• 5.47 MB
  • 2022-04-22 11:47:55 发布

混凝土结构设计原理课后题答案(第四版)-沈浦生主编(完整版)

  • 132页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'绪论0-1:钢筋和混凝土是两种物理、力学性能很不相同的材料,它们为什么能结合在一起工作?答:其主要原因是:①混凝土结硬后,能与钢筋牢固的粘结在一起,相互传递内力。粘结力是两种性质不同的材料能共同工作的基础。②钢筋的线膨胀系数为1.2×10-5C-1,混凝土的线膨胀系数为1.0×10-5~1.5×10-5C-1,二者的数值相近。因此,当温度变化时,钢筋与混凝土之间不会存在较大的相对变形和温度应力而发生粘结破坏。习题0-2:影响混凝土的抗压强度的因素有哪些?答:实验方法、实验尺寸、混凝土抗压实验室,加载速度对立方体抗压强度也有影响。第一章1-1混凝土结构对钢筋性能有什么要求?各项要求指标能达到什么目的?答:1强度高,强度系指钢筋的屈服强度和极限强度。采用较高强度的钢筋可以节省钢筋,获得较好的经济效益。2塑性好,钢筋混凝土结构要求钢筋在断裂前有足够的的变形,能给人以破坏的预兆。因此,钢筋的塑性应保证钢筋的伸长率和冷弯性能合格。3可焊性好,在很多情况下,钢筋的接长和钢筋的钢筋之间的链接需通过焊接,因此,要求在一定的工艺条件下钢筋焊接后不产生裂纹及过大的变形,保证焊接后的接头性能良好。4与混凝土的粘结锚固性能好,为了使钢筋的强度能够充分的被利用和保证钢筋与混凝土共同作用,二者之间应有足够的粘结力。1-2钢筋冷拉和冷拔的抗压、抗拉强度都能提高吗?为什么?答:冷拉能提高抗拉强度却不能提高抗压强度,冷拉是使热轧钢筋的冷拉应力值先超过屈服强度,然后卸载,在卸载的过程中钢筋产生残余变形,停留一段时间再进行张拉,屈服点会有所提高,从而提高抗拉强度,在冷拉过程中有塑性变化,所以不能提高抗压强度。冷拨可以同时提高钢筋的抗拉和抗压强度,冷拨是将钢筋用强力拔过比其径小的硬质合金拔丝模,钢筋受到纵向拉力和横向压力作用,内部结构发生变化,截面变小,而长度增加,因此抗拉抗压增强。1-3影响混凝土的收缩和徐变的因素有哪些? 答:1、混凝土的组成和配合比是影响徐变的内在因素。2、养护及使用条件下的温度是影响徐变的环境因素。3、混凝土的应力条件是影响徐变的非常重要的因素。4、干燥失水是引起收缩的重要因素,所以构件的养护条件、使用环境的温度及影响混凝土水分保持的因素都对收缩有影响,水泥用量越多,水灰比越大,收缩越大,骨料的级配越好,弹性模量越大,收缩越小,构件的体积和表面积比值越大的收缩越小。1-4混凝土的收缩和徐变有什么区别和联系?答:在荷载保持不变的情况下随时间而增长的变形称为徐变,徐变不一定体积减小,混凝土在空气中结硬时体积减小的现象称为收缩。混凝土的组成和配合比对徐变和收缩的影响是相同的,混凝土的徐变和收缩都会使预应力结构中产生应力。1-5钢筋和混凝土之间的粘结力是怎样产生的?答:钢筋和混凝土有相对变形(滑移),就会在钢筋和混凝土交界上产生沿钢筋轴线方向的相互作用力,这种力为钢筋和混凝土的粘结力。1-6“钢筋在混凝土构件内,钢筋和混凝土随时都有粘结力”这一论述正确不?答:不正确,因为粘结力是在钢筋和混凝土之间有相对变形的条件下产生的。1-7伸入支座的锚固长度是越长,粘结强度是否就越高?为什么?答:不是,伸入支座的锚固长度有一个极限值。在这个极限值内,锚固的长度越长,粘结的强度越高,超过了这个极限,锚固长度增大,粘结强度也不会变大。第二章2-1什么是结构上的作用?荷载属于哪种作用?作用效应与荷载效应有什么区别?答:结构上的作用是指施加在结构上的集中力或分布力,以及引起结构外加变形或约束变形的各种因素,荷载属于直接作用,直接作用或间接作用在结构上,由此在结构内产生内力和变形,成为作用效应2-2什么是结构抗力?影响结构抗力的主要因素有哪些?答:结构抗力是指整个结构成结构件承受作用效应的能力,影响结构抗力的主要因素有材料性能(强度,变形模量等),Mɑ参数和计算模式的精确性。2-3什么是材料强度标准值和材料强度设计值?从概率的意义来看他们是如何取值的?答:钢筋和混凝土的强度标注值是钢筋混凝土结构的极限状态,设计时采用的材料强度基本代表值,材料强度设计值是材料强度的标准值除以材料性能各项系数的值ƒk=µƒ-ασƒ2-4什么是结构的极限状态?极限状态分为几类?各有什么标志和限值?答:整个结构或结构的一部分超过某一特定状态就无法满足设计规定的某一功能要求,次特定状态称为改功能的极限状态。分为承载能力极限状态和正常使用极限状态。当结构成构件出现下列状态之一时,应认为超过了承载能力的极限状态:1.结构构件或连接固所受的应力超过材料强度而破坏,或固过度变形而不适于继续承载 2。整个结构或结构的一部分作为刚体失去平衡3。结构转变为机动体系3.结构成表构件丧失稳定4.地基丧失承载能力而破坏当结构成构件出现下列状态之一时,应认为超过了正常使用极限状态:1.影响正常使用或外观变形2.影响正常使用的耐久性的局部损失3.影响正常使用的震动4.相对沉降量过大等影响正常使用的其他特定状态2-5说明承载能力极限状态,设计表达式中各符号意义,并分析该表达式是如何保证结构可靠度的。答:Υ0S<=RR=R(fC,fs,ak)=R(fck/rc*fsk/rs*ak)Υ0→结构重要性系数S→承载能力极限状态的荷载效应组合设计值R→结构构件的承载力设计值R()→结构构件的承载力函数fC,fs→混凝土,钢筋的强度设计值fck,fsk→混凝土,钢筋的强度标准值rc,rs→混凝土,钢筋的强度材料分项系数ak→Mɑ参数标准值3-1某四层四跨现浇框架结构的第二层内柱轴向压力设计值N=140×104N,楼层高H=5.4m,计算长度L0=1.25H,混泥土强度等级为C20,HRB400级钢筋。试求柱截面尺寸及纵筋面积。『解』查表得:=1.0,=9.6N/,=360N/=1.255.4=6.75m按构造要求取构件长细比:即b=0=6.75103/15=450mm设该柱截面为方形,则bh=450mm450mm查表3-1得:=0.895=(N-0.9A)/0.9=mm<0.1943按照构造配筋取()==选配钢筋,查附表11-1得,420(=1256)箍筋按构造要求选取,取s=250mm,d=6mm3-1由于建筑上使用要求,某现浇柱截面尺寸为250mm×250mm,柱高4.0m,计算高度L0=0.7H=2.8m,配筋为416(As/=804mm2)。C30混泥土,HRB400级钢筋,承受轴向力设计值N=950KN。试问柱截面是否安全?『解』查表得:=1.0,=14.3N/,=360N/计算长度=0.7H=2.8m查表3-1得:=0.962考虑轴心受压R=0.9()=该柱截面在承受轴心受压时是不安全的。 3-1已知一桥下螺旋箍筋柱,直径为d=500mm,柱高5.0m,计算高度L0=0.7H=3.5m,配HRB400钢筋1016(As/=2010mm2),C30混泥土,螺旋箍筋采用R235,直径为12mm,螺距为s=50mm。试确定此柱的承载力。『解』查表得:=1.0,=14.3N/,=360N/=210N/柱的承载力N=<1.5×0.9()4-1、一钢筋混泥土矩形截面梁截面尺寸b×h=250mm×500mm,混泥土强度等级C25,HRB335级钢筋,弯矩设计值M=125KN·m,试计算受拉钢筋截面面积,并绘制配筋图。『解』(1)先假定受力钢筋按一排布置,as=35mm=h—as=500—35=465mm查附表1—2、2—3、表4—2、4—4得:=1.0,=11.9N/,=300N/,=0.550===0.1943查附表4—1得=0.2177<=0.550(2)所需纵筋面积:==0.2177250465=1004bh=0.2%250500=250选用418,=1017,一排可以布置的下,因此不要必修改(3)绘配筋图: 4-2、一钢筋混泥土矩形截面梁截面尺寸b×h=200mm×500mm,弯矩设计值M=120KN·m,混泥土强度等级C25,试计算下列三种情况纵三向受力钢筋截面面积As:(1)当选用HPB235级钢筋时,(2)改用HRB335钢筋时;(3)M=180KN·m时。最后,对三种结果进行比较分析。『解』先假定受力钢筋按一排布置,as=35mm=h—as=500—35=465mm(1)当选用HPB235钢筋时:查附表1—2、2—3、表4—2、4—4得:=1.0,=11.9N/,=210N/,=0.614===0.2330查附表4—1得=0.2692<=0.614所需纵筋面积:==0.2330200465=1419bh=0.2%200500=200(2)当选用HRB335钢筋时:查附表1—2、2—3、表4—2、4—4得:=1.0,=11.9N/,=300N/,=0.550===0.2330查附表4—1得=0.2692<=0.550所需纵筋面积:==0.2330200465=993bh=0.2%200500=200 (3)当选用HPB235钢筋M=180kN·m时:查附表1—2、2—3、表4—2、4—4得:=1.0,=11.9N/,=210N/,=0.614===0.350查附表4—1得=0.4523<=0.614所需纵筋面积:==0.4523200465=2384bh=0.2%200500=200(4)当选用HRB335钢筋M=180kN·m时:查附表1—2、2—3、表4—2、4—4得:=1.0,=11.9N/,=300N/,=0.550===0.350查附表4—1得=0.4523<=0.550所需纵筋面积:==0.4523200465=1669bh=0.2%200500=200(5)分析:当选用高级别钢筋时,增大,可减少;当弯矩增大时,也增大。4-3、某大楼中间走廊单跨简支板(图4-50),计算跨度l=2.18m,承受均布荷载设计值g+q=6KN/m(包括自重),混泥土强度等级为C20,HPB235级钢筋,试确定现浇板的厚度h及所需受拉钢筋截面面积As,选配钢筋,并画钢筋配置图。计算时,取b=1.0m,as=25mm。 『解』(1)设板厚为60mm,as=25mm则=h—as=60—25=35mm最大弯矩M=(g+q)=×6×=3.56kN·m查附表1—2、2—3、表4—2、4—4得:=1.0,=9.6N/,=210N/,=0.614受压区高度:=〔1—〕=13mm(2)求受拉钢筋面积===594bh=0.236%100060=141.6===0.371<=0.614选用8@80mm,=629(3)绘配筋图:4-4、一钢筋混泥土矩形梁,承受弯矩设计值M=160KN·m,混泥土强度等级为C25,HPB235级钢筋,试按正截面承载力要求确定截面尺寸及配筋。『解』(1)设b=250mm,h=500mm 先假定受力钢筋按一排布置,as=35mm=h—as=500—35=465mm查附表1—2、2—3、表4—2、4—4得:=1.0,=11.9N/,=300N/,=0.550===0.249查附表4—1得=0.2915<=0.550(2)求受拉钢筋面积==0.2915250465=1344bh=0.2%250500=250选用220+222,=628+760=1388,一排可以布置的下,因此不要必修改(3)绘配筋图:4-5、一钢筋混泥土矩形截面梁截面尺寸b×h=200mm×500mm,混泥土强度等级为C25,HRB335级钢筋(218),As=509mm2,试计算梁截面上承受弯矩设计值M=80KN·m时是否安全?『解』(1)先假定受力钢筋按一排布置,as=35mm=h—as=500—35=465mm查附表1—2、2—3、表4—2、4—4得:=1.0,=11.9N/,=300N/,=0.550受压区高度:===64.16mm<=255.75mm(2)所能承载的弯矩值 =b()=11.920064.14(465)=66.11kN·m所以取为设计弯矩,(2)初步设计梁截面为200mm400mm先假定受力钢筋按一排布置,as=35mm=h—as=400—35=365mm查附表1—2、2—3、表4—2、4—4得:=1.0,=11.9N/,=300N/,=0.550===0.242查附表4—1得=0.2817<=0.550(3)所需纵筋面积:==0.2817200365=815.7bh=0.2%200400=160选用216+218,=402+509=911,一排可以布置的下,因此不要必修改。(4)绘配筋图: 4-9、一简支钢筋混泥土矩形梁(图4-51),b×h=250mm×500mm,承受均布荷载标准值qk=20KN/m,恒载设计值gk=2.25KN/m,HRB335级钢筋,混泥土强度等级为C25,梁内配有416钢筋。(荷载分项系数:均布活荷载Q=1.4,恒荷载G=1.2,计算跨度L0=4960mm+240mm=5200mm)。试验算梁正截面是否安全?『解』(1)先计算梁跨中在荷载下产生的弯矩:荷载:g+q=1.22.251.420=30.7kN/m=(g+q)=30.7=103.766kN·m(2)验算416的配筋所能承载的弯矩:先假定受力钢筋按一排布置,as=35mm=h—as=500—35=465mm查附表1—2、2—3、表4—2、4—4得:=1.0,=11.9N/,=300N/,=0.550,=804===0.174<=0.550=(10.5)=0.159==0.1592001.011.9=62.95kN·m<所以该配筋不安全。4-10、如图4-53所示雨蓬板,板厚h=60mm,板面上于上有20mm厚防水砂浆,板底摸20mm厚混合砂浆,。板上活荷载标准值考虑500KN/。HPB235级钢筋,混泥土强度等级为C20。试求受拉钢筋截面面积As,并绘制配筋图。『解』(1)求设计弯矩:恒载:20mm厚防水沙浆: 0.02m20kN/=0.4kN/20mm厚混合沙浆:0.02m17kN/=0.34kN/结构自重:0.06m25kN/=1.5kN/合计:G=0.4+0.34+1.5=2.24kN/活载:Q=0.5kN/取1m长为计算单元,则换算线荷载设计值:g=2.24kN/1.0m1.2=2.688kN/mq=0.5kN/1.0m1.4=0.7kN/mg+q=2.688kN/m+0.7kN/m=3.388kN/m=(g+q)=3.388=3.249kN·m(2)配筋计算:as=20mm=h—as=60—20=40mm查附表1—2、2—3、表4—2、4—4得:=1.0,=9.6N/,=210N/,=0.614,===0.212查附表4—1得=0.2411<=0.614所需纵筋面积:==0.2411100040=441取8@110配筋,=457(3)绘配筋图: 4-11、如图4-54所示试验梁,截面尺寸b×h=120mm×250mm,其混泥土的立方体抗压强度fcu=21.8N/,配有216钢筋,钢筋试件的实测屈服强度为fy=385N/。试计算试验梁破坏时的荷载(应考虑自重)。『解』(1)先计算该配筋能承载的弯矩:as=35mm=h—as=250—35=215mm由题设得:=1.0,=21.8N/,=385N/,=402===0.275=(10.5)=0.237==0.2371201.021.8=28.66kN·m(2)计算由结构自重产生的弯矩:自重线荷载:g=0.120.2525=0.75kN/m=g=0.75=0.844kN·m(3)则试验加载的破坏荷载F:==28.66kN·m0.844kN·m=27.816kN·m=F0.9m 则F===30.91kN4-12、已知一矩形截面梁截面尺寸b×h=200mm×500mm,弯矩设计值M=216KN·m,混泥土强度等级为C30,在受压区配有320的受压钢筋。时计算受拉钢筋截面面积As(HRB335级钢筋)『解』(1)假设受拉和受压钢筋按两排布置as==60mm=h—as=500—60=440mm查附表1—2、2—3、表4—2、4—4得:=1.0,=14.3N/,=300N/,=300N/,=0.550受压区高度:==440=97.0mm又120mm=2<<=255.75mm(2)求受拉钢筋面积===1867取620,=1884(3)绘配筋图:4-13、已知一矩形截面梁截面尺寸b×h=200mm×500mm,弯矩设计值M=216KN.m ,混泥土强度等级为C20,已配HRB335受拉钢筋620,试复核该梁是否安全。若不安全,则从新设计,单不改变截面尺寸和混泥土强度等级(as=70mm)。『解』(1)复核计算as=70mm=h—as=500—70=430mm查附表1—2、2—3、表4—2、4—4得:=1.0,=9.6N/,=300N/,=0.550,===0.685>=0.550取==0.550=(10.5)=0.3987==0.39872001.09.6=141.56kN·m=275kN·m属第一类T形(3)求受拉钢筋面积:===0.020查附表4—1得=0.0202<=0.550==0.02022200665=1409bh=0.215%300700=452选218+225,=509+982=1491(4)绘配筋图: 4-17、某T形截面梁翼缘计算宽度=500mm,b=250mm,h=600mm,=100mm,混凝土强度等级C30,HRB335钢筋,承受弯矩设计值M=256kN·m。试求受拉钢筋截面面积,并绘配筋图。『解』〈一〉按房建方向设计(1)假设受拉和受压钢筋按两排布置as=60mm=h—as=600—60=540mm,查附表1—2、2—3、表4—2、4—4得:=1.0,=14.3N/,=300N/,=0.550(2)判别T形类型:()=1.014.3500100(540)=350kN·m>=256kN·m属第一类T形(3)求受拉钢筋面积:===0.1207=1=0.1310<=0.550 ==0.1310500540=1686bh=0.215%250600=323选取216+420的配筋,=402+1256=1658(4)绘配筋图:〈二〉按路桥方向设计(1)假设受拉和受压钢筋按两排布置as=30+0.07h=30+0.07600=72mm=h—as=600—72=528mm,取1.0(大桥、中桥)查附表10—1、10—2、表4—10得:=13.8N/,=280N/,=0.560(2)判别T形类型:()=1.013.8500100(528)=329.8kN·m>=256kN·m属第一类T形(3)求受拉钢筋面积:===0.130查附表4—1得=0.1398<=0.560==0.1398500528=1819 bh=0.189%250600=284选取220+518的配筋,=628+1272=1900(4)绘配筋图:4-18、。某T形截面梁,翼缘计算宽度=1200mm,b=200mm,h=600mm,=80mm,混凝土强度等级C25,配有420受拉钢筋,承受弯矩设计值M=131kN·m。试复核梁截面是否安全。『解』(1)先假定受力钢筋按一排布置,as=35mm=h—as=600—35=565mm=1256查附表1—2、2—3、表4—2、4—4得:=1.0,=11.9N/,=300N/,=0.550(2)判别T形类型:=3001256=376800N=1.011.9120080=1142400N<属第一类T形(3)验算截面承载力:===0.047<=0.550=(1)=1.011.91200(1)=209kN·m属第二类T形(3)截面承载力计算:===137mm===0.254<=0.550=(b)()+b()=1.011.9100(400200)(540)+1.011.9200137(540)=270kN·m〈二〉按路桥方向计算(1)假设受拉和受压钢筋按两排布置as=60mm=1884=h—as=600—72=528mm,取1.0(大桥、中桥)查附表10—1、10—2、表4—10得:=11.5N/,=280N/,=0.560(2)判别T形类型: =2801884=527520N=1.011.5400100=460000N>属第二类T形(3)截面承载力计算:===129.36mm===0.2395<=0.560=(b)()+b(1)=11.5100(400200)(540)+11.52000.2395(1)=253.5kN·m4-20、试编写单、双筋矩形梁正截面承载力计算程序。5-1已知某承受均布荷载的矩形截面梁截面尺寸b×h=250mm×600mm(取as=35mm),采用C25混凝土,箍筋为HPB235钢筋。若已知剪力设计值V=150kN,试采用Φ8双肢箍的箍筋间距s?『解』(1)已知条件:as=35mm=h—as=600—35=565mm=101查附表1—2、2—3得:=1.0,=11.9N/,=1.27N/,=210N/(2)复合截面尺寸:==565mm==2.26<4属一般梁。=0.251.011.9250565=420.2kN>150kN截面满足要求。 (3)验算是否可构造配箍:=0.71.27250565=125.6kN<150kN应按计算配箍(4)计算箍筋间距:V+s==613.2mm查表5—2,取s=200mm(5)验算最小配箍率:==0.202﹪>==0.145﹪满足要求。(6)绘配筋图:5-2图5-51所示的钢筋混凝土简支粱,集中荷载设计值F=120kN,均布荷载设计值(包括梁自重)q=10kN/m。选用C30混凝土,箍筋为HPB235钢筋。试选择该梁的箍筋(注:途中跨度为净跨度,ln=4000mm)。『解』 (1)已知条件:as=40mm=h—as=600—40=560mm查附表1—2、2—3得:=1.0,=14.3N/,=1.43N/,=210N/(2)确定计算截面及剪力设计值:对于简支梁,支座处剪力最大,选该截面为设计截面。剪力设计值:V=+F=104+120=140kN=85.7﹪>75﹪故应考虑剪跨比的影响a=1500mm===2.68<3.0(3)复合截面尺寸:==560mm==2.24<4属一般梁。=0.251.014.3250560=500.5kN>140kN截面满足要求。(4)验算是否可构造配箍:b=1.43250560=95.2kN<140kN应按计算配箍(5)计算箍筋数量:选用双肢箍8,查表得=101s==265mm 取s=200mm,符合要求。(6)验算最小配箍率:==0.202﹪>==0.163﹪满足要求。(7)绘配筋图:5-3某T形截面简支粱尺寸如下:b×h=200mm×500mm(取as=35mm,=400mm,=100mm);采用C25混凝土,箍筋为HPB235钢筋;由集中荷载产生的支座边建立设计值V=120kN(包括自重),剪跨比λ=3。试选择该梁箍紧。『解』(1)已知条件:as=35mm=h—as=500—35=465mm查附表1—2、2—3得:=1.0,=11.9N/,=1.27N/,=210N/(2)复合截面尺寸:==465100=365mm==1.825<4属一般梁。=0.251.011.9200465=276.68kN>120kN截面满足要求。(3)验算是否可构造配箍: b=1.27200465=51.67kN<120kN应按计算配箍(4)计算箍筋数量:选用双肢箍8,查表得=101s==144mm取s=130mm,符合要求。(5)验算最小配箍率:==0.388﹪>==0.145﹪满足要求。(6)绘配筋图:5-4图5-52所示的钢筋混凝土矩形截面简支粱,截面尺寸b×h=250mm×600mm,荷载设计值F=170kN(未包括梁自重),采用C25混凝土,纵向受力筋为HRB335钢筋,箍筋为HPB235钢筋。试设计该梁:(1)确定纵向受力钢筋根数和直径;(2)配置腹筋(要求选择箍紧和弯起钢筋,假定弯起钢筋终点距支座截面边缘为50mm)。 『解』<一>已知条件:as=35mm,计算跨径=6.0m=h—as=600—35=565mm查附表1—2、2—3及表4—2、4—4得:=1.0,=11.9N/,=1.27N/,=210N/,=1.0,=300N/,=0.550<二>求设计弯矩及剪力:由力学知识得:设计剪力为支座处V==170kN设计弯矩为集中力作用处M=1701.5=255kN·m〈三〉正截面设计:===0.269查附表4—1得=0.3203<=0.550所需纵筋面积:==0.3203250565=1795取225+222,=982+760=1742,其中222弯起。〈四〉斜截面设计:V=170kN,=760(1)复合截面尺寸:==565mm==2.24<4属一般梁。=0.251.011.9250565=420.2kN>170kN 截面满足要求。(2)验算是否可构造配箍:===2.65<3.0b=1.27250565=86.01kN<170kN应按计算配箍(3)计算箍筋数量:选用双肢箍8,查表得=101V=+=86.01++0.8bsin45°=>s=232mm取s=220mm(4)验算最小配箍率:==0.202﹪>==0.145﹪满足要求。(5)绘配筋图:5-5梁的荷载设计值及梁跨度同习题5-2但截面尺寸、混凝土强度等级修改如下表,并采用Φ8双肢箍,试按序号计算箍筋间距填入表5-9内,并比较截面尺寸、混凝土强度等级对梁斜截面承载力的影响? 序号b×h/mm混凝土强度等级Φ8(计算s)/mmΦ8(实配s)/mm1250×500C25128.21202250×500C30143.31403300×500C25154.11504250×600C25214.2210『解』〈1〉(1)已知条件:as=40mm=h—as=500—40=460mm查附表1—2、2—3得:=1.0,=11.9N/,=1.27N/,=210N/(2)复合截面尺寸:==460mm==1.840<4属一般梁。=0.251.011.9250460=342.13kN>140kN截面满足要求。(3)验算是否可构造配箍:===3.26>3.0,取=3.0b=1.27250460=63.90kN<140kN应按计算配箍(4)计算箍筋数量:选用双肢箍8,查表得=101s==128.2mm 取s=120mm,符合要求。〈2〉(1)已知条件:as=40mm=h—as=500—40=460mm查附表1—2、2—3得:=1.0,=14.3N/,=1.43N/,=210N/(2)复合截面尺寸:==460mm==1.840<4属一般梁。=0.251.014.3250460=411.1kN>140kN截面满足要求。(3)验算是否可构造配箍:===3.26>3.0,取=3.0b=1.43250460=71.95kN<140kN应按计算配箍(4)计算箍筋数量:选用双肢箍8,查表得=101s==143.3mm取s=140mm,符合要求。〈3〉(1)已知条件:as=40mm=h—as=500—40=460mm查附表1—2、2—3得:=1.0,=11.9N/,=1.27N/,=210N/ (2)复合截面尺寸:==460mm==1.530<4属一般梁。=0.251.011.9300460=410.6kN>140kN截面满足要求。(3)验算是否可构造配箍:===3.26>3.0,取=3.0b=1.27300460=76.68kN<140kN应按计算配箍(4)计算箍筋数量:选用双肢箍8,查表得=101s==154.1mm取s=150mm,符合要求。〈4〉(1)已知条件:as=40mm=h—as=600—40=560mm查附表1—2、2—3得:=1.0,=11.9N/,=1.27N/,=210N/(2)复合截面尺寸:==560mm==2.24<4属一般梁。=0.251.011.9250560=416.5kN>140kN截面满足要求。(3)验算是否可构造配箍: ===2.68<3.0b=1.27250560=84.55kN<140kN应按计算配箍(4)计算箍筋数量:选用双肢箍8,查表得=101s==214.2mm取s=210mm,符合要求。<5>分析:增加截面尺寸和提高混凝土等级都可以提高斜截面的承载能力,其中增加截面高度的效果最明显。5-6已知某钢筋混凝土矩形截面简支粱,计算跨度=6000mm,净跨ln=5760mm,截面尺寸b×h=250mm×550mm,采用C30混凝土,HRB335钢筋纵向钢筋和HPB235钢筋箍筋。若已知梁的纵向受力钢筋为4Φ22,试求:当采用Φ8@200双肢箍和Φ10@200双肢箍时,梁所能承受的荷载设计值g+q分别为多少?『解』<一>已知条件:as=35mm,=h—as=550—40=510mm查附表1—2、2—3及表4—2、4—4得:=1.0,=14.3N/,=1.43N/,=210N/,=1.0,=300N/,=0.550<二>先计算422能承载的g+q:=1520===0.250>=0.550 =(10.5)=0.2190==0.21902501.014.3=203.6kN·m=(g+q)g+q===45.3kN/m<三>当用Φ8@200,=101V==+=0.71.43250510+1.25210510=195.24kNV=(g+q)=>g+q===65.08kN/m>45.3kN/m故所能承载的g+q应取小值45.3kN/m,不然正截面会先破坏。<四>当用Φ10@200,=157V==+=0.71.43250510+1.25210510=232.72kNV=(g+q)=>g+q===77.57kN/m>45.3kN/m故所能承载的g+q应取小值45.3kN/m,不然正截面会先破坏。5-7某钢筋混凝土矩形截面简支粱,截面尺寸b×h=200mm×600mm,采用C25混凝土,纵向受力钢筋为HRB335钢筋,箍筋为HPB235钢筋。该梁仅承受集中荷载作用,若集中荷载至支座距离a=1130mm,在支座边产生的剪力设计值V=176kN,并已配置Φ8@200双肢箍及按正截面受弯承载力计算配置了足够的纵向受力钢筋。试求:(1)仅配置估计箍紧是否满足抗剪要求?(2)若不满足时,要求利用一部分纵向钢筋弯起,试求弯起钢筋面积及所需弯起钢筋排数(计算时取as=35mm,梁之中不另考虑)。『解』已知条件:as=35mm,=h—as=600—35=565mm查附表1—2、2—3及表4—2、4—4得: =1.0,=11.9N/,=1.27N/,=210N/,=1.0,=300N/===2.02<3.0<一>仅配箍筋:=b+=1.27200565+210565=143.08kN<176kN所以仅配箍筋不安全。<二>求弯起钢筋:V=+则=V=176143.08=32.92kN=0.8bsin45°则===194选取212弯起,=2265-8图5-53说是钢筋混凝土伸臂梁,计算跨度=7000mm,=1800mm,支座宽度均为370mm;承受均布恒荷载设计值g1=g2=32kN/m,均布活荷载q1=48kN/m,q2=118kN/m;采用C25混凝土,纵向受力钢筋为HRB335钢筋,箍筋为HPB235钢筋。试求梁的配筋、绘制材料图、确定纵筋的弯起和截断位置、绘梁的配筋纵断面和横断面以及单根钢筋图。 『解』<一>设计条件:查附表1—2、2—3及表4—2、4—4得:=1.0,=11.9N/,=1.27N/,=210N/,=1.0,=300N/,=0.550<二>梁的内力图及内力包络图:荷载可能有(a+b)组合、(a+c)组合、(a+d)组合三种组合情况。1、(a+b)组合:78073.5+321.80.9=0=>=272.59kN =807+321.8272.59=345.01kN==>=3.407m=3.40780=464.40kN·m2、(a+c)组合:73273.5+1501.80.9=0=>=77.29kN=327+1501.877.29=416.71kN==>=2.415m=2.41532=93.34kN·mM=0=>77.29(7y)32=0=>y=2.169m 3、(a+d)组合:78073.5+1501.80.9=0=>=245.29kN=807+1501.8245.29=584.71kN==>=3.066m=3.06680=376.05kN·m <三>配筋计算:1、截面尺寸验算:B支座边沿的剪力最大=299.91kN取as=60mm,则==70060=640mm==2.56<4属一般梁。=0.251.011.9250640=476kN>=299.91kN故截面尺寸满足要求。2、纵筋配筋(单筋):(1)跨中截面:(=464.40kN·m) =1=1=0.512<=0.550==0.512250640=3249>bh=350选用428+225(=2463+982=3445),其中225弯起。(2)支座截面:(=243.00kN·m)取as=40mm,则==70040=660mm=1=1=0.209<=0.550==0.209250660=1368>bh=350选用216+225(=402+982=1384),其中225弯起。3、箍筋配筋:(1)验算是否可构造配箍:=0.71.27250640=142.24kN150==0.245==5.142=2.0-0.40.0055/0.024=1.91==2.845===31.07mm<39mm所以板符合挠度要求.8—7已知工字形载面受弯构件,为一简支梁,梁的受拉钢筋为HRB335级,4225,钢筋布置如图8—14所示,裂缝处受拉钢筋重心的应力为=150.0Mpa。混凝土强度等级C30,/=0.65,=115mm,=1%,试计算裂缝宽度。解:=272500=0.0757=0.01=1.0=25mm=120Mpa=1.1-=0.985)==0.325mm>0.3mm 9—118m跨度预应力混凝土屋架下弦,载面尺寸为150mm200mm,后张法施工,一端张拉并超张拉;孔道直径50mm,充气橡皮管抽芯成型;JM12锚具;桁架端部构造见图9—44;预应力钢筋钢铰线d=12.0(74),非预应力钢筋为412的HRB335级热轧钢筋;混凝土C40;裂缝控制等级为二级;永久荷载标准值产生的轴向拉力=280kN,可变荷载标准值产生的轴向拉力=110kN,可变荷载的准永久值系数=0.8;混凝土达到100%设计强度的张拉预应力钢筋。要求进行屋架下弦的使用阶段承载力计算,裂缝控制验算以及施工阶段险算。由确定纵向预应力钢筋数量、以及预应力钢筋控制应力等。解:=29.6=452==6.154=6荷载计算:当活荷载起控制作用时:=490kN当恒载起控制作用时:==486Kn所以选取N=490kN施工阶段验算:=509正截面承载验算:==191可取4束钢铰线=498.7=394.8=30000-452-394.8=29153.2 =29153.2+4526.154=31935=319.35+3984.8=34304预应力损失计算JM12锚具:a=3=32.5k=0.015x=18m=0=0.55=37.665=70第一批预应力损失结束预应力钢筋合力=394.9(139570)=523110N=/=523110/31935=16.4=16.4/40=0.328<0.5满足要求===92.2=+=48.8+92.2=131=+=70+131=201>80==14.3裂缝控制验算:=11.4=10.7<0满足要求=398.4端部钢筋计算:d=100+2×16=132mm=13685=11721200=30000=1.48=1=1.2×1395×398.4=666.9kN≤0.9() ≥=0.057=取S=30mm=120×170=20400若=5=6=120mm=150mm==若取=解得=≥23.3取6=28.3所以钢筋网为56×66=13959—2  12m预应力混凝土工字形载面梁,截面尺寸如图9—45所示。采用先张法台座生产,不考虑锚具变形损失,蒸汽养护,温差t=20,采用超张拉。设钢筋松弛损失在放张拄前已完成50%,预应力钢筋采用,张拉控制应力==0.75,箍筋用HPB235级热轧钢筋,混凝土为C40,放张时=30N/mm。试计算梁的各项预应力损失。=26.8=1492=177=120mm=6.72=0第一批应力损失:+++1、由于不考虑锚具变形:=02、对于先张法:=03、温差引起的预应力损失:=1××20=2×==414、=0.035=39.3=0.5=19.6++=60.6A=bh+=60×800+125×(280-60)+120(360-60)=11150=109831=109831=122716=109831=122716=0.012=0.0014=/=12.9=0.323<0.5 ===114.6=/=1.53==51.6==114.6==51.6=+=175.2>100=+=112.2>100第一章绪论问答题1.什么是混凝土结构?2.以简支梁为例,说明素混凝土与钢筋混凝土受力性能的差异。3.钢筋与混凝土共同工作的基础条件是什么? 1.混凝土结构有什么优缺点?2.房屋混凝土结构中各个构件的受力特点是什么?3.简述混凝土结构设计方法的主要阶段。4.简述性能设计的主要步骤。5.简述学习《混凝土结构设计原理》课程的应当注意的问题。第一章绪论问答题参考答案1.什么是混凝土结构?答:混凝土结构是以混凝土材料为主,并根据需要配置和添加钢筋、钢骨、钢管、预应力钢筋和各种纤维,形成的结构,有素混凝土结构、钢筋混凝土结构、钢骨混凝土结构、钢管混凝土结构、预应力混凝土结构及纤维混凝土结构。混凝土结构充分利用了混凝土抗压强度高和钢筋抗拉强度高的优点。2.以简支梁为例,说明素混凝土与钢筋混凝土受力性能的差异。答:素混凝土简支梁,跨中有集中荷载作用。梁跨中截面受拉,拉应力在荷载较小的情况下就达到混凝土的抗拉强度,梁被拉断而破坏,是无明显预兆的脆性破坏。钢筋混凝土梁,受拉区配置受拉钢筋梁的受拉区还会开裂,但开裂后,出现裂缝,拉力由钢筋承担,直至钢筋屈服以后,受压区混凝土受压破坏而达到极限荷载,构件破坏。素混凝土简支梁的受力特点是承受荷载较小,并且是脆性破坏。钢筋混凝土简支梁的极限荷载明显提高,变形能力明显改善,并且是延性破坏。3.钢筋与混凝土共同工作的基础条件是什么?答:混凝土和钢筋协同工作的条件是:(1)钢筋与混凝土之间产生良好的粘结力,使两者结合为整体;(2)钢筋与混凝土两者之间线膨胀系数几乎相同,两者之间不会发生相对的温度变形使粘结力遭到破坏;(3)设置一定厚度混凝土保护层;(4)钢筋在混凝土中有可靠的锚固。4.混凝土结构有什么优缺点?答:优点:(1)可模性好;(2)强价比合理;(3)耐火性能好;(4)耐久性能好;(5)适应灾害环境能力强,整体浇筑的钢筋混凝土结构整体性好,对抵抗地震、风载和爆炸冲击作用有良好性能;(6)可以就地取材。钢筋混凝土结构的缺点:如自重大,不利于建造大跨结构;抗裂性差,过早开裂虽不影响承载力,但对要求防渗漏的结构,如容器、管道等,使用受到一定限制;现场浇筑施工工序多,需养护,工期长,并受施工环境和气候条件限制等。5.房屋混凝土结构中各个构件的受力特点是什么? 答:在房屋建筑中,永久荷载和楼面活荷载直接作用在楼板上,楼板荷载传递到梁,梁将荷载传递到柱或墙,并最终传递到基础上,各个构件受力特点如下:楼板:是将活荷载和恒荷载通过梁或直接传递到竖向支承结构(柱、墙)的主要水平构件,楼板的主要内力是弯矩和剪力,是受弯构件。梁:是将楼板上或屋面上的荷载传递到立柱或墙上,前者为楼盖梁,后者为屋面梁,梁承受板传来的荷载,主要内力有弯矩和剪力,有时也可能是扭矩,属于受弯构件。柱:柱承受梁、板体系传来的荷载,主要内力有轴向压力、弯矩和剪力,可能是轴心受压构件,当荷载有偏心作用时,柱受压的同时还会受弯,是压弯构件。墙:承重的混凝土墙常用作基础墙、楼梯间墙,或在高层建筑中用于承受水平风载和地震作用的剪力墙,它受压的同时也会受弯,是压弯构件。基础:是将上部结构荷载传递到地基(土层)的承重混凝土构件,基础主要内力是压力和弯矩,是受压构件或压弯构件。6.简述混凝土结构设计方法的主要阶段。答:混凝土结构设计方法大体可分为四个阶段:(1)在20世纪初以前,钢筋混凝土本身计算理论尚未形成,设计沿用材料力学的容许应力方法。(2)1938年左右已开始采用按破损阶段计算构件破坏承载力,50年代,出现了按极限状态设计方法,奠定了现代钢筋混凝土结构的设计计算理论。(3)二战以后,设计计算理论已过渡到以概率论为基础的极限状态设计方法。(4)20世纪90年代以后,开始采用或积极发展性能化设计方法和理论。7.简述性能设计的主要步骤。答:性能化方法是确定工程结构要达到的总体目标或设计性能,设计师根据性能目标的不同,设计不同的设计方案,并评估设计方案是否达到性能目标的要求。8.简述学习《混凝土结构设计原理》课程的应当注意的问题。答:(1)钢筋混凝土是由钢筋和混凝土两种材料组成的复合材料,是非均匀、非连续、非弹性的材料。力学关系是在试验的基础上,通过几何、物理和平衡关系建立的。(2)钢筋混凝土构件中的两种材料在强度和数量上存在一个合理的配比范围。如果钢筋和混凝土在面积上的比例及材料强度的搭配超过了这个范围,就会引起构件受力性能的改变,从而引起构件截面设计方法的改变,这是学习时必须注意的一个方面。(3)由于混凝土材料的复杂性、离散性,混凝土材料的理论体系是建立在试验的基础上的。许多假定依赖与试验结果,许多公式来源于试验验证,许多因素无法控制,仍需通过构造措施加以解决,许多理论尚需不断发展与完善,具有不同功能的混凝土材料性能尚需不断挖掘。(4)本课程主要讲解钢筋混凝土基本构件,应当了解每一种构件在结构体系的作用、受力情况。例如梁、柱是受弯构件,主要受弯、受剪;柱、墙、受压弦杆是受压构件,主要受压、弯,受压、剪,双向受压弯;雨蓬梁、柱是受扭构件,主要受扭,受弯、剪、扭,受压、弯、剪、扭;受拉弦杆是受拉构件,主要受拉、弯。(5)本课程所要解决的不仅是构件的承载力和变形计算等问题,还包括构件的截面形式、材料选用及配筋构造等。结构构件设计是一个综合性的问题,需要考虑各方面的因素。因此,学习本课程时要注意学会对多种因素进行综合分析,培养综合分析判断能力。(6)混凝土设计与施工工作必须按照规范进行,各种规范是长期理论研究成果和工程实践的总结。不但要熟练掌握基本要求、使用范围,还要深入了解每一条文的理论依据,做到深入理论,灵活运用。同时,随着科学的发展和实践的要求,许多新成果会不断的涌现,规范会及时修订,一般我国混凝土规范10年左右修订一次,但随着社会的发展,规范的修订速度会加快,因此,具体工作时应当及时掌握最新的规范。 (7)混凝土设计与施工是一种社会实践行为,不能离开社会的制约因素进行,应当贯彻执行国家的技术经济政策,做到技术先进、安全适用、经济合理、确保质量。(8)混凝土设计与施工是一种法律责任行为,工程技术人员一定要遵守国家相关的法律、法规的要求,否则,就要承担相应的法律责任。第一章绪论单选题1.与素混凝土梁相比,钢筋混凝上梁承载能力()。A.相同;B.提高许多;C.有所提高;2.与素混凝土梁相比,钢筋混凝土梁抵抗开裂的能力()。A.提高不多;B.提高许多;C.完全相同;3.与素混凝土梁相比,适量配筋的钢混凝土梁的承载力和抵抗开裂的能力()。A.均提高很多;B.承载力提高很多,抗裂提高不多;C.抗裂提高很多,承载力提高不多;D.均提高不多;4.钢筋混凝土梁在正常使用荷载下()。A.通常是带裂缝工作的;B.一旦出现裂缝,裂缝贯通全截面;C.一旦出现裂缝,沿全长混凝土与钢筋间的粘结力丧尽;5.钢筋与混凝土能共同工作的主要原因是()。A.防火、防锈;B.混凝土对钢筋的握裹及保护;C.混凝土对钢筋的握裹,两者线膨胀系数接近;第一章绪论单选题参考答案 1.B2.A3.B4.A5.C第二章钢筋和混凝土的力学性能问答题1.软钢和硬钢的区别是什么?应力一应变曲线有什么不同?设计时分别采用什么值作为依据?2.我国用于钢筋混凝土结构的钢筋有种?我国热轧钢筋的强度分为几个等级?3.钢筋冷加工的目的是什么?冷加工方法有哪几种?简述冷拉方法?4.什么是钢筋的均匀伸长率?均匀伸长率反映了钢筋的什么性质?5.什么是钢筋的包兴格效应?6.在钢筋混凝土结构中,宜采用哪些钢筋?7.试述钢筋混凝土结构对钢筋的性能有哪些要求。8.简述混凝土的组成结构。并叙述混凝土的结构组成对混凝土破坏强度的影响。9.简述混凝土立方体抗压强度。10.简述混凝土轴心抗压强度。11.混凝土的强度等级是如何确定的。12.简述混凝土三轴受压强度的概念。13.简述混凝土在单轴短期加载下的应力应变关系。14.什么是混凝土的弹性模量、割线模量和切线模量?15.什么叫混凝土徐变?混凝土徐变对结构有什么影响?16.钢筋与混凝土之间的粘结力是如何组成的?17.最小锚固长度是如何确定的?18.简述绑扎搭接连接的机理。 第二章钢筋和混凝土的力学性能问答题参考答案1.软钢和硬钢的区别是什么?应力一应变曲线有什么不同?设计时分别采用什么值作为依据?答:有物理屈服点的钢筋,称为软钢,如热轧钢筋和冷拉钢筋;无物理屈服点的钢筋,称为硬钢,如钢丝、钢绞线及热处理钢筋。软钢的应力应变曲线如图2-1所示,曲线可分为四个阶段:弹性阶段、屈服阶段、强化阶段和破坏阶段。有明显流幅的钢筋有两个强度指标:一是屈服强度,这是钢筋混凝土构件设计时钢筋强度取值的依据,因为钢筋屈服后产生了较大的塑性变形,这将使构件变形和裂缝宽度大大增加以致无法使用,所以在设计中采用屈服强度作为钢筋的强度极限。另一个强度指标是钢筋极限强度,一般用作钢筋的实际破坏强度。图2-1软钢应力应变曲线硬钢拉伸时的典型应力应变曲线如图2-2。钢筋应力达到比例极限点之前,应力应变按直线变化,钢筋具有明显的弹性性质,超过比例极限点以后,钢筋表现出越来越明显的塑性性质,但应力应变均持续增长,应力应变曲线上没有明显的屈服点。到达极限抗拉强度b点后,同样由于钢筋的颈缩现象出现下降段,至钢筋被拉断。设计中极限抗拉强度不能作为钢筋强度取值的依据,一般取残余应变为0.2%所对应的应力σ0.2作为无明显流幅钢筋的强度限值,通常称为条件屈服强度。对于高强钢丝,条件屈服强度相当于极限抗拉强度0.85倍。对于热处理钢筋,则为0.9倍。为了简化运算,《混凝土结构设计规范》统一取σ0.2=0.85σb,其中σb为无明显流幅钢筋的极限抗拉强度。 图2-2硬钢拉伸试验的应力应变曲线2.我国用于钢筋混凝土结构的钢筋有几种?我国热轧钢筋的强度分为几个等级?答:目前我国用于钢筋混凝土结构和预应力混凝土结构的钢筋主要品种有钢筋、钢丝和钢绞线。根据轧制和加工工艺,钢筋可分为热轧钢筋、热处理钢筋和冷加工钢筋。热轧钢筋分为热轧光面钢筋HPB235(Q235,符号Φ,Ⅰ级)、热轧带肋钢筋HRB335(20MnSi,符号,Ⅱ级)、热轧带肋钢筋HRB400(20MnSiV、20MnSiNb、20MnTi,符号,Ⅲ级)、余热处理钢筋RRB400(K20MnSi,符号,Ⅲ级)。热轧钢筋主要用于钢筋混凝土结构中的钢筋和预应力混凝土结构中的非预应力普通钢筋。3.钢筋冷加工的目的是什么?冷加工方法有哪几种?简述冷拉方法?答:钢筋冷加工目的是为了提高钢筋的强度,以节约钢材。除冷拉钢筋仍具有明显的屈服点外,其余冷加工钢筋无屈服点或屈服台阶,冷加工钢筋的设计强度提高,而延性大幅度下降。冷加工方法有冷拨、冷拉、冷轧、冷扭。冷拉钢筋由热轧钢筋在常温下经机械拉伸而成,冷拉应力值应超过钢筋的屈服强度。钢筋经冷拉后,屈服强度提高,但塑性降低,这种现象称为冷拉强化。冷拉后,经过一段时间钢筋的屈服点比原来的屈服点有所提高,这种现象称为时效硬化。时效硬化和温度有很大关系,温度过高(450℃以上)强度反而有所降低而塑性性能却有所增加,温度超过700℃,钢材会恢复到冷拉前的力学性能,不会发生时效硬化。为了避免冷拉钢筋在焊接时高温软化,要先焊好后再进行冷拉。钢筋经过冷拉和时效硬化以后,能提高屈服强度、节约钢材,但冷拉后钢筋的塑性(伸长率)有所降低。为了保证钢筋在强度提高的同时又具有一定的塑性,冷拉时应同时控制应力和控制应变。4.什么是钢筋的均匀伸长率?均匀伸长率反映了钢筋的什么性质?答:均匀伸长率δgt为非颈缩断口区域标距的残余应变与恢复的弹性应变组成。——不包含颈缩区拉伸前的测量标距;——拉伸断裂后不包含颈缩区的测量标距;——实测钢筋拉断强度;——钢筋弹性模量。 均匀伸长率δgt比延伸率更真实反映了钢筋在拉断前的平均(非局部区域)伸长率,客观反映钢筋的变形能力,是比较科学的指标。5.什么是钢筋的包兴格效应?答:钢筋混凝土结构或构件在反复荷载作用下,钢筋的力学性能与单向受拉或受压时的力学性能不同。1887年德国人包兴格对钢材进行拉压试验时发现的,所以将这种当受拉(或受压)超过弹性极限而产生塑性变形后,其反向受压(或受拉)的弹性极限将显著降低的软化现象,称为包兴格效应。6.在钢筋混凝土结构中,宜采用哪些钢筋?答:钢筋混凝土结构及预应力混凝土结构的钢筋,应按下列规定采用:(1)普通钢筋宜采用HRB400级和HRB335级钢筋,也可采用HPB235级和RRB400级钢筋;(2)预应力钢筋宜采用预应力钢绞线、钢丝,也可采用热处理钢筋。7.试述钢筋混凝土结构对钢筋的性能有哪些要求。答:(1)对钢筋强度方面的要求普通钢筋是钢筋混凝土结构中和预应力混凝土结构中的非预应力钢筋,主要是HPB235、HRB335、HRB400、RRB400等热轧钢筋。(2)强屈比的要求所以设计中应选择适当的屈强比,对于抗震结构,钢筋应力在地震作用下可考虑进入强化段,为了保证结构在强震下“裂而不倒”,对钢筋的极限抗拉强度与屈服强度的比值有一定的要求,一般不应小于1.25。(3)延性在工程设计中,要求钢筋混凝土结构承载能力极限状态为具有明显预兆,避免脆性破坏,抗震结构则要求具有足够的延性,钢筋的应力应变曲线上屈服点至极限应变点之间的应变值反映了钢筋延性的大小。(4)粘结性粘结性是指钢筋与混凝土的粘结性能。粘结力是钢筋与混凝土得以共同工作的基础,其中钢筋凹凸不平的表面与混凝土间的机械咬合力是粘结力的主要部分,所以变形钢筋与混凝土的粘结性能最好,设计中宜优先选用变形钢筋。(5)耐久性混凝土结构耐久性是指,在外部环境下材料性、构件、结构随时间的退化,主要包括钢筋锈蚀、冻融循环、碱—骨料反应、化学作用等的机理及物理、化学和生化过程。混凝土结构耐久性的降低可引起承载力的降低,影响结构安全。(6)适宜施工性在施工时钢筋要弯转成型,因而应具有一定的冷弯性能。钢筋弯钩、弯折加工时应避免裂缝和折断。热轧钢筋的冷弯性能很好,而性脆的冷加工钢筋较差。预应力钢丝、钢绞线不能弯折,只能以直条形式应用。同时,要求钢筋具备良好的焊接性能,在焊接后不应产生裂纹及过大的变形,以保证焊接接头性能良好。(7)经济性衡量钢筋经济性的指标是强度价格比,即每元钱可购得的单位钢筋的强度,强度价格比高的钢筋比较经济。不仅可以减少配筋率,方便了施工,还减少了加工、运输、施工等一系列附加费用。8.简述混凝土的组成结构。并叙述混凝土的结构组成对混凝土破坏强度的影响。答:混凝土材料结构分为三种基本类型:①微观结构,即水泥石结构,水泥石结构由水泥凝胶、晶体骨架、未水化完的水泥颗粒和凝胶孔组成,其物理力学性能取决于水泥的矿物成份、粉磨细度、水灰比和硬化条件;② 亚微观结构,即混凝土的水泥砂浆结构,水泥砂浆结构可看作以水泥石为基相、砂子为分散相的二组混凝土体系,砂子和水泥石的结合面是薄弱面。对于水泥砂浆结构,除上述决定水泥石结构的因素外,砂浆配合比、砂的颗粒级配与矿物组成、砂粒形状、颗粒表面特性及砂中的杂质含量是重要控制因素;③宏观结构,即砂浆和粗骨料两组分体系。混凝土的宏观结构中,水泥作为基相,粗骨料随机分布在连续的水泥砂浆中。粗骨料的强度远比混凝土高,硬化水泥砂浆的强度也比混凝土高,由砂浆和粗骨料组成的混凝土复合材料的抗压强度低于砂浆和粗骨料单一材料的抗压强度。混凝土内砂浆与骨料界面的粘结强度只有砂浆抗拉强度的35%-65%,这说明砂浆与骨料界面是混凝土内的最薄弱环节。混凝土破坏后,其中的粗骨料一般无破损的迹象,裂缝和破碎都发生在粗骨料表面和水泥砂浆内部,所以混凝土的强度和变形性能在很大程度上取决于水泥砂浆的质量和密实性。9.简述混凝土立方体抗压强度。答:混凝土标准立方体的抗压强度,我国《普通混凝土力学性能试验方法标准》(GB/T50081-2002)规定:边长为150mm的标准立方体试件在标准条件(温度20±3℃,相对温度≥90%)下养护28天后,以标准试验方法(中心加载,加载速度为0.3~1.0N/mm2/s),试件上、下表面不涂润滑剂,连续加载直至试件破坏,测得混凝土抗压强度为混凝土标准立方体的抗压强度fck,单位N/mm2。fck——混凝土立方体试件抗压强度;F——试件破坏荷载;A——试件承压面积。10.简述混凝土轴心抗压强度。答:我国《普通混凝土力学性能试验方法标准》(GB/T50081-2002)采用150mm×150mm×300mm棱柱体作为混凝土轴心抗压强度试验的标准试件,混凝土试件轴心抗压强度(2-8)fcp——混凝土轴心抗压强度;F——试件破坏荷载;A——试件承压面积。11.混凝土的强度等级是如何确定的。答:混凝土强度等级应按立方体抗压强度标准值确定,混凝土立方体抗压强度标准值fcu,k,我国《混凝土结构设计规范》规定,立方体抗压强度标准值系指按上述标准方法测得的具有95%保证率的立方体抗压强度,根据立方体抗压强度标准值划分为C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75、C80十四个等级。12.简述混凝土三轴受压强度的概念。答:三轴受压试验是侧向等压σ2=σ3=σr的三轴受压,即所谓常规三轴。试验时先通过液体静压力对混凝土圆柱体施加径向等压应力,然后对试件施加纵向压应力直到破坏。在这种受力状态下,试件由于侧压限制,其内部裂缝的产生和发展受到阻碍,因此当侧向压力增大时,破坏时的轴向抗压强度相应地增大。根据试验结果分析,三轴受力时混凝土纵向抗压强度为fcc′=fc′+βσr(2-18) 式中:fcc′——混凝土三轴受压时沿圆柱体纵轴的轴心抗压强度;fc′——混凝土的单轴圆柱体轴心抗压强度;β——系数,一般普通混凝土取4;σr——侧向压应力。13.简述混凝土在单轴短期加载下的应力应变关系。答:一般用标准棱柱体或圆柱体试件测定混凝土受压时的应力应变曲线。轴心受压混凝土典型的应力应变曲线如图2-3,各个特征阶段的特点如下。图2-3混凝土轴心受压时的应力应变曲线1)应力σ≤0.3fcsh当荷载较小时,即σ≤0.3fcsh,曲线近似是直线(图2-3中OA段),A点相当于混凝土的弹性极限。此阶段中混凝土的变形主要取决于骨料和水泥石的弹性变形。2)应力0.3fcsh<σ≤0.8fcsh随着荷载的增加,当应力约为(0.3~0.8)fcsh,曲线明显偏离直线,应变增长比应力快,混凝土表现出越来越明显的弹塑性。3)应力0.8fcsh<σ≤1.0fcsh随着荷载进一步增加,当应力约为(0.8~1.0)fcsh,曲线进一步弯曲,应变增长速度进一步加快,表明混凝土的应力增量不大,而塑性变形却相当大。此阶段中混凝土内部微裂缝虽有所发展,但处于稳定状态,故b点称为临界应力点,相应的应力相当于混凝土的条件屈服强度。曲线上的峰值应力C点,极限强度fcsh,相应的峰值应变为ε0。4)超过峰值应力后超过C点以后,曲线进入下降段,试件的承载力随应变增长逐渐减小,这种现象为应变软化。14.什么是混凝土的弹性模量、割线模量和切线模量?答:取混凝土应力应变曲线在原点O切线的斜率,作为混凝土的初始弹性模量,简称弹性模量Ec,即:Ec=tgα0Ec——初始弹性模量;a0——原点切线的斜率夹角。 当应力较大时,混凝土已进入弹塑性阶段,弹性模量已不能正确反映此时的应力应变关系。比较精确的方法采用切线模量Ec′,即在应力应变曲线任一点处作一切线。此切线的斜率即为该点的切线模量,其表达式为Ec′=tgα=dσ/dε切线模量是原点与某点连线即割线的斜率作为混凝土的割线模量,称为变形模量Ec″,它的表达式为Ec″=tgα1=σc/εc15.什么叫混凝土徐变?混凝土徐变对结构有什么影响?答:在不变的应力长期持续作用下,混凝土的变形随时间而缓慢增长的现象称为混凝土的徐变。徐变对钢筋混凝土结构的影响既有有利方面又有不利方面。有利影响,在某种情况下,徐变有利于防止结构物裂缝形成;有利于结构或构件的内力重分布,减少应力集中现象及减少温度应力等。不利影响,由于混凝土的徐变使构件变形增大;在预应力混凝土构件中,徐变会导致预应力损失;徐变使受弯和偏心受压构件的受压区变形加大,故而使受弯构件挠度增加,使偏压构件的附加偏心距增大而导致构件承载力的降低。16.钢筋与混凝土之间的粘结力是如何组成的?答:试验表明,钢筋和混凝土之间的粘结力或者抗滑移力,由四部分组成:(1)化学胶结力:混凝土中的水泥凝胶体在钢筋表面产生的化学粘着力或吸附力,来源于浇注时水泥浆体向钢筋表面氧化层的渗透和养护过程中水泥晶体的生长和硬化,取决于水泥的性质和钢筋表面的粗糙程度。当钢筋受力后变形,发生局部滑移后,粘着力就丧失了。(2)摩擦力:混凝土收缩后,将钢筋紧紧地握裹住而产生的力,当钢筋和混凝土产生相对滑移时,在钢筋和混凝土界面上将产生摩擦力。它取决于混凝土发生收缩、荷载和反力等对钢筋的径向压应力、钢筋和混凝土之间的粗糙程度等。钢筋和混凝土之间的挤压力越大、接触面越粗糙,则摩擦力越大。(3)机械咬合力:钢筋表面凹凸不平与混凝土产生的机械咬合作用而产生的力,即混凝土对钢筋表面斜向压力的纵向分力,取决于混凝土的抗剪强度。变形钢筋的横肋会产生这种咬合力,它的咬合作用往往很大,是变形钢筋粘结力的主要来源,是锚固作用的主要成份。(4)钢筋端部的锚固力:一般是用在钢筋端部弯钩、弯折,在锚固区焊接钢筋、短角钢等机械作用来维持锚固力。各种粘结力中,化学胶结力较小;光面钢筋以摩擦力为主;变形钢筋以机械咬合力为主。17.最小锚固长度是如何确定的?答:达到锚固极限状态时所需要的钢筋最小锚固长度,称为临界锚固长度lcra。锚固抗力等于钢筋屈服强度Fy时,相应的锚固长度就是临界锚固长度lcra,这是保证受力钢筋真到屈服也不会发生锚固破坏的最小长度。钢筋屈服后强化,随锚固长度的延长,锚固抗力还能增长,到锚固抗力等于钢筋拉断强度Fu时,相应的锚固长度就是极限锚固长度lua。设计锚固长度la应当在临界锚固长度和极限锚固长度之间,前者是为了保证钢筋承载受力的基本性能,后者是因为过长的锚固实际已经不起作用。18.简述绑扎搭接连接的机理。答:绑扎搭接钢筋之间能够传力是由于钢筋与混凝土之间的粘结锚固作用。两根相背受力的钢筋分别锚固在搭接连接区段的混凝土中,都将应力传递给混凝土,从而实现了钢筋之间的应力过渡。因此,绑扎搭接传力的基础是锚固。但是搭接钢筋之间的缝间混凝土会因剪切而迅速破碎,握裹力受到削弱。因此,搭接钢筋的锚固强度减小,与锚固长度相比,搭接长度应予加长。此外,由于锥楔作用造成的径向力引起了两根钢筋之间的分离趋势。因此,搭接钢筋之间容易发生纵向劈裂裂缝,必须有较强的围箍约束以维持锚固。 第二章钢筋和混凝土的力学性能选择题1.混凝土若处于三向应力作用下,当()。A.横向受拉,纵向受压,可提高抗压强度;B.横向受压,纵向受拉,可提高抗压强度;C.三向受压会降低抗压强度;D.三向受压能提高抗压强度;2.混凝土的弹性模量是指()。A.原点弹性模量;B.切线模量;C.割线模量;D.变形模量;3.混凝土强度等级由150mm立方体抗压试验,按()确定。A.平均值;B.;C.;D.;4.规范规定的受拉钢筋锚固长度为()。A.随混凝土强度等级的提高而增大;B.随钢筋等级提高而降低;C.随混凝土等级提高而减少,随钢筋等级提高而增大;D.随混凝土及钢筋等级提高而减小;5.属于有明显屈服点的钢筋有()。A.冷拉钢筋;B.钢丝;C.热处理钢筋;D.钢绞线;6.钢材的含碳量越低,则()。A.屈服台阶越短,伸长率也越短,塑性越差;B.屈服台阶越长,伸长率越大,塑性越好;C.强度越高,塑性越好; D.强度越低,塑性越差;7.钢筋的屈服强度是指()。A.比例极限;B.弹性极限;C.屈服上限;D.屈服下限;8.能同时提高钢筋的抗拉和抗压强度的冷加工方法是()。A.冷拉;B.冷拔;9.规范确定所用试块的边长是()。A.150mm;B.200mm;C.100mm;D.250mm;10.混凝土强度等级是由()确定的。A.;B.;C.;D.;11.边长为100mm的非标准立方体试块的强度换算成标准试块的强度,则需乘以换算系数()。A.1.05;B.1.0;C.0.95;D.0.90;12.指的是混凝土的()。A.弹性模量;B.割线模量;C.切线模量;D.原点切线模量;第二章钢筋和混凝土的力学性能选择题参考答案 1.D2.A3.B4.C5.A6.B7.D8.B9.A10.A11.C12.B第三章轴心受力构件承载力计算题1.某多层现浇框架结构的底层内柱,轴向力设计值N=2650kN,计算长度,混凝土强度等级为C30(fc=14.3N/mm2),钢筋用HRB400级(),环境类别为一类。确定柱截面积尺寸及纵筋面积。2.某多层现浇框架厂房结构标准层中柱,轴向压力设计值N=2100kN,楼层高H=5.60m,计算长度l0=1.25H,混凝土用C30(fc=14.3N/mm2),钢筋用HRB335级(),环境类别为一类。确定该柱截面尺寸及纵筋面积。3.某无侧移现浇框架结构底层中柱,计算长度,截面尺寸为300mm×300mm,柱内配有416纵筋(),混凝土强度等级为C30(fc=14.3N/mm2),环境类别为一类。柱承载轴心压力设计值N=900kN,试核算该柱是否安全。4.某大楼底层门厅现浇钢筋混凝土内柱,承受轴心压力设计值N=2749kN,计算高度,根据建筑设计要求,柱得截面为圆形,直径。混凝土强度等级为C30(),纵筋采用HRB400级钢筋(),箍筋采用HRB335级钢筋(),环境类别为一类,试确定柱的配筋。 5.已知某公共建筑门厅底层现浇钢筋混凝土框架内柱,承受轴向压力N=2850kN,从基础顶面到二屋楼面的高度为4.0m,支承条件系数1.0。混凝土选用C35(fc=16.7N/mm2),纵筋用HRB400(),箍筋用HRB335(fy=300N/mm2)。按建筑设计要求柱截面采用圆形,其直径不大于400mm,环境类别为一类。试进行该柱配筋计算。6.某桥下现浇钢筋混凝土轴心受压柱,底墙固定,上端铰支,柱高6.5m,支承条件系数0.7,承受轴压力设计值900kN,采用C20混凝土(),和R235钢筋(),环境类别为一类。试问:(1)试设计轴心受压柱。(2)若采用《混凝土结构设计规范》,采用C20混凝土fc=9.6N/mm2,钢筋HRB335(fy=300N/mm2),试设计轴心受压柱,比较两者差异。第三章轴心受力构件承载力计算题参考答案1.某多层现浇框架结构的底层内柱,轴向力设计值N=2650kN,计算长度,混凝土强度等级为C30(fc=14.3N/mm2),钢筋用HRB400级(),环境类别为一类。确定柱截面积尺寸及纵筋面积。解:根据构造要求,先假定柱截面尺寸为400mm×400mm由,查表得根据轴心受压承载力公式确定,对称配筋截面每一侧配筋率也满足0.2%的构造要求。选,设计面积与计算面积误差<5%,满足要求。2.某多层现浇框架厂房结构标准层中柱,轴向压力设计值N=2100kN,楼层高H=5.60m,计算长度l0=1.25H,混凝土用C30(fc=14.3N/mm2),钢筋用HRB335级(),环境类别为一类。确定该柱截面尺寸及纵筋面积。 [解]根据构造要求,先假定柱截面尺寸为400mm×400mm长细比,查表根据轴心受压承载力公式确定,对称配筋截面每一侧配筋率也满足0.2%的构造要求。选620,设计面积与计算面积误差<5%,满足要求。3.某无侧移现浇框架结构底层中柱,计算长度,截面尺寸为300mm×300mm,柱内配有416纵筋(),混凝土强度等级为C30(fc=14.3N/mm2),环境类别为一类。柱承载轴心压力设计值N=900kN,试核算该柱是否安全。解:(1)求则,由表得(2)求4.某大楼底层门厅现浇钢筋混凝土内柱,承受轴心压力设计值N=2749kN,计算高度,根据建筑设计要求,柱得截面为圆形,直径。混凝土强度等级为C30(),纵筋采用HRB400级钢筋(),箍筋采用HRB335级钢筋(),环境类别为一类,试确定柱的配筋。解(1)判别是否可采用螺旋箍筋柱,可设计成螺旋箍筋柱(2)求 假定,则选用,。(3)求混凝土保护层厚度为30mm,则由承载力极限公式得(满足要求)(4)确定螺旋箍筋直径和间距假定螺旋箍筋直径d=8mm,则单根螺旋箍筋截面面积,可得取s=50mm,40mm≤s≤80mm,(满足构造要求)(5)复核混凝土保护层是否过早脱落按查表得(满足要求)5.已知某公共建筑门厅底层现浇钢筋混凝土框架内柱,承受轴向压力N=2850kN,从基础顶面到二屋楼面的高度为4.0m,支承条件系数1.0。混凝土选用C35(fc=16.7N/mm2),纵筋用HRB400(),箍筋用HRB335(fy=300N/mm2)。按建筑设计要求柱截面采用圆形,其直径不大于400mm,环境类别为一类。试进行该柱配筋计算。[解](1)先按配有纵筋和箍筋柱计算柱子计算长度按《规范》规定取1.0H,则l0=1.0H=1.0×4.0=4.0m计算稳定系数值,因 l0/d=4000/350=11.43查表6-1得=0.931取园截面直径为350mm,圆形柱混凝土截面面积为由承载力公式求得求配筋率配筋率太大,因l0/d<12,若混凝土强度等级不再提高,则可采用螺旋箍筋以提高柱的承载能力。具体计算如下。(2)按配有纵筋和螺旋箍筋柱计算假定纵筋配筋率按计算,则选用,相应的=3142mm2。取混凝土保护层厚度为30mm,混凝土的核芯截面面积为dcor=350-60=290mm因Asso>0.25(=0.25×3142=786mm2),满足构造要求。假定螺旋箍筋直径为10mm,则单肢箍筋截面面积Ast1=78.5mm2。螺旋箍筋间距取用s=45mm,满足大于40mm及小于80mm,同时小于及等于0.2dcor=0.2×290=58mm的要求。由承载力计算公式得:Asso= 实际纵筋配筋率,故N故该柱能承受满足设计要求。6.某桥下现浇钢筋混凝土轴心受压柱,底墙固定,上端铰支,柱高6.5m,支承条件系数0.7,承受轴压力设计值900kN,采用C20混凝土(),和R235钢筋(),环境类别为一类。试问:(1)试设计轴心受压柱。(2)若采用《混凝土结构设计规范》,采用C20混凝土fc=9.6N/mm2,钢筋HRB335(fy=300N/mm2),试设计轴心受压柱,比较两者差异。(1)解:已知:,,,1)确定截面尺寸在设计时有三个未知量。即:,现设,暂取,由轴心受压构件正截面承载力公式可得选方形截面,其边长为,取b=300mm,A=90000mm2。2)计算截面配筋一端固定一端铰接柱:=0.7=0.7×6500mm=4550mm,/b=4550mm/300mm15.2,查表得。则截面所需配筋为 配4φ22(),,满足要求。箍筋按构造要求选φ8@200。(2)若采用《混凝土结构设计规范》,采用C20混凝土fc=9.6N/mm2,钢筋HRB335(fy=300N/mm2)。采用方形截面300300mm,则故不必配置螺旋箍筋。查表得:由轴心受压承载力公式:,对称配筋截面每一侧配筋率也满足0.2%的构造要求。选418=1017mm2实际配筋率:,满足要求。箍筋按构造要求φ8@250mm。第四章受弯构件正截面承载力计算题参考答案1.已知梁的截面尺寸为b×h=200mm×500mm,混凝土强度等级为C25,fc=11.9N/mm2,,钢筋采用HRB335, 截面弯矩设计值M=165KN.m。环境类别为一类。求:受拉钢筋截面面积解:采用单排布筋将已知数值代入公式及得1.011.9200x=30016510=1.011.9200x(465-x/2)两式联立得:x=186mmA=1475.6mm2验算x=186mm<0.55465=255.8mm所以选用325A=1473mm22.已知一单跨简支板,计算跨度l=2.34m,承受均布荷载qk=3KN/m2(不包括板的自重),如图所示;混凝土等级C30,;钢筋等级采用HPB235钢筋,即Ⅰ级钢筋,。可变荷载分项系数γQ=1.4,永久荷载分项系数γG=1.2,环境类别为一级,钢筋混凝土重度为25KN/m3。求:板厚及受拉钢筋截面面积As解:取板宽b=1000mm的板条作为计算单元;设板厚为80mm,则板自重gk=25×0.08=2.0KN/m2,跨中处最大弯矩设计值:图1由表知,环境类别为一级,混凝土强度C30时,板的混凝土保护层最小厚度为15mm ,故设=20mm,故h0=80-20=60mm ,fc=14.3,ft=1.43,fy=210,=0.618查表知,图2选用φ8@140,As=359mm2(实际配筋与计算配筋相差小于5%),排列见图,垂直于受力钢筋放置φ6@250的分布钢筋。验算适用条件:⑴⑵3.某矩形截面简支梁,弯矩设计值M=270KN.m,混凝土强度等级为C70,;钢筋为HRB400,即Ⅲ级钢筋,。环境类别为一级。求:梁截面尺寸b×h及所需的受拉钢筋截面面积As解:fc=31.8N/mm2,fy=360N/mm2,查表4-5,得α1=0.96,β1=0.76。假定ρ=0.01及b=250mm,则令M=Mu由表知,环境类别为一类,混凝土强度等级为C70的梁的混凝土保护层最小厚度为25mm,取a=45mm,h=h0+a=564+45=609mm,实际取h=600mm,h0=600-45=555mm。 选配3φ25,As=1473mm2,见图3验算适用条件:⑴查表知ξb=0.481,故ξb=0.481>ξ=0.123,满足。⑵,满足要求。图34.已知梁的截面尺寸为b×h=200mm×500mm,混凝土强度等级为C25,,截面弯矩设计值M=125KN.m。环境类别为一类。求:(1)当采用钢筋HRB335级时,受拉钢筋截面面积;(2)当采用钢筋HPB235级时,受拉钢筋截面面积;(3)截面弯矩设计值M=225KN.m,当采用钢筋HRB335级2时,受拉钢筋截面面积;解:(1)由公式得=0.243选用钢筋4(2)采用双排配筋 ==0.5选用钢筋816A=1608mm2(3)假定受拉钢筋放两排==1-故采用双筋矩形截面取M=183.7KN=2260mm2故受拉钢筋选用6A=2281mm2受压钢筋选用2A=402mm2,满足最小配筋率要求。5.已知梁的截面尺寸为b×h=250mm×450mm;受拉钢筋为4根直径为16mm的HRB335钢筋,即Ⅱ级钢筋,,As=804mm2;混凝土强度等级为C40,;承受的弯矩M=89KN.m。环境类别为一类。验算此梁截面是否安全。 解:fc=19.1N/mm2,ft=1.7N/mm2,fy=300N/mm2。由表知,环境类别为一类的混凝土保护层最小厚度为25mm,故设a=35mm,h0=450-35=415mm则6.已知梁的截面尺寸为b×h=200mm×500mm,混凝土强度等级为C40,,钢筋采用HRB335,即Ⅱ级钢筋,,截面弯矩设计值M=330KN.m。环境类别为一类。求:所需受压和受拉钢筋截面面积解:fc=19.1N/mm2,fy’=fy=300N/mm2,α1=1.0,β1=0.8。假定受拉钢筋放两排,设a=60mm,则h0=h-a=500-60=440mm这就说明,如果设计成单筋矩形截面,将会出现超筋情况。若不能加大截面尺寸,又不能提高混凝土等级,则应设计成双筋矩形截面。取受拉钢筋选用7φ25mm的钢筋,As=3436mm2。受压钢筋选用2φ14mm的钢筋,As’=308mm2。7.已知条件同上题,但在受压区已配置3φ20mm钢筋,As’=941mm2求:受拉钢筋As解:KN 则KN已知后,就按单筋矩形截面求As1。设a=60mm、h0=500-60=440mm。最后得选用6φ25mm的钢筋,As=2945.9mm28.已知梁截面尺寸为200mm×400mm,混凝土等级C30,,钢筋采用HRB335,,环境类别为二类,受拉钢筋为3φ25的钢筋,As=1473mm2,受压钢筋为2φ6的钢筋,A’s=402mm2;要求承受的弯矩设计值M=90 KN.m。求:验算此截面是否安全解:fc=14.3N/mm2,fy=fy’=300N/mm2。由表知,混凝土保护层最小厚度为35mm,故mm,h0=400-47.5=352.5mm由式代入式注意,在混凝土结构设计中,凡是正截面承载力复核题,都必须求出混凝土受压区高度x值。9.已知梁的截面尺寸b=250mm,h=500mm,混凝土为C30级,,采用HRB400级钢筋, ,承受弯距设计值M=300kN·m,试计算需配置的纵向受力钢筋。解:(1)设计参数由表查得材料强度设计值,C30级混凝土,HRB400级钢筋,,等级矩形图形系数。初步假设受拉钢筋为双排配置,取。(2)计算配筋故需配受压筋,取。由表知,受压钢筋选用214,;受拉钢筋选用8。若取,则有此时总用钢量为2315+504=2819mm2,大于前面取时计算的总用钢量2501+238=2739mm2。受压钢筋选用218,;受拉钢筋选用4。10.已知梁截面尺寸b=200mm,h=400mm,混凝土强度等级为C30,,钢筋采用HRB400级,,环境类别为二类b,受拉钢筋采用3,受压钢筋为2 要求承受的弯矩设计值M=90kN·m验算此梁是否安全。解:查表或计算得:混凝土保护层最小厚度为35mm,故。将以上有关数值代入基本公式,可得可见满足基本公式的适用条件。将x值代入基本公式得由于M=90kN·m<M=154.71KN·m,故此梁安全。11.已知T形截面梁,截面尺寸如图4所示,混凝土采用C30,,纵向钢筋采用HRB400级钢筋,,环境类别为一类。若承受的弯矩设计值为M=700kN·m,计算所需的受拉钢筋截面面积AS(预计两排钢筋,as=60mm)。解:1、确定基本数据由表查得;;a=1.0;。2、判别T形截面类故属于第二类T形截面。3、计算受拉钢筋面积AS。如图4 ==0.228选用4Ф282Ф25(AS=2463+982=3445mm2)12.某钢筋混凝土T形截面梁,截面尺寸和配筋情况(架立筋和箍筋的配置情况略)如图5所示。混凝土强度等级为C30,,纵向钢筋为HRB400级钢筋,,=70mm。若截面承受的弯矩设计值为M=550kN·m,试问此截面承载力是否足够?解:1、确定基本数据由表查得,;;=1.0;;AS=2945mm2。2、判别T形截面类型如图5故属于第二类T形截面。3、计算受弯承载力M。 =156.56mm,满足要求。=599.00kN·mM>M=550kN·m故该截面的承载力足够。13.已知肋形楼盖的次梁,弯矩设计值M=410KN.m,梁的截面尺寸为b×h=200mm×600mm,bf’=1000mm,hf’=90mm;混凝土等级为C20,,钢筋采用HRB335,,环境类别为一类。求:受拉钢筋截面面积解:fc=9.6N/mm,fy=300N/mm,α1=1.0,β1=0.8鉴别类型:因弯矩较大,截面宽度较窄,预计受拉钢筋需排成两排,故取属于第一种类型的T形梁。以bf’代替b,可得选用6φ25,As=2945mm2。14.某一般环境中的中型公路桥梁中,梁的截面尺寸为b×h=200mm×500mm,混凝土强度等级为C25,,钢筋采用HRB335,,截面弯矩设计值Md=165KN.m。 求:(1)受拉钢筋截面面积;(2)若是一建筑工程单跨简支梁,情况又如何。解:(1)查取相关数据38采用绑扎骨架,按两层布置钢筋,假设as=65mm,=435mm。求受压区高度相关数据代入式得,有解得取求所需钢筋数量AS有关数据代入公式=1816.2mm2选配钢筋并满足最小配筋率由表查得6ф20,AS实=1884mm2,考虑按两层布置,ф20钢筋的外径为22mm,梁侧混凝土保护层采用。钢筋净间距为满足要求。实际配筋率(2)若是建筑工程中单跨简支梁查取有关数据:45取按双层布筋 选配钢筋,查表知3配筋率,满足要求第五章受弯构件斜截面承载力计算题参考答案1.一钢筋混凝土矩形截面简支梁,截面尺寸250mm×500mm,混凝土强度等级为C20(ft=1.1N/mm2、fc=9.6N/mm2),箍筋为热轧HPB235级钢筋(fyv=210N/mm2),纵筋为325的HRB335级钢筋(fy=300N/mm2),支座处截面的剪力最大值为180kN。求:箍筋和弯起钢筋的数量。解:(1)验算截面尺寸属厚腹梁,混凝土强度等级为C20,fcuk=20N/mm2<50N/mm2故βc=1截面符合要求。(2)验算是否需要计算配置箍筋故需要进行配箍计算。(3)只配箍筋而不用弯起钢筋 则若选用Φ8@120,实有配箍率最小配箍率(4)既配箍筋又配弯起钢筋根据已配的325纵向钢筋,可利用125以45°弯起,则弯筋承担的剪力:混凝土和箍筋承担的剪力:选用Φ6@200,实用。2.钢筋混凝土矩形截面简支梁,如图5-27,截面尺寸250mm×500mm,混凝土强度等级为C20(ft=1.1N/mm2、fc=9.6N/mm2),箍筋为热轧HPB235级钢筋(fyv=210N/mm2),纵筋为225和222的HRB400级钢筋(fy=360N/mm2)。求:(1)只配箍筋;(2)配弯起钢筋又配箍筋。图5-27习题5-2图解:(1)求剪力设计值 支座边缘处截面的剪力值最大(2)验算截面尺寸属厚腹梁,混凝土强度等级为C20,fcuk=20N/mm2<50N/mm2故βc=1截面符合要求。(3)验算是否需要计算配置箍筋故需要进行配箍计算。(4)只配箍筋而不用弯起钢筋则若选用Φ8@150,实有配箍率最小配箍率(5)既配箍筋又配弯起钢筋根据已配的225+222纵向钢筋,可利用122以45°弯起,则弯筋承担的剪力:混凝土和箍筋承担的剪力:选用Φ8@200,实有 (6)验算弯起点处的斜截面故满足要求.3.上题中,既配弯起钢筋又配箍筋,若箍筋为热轧HPB335级钢筋(fyv=300N/mm2),荷载改为100KN/m,其他条件不变,求:箍筋和弯起钢筋的数量。解:(1)求剪力设计值支座边缘处截面的剪力值最大(2)验算截面尺寸属厚腹梁,混凝土强度等级为C20,fcuk=20N/mm2<50N/mm2故βc=1截面符合要求。(3)验算是否需要计算配置箍筋故需要进行配箍计算。(4)既配箍筋又配弯起钢筋根据已配的225+222纵向钢筋,可利用122以45°弯起,则弯筋承担的剪力:混凝土和箍筋承担的剪力:选用8@150,实用 (5)验算弯起点处的斜截面故应在此处弯起另外一根钢筋或采用箍筋加密方案.由于剪力相差不多,可将弯起钢筋的弯终点适当后延,使其距支座边缘的距离为100mm.则则配8@150的箍筋就能满足要求.4.钢筋混凝土矩形截面简支梁(图5-28),集中荷载设计值P=100kN,均布荷载设计值(包括自重)q=10kN/m,截面尺寸250mm×600mm,混凝土强度等级为C25(ft=1.27N/mm2、fc=11.9N/mm2),箍筋为热轧HPB235级钢筋(fyv=210N/mm2),纵筋为425的HRB335级钢筋(fy=300N/mm2)。求:箍筋数量(无弯起钢筋)。图5-28习题5-4图解:(1)求剪力设计值见图(2)验算截面条件截面尺寸符合要求.(3)确定箍筋数量该梁既受集中荷载,又受均布荷载,但集中荷载在支座截面上引起的剪力值小于总剪力值的75%。根据剪力的变化情况,可将梁分为AB、BC两个区段来计算斜截面受剪承载力。AB段:验算是否需要计算配置箍筋 必须按计算配置箍筋。选配Φ10@120,实有(可以)BC段:仅需按构造配置箍筋,选用Φ8@250最后,两侧选用Φ10@120,中间选用Φ8@250。5.钢筋混凝土矩形截面简支梁,如图5-29,截面尺寸250mm×500mm,混凝土强度等级为C20(ft=1.1N/mm2、fc=9.6N/mm2),箍筋Φ8@200的HPB235级钢筋(fyv=210N/mm2),纵筋为422的HRB400级钢筋(fy=360N/mm2),无弯起钢筋,求集中荷载设计值P。图5-29习题5-5图解:1、确定基本数据查表得;。;取;取2、剪力图和弯矩图见下图3、按斜截面受剪承载力计算(1)计算受剪承载力 (2)验算截面尺寸条件时该梁斜截面受剪承载力为125109.6N。(3)计算荷载设计值P由得4、按正截面受弯承载力计算(1)计算受弯承载力Mu满足要求。(2)计算荷载设计值P该梁所能承受的最大荷载设计值应该为上述两种承载力计算结果的较小值,故。6.一钢筋混凝土简支梁如图5-30所示,混凝土强度等级为C25(ft=1.27N/mm2、fc=11.9N/mm2),纵筋为HRB400级钢筋(fy=360N/mm2),箍筋为HRB235级钢筋(fyv=210N/mm2),环境类别为一类。如果忽略梁自重及架立钢筋的作用,试求此梁所能承受的最大荷载设计值P。 图5-30习题5-6图解:1、确定基本数据查表得。;取;取2、剪力图和弯矩图见图5-30(b)3、按斜截面受剪承载力计算(1)计算受剪承载力(2)验算截面尺寸条件时该梁斜截面受剪承载力为113709.4N。(3)计算荷载设计值P由得4、按正截面受弯承载力计算(1)计算受弯承载力Mu 满足要求。(2)计算荷载设计值P该梁所能承受的最大荷载设计值应该为上述两种承载力计算结果的较小值,故。第六章偏心受压构件承载力计算题参考答案1.(矩形截面大偏压)已知荷载设计值作用下的纵向压力,弯矩·m,柱截面尺寸,,混凝土强度等级为C30,fc=14.3N/mm2,钢筋用HRB335级,fy=f’y=300N/mm2,,柱的计算长度,已知受压钢筋(),求:受拉钢筋截面面积As。解:⑴求ei、η、e 取(2)判别大小偏压为大偏压(3)求As由即整理得:解得(舍去),由于x满足条件:由 得选用受拉钢筋,2。(矩形不对称配筋大偏压)已知一偏心受压柱的轴向力设计值N=400KN,弯矩M=180KN·m,截面尺寸,,计算长度l0=6.5m,混凝土等级为C30,fc=14.3N/mm2,钢筋为HRB335,,,采用不对称配筋,求钢筋截面面积。解:(1)求ei、η、e有因为取 (2)判别大小偏压按大偏心受压计算。(3)计算和则按构造配筋由公式推得故受拉钢筋取,As=1256mm2受压钢筋取,402mm23.(矩形不对称配筋大偏压)已知偏心受压柱的截面尺寸为,混凝土为C25级,fc=11.9N/mm2,纵筋为HRB335级钢,,轴向力N,在截面长边方向的偏心距。距轴向力较近的一侧配置416纵向钢筋 ,另一侧配置220纵向钢筋,柱的计算长度l0=5m。求柱的承载力N。解:(1)求界限偏心距C25级混凝土,HRB335级钢筋查表得,。由于A’s及As已经给定,故相对界限偏心距为定值,=0.506属大偏心受压。(2)求偏心距增大系数,故,(3)求受压区高度x及轴向力设计值N。代入式:解得x=128.2mm;N=510.5kN(4)验算垂直于弯矩平面的承载力 4.(矩形不对称小偏心受压的情况)某一矩形截面偏心受压柱的截面尺寸计算长度混凝土强度等级为C30,fc=14.3N/mm2,,用HRB335级钢筋,fy=fy’=300N/mm2,轴心压力设计值N=1512KN,弯矩设计值M=121.4KN·m,试求所需钢筋截面面积。解:⑴求ei、η、e(2)判断大小偏压属于小偏压 (3)计算As、As'取As=ρminbh=由公式经整理后得出代入已知参数,得满足将x代入得:选用,由于因此,不会发生反向破坏,不必校核As。5.(矩形对称配筋大偏压)已知一矩形截面偏心受压柱的截面尺寸柱的计算长度,混凝土强度等级为C35,fc=16.7N/mm2,用HRB400级钢筋配筋,fy=f’y=360N/mm2,轴心压力设计值N=400KN,弯矩设计值M=235.2KN·m,对称配筋,试计算解:⑴求ei、η、e (2)判别大小偏压属于大偏压(3)求因为对称配筋,故有所以符合要求,各选配,1964mm2,稍小于计算配筋,但差值在5%范围内,可认为满足要求。6.(矩形对称配筋小偏压)条件同6-4,但采用对称配筋,求? 解:⑴求ei、η、e题6-4中已求得:(2)判别大小偏压,属于小偏压(3)计算As、选用,7.已知某柱子截面尺寸,,混凝土用C25,fc=11.9N/mm2,钢筋用HRB335级,fy=f’y=300N/mm2,钢筋采用,对称配筋,226mm2,柱子计算长度l0=3.6m,偏心距e0=100mm,求构件截面的承载力设计值N。解:⑴求ei、η、e已知e0=100mm取 取(2)判别大小偏压求界限偏心率又因为,故为小偏压。(3)求截面承载力设计值N(A)又由得:整理得:(B)联立(A)(B)两式,解得代入(A)式中得: 根据求得的N值,重新求出、值:相应值为1.717,与原来的、值相差不大,故无需重求N值。8.某I形柱截面尺寸如图6-22所示,柱的计算长度=6.8m。对称配筋。混凝土等级为C30,,fc=14.3N/mm2,钢筋为HRB400,fy=f’y=360N/mm2,轴向力设计值N=800KN,弯矩M=246KN·m求钢筋截面面积。解:⑴求ei、η、e(2)判别大小偏压 属大偏压,中性轴位于腹板内。(3)计算和选用,9.某单层厂房下柱,采用I形截面,对称配筋,柱的计算长度l0=6.8m,截面尺寸如图6-23所示,混凝土等级为C30,fc=14.3N/mm2,钢筋为HRB400,fy=f’y=360N/mm2,根据内力分析结果,该柱控制截面上作用有三组不利内力:N=550KN,M=378.3KN·mN=704.8KN,M=280KN·mN=1200KN,M=360KN·m根据此三组内力,确定该柱截面配筋面积。解:Ⅰ、求解第组内力取 取(3)判别大小偏压+,故属于大偏压。取由公式假设,由则取 Ⅱ、求解第组内力(1)求解ei、η、e(2)判别大小偏压,属大偏压。取 Ⅲ、求解第种内力⑴求ei、η、e(2)判别大小偏压 由公式综合Ⅰ、Ⅱ、Ⅲ算得的结果知钢筋的配筋至少要使故选用,第七章偏心受拉构件承载力计算题参考答案1.某矩形水池,壁厚200mm,as=as’=25mm,池壁跨中水平向每米宽度上最大弯矩M=390KN.m,相应的轴向拉力N=300KN,混凝土C20,fc=9.6N/mm2,钢筋HRB335,fy’=fy=300N/mm2,求池壁水平向所需钢筋。解:(1)判别大小偏心属大偏拉。(2)求所需钢筋面积 可选用22@70该题为已知As’求As的问题。由式则可选用30@70mm()2.某混凝土偏心拉杆,b×h=250mm×400mm,as=as’=35mm,混凝土C20,fc=9.6N/mm2,钢筋HRB335,fy’=fy=300N/mm2,已知截面上作用的轴向拉力N=550KN,弯矩M=60KN·m,求:所需钢筋面积。解:1)判别大小偏心 轴向力作用在两侧钢筋之间,属小偏拉。2)求所需钢筋面积选用214选用422第八章受扭构件承载力计算题参考答案1。钢筋混凝土矩形截面构件,截面尺寸,扭矩设计值,混凝土强度等级为C30(,),纵向钢筋和箍筋均采用HPB235级钢筋(),试计算其配筋。解:(1)验算构件截面尺寸满足是规范对构件截面尺寸的限定性要求,本题满足这一要求。 (2)抗扭钢筋计算按构造配筋即可。 2.已知矩形截面梁,截面尺寸300×400mm,混凝土强度等级,),箍筋HPB235(),纵筋HRB335()。经计算,梁弯矩设计值,剪力设计值,扭矩设计值,试确定梁的配筋。解:(1)按hw/b≤4情况,验算梁截面尺寸是否符合要求截面尺寸满足要求。(2)受弯承载力;取0.2%As=ρmin×bh=0.2%×300×400=240mm2(3)验算是否直接按构造配筋由公式(8-34)直接按构造配筋。(4)计算箍筋数量选箍筋φ8@150mm,算出其配箍率为 最小配箍率满足要求。(5)计算受扭纵筋数量根据公式(8-10),可得受扭纵筋截面面积(6)校核受扭纵筋配筋率实际配筋率为满足要求。(7)纵向钢筋截面面积按正截面受弯承载力计算,梁中钢筋截面面积为,故梁下部钢筋面积应为240+338/3=353㎜2,实配216(402㎜2)腰部配210,梁顶配210。第九章钢筋混凝土构件的变形和裂缝计算题参考答案1.承受均布荷载的矩形简支梁,计算跨度l0=4.0m,活荷载标准值qk =16kN/m,其准永久系数ψq=0.5,混凝土强度等级为C25,钢筋为HRB400级。环境类别为一类,安全等级为二级。试进行梁的截面设计,并验算梁的挠度。如混凝土强度等级改为C40,其他条件不变,重新计算并将结果进行对比分析。解:根据跨度,初步选定截面尺寸为250mm×500mm。可得恒载kN/m活荷载kN/mkN•m查表可知C30以上时,梁的最小保护层厚度为25mm。故设a=35mm,则mm由混凝土和钢筋等级查表,得N/mm2;N/mm2;N/mm2;;故mm2选用mm2)mm2<941mm2满足要求。该用C40混凝土,配筋不变,计算其承载力。N/mm2KN•m进行抗裂验算⑴求和 KN•mKN•m对于C30混凝土:N/mm2;N/mm2;N/mm2N/mm2N․mm2N․mm2mm满足要求。对于C40混凝土:N/mm2;N/mm2;N/mm2N/mm2N․mm2 N․mm2mm满足要求。从以上算例可以看出,当截面尺寸及配筋不变时,混凝土强度等级提高,其极限承载力和计算挠度变化不大,换句话说,如果挠度验算不满足,通过提高混凝土强度等级的方法效果不明显。2.承受均布荷载的矩形简支梁,计算跨度l0=6.0m,活荷载标准值qk=12kN/m,其准永久系数ψq=0.5;截面尺寸为b×h=200mm×400mm,混凝土等级为C25,钢筋为HRB335级,416,环境类别为一类。试验算梁的跨中最大挠度是否符合挠度限值。解:kN/m;kN/mKN•mKN•m对于C25混凝土:N/mm2;N/mm2;N/mm2mm2;mmN/mm2N․mm2N․mm2 mm不满足要求。3.某屋架下弦杆按轴心受拉构件设计,截面尺寸为200mm×200mm,混凝土强度等级为C30,钢筋为HRB400级,418,环境类别为一类。荷载效应标准组合的轴向拉力Nk=160kN。试对其进行裂缝宽度验算。解:轴心受拉构件;mm2;N/mm2mmN/mm2mm〈mm满足要求。4.简支矩形截面普通钢筋混凝土梁,截面尺寸b×h=200mm×500mm,混凝土强度等级为C30,钢筋为HRB335级,416,按荷载效应标准组合计算的跨中弯矩Mk=95kN•m;环境类别为一类。试对其进行裂缝宽度验算,如不满足应采取什么措施。解:对于C30混凝土:N/mm2;N/mm2;N/mm2mm2;mmN/mm2 mm;mm;mm〉mm不满足要求。可以采取增大截面高度的措施。第十章预应力混凝土构件计算题参考答案1.一预应力混凝土轴心受拉构件,长24m,截面尺寸为250×160mm混凝土强度等级为C60,螺旋肋钢丝为10φH9,,先张法施工,在100m台座上张拉,端头采用镦头锚具固定预应力钢筋,超张拉,并考虑蒸养时台座与预应力筋之间的温差,混凝土达到强度设计值的80%时放松预应力筋(题图10—1)。试计算各项预应力损失值。题图10—1解:计算各项预应力损失:①锚具变形和钢筋内缩引起的预应力损失。已知台座长为100m,设有一块垫板,锚具变形和钢筋内缩值为2mm。则由下式计算损失②预应力钢筋与孔道壁之间的摩擦引起的预应力损失。由于先张法直线张拉,无特殊转折,因此无此项损失。③预应力钢筋与承受拉力设备之间的温度差引起的预应力损失。温差为20℃,由下面公式计算损失 ④预应力钢筋松弛引起的预应力损失。因为;低松弛;所以⑤混凝土收缩、徐变引起的预应力损失该项损失为第二批损失。因为则2.试对一后张法预应力混凝土屋架下弦杆锚具的局部受压验算(题图10—2)。已知混凝土强度等级C60,预应力钢筋采用刻痕钢丝,钢筋用7φⅠ5二束,张拉控制应力。用OVM型夹具式锚具进行锚固,锚具直径为100mm,锚具下垫板厚度20mm,端部横向钢筋采用4片φ8焊接网片,网片间距为50mm。题图10—2解: 1.端部受压区截面尺寸验算OVM锚具的直径为100mm,垫板厚为20mm。局部受压面积可按压力从锚具边缘在垫板中沿45°扩散的面积计算;在计算局部受压计算底面积时,可近似按所围矩形计算代替两个圆面积锚具下局部受压计算底面积混凝土局部受压净面积当时,按直线内插法得,按式10—21满足要求2.局部受压承载力计算间接钢筋采用4片φ8方格焊接网片(HPB235),见图10—20(b),间距为s,网片尺寸见图10—20(d)。间接钢筋的体积配筋率当时,按直线内插法得,按式(10—23)计算满足要求。'