾向于被排挤到表面,以降低整个系统的能量。这些富集在表面层的元素,由于其本身的原子体积大,表面张力低,从而使整个系统的表面张力降低。原子体积很小的元素,如O、S、N等,在金属中容易进入到熔剂的间隙使势能增加,从而被排挤到金属表面,成为富集在表面的表面活性物质。由于这些元素的金属性很弱,自由电子很少,因此表面张力小,同样使金属的表面张力降低。(4)溶质元素的自由电子数目大凡自由电子数目多的溶质元素,由于其表面双电层的电荷密度大,从而造成对金属表面压力大,而使整个系统的表面张力增加。化合物表面张力之所以较低,就是由于其自由电子较少的缘故。11.设凝固后期枝晶间液体相互隔绝,液膜两侧晶粒的拉应力为1.5×103Mpa,液膜厚度为1.1×10-6mm,根据液膜理论计算产生热裂的液态金属临界表面张力。答:=fT/2=0.825N/m12.试述液态金属充型能力与流动性间的联系和区别,并分析合金成分及结晶潜热对充型能力的影响规律。答:(1)液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力,简称为液态金属充型能力。液态金属本身的流动能力称为“流动性”,是液态金属的工艺性能之一。液态金属的充型能力首先取决于金属本身的流动能力,同时又受外界条件,如铸型性质、浇注条件、铸件结构等因素的影响,是各种因素的综合反映。在工程应用及研究中,通常,在相同的条件下(如相同的铸型性质、浇注系统,以及浇注时控制合金液相同过热度,等等)浇注各种合金的流动性试样,以试样的长度表示该合金的流动性,并以所测得的合金流动性表示合金的充型能力。因此可以认为:合金的流动性是在确定条件下的充型能力。对于同一种合金,也可以用流动性试样研究各铸造工艺因素对其充型能力的影响。(2)合金的化学成分决定了结晶温度范围,与流动性之间存在一定的规律。一般而言,在流动性曲线上,对应着纯金属、共晶成分和金属间化合物之处流动性最好,流动性随着结晶温度范围的增大而下降,在结晶温度范围最大处流动性最差,也就是说充型能力随着结晶温度范围的增大而越来越差。因为对于纯金属、共晶和金属间化合物成分的合金,在固定的凝固温度下,已凝固的固相层由表面逐步向内部推进,固相层内表面比较光滑,对液体的流动阻力小,合金液流动时间长,所以流动性好,充型能力强。而具有宽结晶温度范围的合金在型腔中流动时,断面上存在着发达的树枝晶与未凝固的液体相混杂的两相区,金属液流动性不好,充型能力差。(3)对于纯金属、共晶和金属间化合物成分的合金,在一般的浇注条件下,放出的潜热越多,凝固过程进行的越慢,流动性越好,充型能力越强;而对于宽结晶温度范围的合金,由于潜热放出15~20%以后,晶粒就连成网络而停止流动,潜热对充型能力影响不大。但也有例外的情况,由于Si晶体结晶潜热为α-Al的4倍以上,Al-Si合金由于潜热的影响,最好流动性并不在共晶成分处。13.某飞机制造厂的一牌号Al-Mg合金(成分确定)机翼因铸造常出现“浇不足”缺陷而报废,如果你是该厂工程师,请问可采取哪些工艺措施来提高成品率?答:机翼铸造常出现“浇不足”缺陷可能是由金属液的充型能力不足造成的,可采取以下工艺提高成品率:(1)使用小蓄热系数的铸型来提高金属液的充型能力;采用预热铸型,减小金属与铸型的温差,提高金属液充型能力。(2)提高浇注温度,加大充型压头,可以提高金属液的充型能力。(3)改善浇注系统,提高金属液的充型能力。 第二章习题解答1.已知某半无限大板状铸钢件的热物性参数为:导热系数λ=46.5W/(m·K),比热容C=460.5J/(kg·K),密度ρ=7850kg/m3,取浇铸温度为1570℃,铸型的初始温度为20℃。用描点作图法绘出该铸件在砂型和金属型铸模(铸型壁均足够厚)中浇铸后0.02h、0.2h时刻的温度分布状况并作分析比较。铸型的有关热物性参数见表2-2。解:(1)砂型:=12965=639界面温度:=1497℃铸件的热扩散率:=1.3´10-5m2/s根据公式分别计算出两种时刻铸件中的温度分布状况见表1。表1铸件在砂型中凝固时的温度分布与铸型表面距离(m)00.020.040.060.080.10温度(℃)t=0.02h时149715231545155915661569t=0.20h时149715051513152115281535根据表1结果做出相应温度分布曲线见图1。(2)金属型:=12965=15434界面温度:=727.6℃同理可分别计算出两种时刻铸件中的温度分布状况见表2与图2。表2铸件在金属型中凝固时的温度分布与铸型表面距离(m)00.020.040.060.080.10温度(℃)t=0.02h时727.610301277143815201555t=0.20h时727.6823915100510801159 t=0.02ht=0.0h图2铸件在金属型中凝固时的温度分布曲线图1铸件在砂型中凝固时的温度分布曲线(3)分析:采用砂型时,铸件金属的冷却速度慢,温度梯度分布平坦,与铸型界面处的温度高,而采用金属铸型时相反。原因在于砂型的蓄热系数b比金属铸型小得多。2.采用(2-17)、(2-18)两式计算凝固过程中的温度分布与实际温度分布状况是否存在误差?分析误差产生的原因,说明什么情况下误差相对较小?解:是有误差的。因为在推导公式时做了多处假设与近似处理,如:①没有考虑结晶潜热。若结晶潜热小,则误差就小;②假设铸件的热物理参数、、与铸型的热物理参数、、不随温度变化。若它们受温度影响小,则误差就小;③没有考虑界面热阻。若界面热阻不大,则误差就小;④假设铸件单向散热,因此只能用于半无限大平板铸件温度场得估算,对于形状差异大的铸件不适用。3.凝固速度对铸件凝固组织、性能与凝固缺陷的产生有重要影响。试分析可以通过哪些工艺措施来改变或控制凝固速度?解:①改变铸件的浇注温度、浇铸方式与浇铸速度;②选用适当的铸型材料和起始(预热)温度;③在铸型中适当布置冷铁、冒口与浇口;④在铸型型腔内表面涂敷适当厚度与性能的涂料。4.比较同样体积大小的球状、块状、板状及杆状铸件凝固时间的长短。解:一般在体积相同的情况下上述物体的表面积大小依次为:A球t块>t板>t杆。5.在砂型中浇铸尺寸为300´300´20mm的纯铝板。设铸型的初始温度为20℃,浇注后瞬间铸件-铸型界面温度立即升至纯铝熔点660℃,且在铸件凝固期间保持不变。浇铸温度为670℃,金属与铸型材料的热物性参数见下表: 热物性材料导热系数λW/(m·K)比热容CJ/(kg·K)密度ρkg/m3热扩散率m2/s结晶潜热J/kg纯铝212120027006.5´10-53.9´105砂型0.739184016002.5´10-7试求:(1)根据平方根定律计算不同时刻铸件凝固层厚度s,并作出曲线;(2)分别用“平方根定律”及“折算厚度法则”计算铸件的完全凝固时间,并分析差别。解:(1)代入相关已知数解得:,=1475,=0.9433(m)根据公式计算出不同时刻铸件凝固层厚度s见下表,曲线见图3。τ(s)020406080100120(mm)04.226.007.318.449.4310.3图3关系曲线(2)利用“平方根定律”计算出铸件的完全凝固时间:取=10mm,代入公式解得:τ=112.4(s);利用“折算厚度法则”计算铸件的完全凝固时间:=8.824(mm)=87.5(s)采用“平方根定律”计算出的铸件凝固时间比“折算厚度法则”的计算结果要长,这是因为“平方根定律”的推导过程没有考虑铸件沿四周板厚方向的散热。6.右图为一灰铸铁底座铸件的断面形状,其厚度为30mm,利用“模数法”分析砂型铸造时底座的最后凝固部位,并估计凝固终了时间.1000160160600120解:将底座分割成A、B、C、D四类规则几何体(见右下图)查表2-3得:K=0.72()对A有:RA=VA/AA=1.23cm tA=RA²/KA²=2.9min对B有:RB=VB/AB=1.33cmAAAABBCCCCDDDtB=RB²/KB²=3.4min对C有:RC=VC/AC=1.2cmtC=RC²/KC²=2.57min对D有:RD=VD/AD=1.26cmtD=RD²/KD²=3.06min因此最后凝固部位为底座中肋B处,凝固终了时间为3.4分钟。7.对于低碳钢薄板,采用钨极氩弧焊较容易实现单面焊双面成形(背面均匀焊透)。采用同样焊接规范去焊同样厚度的不锈钢板或铝板会出现什么后果?为什么?解:采用同样焊接规范去焊同样厚度的不锈钢板可能会出现烧穿,这是因为不锈钢材料的导热性能比低碳钢差,电弧热无法及时散开的缘故;相反,采用同样焊接规范去焊同样厚度的铝板可能会出现焊不透,这是因为铝材的导热能力优于低碳钢的缘故。8.对于板状对接单面焊焊缝,当焊接规范一定时,经常在起弧部位附近存在一定长度的未焊透,分析其产生原因并提出相应工艺解决方案。解:(1)产生原因:在焊接起始端,准稳态的温度场尚未形成,周围焊件的温度较低,电弧热不足以将焊件熔透,因此会出现一定长度的未焊透。(2)解决办法:焊接起始段时焊接速度慢一些,对焊件进行充分预热,或焊接电流加大一些,待焊件熔透后再恢复到正常焊接规范。生产中还常在焊件起始端固定一个引弧板,在引弧板上引燃电弧并进行过渡段焊接,之后再转移到焊件上正常焊接。第三章金属凝固热力学与动力学试述等压时物质自由能G随温度上升而下降以及液相自由能GL随温度上升而下降的斜率大于固相GS的斜率的理由。并结合图3-1及式(3-6)说明过冷度ΔT是影响凝固相变驱动力ΔG的决定因素。答:(1)等压时物质自由能G随温度上升而下降的理由如下:由麦克斯韦尔关系式:(1)并根据数学上的全微分关系:得:(2)比较(1)式和(2)式得:等压时dP=0,此时(3)由于熵恒为正值,故物质自由能G随温度上升而下降。 (2)液相自由能GL随温度上升而下降的斜率大于固相GS的斜率的理由如下:因为液态熵大于固态熵,即:SL>SS所以:>即液相自由能GL随温度上升而下降的斜率大于固相GS的斜率。(3)过冷度ΔT是影响凝固相变驱动力ΔG的决定因素的理由如下:右图即为图3-1其中:表示液-固体积自由能之差Tm表示液-固平衡凝固点从图中可以看出:T>Tm时,ΔG=Gs-GL﹥0,此时固相→液相T=Tm时,ΔG=Gs-GL=0,此时液固平衡T8.26s由壁厚36mm可知钢板为厚板所以冷却时间随着线能量E和初始温度T0的提高而延长,焊接方式和材料确定,则线能量E确定,主要是通过提高初始温度即预热温度来降低冷却速度,延长时间大于8.26s。从而降低Hmax.第11章凝固缺陷及控制1.何谓枝晶偏析、晶界偏析、正偏析、负偏析、正常偏析、逆偏析和重力偏析?22.偏析是如何形成的?影响偏析的因素有哪些?生产中如何防止偏析的形成?23.焊缝的偏析有哪些类型?为什么说熔合区是焊接的薄弱部位?34.分析偏析对金属质量的影响?35简述析出性气体的特征、形成机理及主要防止措施。46、焊缝中的气孔有哪几种类型?有何特征?57、试述夹杂物的形成原理、影响因素及主要防止措施。58、何谓体收缩、线收缩、液态收缩、凝固收缩、固态收缩和收缩率?69、分析缩孔的形成过程,说明缩孔与缩松的形成条件及形成原因的异同点。7 10、分析灰铸铁和球墨铸铁产生缩孔、缩松的倾向性及影响因素。711、简述顺序凝固原则和同时凝固原则各自的优缺点和适用范围。812、焊件和铸件的热应力是如何形成的?应采取哪些措施予以控制?913、简述凝固裂纹的形成机理及防止措施。1014、何谓液化裂纹?出现在焊接接头的哪个区域?为什么?1115.试叙冷裂纹的种类及特征1216、分析氢在形成冷裂纹中的作用,简述氢致裂纹的特征和机理。1217、为什么低合金钢冷裂纹容易出现在焊接热影响区及焊根、焊趾部位?1318、何谓拘束度和拘束应力?两者的影响因素有哪些?他们对冷裂纹的形成有何影响?1319、如何防止焊件和铸件产生冷纹?13 第11章凝固缺陷及控制习题解答1.何谓枝晶偏析、晶界偏析、正偏析、负偏析、正常偏析、逆偏析和重力偏析?答:枝晶偏析,又称晶内偏析,是在一个晶粒内出现的成分不均匀现象,常产生于具有结晶温度范围、能够形成固溶体的合金中。对于溶质分配系数k0<1的固溶体合金,晶粒内先结晶部分含溶质较少,后结晶部分含溶质较多。这种成分不均匀性就是晶内偏析。固溶体合金按树枝晶方式生长时,先结晶的枝干与后结晶的分枝也存在着成分差异,因此又称为枝晶偏析。晶界偏析:在合金凝固过程中,溶质元素和非金属夹杂物常富集于晶界,使晶界与晶内的化学成分出现差异,这种成分不均匀现象称为晶界偏析。正偏析与负偏析:根据合金各部位的溶质浓度Cs与合金原始平均浓度C0的偏离情况分,凡Cs>C0者,称为正偏析;Cs<C0者,称为负偏析。正常偏析:当合金的溶质分配系数k0<1时,凝固界面的液相中将有一部分溶质被排出,随着温度的降低,溶质的浓度将逐渐增加,越是后来结晶的固相,溶质浓度越高。当k0>1时则与此相反,越是后来结晶的固相,溶质浓度越低。按照溶质再分配规律,这些都是正常现象,故称之为正常偏析。逆偏析:铸件凝固后常出现与正常偏析相反的情况,即k0<1时,铸件表面或底部含溶质元素较多,而中心部位或上部含溶质较少,这种现象称为逆偏析。重力偏析:重力偏析是由于重力作用而出现的化学不均匀现象,通常产生于金属凝固前和刚刚开始凝固之际。当共存的液体和固体或互不相溶的液相之间存在密度差时,将会产生重力偏析。2.偏析是如何形成的?影响偏析的因素有哪些?生产中如何防止偏析的形成?答:偏析主要是由于合金在凝固过程中扩散不充分、溶质再分配而引起的。影响偏析的因素有:1)合金液、固相线间隔;2)偏析元素的扩散能力;3)冷却条件。针对不同种类的偏析可采取不同的防止方法,具体有:(1)生产中可通过扩散退火或均匀化退火来消除晶内偏析,即将合金加热到低于固相线100~200℃的温度,进行长时间保温,使偏析元素进行充分扩散,以达到均匀化;(2)预防和消除晶界偏析的方法与晶内偏析所采用的措施相同,即细化晶粒、均匀化退火。但对于氧化物和硫化物引起的晶界偏析,即使均匀化退火也无法消除,必须从减少合金中氧和硫的含量入手。(3)向合金中添加细化晶粒的元素,减少合金的含气量,有助于减少或防止逆偏析的形成。(4)降低铸锭的冷却速度,枝晶粗大,液体沿枝晶间的流动阻力减小,促进富集液的流动,均会增加形成V形和逆V形偏析的倾向。(5)减少溶质的含量,采取孕育措施细化晶粒,加强固-液界面前的对流和搅拌,均有利于防止或减少带状偏析的形成。(6)防止或减轻重力偏析的方法有以下几种:1)加快铸件的冷却速度,缩短合金处于液相的时间,使初生相来不及上浮或下沉;2)加入能阻碍初晶沉浮的合金元素。例如,在Cu-Pb合金中加少量Ni,能使Cu固溶体枝晶首先在液体中形成枝晶骨架,从而阻止Pb下沉。再如向Pb-17%Sn合金中加入质量分数为1.5%的Cu,首先形成Cu-Pb骨架,也可以减轻或消除重力偏析;3)浇注前对液态合金充分搅拌,并尽量降低合金的浇注温度和浇注速度。3.焊缝的偏析有哪些类型?为什么说熔合区是焊接的薄弱部位?答:焊缝的偏析主要有区域偏析和层状偏析。熔合区是焊接的薄弱部位这是因为熔合区位于焊缝和母材的交界处,是焊缝和母材的过渡区,熔合区存在着严重的化学成分不均匀性,同时还存在着物理不均匀性。因此熔合区在组织和性能上也是不均匀的,因此成为焊接接头的薄弱部位。4.分析偏析对金属质量的影响?答:偏析对合金的力学性能、抗裂性能及耐腐蚀性能等有程度不同的损害。1)晶内偏析的存在,使晶粒内部成分不均匀,导致合金的力学性能降低,特别是塑性和韧性降低。此外,晶内偏析还会引起合金化学性能不均匀,使合金的抗蚀性能下降。2)晶界偏析比晶内偏析的危害性更大,它既能降低合金的塑性和高温性能,又能增加热裂倾向,因此必须加以防止。3)正常偏析的存在使铸件性能不均匀,随后的加工和处理也难以根本消除,故应采取适当措施加以控制。4)逆偏析会降低铸件的力学性能、气密性和切削加工性能。5)层状偏析是不连续的具有一定宽度的链状偏析带,带中常集中一些有害元素(碳、硫、磷等),并常常出现气孔等缺陷。层状偏析也会使焊缝的力学性能不均匀,抗腐蚀性能下降以及断裂韧性降低等。偏析也有有益的一面,如利用偏析现象可以净化或提纯金属等。5简述析出性气体的特征、形成机理及主要防止措施。答:液态金属在冷却凝固过程中,因气体溶解度下降,析出的气体来不及逸出而产生的气孔称为析出性气孔。这类气孔主要是氢气孔和氮气孔。析出性气孔通常分布在铸件的整个断面或冒口、热节等温度较高的区域。当金属含气量较少时,呈裂纹多角形状;而含气量较多时,气孔较大,呈团球形。40 焊缝金属产生的析出性气孔多数出现在焊缝表面。氢气孔的断面形状如同螺钉状,从焊缝表面上看呈喇叭口形,气孔四周有光滑的内壁。氮气孔一般成堆出现,形似蜂窝。析出性气体的形成机理是:结晶前沿,特别是枝晶间的气体溶质聚集区中,气体的含量将超过其饱和量,被枝晶封闭的液相内则具有更大的过饱和含量和析出压力,而液-固界面处气体的含量最高,并且存在其他溶质的偏析及非金属夹杂物,当枝晶间产生收缩时,该处极易析出气泡,且气泡很难排除,从而保留下来形成气孔。防止析出性气体的措施主要有以下几个措施:(1)消除气体来源保持炉料清洁、干燥,焊件和焊丝表面无氧化物、水分和油污等;控制型砂、芯砂的水分,焊前对焊接材料(焊条、焊剂、保护气体等)进行烘干、去水或干燥处理;限制铸型中有机粘结剂的用量和树脂的含氮量;加强保护,防止空气侵入液态金属。(2)采用合理的工艺焊接时采用短弧焊有利于防止氮气孔,气体保护焊时用活性气体保护有利于防止氢气孔,选用氧化铁型焊条可提高抗锈能力。金属熔炼时,控制熔炼温度勿使其过高,或采用真空熔炼,可降低液态金属的含气量。(3)对液态金属进行除气处理金属熔炼时常用的除气方法有浮游去气法和氧化去气法。前者是向金属液中吹入不溶于金属的气体(如惰性气体、氮气等),使溶解的气体进入气泡而排除;后者是对能溶解氧的液态金属(如铜液)先吹氧去氢,再加入脱氧剂去氧。焊接时可利用焊条药皮或焊剂中的CaF2和碳酸盐高温分解出的CO2气体进行除氢。(4)阻止液态金属内气体的析出提高金属凝固时的冷却速度和外压,可有效阻止气体的析出。如采用金属型铸造,密封加压等方法,均可防止析出性气孔的产生。6、焊缝中的气孔有哪几种类型?有何特征?答:焊缝中的气孔有三种类型:析出性气孔、侵入性气孔、反应性气孔。其特征分别为:(1)析出性气孔为液态金属冷却时因溶解度下降析出的气体,主要为氢气孔和氮气孔。该气孔主要出现在焊缝表面,氢气孔断面形状如螺钉从焊缝表面看呈喇叭口型,气孔四周有光滑的内避;氮气孔一般成堆出现,形似蜂窝。(2)侵入性气孔一般为水蒸气、一氧化碳、二氧化碳、氢、氮和碳氢化合物。其数量较少、体积较大、孔壁光滑、表面有氧化色。(3)反应性气孔主要为H2、CO和N2。主要是由液态金属内部合金元素之间或与非金属夹杂物发生化学反应产生的蜂窝状气孔,呈梨状或团球状均匀分布。碳刚焊缝因冶金反应生成的CO气孔则沿焊缝结晶方向呈条虫状分布。7、试述夹杂物的形成原理、影响因素及主要防止措施。答:夹杂物是指金属内部或表面存在的和基本金属成分不同的物质,它主要来源于原材料本身的杂质及金属在熔炼、浇注和凝固过程中与非金属元素或化合物发生反应而形成的产物。夹杂物按照不同的标准可以分为很多种类,不同夹杂物的形成机理等也不尽相同:(1)一次夹杂物在金属熔炼过程中及炉前处理时,液态金属内会产生大量的一次非金属夹杂物。这类夹杂物的形成大致经历了两个阶段,即夹杂物的偏晶析出和聚合长大。排除液态金属中一次夹杂物的途径:1)加熔剂;2)过滤法;3)排除和减少液态金属中气体的措施,如合金液静置处理、浮游法净化、真空浇注等。(2)二次氧化夹杂物液态金属与大气或氧化性气体接触时,其表面很快会形成一层氧化薄膜。在浇注及充型过程中,由于金属流动时产生的紊流、涡流及飞溅等,表面氧化膜会被卷入液态金属内部。此时因液体的温度下降较快,卷入的氧化物在凝固前来不及上浮到表面,从而在金属中形成二次氧化夹杂物。二次氧化夹杂物的影响因素:1)化学成分;2)液流特性;3)熔炼温度。防止和减少二次氧化夹杂物的途径1)正确选择合金成分,严格控制易氧化元素的含量。2)采取合理的浇注系统及浇注工艺,保持液态金属充型过程平稳流动。3)严格控制铸型水分,防止铸型内产生氧化性气氛。还可加入煤粉等碳质材料,或采用涂料,以形成还原性气氛。4)对要求高的重要零件或易氧化的合金,可以在真空或保护性气氛下浇注。(3)偏析夹杂物合金结晶时,由于溶质再分配,在凝固区域内合金及杂质元素将高度富集于枝晶间尚未凝固的液相内。在一定条件(温度、压力等)下,靠近液固界面的“液滴”有可能具备产生某种夹杂物的条件,这时处于过饱和状态的液相L1将发生L1→β+L2偏晶反应,析出非金属夹杂物β。偏析夹杂物的大小主要由合金的结晶条件和成分来决定。凡是能细化晶粒的条件都能减小偏析夹杂物的尺寸;形成夹杂物的元素原始含量越高,枝晶间偏析液相中富集该元素的数量越多,同样结晶条件下,产生的偏析夹杂物越大,数量也越多。8、何谓体收缩、线收缩、液态收缩、凝固收缩、固态收缩和收缩率?(1)体收缩:宏观体积收缩现象;(2)线收缩:三维尺寸的减少,是尺寸长度缩减的一种物理现象;(3)液态收缩:液态金属从浇注温度T浇冷却到液相线温度TL产生的体收缩(体积改变量),称为液态收缩。(4)凝固收缩:金属从液相线冷却到固相线所产生的体收缩,称为凝固收缩。(5)固态收缩:金属在固相线以下发生的体收缩,称为固态收缩。(6)收缩率:即收缩的程度,分液态收缩率、凝固收缩率和固态收缩率。40 液态收缩率:,式中,εV液是液态体收缩率(%);αV液是金属的液态体收缩系数(℃-1);T浇是液态金属的浇注温度(℃);TL是液相线温度(℃);凝固收缩率:,式中,εV凝是凝固体收缩率;εV(L→S)是因状态改变的体收缩;αV(L→S)是凝固温度范围内的体收缩系数;固态收缩率中包括体收缩率和线收缩率,固态体收缩率表示为:,式中,εV固是金属的固态体收缩率(%);αV固是金属的固态体收缩系数(℃-1);TS是固相线温度(℃);T0是室温(℃)。固态收缩也常用线收缩率表示,,式中,εL是金属的线收缩率(%),εL≈εV固/3;αL是金属的固态线收缩系数(℃-1),αL≈αV固/3。9、分析缩孔的形成过程,说明缩孔与缩松的形成条件及形成原因的异同点。答:纯金属、共晶成分合金和结晶温度范围窄的合金,在一般铸造条件下按由表及里逐层凝固的方式凝固。由于金属或合金在冷却过程中发生的液态收缩和凝固收缩大于固态收缩,从而在铸件最后凝固的部位形成尺寸较大的集中缩孔。其形成过程如下图所示。铸件中缩孔形成过程示意图从图中可以看出,液态金属充满型腔后,由于铸型的吸热作用,其温度下降,产生液态收缩。此时,液态金属可通过浇注系统得到补充,因而型腔始终保持充满状态(图a)。当铸件外表温度降至凝固温度时,铸件表面就凝固成一层固态外壳,并将内部液体包住(图b)。这时,内浇口已经凝结。当铸件进一步冷却时,壳内的液态金属因温度降低一方面产生液态收缩,另一方面继续凝固使壳层增厚并产生凝固收缩;与此同时,壳层金属也因温度降低而发生固态收缩。如果液态收缩和凝固收缩造成的体积缩减等于固态收缩引起的体积缩减,则壳层金属和内部液态金属将紧密接触,不会产生缩孔。但是,由于金属的液态收缩和凝固收缩大于壳层的固态收缩,壳内液体与外壳顶面将发生脱离(图c)。随着冷却的进行,固态壳层不断加厚,内部液面不断下降。当金属全部凝固后,在铸件上部就形成了一个倒锥形的缩孔(图d)。形成缩松和缩孔的基本原因是相同的,即金属的液态收缩和凝固收缩之和大于固态收缩。但形成条件是不同的:产生缩孔的条件是铸件由表及里逐层凝固。形成缩松的条件是金属的结晶温度范围较宽,倾向于体积凝固或同时凝固方式。10、分析灰铸铁和球墨铸铁产生缩孔、缩松的倾向性及影响因素。答:灰铸铁和球墨铸铁在凝固过程中会析出石墨相而产生体积膨胀,因此其缩孔和缩松的形成比一般合金复杂。灰铸铁和球墨铸铁凝固的共同特点是,初生奥氏体枝晶能迅速布满铸件的整个断面,而且奥氏体枝晶具有很大的连成骨架的能力。因此,这两种铸铁都有产生缩松的可能性。但是,由于它们的共晶凝固方式和石墨长大的机理不同,产生缩孔和缩松的倾向性有很大差别。灰铸铁共晶团中的片状石墨,与枝晶间的共晶液体直接接触,因此片状石墨长大时所产生的体积膨胀大部分作用在所接触的晶间液体上,迫使它们通过枝晶间的通道去充填奥氏体枝晶间因液态收缩和凝固收缩所产生的小孔洞,从而大大降低了灰铸铁产生缩松的严重程度。这就是灰铸铁的所谓“自补缩能力”。球墨铸铁在凝固中后期,石墨球长大到一定程度后,四周形成奥氏体外壳,碳原子通过奥氏体外壳扩散到共晶团中使石墨球长大。当共晶团长大到相互接触后,石墨化膨胀所产生的膨胀力,只有一小部分作用在晶间液体上,而大部分作用在相邻的共晶团上或奥氏体枝晶上,趋向于把它们挤开。因此,球墨铸铁的缩前膨胀比灰铸铁大得多。随着石墨球的长大,共晶团之间的间隙逐步扩大,并使铸件普遍膨胀。共晶团之间的间隙就是球墨铸铁的显微缩松,而共晶团集团之间的间隙则构成铸件的(宏观)缩松。所以,球墨铸铁产生缩松的倾向性很大。如果铸件厚大,球墨铸铁的缩前膨胀也会导致铸件产生缩孔。如果铸型刚度足够大,石墨化的膨胀力有可能将缩松压合。在这种情况下,球墨铸铁也可看作具有“自补缩”能力。影响灰铸铁和球墨铸铁缩孔和缩松的因素:(1)铸铁成分 对于灰铸铁,随碳当量增加,共晶石墨的析出量增加,石墨化膨胀量增加,有利于消除缩孔和缩松。(2)凝固方式 共晶成分灰铸铁以逐层方式凝固,倾向于形成集中缩孔。但是,共晶转变的石墨化膨胀作用,能抵消甚至超过共晶液体的收缩,使铸件不产生缩孔。40 (3)孕育处理 球墨铸铁的碳当量大于3.9%时,经过充分孕育,在铸型刚度足够时,利用共晶石墨化膨胀作用,产生自补缩效果,可以获得致密的铸件。(4)铸型刚度 铸铁在共晶转变发生石墨化膨胀时,型壁是否迁移,是影响缩孔容积的重要因素。铸型刚度大,缩前膨胀就小,缩孔容积也相应减小,甚至不产生缩孔。铸型刚度依下列次序逐级降低:金属型—覆砂金属型—水泥型—水玻璃砂型—干型—湿型。11、简述顺序凝固原则和同时凝固原则各自的优缺点和适用范围。答:(1)顺序凝固原则铸件的顺序凝固原则是采取各种措施,保证铸件各部分按照距离冒口的远近,由远及近朝着冒口方向凝固,冒口本身最后凝固(见右图)。铸件按照这一原则凝固时,可使缩孔集中在冒口中,获得致密的铸件。顺序凝固原则的优点:可以充分发挥冒口的补缩作用,防止缩孔和缩松的形成,获得致密铸件。其缺点为:顺序凝固时,铸件各部分存在温差,在凝固过程中易产生热裂,凝固后容易使铸件产生变形。此外,由于需要使用冒口和补贴,工艺出品率较低。顺序凝固方式示意图纵向温度分布曲线距离温度冒口浇口其适用范围为:凝固收缩大、结晶温度范围小的合金。(2)同时凝固原则同时凝固方式示意图内浇道IIIIII距离纵向温度分布曲线温度冷铁同时凝固原则是采取工艺措施保证铸件各部分之间没有温差或温差尽量小,使各部分同时凝固,如右图所示。同时凝固原则的优点:同时凝固时铸件温差小,不容易产生热裂,凝固后不易引起应力和变形。其缺点为:同时凝固条件下,扩张角φ等于零,没有补缩通道,无法实现补缩。其适用范围为:1)碳硅含量高的灰铸铁,其体收缩较小甚至不收缩,合金本身不易产生缩孔和缩松。2)结晶温度范围大,容易产生缩松的合金(如锡青铜),对气密性要求不高时,可采用这一原则,以简化工艺。3)壁厚均匀的铸件,尤其是均匀薄壁铸件,倾向于同时凝固,消除缩松困难,应采用同时凝固原则。4)球墨铸铁件利用石墨化膨胀进行自补缩时,必须采用同时凝固原则。5)某些适合采用顺序凝固原则的铸件,当热裂、变形成为主要矛盾时,可采用同时凝固原则。12、焊件和铸件的热应力是如何形成的?应采取哪些措施予以控制?答:工件在加热和冷却过程中,由于各部分的温度不同造成工件上同一时刻各部分的收缩或膨胀量不同,从而导致内部彼此相互制约而产生应力。这种应力是由不均匀温度场引起的,故称为热应力。焊件中的热应力是由于焊接过程中,移动热源对焊件的加热是局部的、不均匀的。在同一时刻,工件上离热源中心距离不同的部位其温度不同,热源下方的熔池部位温度最高,距离熔池越远温度越低。焊接时,邻近熔池的高温区金属由于热膨胀受到周围低温金属的限制,产生压缩塑性变形;而在冷却过程中,已发生压缩塑性变形的这部分金属又受到周围条件的制约,不能自由收缩,在不同程度上又被拉伸。与此同时,熔池凝固形成焊缝。温度继续降低时,焊缝金属因冷却收缩受阻而受到拉伸,但在温度高于力学熔点的时间内,焊缝内不会产生热应力;而在温度低于力学熔点以下时,由于材料的弹性得以恢复,从而使焊缝相应产生了收缩拉应力。铸件中的热应力是由于在凝固后的冷却过程中,各部分冷却速度不一致,从而引起收缩量不同。但因各部分彼此相联,又互相制约,因而产生了热应力。控制应力的措施:(1)合理设计结构 焊接结构中,应避免焊缝交叉和密集,尽量采用对接而避免搭接;在保证结构强度的前提下,尽量减少不必要的焊缝;采用刚度小的结构代替刚度大的结构等。在铸造结构中,铸件的壁厚差要尽量小;厚薄壁连接处要圆滑过渡;铸件厚壁部分的砂层要减薄,或放置冷铁;合理设置浇冒口,尽量使铸件各部分温度均匀。(2)合理选择工艺 在焊接中,应根据焊接结构的具体情况,尽量采用较小的线能量(如采用小直径焊条和较低的焊接电流),以减小焊件的受热范围。采用合理的装焊顺序,尽可能使焊缝能自由收缩,收缩量大的焊缝应先焊。此外,采取预热措施可降低工件中的温度梯度,从而减小焊接应力。浇注铸件时,在满足使用要求的前提下,应选择弹性模量和收缩系数小的材料;提高铸型的预热温度可减小铸件各部分的温差;采用较细的面砂和涂料,减小铸件表面的摩擦力;控制铸型和型芯的紧实度,加木屑、焦炭等提高铸型和型芯的退让性;控制铸件在型内的冷却时间,避免过早或过迟打箱。40 (3)消除残余应力减小或消除残余应力的方法有多种,如热处理法、自然失效法、振动法、加载法和锤击法等。13、简述凝固裂纹的形成机理及防止措施。答:(1)凝固裂纹的形成机理金属在凝固过程中要经历液-固状态和固-液状态两个阶段,在温度较高的液-固阶段,晶体数量较少,相邻晶体间不发生接触,液态金属可在晶体间自由流动,此时金属的变形主要由液体承担,已凝固的晶体只作少量的相互位移,其形状基本不变。随着温度的降低,晶体不断增多且不断长大。进入固-液阶段后,多数液态金属已凝固成晶体,此时塑性变形的基本特点是晶体间的相互移动,晶体本身也会发生一些变形。当晶体交替长合构成枝晶骨架时,残留的少量液体尤其是低熔共晶,便以薄膜形式存在于晶体之间,且难以自由流动。由于液态薄膜抗变形阻力小,形变将集中于液膜所在的晶间,使之成为薄弱环节。此时若存在足够大的拉伸应力,则在晶体发生塑性变形之前,液膜所在晶界就会优先开裂,最终形成凝固裂纹。(2)凝固裂纹的防止措施A冶金措施:1)限制有害杂质2)微合金化和变质处理3)改进铸钢的脱氧工艺4)改善金属组织5)利用“愈合”作用B工艺措施焊接工艺措施1)适当降低热输入,避免熔池过热。热输入较大时,易形成粗大的柱状晶,增加偏析程度,同时晶界上低熔点共晶熔化较严重,焊接应力也较大。因此凝固裂纹和液化裂纹形成倾向大。2)针对不同的焊接方法和接头型式,合理调整焊接工艺参数,获得合适的焊缝成形系数。适当增加成形系数,使低熔点共晶聚集在焊缝上部,与焊缝收缩应力成一定角度,有利于防止凝固裂纹的产生。3)焊缝凹进部位过热严重,易形成液化裂纹,凹度d越大,裂纹倾向越大。控制凹度使d<1mm,可减少液化裂纹倾向。4)在接头设计和装焊顺序方面,应尽量降低接头的刚度或拘束度,尽可能使大多数焊缝在较小刚度条件下焊接,以改善焊接接头的应力状态。铸造工艺措施1)减小铸件的收缩应力,如增加铸型和型芯的退让性,预热铸型,在铸型和型芯表面刷涂料等,可降低热裂倾向。2)改进浇注方法,设置合理的浇道数量,控制浇注速度等,以控制铸件的冷却速度,使铸件各部分的温度相对均匀。3)设计合理的铸件结构,避免直角或十字交叉的截面。必要时设置防裂肋,在两壁相交部位采用冷铁加速热节的冷却等,也是防止铸件热裂的重要措施14、何谓液化裂纹?出现在焊接接头的哪个区域?为什么?答:液化裂纹是母材近缝区或焊缝层间金属,在高温下发生晶间液膜分离而导致的开裂现象。出现在焊接接头的焊接热影响区。从液化裂纹的定义可以知道,液化裂纹常出现在焊接热影响区或多层焊的层间金属中。这是由于热影响区或多层焊层间金属奥氏体晶界上的低熔点共晶,在焊接高温下发生重新熔化,使金属的塑性和强度急剧下降,在拉伸应力作用下沿奥氏体晶界开裂而形成的。此外,在不平衡加热和冷却条件下,由于金属间化合物分解和元素的扩散,造成局部地区共晶量偏高而发生局部晶间液化,也会产生液化裂纹。15.试叙冷裂纹的种类及特征答:(1)冷裂纹的分类1)按形成的原因分为三种:延迟裂纹、淬硬脆化裂纹、低塑性脆化裂纹。2)按加工工艺特点:铸造裂纹和焊接裂纹等。(2)裂纹的基本特征冷裂纹有时在焊后或加工后立即出现,有时则要经过一段时间才出现。多起源于具有缺口效应、易产生应力集中的部位,或物理化学不均匀的部位。焊接裂纹经常出现在焊接热影响区。断口形态比较复杂,从宏观上看,冷裂纹断口具有发亮的金属光泽,呈脆性断裂特征:从微观上看,有的沿晶间断裂,有的为穿晶断裂,而更常见的是沿晶和穿晶共存的断裂缺口形态。有氢作用时会出现明显的氢致准理解断口,淬硬倾向大,沿晶断裂特征越趋明显。16、分析氢在形成冷裂纹中的作用,简述氢致裂纹的特征和机理。答:(1)氢的作用焊缝凝固时,高温下溶入液态金属中的氢将来不及析出,呈过饱和态残留在接头中。由于氢原子的体积小,因此可以在接头中自由扩散,称之为接头中的扩散氢。扩散氢易于在焊接热影响区、焊趾、焊根等部位偏聚,使金属脆化。尤其是当这些部位存在显微裂纹时,扩散氢易向裂纹尖端的三向拉伸应力区扩散、聚集,当接头中的扩散氢达到氢的临界含量时,将导致冷裂纹的出现。(2)氢致裂纹的形成机理及特征v形成机理:接头中的扩散氢不仅使金属脆化,当金属内部存在显微裂纹等缺陷时,在应力的作用下,裂纹前沿会形成应力集中的三向应力区,诱使接头中的扩散氢向高应力区扩散并聚集为分子态氢,体积膨胀使裂纹内压力增高,裂纹向前扩展,在裂纹尖端形成新的三向应力区,这一过程周而复始持续进行。当接头中的氢含量超过临界值时,显微裂纹将扩展成为宏观裂纹。v特征:氢致裂纹从潜伏、萌生、扩展直至开裂具有延迟特征;40 存在氢致延迟裂纹的敏感温度区间(Ms以下200℃至室温范围);常发生在刚性较大的低碳钢、低合金钢的焊接结构中。17、为什么低合金钢冷裂纹容易出现在焊接热影响区及焊根、焊趾部位?答:上述部位是接头中的扩散氢易偏聚的部位。焊后熔焊接头中会存在大量可以自由扩散的扩散氢。由于焊缝中氢的起始浓度高于焊接热影响区,受“氢浓度梯度”的驱使,焊缝中的扩散氢将向周围焊接热影响区扩散;对于低合金钢焊接接头,受“相变诱导扩散”驱使,焊缝中过饱和的氢易向周围尚未发生相变的焊接热影响区的奥氏体中转移;此外,在“应力诱导扩散”驱动下,接头中的扩散氢易向焊趾、焊根等应力集中部位聚集。氢的聚集使这些部位的金属脆化、微裂纹扩展,在达到氢的临界含量时,将导致冷裂纹的出现。低合金钢接头中的冷裂纹还和焊接热影响区存在的马氏体脆性组织以及焊接残余拉伸应力有关。18、何谓拘束度和拘束应力?两者的影响因素有哪些?他们对冷裂纹的形成有何影响?答:(1)拘束度是指对受体形状与空间位置的限制程度。对接接头焊接过程的拘束度定义为单位长度焊缝在根部间隙产生单位长度位移所需要的力。拘束应力即受拘束作用而产生的内部抗力,拘束度越大,拘束应力就会越大。焊接过程是一个不均匀局部加热过程,受热部位在结构自身拘束或外部拘束作用下不能自由地膨胀与收缩,因而在接头中产生热应力,又称之为拘束应力。铸件凝固与冷却过程中受铸型或自身拘束作用也会在铸件中产生拘束应力。(2)拘束度的影响因素有材料的弹性模量、板厚、拘束距离等;焊接拘束应力大小的影响因素还有金属的膨胀系数、比热容、接头坡口形式、焊接方法等。拘束应力加剧接头中氢的扩散与聚集,促使微裂纹的扩展,是导致冷裂纹的直接原因。19、如何防止焊件和铸件产生冷纹?答:(1)防止焊接冷裂纹的措施对于结构钢焊接冷裂纹的控制,总的原则是控制冷裂纹形成的三大要素,即:降低扩散氢的含量、改善接头组织和减小拘束应力。焊接中常用的措施是限制氢的来源,如:选用低氢型的焊接材料与焊接方法,焊前严格清理焊件坡口表面的油污、锈蚀,焊前焊材进行干燥处理;合理安排焊接方向与施焊顺序,使焊缝有收缩余地;尽量采用小的焊接线能量和多层多道焊;焊接高强度结构钢时采用低强匹配的焊缝。焊前预热处理即有利于减少接头中的扩散氢,也有利于限制接头中的淬硬组织的出现,并在一定程度上降低热应力,是生产中最为常见的防止焊接冷裂纹的措施。焊后及时消氢处理对于控制氢致裂纹也很奏效。(2)对于铸件,在结构设计方面,力求使铸件壁厚均匀,转角处应作出过渡圆角,减少应力集中现象。浇注铸件时,应选择弹性模量和收缩系数小的材料;提高铸型的预热温度可减小铸件各部分的温差;采用较细的面砂和涂料,减小铸件表面的摩擦力;控制铸型和型芯的紧实度,加木屑、焦炭等提高铸型和型芯的退让性。40'