• 1.87 MB
  • 2022-04-22 11:17:45 发布

给排水毕业设计--给排水及消防设计

  • 108页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'呼市检察院大楼给排水及消防设计—18层摘要本工程为呼市检察院大楼,共18层,建筑总高度68.4米,属一类高层建筑。地下一层,地上18层,每层层高3.8米。一层室内地坪标高为±0.00。市政给水管网压力为0.25MPa,生活给水系统、排水系统均从建筑物北侧通过,给、排水标高分别为-2.2m,-1.6m。本次设计主要包括给水系统、排水系统、消防系统。给水系统采用分区供水,-1—4层为低区,利用市政管网直接供水,5—18层为高区,利用变频泵加压供水。给水横管采用PP-R塑料管,立管采用无缝钢管。排水系统采用污废水合流制。底层单独排水,合流排放,立管采用伸顶通气。本设计的消防系统由消火栓灭火系统和自动喷水灭火系统组成,由水泵、水箱联合供水。火灾初期10min消防用水量由屋顶消防水箱供给,消防水箱的水源由生活水泵补给;10min后的消防系统启动消防水泵,从消防水池抽水供消火栓以及喷头使用。[关键词]高层建筑给水系统排水系统消防系统I WatersupplyanddrainageandfirefightingdesignofHohhot"sprocuratoratebuilding-eighteenfloorsNameZhangfanTutorYinzhenyuAbstractThisprojectisHohhot’sprocuratoratebuilding,atotalof18storeys.Itis68.4metersinheight,Secret1layer,18layersontheground,eachis3.8metershigh.Groundoftheonelayerofindoorlevelgroundlevelis±0.00.Thereliablewaterheadtothewaterpipenetofcityfor0.25Mpa.Thedrinkingwatersystemanddrainagesystemarefromthenorththroughbuildings,Totheelevationof-2.2m,respectively,drainage-1.6m.Thisdesignmainlyincludesthewatersupplysystem,drainagesystem,andfirefightingsystem.watersupplysystemdistrictthewatersupply.-1—4podiums’watersupplyisbasedontheoutsidenetworkpressure,5—18layersaredividedintoazonewhichusepressurizingwatersupply,anditusespumptopressurize.HorizontalpipeofwatersupplychooseThePP-Rplasticpipe,andtheriseradoptstheseamlesssteelpipe.Thedrainagesystemusesewageandwastewatercombiningsystem.Thefirstfloordrainseparatelyanddischargeininterflow,therisersusestretchtopventilationwithoutspecialventilationrisers.Thedesignoffirefightingsystemiscomposedoffirehydrantextinguishingsystemandautomaticsprinklersystem.Watersupplyisunitedbywaterpumpandwatertanktothefirehydrantsystem.Theearlytenminutesfirewatersupplyisfromthefireprotectionwatertank,andthewaterofthefireprotectionwatertankcomesfromthelivingwaterpump;aftertenminutesstartthefirepumpstopumpthewaterfromthefiretankpumpingforhydrantsandsprinklers.[Keywords]High-risebuildingWatersupplysystemThedrainagesystemFireprotectionsystemIV 目录摘要ⅠAbstractⅡ第一章设计资料及设计任务11.1工程概况11.2设计资料11.3设计任务1第二章高层建筑给水系统12.1生活给水系统的竖向分区12.2生活用水量计算22.3给水方案的确定32.4管道的布置与敷设42.5给水管材的选择42.6给水管网水力计算52.6.1低区给水管网水力计算52.6.2高区给水管网水力计算82.7设备的计算与选择18第三章高层建筑排水系统193.1排水方案193.2排水管道的布置与敷设193.2.1排水管道的布置原则193.2.2排水管道的敷设与安装要求193.2.3排水管道的连接203.3排水管材与附件203.4建筑排水工程设计计算213.4.1排水管段设计秒流量计算213.4.2排水管道的水力计算21第四章高层建筑消防系统36IV 4.1室内消火栓给水系统364.1.1系统设计364.1.2室内消火栓的布置374.1.3消防贮水池容积的计算384.1.4室内消火栓系统水力计算384.1.5消防管网水力计算414.1.6消防水箱及水泵的计算444.2自动喷水灭火系统474.2.1自动喷水灭火系统的设置场所474.2.2自动喷水灭火系统选型及布置方案484.2.3供水管道与阀门的布置要求484.2.4自喷系统设计计算484.2.5自喷系统水力计算494.3室外消防给水系统534.3.1室外消防给水水源534.3.2室外消火栓53第五章设备材料表及工程概预算54外文文献及翻译59参考文献101附录102致谢115IV 第一章设计资料及设计任务1.1工程概况本工程为呼市检察院大楼,共18层,地下一层,地上每层层高3.8米,属一类高层建筑。建筑总高度68.4米,总建筑面积为30910.3平方米。生活给水系统、排水系统均从建筑物北侧通过。市政给水管网压力为0.25MPa。给、排水标高分别为-2.2m,-1.6m。1.2设计资料气象资料:该市属于内陆性季风气候,特点是冬长而寒冷,夏短而凉爽、温差大、蒸发量大、日照长,全年风多雨雪少。历年平均气温6.5℃;历年最高气温38.4℃;历年最低气温-31.4℃;历年平均降雨量305毫米,降雨集中在7—8月份;历年平均风速3.3米/秒;全年主导风向为西北风。地质资料:地下水位为3.15至3.80米;冻结深度为1.5米。该市地震基本烈度为8度,工程设施按8度设防。1.3设计任务工程设计:给水工程,排水工程,消火栓消防系统,自动喷水系统图纸包括:(1)首层平面图;(2)低区给水系统图;(3)高区给水系统图;(4)地下一层平面图;(5)标准层平面图;(6)消火栓系统图和自喷系统图;(7)排水系统图。第二章高层建筑给水系统2.1生活给水系统的竖向分区生活给水系统由于其层数多﹑竖向高度大,为避免建筑低层配水点静水压力大,需要进行竖向分区。目前,国内外在高层建筑给水设计中,普遍都是以给水分区最低层配水点处最大允许静水压力值为依据,进行竖向分区的。我国《建筑给水排水设计规范》(GB50015-2003)规定:各分区最低卫生器具配水点处的静水压不宜大于0.45MPa,特殊情况下不宜大于0.55MPa。59 根据规范的要求,将该建筑在竖向上分为2个供水区,低区为-1~4层,高区为5~18层。由于市政给水管网压力为0.25MPa,考虑到充分利用管网供水压力,低区利用市政给水管网直接供水,高区采用加压供水。2.2生活用水量计算本建筑的生活用水量应根据国家现行《建筑给水排水设计规范》中规定的生活用水定额﹑时变化系数,并结合办公人数进行计算。(1)办公人数确定方法(按有效面积估算):N=A/α式(2.1)式中N—办公楼内员工人数,人;A—办公楼有效面积,㎡;α—每位员工占用面积,㎡/人,α=5~7㎡/人。由此式联合图纸估算出办公人数为3329人。(2)最高日用水量:=∑m/1000式(2.2)式中—最高日用水量,m³/d;m—用水总人数,人;—最高日生活用水定额,L/每人每天。查宿舍﹑旅馆和公共建筑生活用水定额及小时变化系数表可知办公楼最高日生活用水定额为30~50L/每人每班,本设计取40L/每人每班,小时变化系数=1.5~1.2,本设计取1.4。计算得=133.16m³/d。(3)最大小时用水量:=∑/T式(2.3)式中—最大时生活用水量,m³/h;—最高日用水量,m³;—小时变化系数;59 T—用水时间,取T=8h。由此式计算得=23.30m³/h。(4)设计秒流量=0.2α式(2.4)式中—计算管段的生活设计秒流量,L/s;—计算管段的卫生器具给水当量总数;α—根据建筑物用途确定的系数,α=1.2~1.5,查表得办公楼α=1.5。使用此公式是应注意以下几点:(1)如计算值小于该管段上一个最大卫生器具给水额定流量时,应采用一个最大的卫生器具给水额定流量作为设计秒流量。(2)如计算值大于该管段上按卫生器具给水额定流量累加所得流量值时,应按卫生器具给水额定流量累加所得流量值采用。(3)有大便器延时自闭冲洗阀的给水管段,大便器延时自闭冲洗阀的给水当量以0.5计,计算得到附加1.20L/s的流量后,为该管段的给水设计秒流量。2.3给水方案的确定本设计采用变频调速水泵给水方式。变频调速水泵给水是目前高层建筑中普遍采用的一种给水方式,它是利用控制柜内的变频器和微机来控制水泵的运行,使水泵按照实际运行参数(变化着的用户用水量和设定的水压)进行变频调速供水,把水泵工频运行时特性曲线中的多余功通过变频器调频节约下来。本设计采用KQF双模式供水设备。KQF双模式供水设备的特点有双模式供水、有效补偿、限量抽吸,在确保用户供水持续性前提下,还可有效防止对市政管网的过度抽吸,完善的解决了一般叠压供水设备无调节容积易造成对市政水源过度抽吸的问题,对大规模使用叠压供水设备有疑虑的地区可放心使用KQF双模式供水设备。设备大部分时间处于叠压供水工况,可充分利用市政水源本身具有的压力势能,差多少补多少,最大限度地发挥变频调速的节能效果,并且安全卫生。59 2.4管道的布置与敷设给水管道的布置与敷设应满足以下基本要求:①确保供水安全和良好的水利条件,力求经济合理。管道尽可能与墙、梁、柱平行,呈直线走向,力求管路简短,以减少工程量,降低造价。干管布置在用水量大或不允许间断供水的配水点附近,既利于供水安全,又可减少流程中不合理的转输流量,节省管材。②保护管道不受损坏。③不影响建筑物的使用。为避免管道渗漏,造成配电间电器设备故障或短路,管道不能从配电间通过。④便于安装维修。布置管道时周围留有一定的空间,以满足安装维修的要求。引入管设置两条,分别由建筑的不同侧引入,引入管经水表节点后,接入贮水池。低区给水系统利用市政管网压力直接供水,采用下行上给的供水方式,枝状管网,横干管敷设于地下一层的吊顶中,给水立管布置在管道井内。高区采用下行上给的供水方式,水平干管敷设在4~5层的设备层内,立管置于管道井。上行下给式水平配水干管敷设在底层(明装、埋设或沟敷)或地下室天花板下,图式简单,明装时便于安装维修,最高层配水的流出水头较低。当地冰冻深度为-1.5m,为防止引入管受到冰冻的破坏,引入管管顶敷设在当地冰冻线以下20cm。2.5给水管材的选择高层建筑给水常用管材主要有金属管、非金属管、和复合材料管三类。目前给水使用的非金属管主要是PP-R管。PP-R管道是具有九十年代国际水平的新型节能塑料产品,全称无规共聚聚丙烯管道,安装和使用的优点:(1)对人类健康无害,对水中的所有离子和建筑物内的化学物质均不起化学反应,与金属管道相比不会生绣,不会腐蚀,并具有高度的耐酸性和耐氯化物性。(2)属于绿色可持续发展产品,在生产、施工、使用过程中对环境无污染。可二次回收反复利用。(3)有别与其他管道,PP-R管的同质热熔连接是这一管材体系最大的优点。管道连接透漏率极低,无须保养维护,可用目测检验,接头牢固完全没有腐蚀可能。(4)质量轻,施工搬运方便,可大大减轻工人的劳动强度,施工速度快。本设计给水横管采用PP-R59 管,但高层建筑的给水立管不宜用塑料管,给水立管采用无缝钢管。2.6给水管网水力计算2.6.1低区给水管网水力计算-1-4层为低区给水系统,由低区生活给水系统示意图可知最不利点为四层女卫生间的大便器,只要该点水力条件满足要求,则其余位置均可可靠供水,但由于施工要求,各条不同支管也需进行计算,以确定管径、坡度等数据以便于施工。低区生活给水横支管水力计算如表2.1所示。低区生活给水系统示意图如图2.1所示图2.1低区生活给水系统示意图59 管段卫生洁具数量当量总数N秒流量q(L/s)管径DN(mm)流速v(m/s)单阻1000i管长L(m)水头损失∑h(kPa)大便器N=0.5污水池N=2.0小便器N=0.5洗手盆N=0.50~110.51.41400.8519.420.90.231~221.01.50400.9021.670.90.252~331.51.57400.9423.503.91.193~8313.51.76401.0628.770.40.154~510.50.10150.5027.486.52.325~621.00.20150.9993.976.57.946~731.50.30200.7942.186.53.567~842.00.40250.6118.791.10.278~93145.51.90401.1432.960.20.0910~1110.51.41400.8519.420.90.2311~1221.01.50400.9021.670.90.2512~1331.51.57400.9423.500.90.2713~942.01.62400.9724.843.41.109~147147.52.02500.7712.155.50.8714~1571428.52.07500.7912.6911.51.90表2.1低区生活给水横支管水力计算表59 59 管段卫生洁具数量当量总数N秒流量q(L/s)管径DN(mm)流速v(m/s)大便器q=1.2N=0.5污水池q=0.4N=2.0小便器q=0.1N=0.5洗手盆q=0.1N=0.515~1671428.52.07500.9816~171428417.02.44501.1517~1821312625.52.71501.2818~B31416936.03.00501.41表2.2低区生活给水立管水力计算表表2.3低区生活给水横干管水力计算表管段卫生洁具数量当量总数N秒流量q(L/s)管径(mm)流速v(m/s)单阻1000i管长L(m)水头损失∑h(kPa)洗涤盆q=0.32N=1.6大便器q=1.2N=0.5洗手盆q=0.1N=0.5小便器q=0.1N=0.5污水池q=0.4N=2.0A~B9421620563.43.59501.3633.7024.010.5159 2.6.2高区给水管网水力计算5-18层为高区给水系统,由高区生活给水系统示意图可知最不利点为十八层男卫生间的大便器,只要满足该点的水力要求,其余各器具均可安全供水,但为了便于施工,将不同给水管段的管径进行计算。两个管道井中均设一根给水立管,给水立管共两根,JL-2连接五至十八层左侧的卫生间,JL-3连接九至十三层右侧的卫生间。JL-2连接的高区生活给水横支管、JL-2给水立管的水力计算分别如表(2.4)、(2.5)、(2.6)所示,JL-3连接的高区生活给水横支管、JL-3给水立管的水力计算分别如表(2.7)、(2.8)、(2.9)所示,高区生活给水横干管水力计算如表(2.10)所示高区生活给水系统示意图如图2.2所示:59 59 管段卫生洁具数量当量总数N秒流量q(L/s)管径(mm)流速v(m/s)单阻1000i管长L(m)水头损失∑h(kPa)大便器N=0.5污水池N=2.0小便器N=0.5洗手盆N=0.50~110.51.41400.8519.420.90.231~221.01.50400.9021.670.90.252~331.51.57400.9423.503.91.193~8313.51.76401.0628.770.40.154~510.50.10150.5027.486.52.325~621.00.20150.9993.976.57.946~731.50.30200.7942.186.53.567~842.00.40250.6118.791.10.278~93145.51.90401.1432.960.20.0910~1110.51.41400.8519.420.90.2311~1221.01.50400.9021.670.90.2512~1331.51.57400.9423.500.90.2713~942.01.62400.9724.843.41.109~147147.52.02500.7712.155.50.8714~1571428.52.07500.7912.6911.51.90表2.4JL-2连接的5-13层高区生活给水横支管水力计算表59 表2.5JL-2连接的14-18层高区生活给水横支管水力计算表管段卫生洁具数量当量总数N秒流量q(L/s)管径(mm)流速v(m/s)单阻1000i管长L(m)水头损失∑h(kPa)大便器q=1.2N=0.5小便器q=0.1N=0.5洗手盆q=0.1N=0.5污水池q=0.4N=2.0a’~b’10.51.41400.8519.420.90.23b’~c’21.01.50400.9021.670.90.25c’~d’31.51.57400.9423.500.90.27d’~e’312.01.62400.9724.840.80.26e’~f’322.51.67401.0026.222.60.89f’~g’3213.01.72401.0327.620.70.25g’~h’32215.51.90401.1432.960.70.30h’~m’32316.01.93401.1633.890.30.13i’~j’10.51.41400.8519.420.90.23j’~k’21.01.50400.9021.670.90.25k’~l’31.51.57400.9423.500.90.27l’~m’42.01.62400.9724.842.80.90m’~n’72318.02.05500.7812.486.00.9759 表2.6高区给水立管JL-2水力计算表管段卫生洁具数量当量总数N秒流量q(L/s)管径DN(mm)流速v(m/s)大便器q=1.2N=0.5小便器q=0.1N=0.5洗手盆q=0.1N=0.5污水池q=0.4N=2.0n’~o’72318.02.05500.97o’~p’1446216.02.40501.06p’~q’2169324.02.67501.26q’~r’28812432.02.90501.37r’~15351015540.03.10501.4615~16421417648.53.29700.9416~17491819757.03.46700.9817~18562221865.53.63701.0318~19632623974.03.78701.0719~207030251082.53.92701.1120~217734271191.04.06701.1521~228438291299.54.19701.1922~2391423113108.04.32701.2323~F98463314116.54.44701.2659 59 管段卫生洁具数量当量总数N秒流量q(L/s)管径DN(mm)流速v(m/s)单阻1000i管长L(m)水头损失∑h(kPa)洗手盆q=0.1N=0.5淋浴器q=0.1N=0.5大便器q=1.2N=0.50’~1’10.50.10150.5027.483.01.071’~2’222.00.40250.6118.791.50.372’~3’2223.01.52400.9122.1910.02.883’~4’4446.01.93401.1633.894.51.984’~5’6669.02.10500.8013.014.20.71表2.7JL-3连接的9-13层高区生活给水横支管水力计算表59 表2.8JL-3连接的14-18层高区生活给水横支管水力计算表管段卫生洁具数量当量总数N秒流量q(L/s)管径DN(mm)流速v(m/s)单阻1000i管长L(m)水头损失∑h(kPa)污水池q=0.4N=2.0洗手盆q=0.1N=0.5大便器q=1.2N=0.5a~b12.00.40250.6118.791.70.42b~c112.50.47250.7125.060.70.23c~d123.00.52250.7929.983.71.44d~e1213.51.76401.0628.771.00.37e~f1224.01.80401.0829.9421.98.5259 管段卫生洁具数量当量总数N秒流量q(L/s)管径DN(mm)流速v(m/s)污水池q=0.4N=2.0洗手盆q=0.1N=0.5大便器q=1.2N=0.5淋浴器q=0.1N=0.5f~g1224.01.80500.85g~h2448.02.05501.18h~i36612.02.24501.06i~j48816.02.40501.13j~5’5101020.02.54501.205’~6’51616629.02.82501.336’~7’522221238.03.05501.447’~8’528281847.03.26700.938’~9’534342456.03.44700.979’~E540403065.03.62701.03表2.9高区给水立管JL-3水力计算表59 管段卫生洁具数量当量总数N秒流量(L/s)管径DN(mm)流速v(m/s)单阻1000i管长L(m)水头损失∑h(kPa)大便器q=1.2N=0.5小便器q=0.1N=0.5污水池q=0.4N=2.0洗手盆q=0.1N=0.5淋浴器q=0.1N=0.5F~E98461433116.54.44701.1520.0242.611.08E~G13846197330181.55.24701.3626.8215.65.44表2.10高区生活给水横干管水力计算表59 2.7设备的计算与选择1.高区生活给水泵的选择高区水泵的出水量应按高区给水系统的设计秒流量确定。由表(2-10),高区生活给水设计秒流量为=4.74L/s。高区给水系统所需压力按下式计算:式(2.5)式中—高区生活给水系统所需要的水压,;—贮水池最低水位至低区最不利配水点位置高度所需的静水压,;—高区管路的总水头损失,局部水头损失取沿程水头损失的25%,;—高区配水最不利点所需的流出水头,。贮水池最低水位标高为-3.30m,高区最不利点(18层卫生器具)标高65.60m,因此有=65.60+3.30=68.90m=689.00;局部水头损失按沿程水头损失的25%计,由表(2-10)得,高区管网沿程水头损失54.12,则=1.25×54.12=67.65;最不利配水卫生器具流出水头按=50;则有=689.00+67.65+50=806.65按=4.74L/s,=80.67,选用KQF2Q-0885(100)F型全自动双模无负压供水设备2台。水泵性能:Q=2.22L/s,=85.0,主泵电动机功率:N=4kw,辅泵电动机功率:N=2.2kw。59 第三章高层建筑排水系统3.1排水方案建筑内部排水体制有分流制和合流制两种。所谓分流与合流通常是指粪便污水与生活废水是分别设置管道收集排放还是用一套管道收集排放。建筑给水排水设计手册规定:当城市有污水处理厂,或少数污、废水负荷较小,或污、废水不便分流的建筑,如办公楼、标准较低的住宅等,生活污废水宜合流排出。本设计为呼市检察院大楼给水排水及消防设计,生活污水排往污水处理厂,采用合流制排水体制,厨房废水经隔油池隔油处理后排至城市污水管网,地下室排水采用污水泵提升排至室外城市污水管网。3.2排水管道的布置与敷设3.2.1排水管道的布置原则1.排水立管应设在靠近最脏、杂质最多的排水点处,以便尽快接纳横支管来的污水而减少管道堵塞的机会;同理,污水管道德布置应尽量减少不必要的转角及曲折,尽量作直线连接。2.明装的排水管道应尽量沿墙、梁、柱作平行设置,以保持美观;当建筑对美观要求较高时,管道可以暗装,但要尽量利用建筑装修使管道隐蔽,这样不仅美观而且经济。3.排水出户管一般按坡度要求埋设于地下,并宜以最短的距离通至室外。建筑设有地下室或技术层时,排水横干管可敷设在地下室顶板下或技术层中。4.排水管道不得穿过沉降缝、伸缩缝、烟道和风道。当受条件限制必须穿过时,应采取相应的技术措施。5.当排水管与给水引入管布置在同一处进出建筑物时,为便于维修和避免或减轻污染给水管道的现象,排出管与给水引入管的水平距离不得小于1.0m。3.2.2排水管道的敷设与安装要求1.在有地下室的建筑里,排水横干管应尽量吊设在地下室顶棚下面而避免埋地敷设。2.排水支管连接在排出管或排水横干管上时,连接点距立管底部水平距离不宜小于3.0m,且不得小于1.5m。59 3.排水立管仅设伸顶通气时,最低横支管与立管连接处距立管管底垂直距离,不得小于表3.1的规定。立管链接卫生器具的层数≤45~67~1213~19≥20垂直距离(m)0.450.751.23.06.0表3.1最低横支管与立管连接处距立管管底垂直距离3.2.3排水管道的连接1.卫生器具排水管与排水横支管垂直连接,宜采用90°斜三通。2.排水管道的横管与立管连接,宜采用45°斜三通或45°斜四通。3.排水立管与排出管端部的连接,宜采用两个45°弯头或弯曲半径不小于4倍管径的90°弯头。4.排水立管应避免在轴线偏置;当受条件限制时,宜用乙字弯或两个45°弯头连接。5.当排水支管、排水立管接入横干管时,应在横干管管顶或其两侧45°范围内采用45°斜三通接入。3.3排水管材与附件建筑高度超过50m的教学楼和普通的旅馆、办公楼、科研楼等一类高层建筑的耐火等级应为1级,防火等级高的建筑排水管应用排水铸铁管。本设计为高度68.4m的办公楼,故选用排水铸铁管。我国建筑内部排水系统的常用附件,主要包括存水弯、地漏、清扫口和检查口等。(1)存水弯为防止排水管道中产生的臭气及各种有害气体进入室内污染环境,需在卫生器具出口处设置存水弯。(2)地漏地漏主要用来排除地面水,厕所、盥洗室、卫生间及其他需要经常从地面排水的房间,均应设置地漏。地漏优先采用具有防涸功能的地漏,严禁采用钟罩式地漏。带水封地漏的水封深度不得小于50mm。食堂、厨房、公共浴室等排水宜采用网框式地漏。当淋浴室有一个淋浴器时,地漏直径选用50mm。(3)检查口和清扫口检查口是带有可开启检查盖的配件,装设在排水立管及较长水平管段上,可起检查和双向清通的作用。清扫口是装设在排水横管上,用于单向清通排水管道。检查口和清扫口应按下列规定设置:59 ①铸铁排水立管上检查口之间的距离不宜大于10m,同时满足在建筑物最底层和设有卫生器具的2层以上建筑物的最高层,设置检查口。②连接两个及两个以上大便器,或三个及三个以上卫生器具的铸铁排水管上,宜设置清扫口。3.4建筑排水工程设计计算本建筑排水系统底层的污废水单独排放,地下室排水采用污水泵提升排至室外城市污水管网。由于建筑高度及每根排水立管所承担的当量数较大,为使排水管道中气压波动尽量平稳,防止管道水封破坏,经多次比较和修正,最终高区选用专用通气管,由于底层只有一层单独排水,因此,底层不设专用通气管。3.4.1排水管段设计秒流量计算办公楼的管段设计秒流量可按式(3.1)计算:=0.12α+式(3.1)式中—计算管段排水设计秒流量,L/s;—计算管段的卫生器具排水当量总数;—计算管段上排水量最大的一个卫生器具的排水流量,L/s;α—根据建筑物用途而定的系数,本建筑设计中α值取2.0。注意:当用上述设计秒流量计算公式计算排水管网起端的管段时,因连接的卫生器具较少,计算结果有时会大于该管段上所有卫生器具排水流量的总和,这时应按该管段所有卫生器具排水流量的累加值作为排水设计秒流量。3.4.2排水管道的水力计算根据《建筑给水排水工程》第五版可查得各卫生器具(大便器和小便器均选用延时自闭式冲洗阀)的排水流量、排水当量和排水管的管径如下:污水池=1.00,排水流量为0.33L/s,排水管管径为50mm;洗手盆=0.30,排水流量为0.10L/s,排水管管径为32~50mm;小便器=0.30,排水流量为0.10L/s,排水管管径为40~50mm;大便器=3.60,排水流量为1.20L/s,排水管管径为100mm;59 淋浴器=0.45,排水流量为0.15L/s,排水管管径为50mm。排水横管最大设计充满度和排水管道设计坡度按表3.2选用。表3.2建筑物内生活排水铸铁管道的最小坡度和最大设计充满度管径(mm)通用坡度最小坡度最大设计充满度500.0350.0250.5750.0250.0151000.0200.0121250.0150.0101500.0100.0070.62000.0080.005管道流速:由于污水中含有固体杂质,为避免流速过小,污水中的杂质在管道中沉淀,减小过水断面积,造成水流不畅或堵塞管道,排水横管中水流流速应不小于管道的自净流速。自净流速的大小与污废水的成分、管径、设计充满度有关,建筑内部排水横管自净流速应满足表3.3规定。表3.3各种排水管道(渠)的自净流速排水管道(渠)类别生活污水管道管径(mm)明渠(沟)雨水及合流制排水管﹤150150200自净流速(m/s)0.60.650.700.400.751.高区排水水力计算高区排水系统示意图如图3.1、3.2、3.3、3.4所示其中PL-2,PL-3,PL-4的管道布置相同,仅以PL-2为例。高区排水管水力计算如表3.4至3.12所示:59 59 59 59 59 表3.4PL-1连接的2-13层卫生间排水横支管水力计算表管段编号卫生器具种类与数量当量总数设计秒流量(L/s)管径DN(mm)坡度i大便器=3.6小便器=0.3洗手盆=0.3污水池=1.00~113.61.201000.0201~227.21.841000.0202~3310.81.991000.0203~8414.42.111000.0204~510.30.10750.0255~620.60.20750.0256~730.90.30750.0257~841.20.36750.0258~154415.62.151000.0209~1010.30.10500.03510~1120.60.20500.03511~12211.60.53500.03512~131215.21.731000.02013~142218.81.911000.02014~1532112.42.051000.02015~16742128.02.471000.020表3.5排水立管PL-1水力计算表管段编号卫生器具种类与数量当量总数N设计秒流量(L/s)管径DN(mm)大便器=3.6小便器=0.3洗手盆=0.3污水池=1.016~177421282.4710017~1814842563.0010059 续表3.5排水立管PL-1水力计算表18~19211263843.4010019~202816841123.7410020~2135201051404.0410021~2242241261684.3110022~2349281471964.5610023~2456321682244.7910024~2563361892525.0110025~26704020102805.2210026~27774422113085.4110027~28844824123365.60100表3.6PL-2连接的9-13层卫生间排水横支管水力计算表管段编号卫生器具种类与数量当量总数N设计秒流量(L/s)管径DN(mm)坡度i洗手盆=0.3淋浴器=0.45大便器=3.60’~1’10.300.10500.0351’~2’110.750.25500.0352’~3’1114.351.451000.020表3.7排水立管PL-2水力计算表管段编号卫生器具种类与数量当量总数N设计秒流量(L/s)管径DN(mm)洗手盆=0.3淋浴器=0.45大便器=3.63’~4’2228.71.911004’~5’44417.42.201005’~6’66626.12.431006’~7’88834.82.621007’~8’10101043.52.7810059 表3.8PL-5连接的14-18层卫生间排水横支管水力计算表管段编号卫生器具种类与数量当量总数N设计秒流量(L/s)管径DN(mm)坡度i小便器=0.3大便器=3.6洗手盆=0.3污水池=1.0a~b10.30.10500.035b~c20.60.20500.035c~d214.21.401000.020d~e227.81.871000.020e~f2311.42.011000.020g~h10.30.10500.035h~i20.60.20500.035i~j30.90.30500.035j~k311.90.63500.035k~l1315.51.761000.020l~m2319.11.921000.020m~n33112.72.061000.020n~f43116.32.171000.020f~o273127.72.461000.020表3.9排水立管PL-5水力计算表管段编号卫生器具种类与数量当量总数N设计秒流量(L/s)管径DN(mm)小便器=0.3大便器=3.6洗手盆=0.3污水池=1.0o~p273127.72.46100p~q4146255.42.99100q~r6219383.13.39100r~s828124110.83.73100s~t1035155138.54.0210059 表3.10PL-6连接的14-18层卫生间排水横支管水力计算表管段编号卫生器具种类与数量当量总数N设计秒流量(L/s)管径DN(mm)坡度i污水池=1.0洗手盆=0.3大便器=3.6a’~b’11.00.33500.035b’~c’111.30.43500.035c’~f’121.60.53500.035d’~e’13.61.201000.020e’~f’27.21.841000.020表3.11排水立管PL-6水力计算表管段编号卫生器具种类与数量当量总数N设计秒流量(L/s)管径DN(mm)污水池=1.0洗手盆=0.3大便器=3.6f’~g’1228.81.91100g’~h’24417.62.21100h’~i’36626.42.43100i’~j’48835.22.62100j’~k’5101044.02.79100卫生器具种类与数量设计秒管径坡度59 管段编号当量总数N流量(L/s)DN(mm)i污水池=1.0洗手盆=0.3大便器=3.6淋浴器=0.45小便器=0.3A~B5101044.02.791000.020B~C520201087.53.441000.020C~D5303020131.03.951250.015D~E5404030174.54.371250.015E~F17641243048510.56.621500.010F~G22791593058649.07.311500.010表3.12排水横干管水力计算表2.埋地管、排出管的计算:由总设计秒流量为7.31L/s,查表得:DN=150mm,管道坡度为0.01。3.底层排水计算简图如图3-5所示:图3.5底层排水计算简图横支管:=2.47L/s,管径DN=100mm。59 横支管:=1.2L/s,管径DN=100mm。横支管:=1.2L/s,管径DN=100mm。横支管:=1.2L/s,管径DN=100mm。3.高区及底层总排出管计算:以高区下来的汇合管根部H为起点编号,高区下来的汇合管立管接纳排水当量总数为649,计算结果如下表:表3.13高区及底层总排出管水力计算表管段编号新接入立管增加当量数当量总数N设计秒流量(L/s)管径DN(mm)坡度i备注H~I28.0677.07.441500.012比上层汇合横管坡度略大,以改善水利条件I~室外,,10.8687.87.491500.0124.排水通气立管的设计建筑内部排水管内存在水气两相流,为防止因气压波动造成的水封破坏,使有毒有害气体进入室内,生活污水管道或散发有害气体的生活污水管道均应设置通气系统。对层数不高、卫生器具不多的建筑物,可将排水立管上端延长并伸出屋顶,这一段管叫伸顶通气管。对层数较高、卫生器具较多的建筑物,因排水量大,空气的流动过程易受排水过程的干扰,需将排水管和通气管分开,设专用通气立管。(1)低区通气立管的计算立管最下部管段排水设计秒流量:=2.47L/s,选用立管管径100mm,因设计秒流量为2.47L/s,查生活排水立管的最大排水能力表,小于仅设伸顶通气时DN100生活排水立管最大排水能力4.5L/s,故不需设专用通气立管。,,立管最下部管段排水设计秒流量:59 =1.2L/s,选用立管管径100mm,因设计秒流量为1.2L/s,查生活排水立管的最大排水能力表,小于仅设伸顶通气时DN100生活排水立管最大排水能力,故均不需设专用通气立管。将四根伸顶通气立管汇合在一起,集中一处出屋顶,则汇合通气管的管径按下式计算:式(3.2)式中—通气横干管和总伸顶通气管管径,mm;—最大一根通气立管管径,m;—其余通气立管管径,mm。。则取汇合通气管管径为150mm。(2)高区通气立管的计算高区立管PL-1的管径为100mm,设计秒流量为5.60L/s,大于仅设伸顶通气时DN100生活排水立管最大排水能力4.5L/s,故采用双立管排水系统,通气管的管径应根据排水能力,一般不宜小于排水管管径的1/2。通气立管长度在50m以上时,其管径应与排水立管管径相同。故与排水立管PL-1相连的通气立管TL-1的管径为100mm,管材选用与排水立管相同的铸铁管。高区立管PL-2的管径为100mm,设计秒流量为2.78L/s,小于仅设伸顶通气时DN100生活排水立管最大排水能力4.5L/s,故不需设单独的通气立管,仅设伸顶通气,《建筑给水排水设计规范》规定通气管出屋面不得小于0.3m,且必须小于当地的积雪厚度,本设计为呼市检察院大楼,呼市全年风多雨雪少,通气管伸出屋面的高度取0.4m。立管PL-3、PL-4与PL-2相同,也设伸顶通气。高区立管PL-5的管径为100mm,设计秒流量为4.02L/s,小于仅设伸顶通气时DN100生活排水立管最大排水能力4.5L/s,不需设单独的通气立管,仅设伸顶通气,伸出屋面的高度取0.4m。高区立管PL-6的管径为100mm,设计秒流量为4.02L/s,小于仅设伸顶通气时DN100生活排水立管最大排水能力4.5L/s,不需设单独的通气立管,仅设伸顶通气,伸出屋面的高度取0.4m。59 在最冷月平均气温低于-13℃的地区,应在室内平屋顶或吊顶以下0.3m处将管径放大一号。6.地下集水井和污水提升泵的计算1)污水提升泵的选择排出口标高为-2.2m,集水坑最低水位为-1.60m(相对于地下室地面标高),排出管长约为60m,地下室卫生间排水流量为4.65L/s,初选50QW18-15-1.5型潜污泵,Q=18,扬程为15m,水泵吸压水管径初定DN80,功率1.5kw。2)集水池容积计算集水池的有效水深一般取1.0—1.5m,保护高度取0.3—0.5m。集水池容积取1.50×1.20×1.50,其有效容积可保证1.50×1.20×1.0(有效水深)=1850QW18-15-1.5型潜污泵Q=18,5分钟排水量为1.5.污水池有效容积满足要求。7.隔油池的设计与计算公共餐饮的厨房排水,应经隔油后方允许排入排水管道或集水池。隔油池的设计流量按下式计算:式(3.3)式中—计算管段污水设计秒流量,L/s;—同类型的一个卫生器具排水流量,L/s;—同类型的卫生器具数;—卫生器具的同时排水百分数,取=0.5。则=0.33×9×0.5=1.49L/s.隔油池有效容积按下式计算:式(3.4)式中—隔油池有效容积,;59 —污水在隔油池中停留时间,min;取流速v=0.005m/s,停留时间t=8分钟,则=1.49×60×8/1000=0.72,过水断面积A=/v=0.3㎡,池长L=/A=2.4m。第四章高层建筑消防系统59 4.1室内消火栓给水系统4.1.1系统设计本建筑属于高层建筑,根据高层民用建筑设计防火规范,本建筑属于一类建筑,消防等级为中危险Ⅰ级。在本设计中设置独立的消火栓系统和自动喷水灭火系统,消火栓给水系统是室内消防系统的主要设施。本设计中,消火栓系统的设计遵循以下原则:(1)消火栓给水系统与其他给水系统分开独立设置。(2)消火栓给水系统管道布置成环状管网,其进水管为两条。(3)室内消火栓保证同层相邻两只水枪的充实水柱同时到达室内的任何部位。(4)消防电梯间前室应设有消火栓。(5)室内消火栓应设置在楼梯间,走道附近等明显和易于取用,便于火灾扑救的地点。(5)地下室应设有消火栓。(6)屋顶设一个装有压力显示装置的检查用消火栓。(7)室外设置水泵接合器,水泵接合器的数量按室内消防用水量的计算确定。(8)消火栓栓口离地面高度宜为1.10m,栓口出水方向宜向下或与设置消火栓的墙面相垂直。(9)消火栓应采用同一型号规格。消火栓的栓口直径应为65mm,水带长度不应超过25m,水枪喷嘴口径不应小于19mm;本设计为高层办公楼,按照高层民用建筑设计防火规范,室内消火栓系统的流量为40L/s,室外消火栓系统的流量为30L/s,每根竖管最小流量15L/s,每支水枪最小流量5L/s。根据规范消火栓系统的最低点的静水压力不宜超过0.8Mpa,当超过0.5Mpa时宜用减压阀减压。按照规范规定,在该建筑内每层的走廊、消防电梯前室以及地下室中均布有消火栓,消火栓采用暗装,不防碍避难行动。本建筑的消火栓系统布置方案如下:系统采用消火栓口直径为65mm,水枪喷嘴口径为19mm,直径65mm的麻质水带,水带长度为25m,消防水箱中贮存10min消防用水量,室外设有水泵接合器。根据《高层建筑给水排水工程》(第2版),当消火栓系统最低处消火栓栓口的静水压力不超过1.0MPa时,可采用不分区给水方式,消火栓栓口出水压力大于0.5MPa59 时,消火栓处应设减压装置。本设计建筑高度小于100m,最底层消火栓栓口的静水压力不大于1.0MPa,故采取不分区的消火栓给水系统,竖向成环,火灾前10min由高位水箱直接供水,10min后由消防水池通过消防水泵提升供水。4.1.2室内消火栓的布置室内消火栓的间距,应保证同层相邻两个消火栓的水枪充实水柱同时到达室内任何部位,可按式(4.1)计算确定,且高层建筑不应大于30m。消火栓间距按下式计算:式(4.1)式中—消火栓间距,m;—消火栓保护半径,m,;—水龙带敷设长度,m,可取配备水龙带长度的90%;—水枪充实水柱在平面上的投影长度,m,水枪射流上倾角按45°计;—消火栓最大保护宽度,m。消火栓保护半径可按下列计算公式计算:式(4.2)式中—消火栓保护半径,m;—消火栓水带的铺设长度,m,开敞空间按水带总长的90%计算,当空间曲折、走道转折多时,按水带总长的80%~85%计算;—消防水枪充实水柱的水平投影,m。°。确定充实水柱长度:式(4.3)式中—消防水枪充实水柱长度,m;—室内最高着火点离地面的高度,m;—消防水枪喷嘴离地面的高度,m。一般取1.0m;—消防水枪的上倾角,一般采用45°,最大不应超过60°。59 计算得=(3.8-1.0)/sin45°=3.9m,由于规范规定建筑高度不超过100m的高层建筑消防水枪充实水柱长度不应小于10m,所以取=10m。=25×90%+10×cos45°=29.57≈30m。=27.11,取消火栓间距27m。4.1.3消防贮水池容积的计算消防水池贮水量:(1)消火栓用水量根据建筑给水排水设计手册规定,室内消火栓用水量40L/s,室外消火栓设计用水量30L/s,火灾延续时间取2h。因此:=2×(40+30)×3600=L=504m³(2)自喷用水量自动喷水灭火系统的喷水强度为6L/min/㎡,作用面积为160㎡,经计算自动喷水灭火系统消防用水量为160×6/60=16L/s,火灾延续时间取1h。=1×16×3600=57600L=57.6m³消防总用水量为:=+=504+57.6=561.6m³由于在火灾延续时间内市政管网能保证连续补水,市政进水管为两根DN100mm,为安全计,按一根补水,其补水流量为=vπd²/4,取v=1.0m/s,则补水量=1.0×π/4×0.10²×2×3600=56.52m³≈57m³消防水池的有效容积为=+-=561.6-57=504.6m³水池尺寸为:20000mm×7300mm×3700mm4.1.4室内消火栓系统水力计算1.消火栓栓口所需水压按下式计算:式(4.4)式中—消火栓栓口水压,;—水枪喷嘴处造成一定长度的充实水柱所需的压力,;59 —水带的水头损失,。其中水枪喷嘴处所需的压力按下式计算:式(4.5)式中—实验系数,与充实水柱长度有关,查表可知,当=10m时,=1.20;—实验系数,与水枪喷嘴口径有关,查表可知,当=19mm时,=0.0097;—充实水柱长度,m;—水枪喷嘴处造成一定长度的充实水柱所需的压力,。水龙带阻力损失按下式计算:式(4.6)式中—水带水头损失,;—水龙带通过的实际射流量,L/s;—水带比阻,查表可知水带直径为65mm的麻质水带=0.00430;—水带长度,m。水枪实际射流量按下式计算:式(4.7)式中—水流特性系数,查表可知当=19mm时,=1.577;—水枪喷嘴处造成一定长度的充实水柱所需的压力,。1.消火栓管道水力计算室内消火栓给水系统图如图4.1所示:59 59 设图中立管Ⅰ上的18层、17层、16层消火栓离消防泵最高最远,处于系统最不利位置。(1)枪口所需压力:=10×1.2×10÷﹙1-0.0097×1.2×10﹚=135.81=13.58(2)水枪喷嘴射流量:==4.63L/s,不满足高层建筑每支水枪射流量不小于5L/s的要求,故提高压力,增大消防流量至5L/s,得:==25÷1.577=15.85其实际充实水柱长度为:=15.85/1.2×﹙1+0.0097×15.85﹚=11.45水带损失:=0.0043×25×25=2.69(3)最不利消火栓栓口所需压力:最不利点为18层消火栓处,在满足消防射流量5L/s时该消火栓栓口所需水压为:=15.85+2.69=18.54=185.44.1.5消防管网水力计算1.管网的水力计算分两种工况:(1)水泵供水工况:最不利消防立管的流量为Ⅰ号竖管上的18,17,16层消火栓流量之和。=18.54,消防射流量=5.0L/s17层消火栓处的压力为+3.8(层高)+(17~18层消防立管水头损失)=18.54+3.8+1.1×3.8×0.00749=22.37=223.717层消火栓消防出水量为:==5.49L/s59 16层消火栓处的压力为+3.8(层高)+(16~17层消防立管水头损失)=22.37+3.8+1.1×3.8×0.0295=26.29=262.9==5.95L/s消火栓系统用水量=16.44+16.44+5.0+5.49=43.37L/s表4.1水泵供水工况计算表管段流量(L/s)管径(mm)流速(m/s)单阻I管长m水头损失18~175.001000.580.007493.80.02817~1610.491001.210.029503.80.11216~a16.441001.890.0723059.04.266a~b43.371502.300.0639087.85.610b~c43.371502.300.063907.00.447(1)水箱供水工况火灾初期由水箱供水,水流自上而下流动。18层消火栓栓口的压力为18.54,消防射流量=5.0L/s17层消火栓栓口的压力为+3.8(层高)-(18~17层消防立管水头损失)=18.54+3.8-1.1×3.8×0.00749=22.31=223.1由知=5.48L/s16层消火栓栓口的压力为+3.8(层高)-(17~16层消防立管水头损失)=22.37+3.8-1.1×3.8×0.0295=25.99=259.9=5.92L/s59 表4.2水箱供水工况计算表管段流量(L/s)管径(mm)流速(m/s)单阻I管长m水头损失18~Ⅰ16.401001.890.07193.80.273Ⅰ~Ⅱ16.401001.890.071917.31.244Ⅱ~Ⅲ32.801501.930.048310.00.483Ⅲ~Ⅳ43.281751.840.035515.80.561Ⅳ~Ⅴ43.281751.840.03557.00.249由表4-1知管路沿程水头损失,管路总水头损失为=1.1=11.509;由表4-2知管路沿程水头损失,管路总水头损失为=1.1=3.091。2.消防给水管网人口压力的计算:18层1号消火栓是最不利点,该处的动水压力=18.54=0.19,流量5L/s,17层2号消火栓的动水压力应等于+(层高3.8m)+(17~18层的消防竖管的水头损失)。得:=18.54+3.8+1.1×(3.8×0.00749)=22.37=0.22=22.37+3.8+1.1×(3.8×0.0295)=26.29=0.26同理,计算出从15层至-1层的消火栓口动水压力,各消火栓的剩余压力即为动水压力减去保证消火栓流量为5.0L/s时栓口的水压为0.19,将计算结果列于表4.3。59 表4.3消火栓压力计算层数动水压力剩余压力减压后实际压力孔板孔径180.190.00170.220.03160.260.07150.300.11140.340.15130.390.20120.430.24110.470.28100.510.320.19d2190.550.23d2180.590.27d2170.630.31d2160.670.35d2150.710.39d2140.750.43d2130.790.47d2120.830.51d1910.870.55d19-10.910.59d19查《给水排水设计手册》(第2册)表13-36可知当消火栓支管管径为DN65时,选用20mm孔径的孔板,将3~10层各消火栓动水压力分别减去0.32,所得减压后的实际压力均小于0.5;选用19mm孔径的孔板,将-1~2层各消火栓动水压力分别减去0.45,所得减压后的实际压力均小于0.5。4.1.6消防水箱及水泵的计算59 采用高压给水系统时,可不设高位消防水箱。当采用临时高压给水系统时,应设高位消防水箱,并应符合下列规定:(1)高位消防水箱的消防储水量,一类公共建筑不应小于18m³;(2)高位消防水箱的设置高度应保证最不利点消火栓静水压力。当建筑高度不超过100m时,高层建筑最不利点消火栓静水压力不应低于0.07MPa,当高位消防水箱不能满足上述静压要求时,应设增压设施。(3)增压水泵的出水量,对消火栓给水系统不应大于5L/s;对自动喷水灭火系统不应大于1L/s。1.消防水箱贮水量计算水箱消防贮水量应按建筑物的室内消防用水总量的10min用水量进行计算,消防水箱容积按下式计算:式(4.8)式中—消防水箱容积,m³;—室内消防用水总量,L/s;—火灾初期时间,按10min计。本建筑室内消火栓用水量40L/s,自动喷水灭火系统用水量为16L/s,室内消防用水总量为56L/s,按式(4-8)计算消防水箱贮水量为:=56×10×60÷1000=33.6m³为避免水箱容积过大,《高层民用建筑设计防火规范》(GB50045-2005)规定,高位消防水箱的消防储水量,一类公共建筑不应小于18m³。根据此规定,本建筑消防水箱容积按18m³设计,尺寸为4.2m(长)×2.4m(宽)×2.2m(高),有效容积为19.2m³。为防止消防水泵运行时消防用水进入水箱而不能保证消防设备的水压,在消防出水管上安装止回阀。2.消防水箱设置高度的校核高位水箱的设置高度应满足下式要求;式(4.9)式中—高位水箱最低液位与最不利点消火栓之间的垂直压力差,;59 —最不利点消火栓所需水压,;—管路的总水头损失,。已知=18.54,=3.1+=18.54+3.1=21.64屋顶高度为68.40m,水箱底部高为69.20m,高位水箱最低液位69.30m,与最不利点消火栓高度68.40-(3.8-1.1)=65.70m之间的垂直高度差为=69.30-65.70=3.6m。﹤+,即水箱的设置高度不能满足最不利点消火栓处所需的压力要求,应设增压设施。1.增压设备的计算与选择本设计采用稳压泵增压,为避免稳压泵启动频繁的缺点,可配置小型气压罐,气压罐的调节容积采用450L,略加大稳压泵的流量,使稳压泵的运行时间比较连续并有较长的间歇时间。稳压泵的扬程按下式计算:式(4.10)式中—最不利点消火栓所需水压,;—管路的总水头损失,;—高位水箱最低液位与最不利点消火栓之间的垂直高差,。由前面计算结果知:=18.54,=3.1,=3.6,则=18.54+3.1-3.6=18.04。气压罐的调节容积采用450L,稳压泵流量按=1L/s,消火栓系统需要补压为=18.04。选ISG32-160A单级单吸管道离心泵一套,Q=1.1L/s,H=25m,采用D1000立式隔膜气压罐一个。2.消防水泵的计算与选择59 消防水泵的流量,应按满足火灾发生时建筑内消火栓使用总数的每个消火栓的设计流量之和计算。消防水泵的扬程按下式计算:式(4.11)式中—消防水泵的压力,;—最不利点消火栓所需水压,;—管网的水头损失,;—消防水池最低水位与最不利消火栓的压力差,。由前面计算已知,消火栓系统消防水量为=43.37L/s,最不利点消火栓所需水压为18.54,消防水池最低水位为-3.30m,最不利消火栓的标高为65.70m,两者之间的高差为65.70+3.30=69.00m。由消防泵吸水口至最不利消火栓的管道的水头损失为=11.51则消火栓泵的扬程为:=18.54+11.51+69.00=99.05m根据=43.37L/s,=99.05m,选择80DXL—35×3立式多级消防泵两台,一用一备.水泵性能参数=46.8L/s,=103.5m,电机功率=37kw。4.2自动喷水灭火系统4.2.1自动喷水灭火系统的设置场所我国《高层民用建筑设计防火规范》规定,高层建筑下列部位均应设置自动喷水灭火系统:(1)建筑高度不超过100m的一类高层建筑及其裙房,除游泳池、溜冰场、建筑面积小于5.00m²的卫生间、普通住宅、设集中空调的住宅的户内用房和不宜用水扑救的部位外,均应设自动喷水灭火系统。(2)二类高层公共建筑的下列部位应设自动喷水灭火系统:公共活动用房;走道、办公室和旅馆的客房;自动扶梯底部;可燃物品库房。(3)高层建筑中的歌舞娱乐放映游艺场所、空调机房、公共餐厅、公共厨房以及经常有人停留或可燃物较多的地下室、半地下室房间等,应设自动喷水灭火系统。59 高层建筑的下列房间,应设置气体灭火系统:(1)主机房建筑面积不小于140m²的电子计算机房中的主机房和基本工作间的已记录磁、纸介质库。4.2.2自动喷水灭火系统选型及布置方案本设计自动喷水灭火系统采用临时高压给水系统,系统持续喷水时间按火灾延续时间1h计,火灾初期10min喷水系统用水与消火栓系统10min用水一并贮存在屋顶消防水箱内。本建筑地处北方,冬季室内采暖,室内温度大于4℃,故采用湿式自动喷水灭火系统,该系统由闭式喷头、报警装置、湿式报警阀、管网及供水设施等组成。喷头选用下垂型喷头。自动控制报警阀安装在地下室。室外设有水泵接合器。根据《高层民用建筑设计防火规范》,自动喷水灭火系统管网内的压力不应大于1.2MPa,即120。本建筑中喷水灭火系统最大工作压力小于120,竖向不分区。在本设计中,为了保证消防自救能力,在地下室除设备间外,办公室、走廊、会议室等中均设有喷头。呼市检察院火灾危险等级为中危险Ⅰ级,查手册知该建筑自动喷水灭火系统的喷水强度为6.0L/(minm²),作用面积160m²。各层的喷头采用矩形布置,长边边长最大为4.0m,一支喷头的最大保护面积为12.5m²,喷头与端墙的最大距离为1.8m。自动喷水灭火系统设置水泵接合器,每个水泵接合器的流量按10—15L/s计算。自动喷水灭火系统的设计流量取为理论流量的1.3倍,即1.3×16=20.8L/s,取21L/s,自动喷水灭火系统设置2个水泵接合器。4.2.3供水管道与阀门的布置要求(1)自动喷水灭火系统管网一般设计成独立系统,当系统设有2个及2个以上报警阀组时,报警阀前的供水管道宜布置成环状,进水管不宜少于两条。(2)报警阀应设在距地面高度1.2m,且无冰冻危险、易于排水、维护管理方便、明显的地点。(3)闭式自动喷水灭火系统的每个报警阀控制的最多喷头数宜为800个。4.2.4自喷系统设计计算59 作用面积法是《自动喷水灭火系统设计规范》推荐的设计计算方法。在设计计算时首先按照对设计基本数据的要求,确定自动喷水系统中最不利处的作用面积(以F表示)的位置,此作用面积的形状宜为矩形,其长边应平行于配水支管,且不宜小于1.2。作用面积内的喷头数的取值应不小于规定作用面积除以一只喷头保护面积所得结果。计算喷水量时,仅包括作用面积内的喷头。对于轻危险级和中危险级建、构筑物的自动喷水灭火,计算时可假定作用面积内每只喷头的喷水量相等,均以最不利点喷头喷水量取值,且应保证作用面积内的平均喷水强度不小于6.0L/(minm²)。最不利点处的作用面积内任意4个喷头围合面积内的平均喷水强度,轻危险级和中危险级不应低于规定的85%。作用面积选定后,从最不利点开始,依次计算各管道的流量和水头损失,直至作用面积内最末一个为止。以后管道的流量不再增加,仅计算管道水头损失。本建筑属于中危Ⅰ级建筑,设计喷水强度为6.0L/(minm²),作用面积为160m²,最不利点喷头的工作压力为0.1。喷头的出流量按下式计算:式(4.12)式中—喷头出流量,L/min;—喷头流量系数,标准喷头=80;—喷头出口处的压力(喷头工作压力),。则喷头的出流量=80=80L/min=1.33L/s自动喷水灭火系统采用作用面积法计算长边L=1.2=15式(4.13)短边B==11式(4.14)L×B=15×11=165㎡﹥160㎡4.2.5自喷系统水力计算按照规范规定,湿式闭式自动喷水系统的每个报警阀组控制喷头数不宜超过800个,本设计地下一层喷头数为108个,一层喷头数为149个,二层喷头数为119个,三层喷头数为108个,四—八层喷头数每层均为100个,九—十三层喷头数每层均为134个,十四—十八层喷头数每层均为117个,共有喷头2239个,每个报警阀组控制喷头数不超过800个,结合本建筑特点,设四组报警阀组,地下一层—59 三层共用一组报警阀组,四—八层共用一组报警阀组,九—十三层共用一组报警阀组,四—十八层共用一组报警阀组。一、作用面积法水力计算如表(4.4)所示;自动喷水灭火系统作用面积法水力计算简图如图4.2所示:图4.2作用面积法水力计算简图59 表4.4作用面积法水力计算节点编号管段编号节点处水压喷头流量管段流量管径mm流速水力坡度1000i管段长度m水头损失11—20.08172.001.20252.446293.000.18522—30.266130.463.37322.324542.660.11833—40.3844.70502.212453.450.08344—50.467(310.98)9.88652.634853.150.15055—60.617(357.46)15.84803.143692.800.10166—70.718(385.61)22.271002.607292.800.2000.83759 二、系统秒流量和自喷水泵所需扬程(1)系统秒流量作用面积内系统设计秒流量=22.27L/s,中危险级作用面积内的平均喷水强度不小于6L/(minm²)22.27×60÷165=8.1L/(minm²)﹥6L/(minm²)(2)自喷水泵所需扬程消防泵的供水压力按下式计算式(4.15)式中—消防泵的供水压力,;—最不利点喷头的工作压力,;—最不利点喷头与消防水池最低液位之间的高度压力差,;—计算管路沿程水头损失与局部水头损失之和,;—报警阀的压力损失,。则=8.1+(67.3+3.3)+1.2×83.7+1.51=180.65根据=22.27L/s,=180.65,选100DXL—20×8立式多级消防泵两台,一备一用,水泵特性如表(4.5)所示:Q=22.27L/sH=180.65转数电机功率20184n=1450r/min配套电机功率45kw2516830152表4.5消防水泵特性59 4.3室外消防给水系统高层建筑室外消防给水系统是指以一幢高层建筑为主体的包括其附属的低层或多层的辅助建筑所组成的小区,或数幢临近的、独立所属的高层建筑所组成的建筑群中的室外消防给水系统。4.3.1室外消防给水水源高层建筑室外消防给水水源,一般分为三种:市政给水管网、天然水源和消防水池。为了确保安全可靠的供水,本设计采用市政给水管网和消防水池同时作为室外消防给水水源。4.3.2室外消火栓室外消火栓的数量应根据室外消火栓用水量经计算确定,每个消火栓的用水量为10-15L/s,室外消防水量30L/s,考虑到风向及备用设计采用4个室外消火栓。室外消火栓应沿检察院周边均匀布置,为便于消防车直接从消火栓取水,消火栓距路边的距离不大于2m。为便于使用,消火栓距外墙的距离不小于5m,并不大于40m。由于地处北方,考虑到防冻要求,采用地下式消火栓。地下式消火栓安装在消火栓井内,消火栓井采用保温井盖。59 第五章设备材料表及工程概预算材料统计表如表5.4所示:表5.4材料统计表管材管段名称数量单位PPR管DN15106.5DN208.4DN2579.5DN40455.6DN50275.690弯头(DN25)10个90弯头(DN40)43个90弯头(DN50)29个三通(40×40×50)24个三通(40×40×25)14个三通(15×15×25)15个三通(50×50×40)4个三通(50×50×50)6个三通(50×50×70)2个三通(70×70×50)12个三通(50×50×15)14个钢管DN5060.8DN7070.8铸铁管DN50244.3DN7540.6DN100588.3DN12544.9三通(100×100×100)54个三通(100×100×75)14个59 三通(100×100×125)1个续表5.4材料统计表铸铁管三通(125×125×100)4个三通(150×150×100)1个90弯头(DN50)89个90弯头(DN100)24个镀锌钢管DN100681.3DN17532.490弯头(DN50)35个90弯头(DN90)38个90弯头(DN32)9个三通(100×100×100)5个三通(50×50×50)67个三通(90×50×90)26个三通(50×32×50)9个钢管DN100296DN7034790弯头(DN100)37个90弯头(DN70)15个三通(100×100×100)6个三通(100×70×100)18个三通(70×70×70)69个59 设备统计表如表5.5所示:表5.5设备统计表编号名称材料数量单位规格1洗手盆瓷79套台式2小便器瓷46套挂式3大便器瓷30套坐式4大便器瓷115套蹲式5地漏铸铁97个圆形6消防水泵接合器5套100DN7室内消火栓141套单阀单栓8消火栓箱铝合金140套650×800×2009给水泵2组KQF2Q-0885(100)F10潜污泵2组80WQ40—15—411消火栓消防泵2组80DXL-35×312喷淋泵2组100DXL-20×813水表1组DN5014检查口33个15清扫口87个16湿式报警阀4组59 本工程概预算如表5.6所示:表5.6呼市检察院大楼给排水及消防设计概预算序号定额编号分部分项工程名称工程量价格其中定额单位数量定额单价(元)合价(元)人工费材料费/元单价金额(元)单价金额(元)18-863PPR(DN15)106.98.04859.474.32461.83.56380.528-864PPR(DN20)8.47.6063.844.7539.92.6922.638-865PPR(DN25)79.58.57681.314.99396.73.42271.948-867PPR(DN40)455.69.264218.95.662578.73.311508.158-868PPR(DN50)275.68.292284.75.861615.02.14589.868-904钢管(DN50)60.812.45756.911.82718.70.4225.578-905钢管(DN70)70.813.28940.212.49884.30.4934.788-161铸铁(DN50)244.351.42125629.142232.942.281032998-162铸铁(DN75)40.690.373669.010.93443.779.433224.8108-163铸铁(DN100)588.3129.67624314.128306.8115.567960118-164铸铁(DN125)44.9155.66986.414.98672.6140.76317.4128-108镀锌钢管(DN150)681.3106.47249017.051161688.3160165138-1071蹲便器个115207.62387423.502702.5184.1121172148-1076坐便器个30201.1603325.01750.3176.065281.8158-1079小便器个4698.074511.211.67536.886.403974.4168-473洗手盆个7980.546362.618.771482.861.774879.8178-486污水盆个1959.481130.116.17307.243.31822.9188-479洗涤盆个9142.71284.320.44183.9122.341101.159 198-535地漏DN50个9734.43336.86.53633.427.882704.4续表5.6呼市检察院大楼给排水及消防设计概预算合计.736864.7注:该概算采用2009年定额,算出总造价后乘以系数1.56乘系数后总造价:(.72+36864+.7)×1.56=.18工程超高后的费用:.18×1.35=.09元其它工程费按主要费的5%计算:.09×5%=48008.1元综合费按工程费的15%计算:(.09+48008.1)×15%=.53元工程建设其它费用按总费用的8.24%计算:(.09+48008.1+.53)×8.24%=95534.21元59 内蒙古科技大学毕业设计说明书外文文献及翻译外文文献一:  Sealedbuildingdrainageandventsystems—anapplicationofactiveairpressuretransientcontrolandsuppressionAbstractTheintroductionofsealedbuildingdrainageandventsystemsisconsideredaviablepropositionforcomplexbuildingsduetotheuseofactivepressuretransientcontrolandsuppressionintheformofairadmittancevalvesandpositiveairpressureattenuatorscoupledwiththeinterconnectionofthenetwork"sverticalstacks.Thispaperpresentsasimulationbasedonafour-stacknetworkthatillustratesflowmechanismswithinthepipeworkfollowingbothappliancedischargegenerated,andsewerimposed,transients.Thissimulationidentifiestheroleoftheactiveairpressurecontroldevicesinmaintainingsystempressuresatlevelsthatdonotdepletetrapseals.Furthersimulationexerciseswouldbenecessarytoprovideproofofconcept,anditwouldbeadvantageoustoparallelthesewithlaboratory,andpossiblysite,trialsforvalidationpurposes.Despitethiscautiontheinitialresultsarehighlyencouragingandaresufficienttoconfirmthepotentialtoprovidedefinitebenefitsintermsofenhancedsystemsecurityaswellasincreasedreliabilityandreducedinstallationandmaterialcosts.Keywords:Activecontrol;Trapretention;Transientpropagation   Nomenclature   C+-——characteristicequations   c——wavespeed,m/s   D——branchorstackdiameter,m   f——frictionfactor,UKdefinitionviaDarcyΔh=4fLu2/2Dg   g——accelerationduetogravity,m/s2   K——losscoefficient   L——pipelength,m   p——airpressure,N/m2   t——time,s   u——meanairvelocity,m/s   x——distance,m   γ——ratiospecificheats   Δh——headloss,m103 内蒙古科技大学毕业设计说明书   Δp——pressuredifference,N/m2   Δt——timestep,s   Δx——internodallength,m   ρ——density,kg/m3   ArticleOutline   Nomenclature  1.Introduction—airpressuretransientcontrolandsuppression  2.Mathematicalbasisforthesimulationoftransientpropagationinmulti-stackbuildingdrainagenetworks  3.Roleofdiversityinsystemoperation  4.Simulationoftheoperationofamulti-stacksealedbuildingdrainageandventsystem  5.Simulationsignconventions  6.Waterdischargetothenetwork  7.Surchargeatbaseofstack1  8.Sewerimposedtransients  9.Trapsealoscillationandretention10.Conclusion—viabilityofasealedbuildingdrainageandventsystem   1.Airpressuretransientsgeneratedwithinbuildingdrainageandventsystemsasanaturalconsequenceofsystemoperationmayberesponsiblefortrapsealdepletionandcrosscontaminationofhabitablespace[1].Traditionalmodesoftrapsealprotection,basedontheVictorianengineer"sobsessionwithodourexclusion[2],[3]and[4],dependpredominantlyonpassivesolutionswhererelianceisplacedoncrossconnectionsandverticalstacksventedtoatmosphere[5]and[6].Thisapproach,whilebothprovenandtraditional,hasinherentweaknesses,includingtheremotenessoftheventterminations[7],leadingtodelaysinthearrivalofrelievingreflections,andthemultiplicityofopenrooflevelstackterminationsinherentwithincomplexbuildings.Thecomplexityoftheventsystemrequiredalsohassignificantcostandspaceimplications[8].   Thedevelopmentofairadmittancevalves(AAVs)overthepasttwodecadesprovidesthedesignerwithameansofalleviatingnegativetransientsgeneratedasrandomappliancedischargescontributetothetimedependentwater-flowconditionswithinthesystem.AAVs103 内蒙古科技大学毕业设计说明书representanactivecontrolsolutionastheyresponddirectlytothelocalpressureconditions,openingaspressurefallstoallowareliefairinflowandhencelimitthepressureexcursionsexperiencedbytheappliancetrapseal[9].   However,AAVsdonotaddresstheproblemsofpositiveairpressuretransientpropagationwithinbuildingdrainageandventsystemsasaresultofintermittentclosureofthefreeairpaththroughthenetworkorthearrivalofpositivetransientsgeneratedremotelywithinthesewersystem,possiblybysomesurchargeeventdownstream—includingheavyrainfallincombinedsewerapplications.   Thedevelopmentofvariablevolumecontainmentattenuators[10]thataredesignedtoabsorbairflowdrivenbypositiveairpressuretransientscompletesthenecessarydeviceprovisiontoallowactiveairpressuretransientcontrolandsuppressiontobeintroducedintothedesignofbuildingdrainageandventsystems,forboth‘standard’buildingsandthoserequiringparticularattentiontobepaidtothesecurityimplicationsofmultiplerooflevelopenstackterminations.Thepositiveairpressureattenuator(PAPA)consistsofavariablevolumebagthatexpandsundertheinfluenceofapositivetransientandthereforeallowssystemairflowstoattenuategradually,thereforereducingthelevelofpositivetransientsgenerated.TogetherwiththeuseofAAVstheintroductionofthePAPAdeviceallowsconsiderationofafullysealedbuildingdrainageandventsystem.   Fig.1illustratesbothAAVandPAPAdevices,notethatthewaterlesssheathtrapactsasanAAVundernegativelinepressure.  Fig.1.Activeairpressuretransientsuppressiondevicestocontrolbothpositiveandnegativesurges.   Activeairpressuretransientsuppressionandcontrolthereforeallowsforlocalizedinterventiontoprotecttrapsealsfrombothpositiveandnegativepressureexcursions.Thishasdistinctadvantagesoverthetraditionalpassiveapproach.Thetimedelayinherentinawaitingthereturnofarelievingreflectionfromaventopentoatmosphereisremovedandtheeffectofthetransientonalltheothersystemtrapspassedduringitspropagationisavoided.  2.Mathematicalbasisforthesimulationoftransientpropagationinmulti-stackbuildingdrainagenetworks.103 内蒙古科技大学毕业设计说明书   ThepropagationofairpressuretransientswithinbuildingdrainageandventsystemsbelongstoawellunderstoodfamilyofunsteadyflowconditionsdefinedbytheStVenantequationsofcontinuityandmomentum,andsolvableviaafinitedifferenceschemeutilizingthemethodofcharacteristicstechnique.Airpressuretransientgenerationandpropagationwithinthesystemasaresultofairentrainmentbythefallingannularwaterinthesystemverticalstacksandthereflectionandtransmissionofthesetransientsatthesystemboundaries,includingopenterminations,connectionstothesewer,appliancetrapsealsandbothAAVandPAPAactivecontroldevices,maybesimulatedwithprovenaccuracy.Thesimulation[11]provideslocalairpressure,velocityandwavespeedinformationthroughoutanetworkattimeanddistanceintervalsasshortas0.001 sand300 mm.Inaddition,thesimulationreplicateslocalappliancetrapsealoscillationsandtheoperationofactivecontroldevices,therebyyieldingdataonnetworkairflowsandidentifyingsystemfailuresandconsequences.Whilethesimulationhasbeenextensivelyvalidated[10],itsusetoindependentlyconfirmthemechanismofSARSvirusspreadwithintheAmoyGardensoutbreakin2003hasprovidedfurtherconfidenceinitspredictions[12].   Airpressuretransientpropagationdependsupontherateofchangeofthesystemconditions.Increasingannulardownflowgeneratesanenhancedentrainedairflowandlowersthesystempressure.Retardingtheentrainedairflowgeneratespositivetransients.Externaleventsmayalsopropagatebothpositiveandnegativetransientsintothenetwork.   Theannularwaterflowinthe‘wet’stackentrainsanairflowduetotheconditionof‘noslip’establishedbetweentheannularwaterandaircoresurfacesandgeneratestheexpectedpressurevariationdownaverticalstack.Pressurefallsfromatmosphericabovethestackentryduetofrictionandtheeffectsofdrawingairthroughthewatercurtainsformedatdischargingbranchjunctions.Inthelowerwetstackthepressurerecoverstoaboveatmosphericduetothetractionforcesexertedontheairflowpriortofallingacrossthewatercurtainatthestackbase.   Theapplicationofthemethodofcharacteristicstothemodellingofunsteadyflowswasfirstrecognizedinthe1960s[13].TherelationshipsdefinedbyJack[14]allowsthesimulationtomodelthetractionforceexertedontheentrainedair.Extensiveexperimentaldataallowedthedefinitionofa‘pseudo-frictionfactor’applicableinthewetstackand103 内蒙古科技大学毕业设计说明书operableacrossthewaterannularflow/entrainedaircoreinterfacetoallowcombineddischargeflowsandtheireffectonairentrainmenttobemodelled.   ThepropagationofairpressuretransientsinbuildingdrainageandventsystemsisdefinedbytheStVenantequationsofcontinuityandmomentum[9],Thesequasi-linearhyperbolicpartialdifferentialequationsareamenabletofinitedifferencesolutiononcetransformedviatheMethodofCharacteristicsintofinitedifferencerelationships,Eqs.(3)–(6),thatlinkconditionsatanodeonetimestepinthefuturetocurrentconditionsatadjacentupstreamanddownstreamnodes,Fig.2.   Fig.2.StVenantequationsofcontinuityandmomentumallowairflowvelocityandwavespeedtobepredictedonanx-tgridasshown.   Theseequationsinvolvetheairmeanflowvelocity,u,andthelocalwavespeed,c,duetotheinterdependenceofairpressureanddensity.LocalpressureiscalculatedasSuitableequationslinklocalpressuretoairflowortotheinterfaceoscillationoftrapseals.   Thecaseoftheappliancetrapsealisofparticularimportance.Thetrapsealwatercolumnoscillatesundertheactionoftheappliedpressuredifferentialbetweenthetransientsinthenetworkandtheroomairpressure.TheequationofmotionfortheU-bendtrapsealwatercolumnmaybewrittenatanytimeasItshouldberecognizedthatwhilethewatercolumnmayriseontheapplianceside,converselyonthesystemsideitcanneverexceedadatumleveldrawnatthebranchconnection.   Inpracticaltermstrapsealsaresetat75or50 mmintheUKandotherinternationalstandardsdependentuponappliancetype.Trapsealretentionisthereforedefinedasadepthlessthantheinitialvalue.Manystandards,recognizingthetransientnatureoftrapsealdepletionandtheopportunitythatexistsforre-chargeonappliancedischargeallow25%depletion.   Theboundaryequationmayalsobedeterminedbylocalconditions:theAAVopeningandsubsequentlosscoefficientdependsonthelocallinepressureprediction.   EmpiricaldataidentifiestheAAVopeningpressure,itslosscoefficientduringopeningandatthefullyopencondition.Appliancetrapsealoscillationistreatedasaboundaryconditiondependentonlocalpressure.Deflectionofthetrapsealtoallowanairpathto,orfrom,theapplianceordisplacementleadingtooscillationalonemaybothbemodelled.103 内蒙古科技大学毕业设计说明书Reductionsintrapsealwatermassduringthetransientinteractionmustalsobeincluded.   3.Roleofdiversityinsystemoperation   Incomplexbuildingdrainagenetworkstheoperationofthesystemappliancestodischargewatertothenetwork,andhenceprovidetheconditionsnecessaryforairentrainmentandpressuretransientpropagation,isentirelyrandom.Notwosystemswillbeidenticalintermsoftheirusageatanytime.Thisdiversityofoperationimpliesthatinter-stackventingpathswillbeestablishediftheindividualstackswithinacomplexbuildingnetworkarethemselvesinterconnected.Itisproposedthatthisdiversityisutilizedtoprovideventingandtoallowseriousconsiderationtobegiventosealeddrainagesystems.   Inordertofullyimplementasealedbuildingdrainageandventsystemitwouldbenecessaryforthenegativetransientstobealleviatedbydrawingairintothenetworkfromasecurespaceandnotfromtheexternalatmosphere.Thismaybeachievedbytheuseofairadmittancevalvesoratapredeterminedlocationwithinthebuilding,forexampleanaccessibleloftspace.   Similarly,itwouldbenecessarytoattenuatepositiveairpressuretransientsbymeansofPAPAdevices.InitiallyitmightbeconsideredthatthiswouldbeproblematicaspositivepressurecouldbuildwithinthePAPAinstallationsandthereforenegatetheirabilitytoabsorbtransientairflows.ThismayagainbeavoidedbylinkingtheverticalstacksinacomplexbuildingandutilizingthediversityofuseinherentinbuildingdrainagesystemsasthiswillensurethatPAPApressuresarethemselvesalleviatedbyallowingtrappedairtoventthroughtheinterconnectedstackstothesewernetwork.   Diversityalsoprotectstheproposedsealedsystemfromsewerdrivenoverpressureandpositivetransients.Acomplexbuildingwillbeinterconnectedtothemainsewernetworkviaanumberofconnectingsmallerboredrains.Adversepressureconditionswillbedistributedandthenetworkinterconnectionwillcontinuetoprovideventingroutes.   Theseconceptswillbedemonstratedbyamulti-stacknetwork.   4.Simulationoftheoperationofamulti-stacksealedbuildingdrainageandventsystem   Fig.3illustratesafour-stacknetwork.ThefourstacksarelinkedathighlevelbyamanifoldleadingtoaPAPAandAAVinstallation.Waterdownflowsinanystackgenerate103 内蒙古科技大学毕业设计说明书negativetransientsthatdeflatethePAPAandopentheAAVtoprovideanairflowintothenetworkandouttothesewersystem.PositivepressuregeneratedbyeitherstacksurchargeorsewertransientsareattenuatedbythePAPAandbythediversityofusethatallowsonestack-to-sewerroutetoactasareliefroutefortheotherstacks.   Thenetworkillustratedhasanoverallheightof12m.Pressuretransientsgeneratedwithinthenetworkwillpropagateattheacousticvelocityinair.Thisimpliespipeperiods,fromstackbasetoPAPAofapproximately0.08sandfromstackbasetostackbaseofapproximately0.15s.   Inordertosimplifytheoutputfromthesimulationnolocaltrapsealprotectionisincluded—forexamplethetrapscouldbefittedwitheitherorbothanAAVandPAPAasexamplesofactivecontrol.Traditionalnetworkswouldofcourseincludepassiveventingwhereseparateventstackswouldbeprovidedtoatmosphere,howeverasealedbuildingwoulddispensewiththisventingarrangement.  Fig.3.Fourstackbuildingdrainageandventsystemtodemonstratetheviabilityofasealedbuildingsystem.   Ideallythefoursewerconnectionsshownshouldbetoseparatecollectiondrainssothatdiversityinthesewernetworkalsoactstoaidsystemselfventing.Inacomplexbuildingthisrequirementwouldnotbearduousandwouldinallprobabilitybethenorm.Itisenvisagedthatthestackconnectionstothesewernetworkwouldbedistributedandwouldbetoabelowgrounddrainagenetworkthatincreasedindiameterdownstream.Otherconnectionstothenetworkwouldinallprobabilitybefrombuildingsthatincludedthemoretraditionalopenventsystemdesignsothatafurtherlevelofdiversityisaddedtooffsetanydownstreamsewersurchargeeventsoflongduration.Similarconsiderationsledtothecurrentdesignguidancefordwellings.   Itisstressedthatthenetworkillustratedisrepresentativeofcomplexbuildingdrainagenetworks.Thesimulationwillallowarangeofappliancedischargeandsewerimposedtransientconditionstobeinvestigated.   Thefollowingappliancedischargesandimposedsewertransientsareconsidered:   1.w.c.dischargetostacks1–3overaperiod1–6sandaseparatew.c.dischargetostack4between2and7s.103 内蒙古科技大学毕业设计说明书   2.Aminimumwaterflowineachstackcontinuesthroughoutthesimulation,setat0.1L/s,torepresenttrailingwaterfollowingearliermultipleappliancedischarges.   3.A1sdurationstackbasesurchargeeventisassumedtooccurinstack1at2.5s.   4.Sequentialsewertransientsimposedatthebaseofeachstackinturnfor1.5sfrom12to18s.   Thesimulationwilldemonstratetheefficacyofboththeconceptofactivesurgecontrolandinter-stackventinginenablingthesystemtobesealed,i.e.tohavenohighlevelroofpenetrationsandnoventstacksopentoatmosphereoutsidethebuildingenvelope.   Theimposedwaterflowswithinthenetworkarebasedon‘real’systemvalues,beingrepresentativeofcurrentw.c.dischargecharacteristicsintermsofpeakflow,2l/s,overallvolume,6l,andduration,6s.Thesewertransientsat30mmwatergaugearerepresentativebutnotexcessive.Table1definesthew.c.dischargeandsewerpressureprofilesassumed.    5.Simulationconventions   Itshouldbenotedthatheightsforthesystemstacksaremeasuredpositiveupwardsfromthestackbaseineachcase.Thisimpliesthatentrainedairflowtowardsthestackbaseisnegative.AirflowenteringthenetworkfromanyAAVsinstalledwillthereforebeindicatedasnegative.Airflowexitingthenetworktothesewerconnectionwillbenegative.   Airflowenteringthenetworkfromthesewerconnectionorinducedtoflowupanystackwillbepositive.   Waterdownflowinaverticalishoweverregardedaspositive.  Observingtheseconventionswillallowthefollowingsimulationtobebetterunderstood.   6.Waterdischargetothenetwork   Table1illustratesthew.c.dischargesdescribedabove,simultaneousfrom1stostacks1–3andfrom2stostack4.Abaseofstacksurchargeisassumedinstack1from2.5to3s.AsaresultitwillbeseenfromFig.4thatentrainedairdownflowsareestablishedinpipes1,6and14asexpected.However,theentrainedairflowinpipe19isintothenetworkfromthesewer.Initially,asthereisonlyatricklewaterflowinpipe19,theentrainedairflowinpipe19duetothew.c.dischargesalreadybeingcarriedbypipes1,6and14,isreversed,i.e.upthestack,andcontributestotheentrainedairflowdemandinpipes1,6and14.TheAAVon103 内蒙古科技大学毕业设计说明书pipe12alsocontributesbutinitiallythisisasmallproportionoftherequiredairflowandtheAAVfluttersinresponsetolocalpressureconditions.   Fig.4.Entrainedairflowsduringappliancedischarge.   Followingthew.c.dischargetostack4thatestablishesawaterdownflowinpipe19from2 sonwards,thereversedairflowinitiallyestablisheddiminishesduetothetractionappliedbythefallingwaterfilminthatpipe.However,thesuctionpressuresdevelopedintheotherthreestacksstillresultsinacontinuingbutreducedreversedairflowinpipe19.Asthewaterdownflowinpipe19reachesitsmaximumvaluefrom3 sonwards,theAAVonpipe12opensfullyandanincreasedairflowfromthissourcemaybeidentified.Theflutterstageisreplacedbyafullyopenperiodfrom3.5to5.5 s.   Fig.5illustratestheairpressureprofilefromthestackbaseinbothstacks1and4at2.5 sintothesimulation.Theairpressureinstack4demonstratesapressuregradientcompatiblewiththereversedairflowmentionedabove.Theairpressureprofileinstack1istypicalforastackcarryinganannularwaterdownflowanddemonstratestheestablishmentofapositivebackpressureduetothewatercurtainatthebaseofthestack.  Fig.5.Airpressureprofileinstacks1and4illustratingthepressuregradientdrivingthereversedairflowinpipe19.   TheinitialcollapsedvolumeofthePAPAinstalledonpipe13was0.4l,withafullyexpandedvolumeof40l,howeverduetoitssmallinitialvolumeitmayberegardedascollapsedduringthisphaseofthesimulation.   7.Surchargeatbaseofstack1   Fig.6indicatesasurchargeatthebaseofstack1,pipe1from2.5to3 s.Theentrainedairflowinpipe1reducestozeroatthestackbaseandapressuretransientisgeneratedwithinthatstack,Fig.6.Theimpactofthistransientwillalsobeseenlaterinadiscussionofthetrapsealresponsesforthenetwork.   Fig.6.Airpressurelevelswithinthenetworkduringthew.c.dischargephaseofthesimulation.Notesurchargeatbasestack1,pipe1at2.5s.   Itwillalsobeseen,Fig.6,thatthepredictedpressureatthebaseofpipes1,6and14,intheabsenceofsurcharge,conformtothatnormallyexpected,namelyasmallpositivebackpressureastheentrainedairisforcedthroughthewatercurtainatthebaseofthestackand103 内蒙古科技大学毕业设计说明书intothesewer.Inthecaseofstack4,pipe19,thereversedairflowdrawnintothestackdemonstratesapressuredropasittraversesthewatercurtainpresentatthatstackbase.   Thesimulationallowstheairpressureprofilesupstack1tobemodelledduring,andfollowing,thesurchargeillustratedinFig.6.Fig.7(a)and(b)illustratetheairpressureprofilesinthestackfrom2.0to3.0 s,theincreasinganddecreasingphasesofthetransientpropagationbeingpresentedsequentially.ThetracesillustratethepropagationofthepositivetransientupthestackaswellasthepressureoscillationsderivedfromthereflectionofthetransientatthestackterminationattheAAV/PAPAjunctionattheupperendofpipe11.  Fig.7.(a)Sequentialairpressureprofilesinstack1duringinitialphaseofstackbasesurcharge.(b)Sequentialairpressureprofilesinstack1duringfinalphaseofstackbasesurcharge.   Table2illustratestheimpositionofaseriesofsequentialsewertransientsatthebaseofeachstack.Fig.8demonstratesapatternthatindicatestheoperationofboththePAPAinstalledonpipe13andtheself-ventingprovidedbystackinterconnection.    Asthepositivepressureisimposedatthebaseofpipe1at12 s,airflowisdrivenupstack1towardsthePAPAconnection.However,asthebaseoftheotherstackshavenotayethadpositivesewerpressurelevelsimposed,asecondaryairflowpathisestablisheddownwardstothesewerconnectionineachofstacks2–4,asshownbythenegativeairflowsinFig.8.   AstheimposedtransientabatessothereversedflowreducesandthePAPAdischargesairtothenetwork,againdemonstratedbythesimulation,Fig.8.Thispatternrepeatsaseachofthestacksissubjectedtoasewertransient.   Fig.9illustratestypicalairpressureprofilesinstacks1and2.Thepressuregradientinstack2confirmstheairflowdirectionupthestacktowardstheAAV/PAPAjunction.Itwillbeseenthatpressurecontinuestodecreasedownstack1untilitrecovers,pipes1and3,duetotheeffectofthecontinuingwaterflowinthosepipes.   ThePAPAinstallationreactstothesewertransientsbyabsorbingairflow,Fig.10.ThePAPAwillexpanduntiltheaccumulatedairinflowreachesitsassumed40 lvolume.AtthatpointthePAPAwillpressurizeandwillassisttheairflowoutofthenetworkviathestacksunaffectedbytheimposedpositivesewertransient.Notethatasthesewertransientisapplied103 内蒙古科技大学毕业设计说明书sequentiallyfromstacks1–4thispatternisrepeated.ThevolumeofthehighlevelPAPA,togetherwithanyothersintroducedintoamorecomplexnetwork,couldbeadaptedtoensurethatnosystempressurizationoccurred.  Fig.9.Airpressureprofileinstack1and2duringthesewerimposedtransientinstack2,15sintothesimulation.   Fig.10.PAPAvolumeandAAVthroughflowduringsimulation.   TheeffectofsequentialtransientsateachofthestacksisidentifiableasthePAPAvolumedecreasesbetweentransientsduetotheentrainedairflowmaintainedbytheresidualwaterflowsineachstack.   9.Trapsealoscillationandretention   Theappliancetrapsconnectedtothenetworkmonitorandrespondtothelocalbranchairpressures.Themodelprovidesasimulationoftrapsealdeflection,aswellasfinalretention.Fig.11(a,b)presentthetrapsealoscillationsforonetraponeachofthestacks1and2,respectively.Astheairpressurefallsinthenetwork,thewatercolumninthetrapisdisplacedsothattheappliancesidewaterlevelfalls.However,thesystemsidelevelisgovernedbythelevelofthebranchentryconnectionsothatwaterislosttothenetwork.ThiseffectisillustratedinbothFig.11(a)and(b).Transientconditionsinthenetworkresultintrapsealoscillation,howeverattheendoftheeventthetrapsealwillhavelostwaterthatcanonlybereplenishedbythenextapplianceusage.Ifthetransienteffectsareseverethanthetrapmaybecometotallydepletedallowingapotentialcrosscontaminationroutefromthenetworktohabitablespace.Fig.11(a)and(b)illustratethetrapsealretentionattheendoftheimposednetworktransients.  Fig.11.(a)Trapsealoscillation,trap2.(b)Trapsealoscillation,trap7.   Fig.11(a),representingthetraponpipe2,illustratestheexpectedinducedsiphonageoftrapsealwaterintothenetworkasthestackpressurefalls.Thesurchargeeventinstack1interruptsthisprocessat2s.Thetraposcillationsabatefollowingthecessationofwaterdownflowinstack1.Theimpositionofasewertransientisapparentat12sbythewatersurfacelevelrisingintheappliancesideofthetrap.Amoreseveretransientcouldhaveresultedin‘bubblingthrough’atthisstageifthetrapsystemsidewatersurfacelevelfelltothelowestpointoftheU-bend.103 内蒙古科技大学毕业设计说明书   Thetrapsealoscillationsfortrapsonpipes7,Fig.11(b)and15,areidenticaltoeachotheruntilthesequentialimpositionofsewertransientsat14and16s.Notethatthesurchargeinpipe1doesnotaffectthesetrapsastheyareremotefromthebaseofstack1.Thetraponpipe20displaysaninitialreductioninpressureduetothedelayinappliedwaterdownflow.Thesewertransientinpipe19affectsthistrapataround18s.   Asaresultofthepressuretransientsarrivingateachtrapduringthesimulationtherewillbealossoftrapsealwater.Thisoveralleffectresultsineachtrapdisplayinganindividualwatersealretentionthatdependsentirelyontheusageofthenetwork.Trap2retains32mmwatersealwhiletraps7and15retain33mm.Trap20isreducedto26mmwaterseal.Notethatthetrapsonpipes7and15wereexposedtothesamelevelsoftransientpressuredespitethetimedifferenceinarrivalofthesewertransients.Fig.11(a)and(b)illustratetheoscillationsofthetrapsealcolumnasaresultofthesolutionofthetrapsealboundarycondition,Eq.(10),withtheappropriateC+characteristic.Thisboundaryconditionsolutioncontinuallymonitorsthewaterlossfromthetrapandattheendoftheeventyieldsatrapsealretentionvalue.Intheexampleillustratedtheinitialtrapsealvaluesweretakenas50mmofwater,commonforappliancessuchasw.c."sandsinks.   10.Conclusion—viabilityofasealedbuildingdrainageandventsystem   Thesimulationpresentedconfirmsthatasealedbuildingdrainagesystemutilizingactivetransientcontrolwouldbeaviabledesignoption.Asealedbuildingdrainagesystemwouldofferthefollowingadvantages:  •Systemsecuritywouldbeimmeasurablyenhancedasallhigh-levelopensystemterminationswouldberedundant.   •Systemcomplexitywouldbereducedwhilesystempredictabilitywouldincrease.   •Spaceandmaterialsavingswouldbeachievedwithintheconstructionphaseofanyinstallation.   ThesebenefitswouldberealizedprovidedthatactivetransientcontrolandsuppressionwasincorporatedintothedesignintheformofbothAAVtosuppressnegativetransientsandvariablevolumecontainmentdevices(PAPA)tocontrolpositivetransients.   Thediversityinherentintheoperationofbothbuildingdrainageandventsystemsandthesewersconnectedtothebuildinghavearoleinprovidinginterconnectedreliefpathsas103 内蒙古科技大学毕业设计说明书partofthesystemsolution.   Themethodofcharacteristicsbasedfinitedifferencesimulationpresentedhasprovidedoutputconsistentwithexpectationsfortheoperationofthesealedsystemstudied.Theaccuracyofthesimulationinotherrecentapplications,includingtheaccuratecorroborationoftheSARSspreadmechanismwithintheAmoyGardenscomplexinHongKongin2003,providesaconfidencelevelintheresultspresented.   Duetotherandommodeofoperationofbuildingdrainageandventsystemsfurthersimulations,laboratoryandsiteinvestigationswillbeundertakentoensurethattheconceptiswhollyviable.  103 内蒙古科技大学毕业设计说明书外文文献二及翻译: EvaluatingWaterConservationMeasuresForGreenBuildingInTaiwanCheng-LiChengGreenBuildingevaluationisanewsysteminwhichwaterconservationisprioritizedasoneofitssevencategoriesforsavingwaterresourcesthroughbuildingequipmentdesigninTaiwan.ThispaperintroducestheGreenBuildingprogramandproposesawaterconservationindexwithquantitativemethodologyandcasestudy.Thisevaluationindexinvolvesstandardizedscientificquantificationandcanbeusedinthepre-designstagetoobtaintheexpectedresult.ThemeasureofevaluationindexisalsobasedontheessentialresearchinTaiwanandisapracticalandapplicableapproach.Keywords:GreenBuilding;Evaluationsystem;Waterconservation;Buildingequipment1.IntroductionTheenvironmentwasanissueofdeepglobalconcernthroughoutthelatterhalfofthe20thcentury.Freshwatershortagesandpollutionarebecomingoneofthemostcriticalglobalproblems.Manyorganizationsandconferencesconcerningwaterresourcepolicyandissueshavereachedtheconsensusthatwatershortagesmaycausewarinthe21stcentury[1],ifnotabettersolution.Actually,Taiwanisalreadyexperiencingsignificantdiscordoverwatersupply.Buildingnewdamsisnolongeranacceptablesolutiontothecurrentwatershortageproblems,becauseoftheconsequentenvironmentalproblems.Previousstudieshaveconcludedthatwatersavingsarenecessarynotonlyforwaterconservationbutalsoforreducingenergyconsumption[2,3].TaiwanislocatedintheAsianmonsoonareaandhasanabundantsupplyofrainwater.Annualprecipitationaveragesaround2500mm.However,watershortageshaverecentlybeenacriticalproblemduringthedryseason.Thecrucial,centralissueistheunevendistributionoftorrentialrain,steephillsides,andshortrivers.Furthermore,theheavydemandfordomesticwateruseinmunicipalareas,andthedifficultiesinbuildingnewreservoirsarealso103 内蒙古科技大学毕业设计说明书criticalfactors.Governmentdepartmentsareendeavoringtospreadpubliclytheconceptofwater-conservation.Whileindustryandcommercehavemadeexcellentprogressinwaterconservation,progressamongthepublichasbeenextremelyslow.Duetothisglobaltrend,theArchitectureandBuildingResearchInstitute(ABRI),MinistryofInteriorinTaiwan,proposedthe“GreenBuilding”conceptandbuilttheevaluationsystem.Inordertosavewaterresourcesthroughbuildingequipmentdesign,thissystemprioritizeswaterconservationasoneofitssevencategories.ThispaperfocusesonthewaterconservationmeasuresforGreenBuildinginTaiwanandaquantitativeprocedureforprovingwater-savingefficiency.Thepurposeofthisworkisnotonlyaimedatsavingwaterresources,butalsoatreducingtheenvironmentalimpactontheearth.2.WaterconservationindexThewaterconservationindexistheratiooftheactualquantityofwaterconsumedinabuildingtotheaveragewater-consumptioningeneral.Theindexisalsocalled,“thewatersavingrate”.Evaluationsofthewater-consumptionquantityincludetheevaluationtothewater-savingefficiencywithinkitchens,bathroomsandallwatertaps,aswellastherecyclingofrainandthesecondhandintermediatewater.2.1.GoalofusingthewaterconservationindexAlthoughTaiwanhasplentyofrain,duetoitslargepopulation,theaveragerainfallfordistributiontoeachindividualispoorcomparedtotheworldaverageasshowninFig.1.Thus,Taiwanisreverselyacountryshortofwater.Yet,therecentimprovementsincitizens’standardsoflivinghaveledtoabigincreaseintheamountofwaterneededincities,asshowninFig.2,which,accompaniedbythedifficultyofobtainingnewwaterresources,makesthewatershortageproblemevenworse.Duetotheimproperwaterfacilitiesdesignsinthepast,thelowwaterfee,andtheusualpracticalbehaviorofpeoplewhenusingwater,Taiwanesepeoplehavetendedtousealargequantityoftapwater.In1990,theaveragewater-consumptionquantityinTaiwanwas350lperpersonperday,whereasinGermanyitisabout145lperpersonperday,andinSingaporeabout150lperpersonperday.These103 内蒙古科技大学毕业设计说明书statisticsrevealtheneedforTaiwanesepeopletosavewater.Thepromotionofbetter-designedfacilitieswhichfacilitatewater-savingwillbecomeanewtrendamongthepublicanddesigners,becauseofconcernsforenvironmentalprotection.Thewaterconservationindexwasalsodesignedtoencourageutilizationoftherain,recyclingofwaterusedineverydaylifeanduseofwater-savingequipmenttoreducetheexpenditureofwaterandthussavewaterresources.2.2.MethodologyforefficientuseofwaterresourcesSomeconstructionconsiderationsandbuildingsystemdesignsforeffectiveuseofwaterresourcesaredescribedbelow.2.2.1.Usewater-conservationequipmentAresearchofhouseholdtap-waterconsumptionrevealedthattheproportionofthewaterusedinflushingtoiletsandinbathing,amountstoapproximately50%ofthetotalhouseholdwaterconsumption,asgiveninTable1.Manyconstructiondesignershavetendedtouseluxuriouswaterfacilitiesinhousing,andmuchwaterhasthusbeenwasted.Theuseofwater-savingequipmenttoreplacesuchfacilitiesiscertaintosavealargeamountofwater.Forexample,theamountsofwaterusedintakingashowerandhavingabathisquitedifferent.Asingleshowerusesaround70lofwater,whereasabathusesaround150l.Furthermore,currentconstructiondesignsforhousinginTaiwantendtoputtwosetsofbathtubsandtoilets,andquiteafewfamilieshavetheirownmassagebathtubs.Suchasituationcanbeimprovedonlybyremovingthetubsandreplacingthemwithshowernozzles,sothatmorewatercanbepossiblysaved.Thecommonlyusedwater-savingdevicesinTaiwannowincludenew-stylewatertaps,water-savingtoilets,two-sectionedwaterclosets,water-savingshowernozzles,andauto-sensorflushingdevicesystems,etc.Water-savingdevicescanbeusednotonlyforhousing,butalsoinotherkindsofbuildings.Publicbuildings,inparticular,shouldtaketheleadinusingwater-savingdevices.2.2.2.Setuparain-storagewatersupplydeviceTherain-storagewatersupplydevicestoresrainusingnaturallandformsorman-madedevices,andthenusessimplewater-cleaningprocedurestomakeitavailableforuseinhouses.103 内蒙古科技大学毕业设计说明书Raincanbeusednotonlyasasubstitutewatersupply,butalsoforrecontrol.Itsusealsohelpstodecreasethepeak-timewaterloadincities.TheannualaveragerainfallinTaiwanisabout2500mm,almosttriplebetterthantheglobalaverage.However,duetogeographiclimitations,wecouldnotbuildenoughwaterstoragedevices,suchasdams,tosavealltherain.Itisquiteapitythatannuallyabout80%oftheraininTaiwaniswastedandflowsdirectlyintothesea,withoutbeingsavedandstored.Therain-storagewatersupplysystemisusedwithawater-gatheringsystem,water-disposalsystem,water-storagesystemandwater-supplysystem.First,thewater-gatheringsystemgatherstherain.Then,thewaterflowstothewater-disposalsystemthroughpipes,beforebeingsenttothewater-storagesystem.Finally,itissenttotheusers’equipmentthroughanothersetofpipes.Usingthedrainontheroofofabuilding,leadingtotheundergroundwater-storagetrough,isconsideredaneffectivemeansofgatheringrain.Thewater,aftersimplewater-disposalprocesses,canbeusedforchoressuchashousecleaning,washingfloors,air-conditioningorwateringplants.2.2.3.EstablishingtheintermediatewatersystemIntermediatewateristhatgatheredfromtherainincities,andincludestherecycledwaste-waterwhichhasalreadybeendisposedofandcanbeusedrepeatedlyonlywithinacertainrange,butnotfordrinkingorhumancontact.Flushingthetoiletconsumes35%ofallwater.Ifeveryoneweretouseintermediatewatertoflushtoilets,muchwatercouldbeefficientlysaved.Large-scaleintermediatewatersystemdevicesaresuggestedtobebuiltupregularlywithinabigarea.Eachintermediatewatersystemdevicecangather,disposeandrecycleacertainquantityofwaste-waterfromnearbygovernmentbuildings,schools,residences,hotels,andotherbuildings.Theobtainedwatercanbeusedforflushingtoilets,washingcars,wateringplantsandcleaningthestreet,orforgardenuseandtosupplementthewaterofriversorlakes.Asmall-scaleintermediatewatersystemgatherswaste-waterfromeverydayuse,andthen,throughappropriatewater-disposalprocedures,improvesthewaterqualitytoacertainlevel,sothatfinallyitcanberepeatedlyusedfornon-drinkingwater.Thereareextensivewaystousetheintermediatewater.Itcanbeusedforsanitarypurposes,publicfountains,wateringdevicesingardensandwashingstreets.Inordertorecyclehighlypollutedwaste-water,ahighercostisneededforsettinguptheassociatedwater-disposal103 内蒙古科技大学毕业设计说明书devices,whicharemoreexpensiveandhavelesseconomicbenefitsthantherain-utilizationsystem.Exceptfortheintermediatewater-systemsetwithinasinglebuilding,ifwebuildthemwithinlarge-scalecommunitiesormajorconstructiondevelopmentprograms,thenitissuretosavemorewaterresourcesefficientlyandpositivelyforthewholecountryaswellasimprovetheenvironmentalsituation.3.WaterconservationindexandbasisPresentresearchintotheutilizationofwaterresourcesmainlyconsidersresidentialbuildings,whiledataforotherkindsofbuildingsarecomparativelyfew.Sincedailywaterconsumptionofthecitizenismainlyfromtheirprivatedwellings,theindicatorofutilizingwaterresourcesthusfocusesontheactualwater-savingquantityasfarasresidentialbuildingsareconcerned.Researchthatrelatestootherkindsofbuildingsfocusesontheadoptionrateofsimplyequippedwater-savingequipment.Table1showstheaverageandmaximumdailyhouseholdwaterconsumptionofeachTaiwaneseperson,fromwhichastandardizeddailytotalwater-consumptionof250lperpersonperdayisestimatedandsetasthecalculationbase.3.1.CalculationTheactualwater-savingrate(WR)iscalculatedaccordingtoFormula(1).Formula(3)showsthataqualifiedvalueofWRshouldbe<0:8.AbuildingwithaqualifiedWRiseligibletoapplyforthe“GreenBuilding”incentivepayment.AccordingtoFormula(2),theadoptionrateofwater-savingequipment(AR)canbeusedtoestimatethewater-savingconditionsinotherkindsofbuildings,andtheguidelineisshowninFormula(4).AqualifiedvalueofARshouldbehigherthan0.8.Excepttheresidentialtypeofbuilding,abuildingwithaqualifiedARiseligibletoapplyforthe“GreenBuilding”incentivepayments.TheFormulaofcalculatingthewaterresourceindexfortheresidentialbuildings(TheActualWater-savingRate;WR)isasfollows:WR=(Wd-(Ts(Wc-Ql)al+Tu(Wu–Q2)a2+Tw(Wt–Q3)a3+Ba4))÷Wd–C(1)Theformulaofcalculatingwaterresourcesindexforotherkindsofbuildings(theAdoptionRateofwater-savingequipment;AR)isasfollows:103 内蒙古科技大学毕业设计说明书AR=R+C(2)ThestandardizedqualifyingconditionsareWR=0.8;(3)AR=0.8:(4)FordentitionofthesymbolsinFormulae(1)–(4),seethenomenclatureatthebeginning,andTable2showstheconstant(Wd;Ts;Wc;Tu;Wu;Tw;Wt)requiredbytheestimatemethodofevaluation.3.2.CalculationbasisandregulationsTheassociatedregulationsforFormulae(1)–(4)areasfollows:(1)WR(actualWater-savingRate)=0.8iscalculatedaccordingtothesuppositionthattheaveragedailywater-consumptionofeachpersonis200l,basedonforeignreferencesandexperience.Mostdevelopedcountriescontroltheaveragedailywater-consumptionatwellunder200l.Accordingly,theprovisionalwater-consumptionstandardforGreenBuildingsinTaiwanissuggestedas200lforeachpersonperday.(2)FactorTu=3.57andTw=4.86inFormula(1)arecalculatedbytheweightedaveragesmethod:thehumanbodymustdischargefecesonceperday,urinethriceperdayduringweekdays,andfivetimesperdayonSaturdaysandSundays,yieldinganaverageof3.57timesperpersonperday.Theaveragefrequencyofpeople’swashinghandswithinasingledayisfourtimesperdayduringweekdays,andseventimesperdayonSaturdaysandSundays,yieldinganaverageof4.86timesperpersonperday.Besides,duetothepossibilitythatthewater-savingequipmentofthesamebrandwillnotbeexactlyusedwithinoneconstructionalproject,utilityratea1~a4shouldbemultipliedtoreflectontruth.(3)Water-consumptionofWd=13Lperflushofthetoilet,isregardedasthebasepointconsumptionforcalculatingthewater-conservationrateofthewater-savingtoiletinFormula(1),andcorrespondstothemostpopulartypeoftoiletinexistingbuildings.Inotherwords,awater-savingtoiletreducesthewater-consumptioneachflushingoffecesto9l,saving4l.Furthermore,thetwo-sectionedwater-savingtoiletreducesthewater-consumptionofflushing103 内蒙古科技大学毕业设计说明书urineto4.5l,savingover8:5l.Theactualwater-consumptionofthetoiletsshouldbedeterminedaccordingtovariouswater-consumptionquantitiesandbrandspecifications.(4)Water-consumptionofWt=3lpertimewithin20swhenusingthecommonwater-tap,isregardedasthebasepointconsumptionindeterminingthewater-savingrateofthewater-savingtapinFormula(1).Theactualwater-consumptionofawater-tapshouldbedeterminedaccordingtothevariouswater-consumptionquantitiesnotedinvariousbrandspecifications.Herein,1.5Lpertime(50%ofthegeneralwater-consumption)issuggestedforthosepassingthewater-savingproofbutwithoutnotingthewater-consumptionquantities.(5)ThedeterminationofB,thewater-savingquantityforwater-savingbathingdevicesinFormula(1),shouldconsiderpeople’svariousbathinghabits;especiallythoseconcerningwater-consumptionduringshowerorbath.Thewater-consumptionofashowerisabout70l,andthatofabathexceeds150l.Therefore,whencalculatingB,20lshouldbeaddedforashoweringdevicewithoutabathtub;whilethevalueforcommonbathtubsremainsunchanged,and20lshouldbesubtractedforthemassagebathtub(B=-20).Furthermore,forbathroomsequippedwithtimerdevices,showernozzleswithlowflowratesorsomeotherkindsofwater-savingequipment,10lcanbeaddedtoBforeachdevice.(6)Thesystems,whichuserainorintermediatewater,requirehighlyprofessionaldesignsandtheeffectsarehardlybeconsideredasthesame.Inordertorespecteachprofessionaldesign,astandardizedformulaforcalculatingCisnotsuggestedinthisprogram.Aanapplyingproject,themanagementofthosebuildings,whichusesuchrecyclingsystems,shouldreportontherecyclingrateoftherainortheintermediatewaterduetoeachdevice.Therainorintermediatewatercanonlybeusedfornon-drinkingwater,antherefore,Cshouldnotexceedtherateofthewaterusedforhouseholdchores(about0.35)withinbuilding.(7)Water-conservationequipment,suchaswater-savingtoilets,automaticallystoppingtaps,auto-sensorflushingdevices,water-savingshowernozzlesandbathtubshouldgetthe“water-savingproof”oftheWaterResourcesBureau,MinistryofEconomicAffairs(MOEA)ofTaiwan;or,theproprietorshouldsubmitassociatedcertificates.Thenumberofwater-savingdeviceshouldbecountedaccordingtothestructuraldrawingofthebuilding.OnlythesixdevicesmentionedabovewhichhavebeenannouncedbytheMOEA,canbe103 内蒙古科技大学毕业设计说明书counted.3.3.TheprinciplesoftheacceptedstandardWater-consumptiondesignforabuildingmustfollowtheprinciplesbelowtoreachthestandardofthewater-resourceindex.(1)Useofwater-savingequipmentismosteffective.Particularlyeffectivewaysarethetwo-sectionedwater-savingtoiletsandthewater-savingshoweringdeviceswithoutabathtub.(2)Theincentivepaymentsforreachingthestandardcanbeeasilygainedbyusingwater-savingtoilets,water-tapsandshoweringdevicesthroughouttheconstructiondevelopment.(3)Despiteitsgreatwater-savingefficiency,thesystemforrecyclingrainandintermediatewaterisnotyeteconomicallybeneficial,duetothelowwaterfeeandtheexpenseofwater-disposalequipment.However,systemsforrecyclingtherainareconsideredmoreeasilyadoptablethansystemsforrecyclingintermediatewater,andthemethodforassessingtherecyclingOfrainisproposedinthenextchapter.3.4.CasestudyexampleReferencestoalltheassociateddevices,includingshotdrawings,instructionalcharts,certificatesofwater-savingquantity,andcalculationsoftheindexwereallsubmittedforcasestobeconsideredhere.Ifsystemsforrecyclingrainorintermediatewaterareadopted,thendetaileddrawingsandwater-savingratereportsshouldbesubmitted.Suchreferencesareomittedinthiscasestudy.Case1:Briefexplanationofthewater-savingequipment.(1)ConstructionbaseislocatedinTaipeicity,andincludesatotaloffiveapartmentblocks,eachoffivestories;eachstoryhastworesidentialunitsforatotalof50units.Eachunithastwotoilets.(2)Halfoftheconstructionprojectuseswater-savingequipment,includingtwo-sectionedwater-savingtoilets(waterconsumptionwhenflushingfecesis9L;urine,4.5L)and103 内蒙古科技大学毕业设计说明书watersavingtaps(1.2Lperuse).Eachbathroomisequippedwithashoweringnozzle(nobathtub),withatimerdevice(20Lofwaterissavedfortheshoweringdevicewithoutthebathtub,andanextra10Lofwaterissavedusingthetimerdevice.)Thewater-resourceindexiscalculatedasfollows:(1)Estimatedgeneraldailywater-consumptionis250lperperson.(2)WR=(250-((13-9)×0.5+3.57×(13-4.5)×0.5+4.86×(3-1.2)×0.5+(10+20)×0.5))÷250=0.857WR>0.8;therefore,Case1doesnotachievethewater-resourceindex,andcannotreceivethe“GreenBuilding”incentivepayment.Case2:Briefexplanationofthewater-savingequipment.(1)Intheabovecase,water-savingequipmentwasusedonlyinhalfoftheconstructionproject.Calculationdataisasfollows,ifthewholeprojectusedsuchwater-savingequipment,then,WR=(250-((13-9)×1.0+3.57×(13-4.5)×1.0+4.86×(3-1.2)×1.0+(10+20)*1.0))/250=0.714(2)WR<0.8;therefore,Case2achievesthewater-resourceindex,andcanreceivethe“GreenBuilding”incentivepayment.Case3:IftheprojectdescribedinCase2,couldincludeasystemtorecycletherain,thenthesituationisasfollows:(1)Theroofoftheapartmentcangather625mofrain,andthecapacityofthewatertroughforsavingtherecycledrainis35m.Therefore,usingtherecycledwaterforflushingtoilets,cleaningandotheruses(forexample;wateringplantsandwashingcars),cansave30Lofwaterperpersonperday.(2)Theratioofthewater-consumptionquantityoftherecycledrainwatertothetotalwater-consumptionis0.12(C=30÷250=0.12).(3)Then,thewater-resourceindexis0.594(WR=0.714-0.12=0.594).Asaresult,Case3notonlyachievestheincentivestandard,butisalsoanexemplaryofgreenbuildingdesign.4.MethodforassessingtherecyclingofrainSystemsforrecyclingrainandintermediate103 内蒙古科技大学毕业设计说明书waterarenotyeteconomicbeneficial,becauseofthelowwaterfeeandthehighcostofwater-disposalequipment.However,systemsforrecyclingrainareconsideredmoreeasilyadoptablethanthoseforrecyclingintermediatewater.Herein,amethodforassessingtherecyclingofrainisintroducedtocalculatetheratio(C)ofthewater-consumptionquantityoftherecycledrainwatertothetotalwater-consumption.4.1.CalculationbasisofrecyclingrainwaterThedesignerofasystemforrecyclingrainwatermustfirstdeterminethequantityofrainwaterandthedemand,whichwilldeterminetherainwatercollectiondeviceareaandthestoragetankvolume.Rainwaterquantitycanactuallybedeterminedbyasimpleequationinvolvingprecipitationandcollectiondevicearea.However,precipitationdoesnotfallevenlyspreadoveralldaysandlocations.Inparticular,rainisusuallyconcentratedincertainseasonsandlocations.Consequently,thecriticalpointoftheevaluationistoestimateandassessmeteorologicalprecipitation.Meteorologicalrecordsnormallyincludeyearly,monthly,dailyandhourlyprecipitation.Yearlyandmonthlyprecipitationissuitableforroughestimatesandinitialassessment.However,suchapproximationcreatesproblemsindeterminingtheareaoftherainwatercollectiondeviceandthevolumeofthestoragetank.Thus,dailyprecipitationhasbeenmostcommonlyconsidered.Hourlyprecipitationcouldtheoreticallysupportamoreaccurateassessment.However,owingtotheincreasingnumberofparametersandcalculationdataincreases,thecomplexityoftheprocessandthecalculationtime,resultininefficiencies.Herein,dailyprecipitationisadoptedinassessingrainwatersystemsusedinbuildings[4,7].4.2.EvaluationofsystemforrecyclingrainwaterInitially,thequantityofrainwatercollectionandusagemustbeknown.Abasicconceptofinputandoutputbalanceenablesfourparameterstobeusedtocalculatetherainwaterusesystem.Thetwoinputsarerainwaterfromcollectiondevices,andsupplementarytapwatersystems,whiletheoutputsareconsumptionquantityfortheuserandoverflowfromstoragedevices.Fig.3presentsthisconcept.Thelocationofthedesignobject,forexampleinTaipei,mustbeconfirmedbasedonthedailyprecipitationdatabase,andthemeteorological103 内蒙古科技大学毕业设计说明书precipitationdataforthesimulationorassessmentarethenusedincalculatingtheutilizationoftherainwater.Theareaofthecollectiondevicemustnextbedecided,whiletheobjectcharacterofwaterutilizationisusedastheconditionforsimulationandassessment.Table3presentsthedailyprecipitationformatofTaipeicity,asanexample.Thecalculation[5]isasfollows:(1)Thequantitycollected(CRW)isdeterminedfromdailyprecipitation(Rd)andcollectionarea(CA).CRW(m3)=CA(m2)×Rd(mm/day)*ξ*10-3(ξdenotestheflowoutcoefficient,governedbythecharacterofcollectionlocation,andthisparameterisusuallybetween0.85and0.95foratypicalroof.)(2)Theoverflowquantity(OFV)isdeterminedfromthecollectionquantity(CRW),volumesofstoragetanks(SV)andquantityremaininginthestoragetanks(RSV).IfCRW+RSV>SV(m3);thenOFV=CRW+RSV-SV.IfCRW+RSVSV;thenRSV′=SV;IfCRW+RSV0;thenCW=0.(5)Thesecondremainingquantityinstoragetank(RSV)aftertheabovecalculationisasfollows:IfRSV′-UW<0;thenRSV′′=0;IfRSV′-UW>0;thenRSV′′=RSV′–UW.103 内蒙古科技大学毕业设计说明书(6)Thesecondremainingquantityinthestoragetank(RSV′′)isusedastheinitialdataofRSVforthenextday’sdatathataddupallparametersandyearlyutilizationbyloopingcalculation.(7)Theabovecalculationcanbeusedtoobtainannualrainwaterutilizationquantity(YRU),annualrainwatercollectionquantity(YRC)andannualconsumptionquantity(YTU).YRU=∑(UW-CW);YRC=∑CRW;YTU=∑UW:(8)Rainwaterutilizationrate(PRU%)andtapwatersubstitutionrate(PCW%)canbecalculatedasfollows:PRU(%)=YRU÷YRC×100,PCW(%)=YRU÷YTC×100Theaboveprocedureforcalculatingrainwaterassessmentwascarriedoutonacomputerprogram,andthesimulationresultswererapidlyobtained.Fig.4illustratestheprogram’sflowchart.4.3.CasestudyandanalysisFollowingtheaboveprocedure,aprimaryschoolbuildingwitharainwaterusesystemistakenasanexampleforsimulationandtoverifytheassessmentresults.ThisbuildingislocatedinTaipeicity,hasabuildingareaof1260mandatotalfloorareaof6960m;itisamulti-disciplineteachingbuilding.Roofingisestimatedtocover80%ofthebuildingarea,andtherainwatercollectionareacovers1008m.Rainwaterisusedasintermediatewaterfortherestrooms,andtheutilizationconditionissetat20mperday,whiletheoutflowcoefficient(Y)is0.9.AtypicalmeteorologicalprecipitationinTaipeiin1992wasadoptedasadatabase.Therainwaterstoragetankwassettoaninitialconditionbeforethesimulationprocedure.Herein,fourtankvolumeswereconsideredinthesimulationsofrainwaterutilization—15,25,50,100m.Theresultsindicatethatincreasedstoragetankvolumereducesoverflowandincreasestheutilizationofrainwater.Givena50mstoragetank,thequantityofrainwatercollectioncloselyapproachestheutilizationquantityofrainwater.103 内蒙古科技大学毕业设计说明书Consequently,thisconditionobtainsastoragetankwitharoughlyadequatevolume.Whenthevolumeofthestoragetankis100m,theutilizationrateisalmost100%andtheoverflowquantityapproacheszero.Despitethisresultbeingfavorablewithrespecttoutilization,suchatankmayoccupymuchspaceandnegativelyimpactbuildingplanning.Consequently,thedesignconceptmustbalanceallthesefactors.Thebuildinginthiscaseissixfloorshigh,andtheroofareaissmallincomparisontothetotalfloorarea.Thewaterconsumptionofthewaterclosetperyear,butthemaximumrainwaterapproaches7280mcollectionis2136mperyear.Thus,significantreplenishmentfromtapwaterisrequired.Thisresultalsoleadstoaconclusionthathigh-risebuildingsuserainwatersystemslessefficientlythanotherbuildings.Lowerbuildings(e.g.lessthanthreefloors)havehighlyefficientrainwaterutilizationandthuslittleneedforreplenishmentofwaterfromthepotablewatersystem.Theefficiencyofrainwaterstoragetanksisassessedfromtheutilizationrateofrainwaterandthesubstitutionrateoftapwater.Differencesinannualprecipitationandrainfalldistributionyielddifferentresults.Figs.5and6illustratetheresultsofthementionedcalculationprocedure,toanalyzedifferencesinrainwaterutilizationandefficiencyassessment.Thesimulationrunsoveraperiodoftenyears,from1985to1994,andincludesstoragetankswithfourdifferentvolumes.Whenthevolumeoftherainwatertankis50m,theutilizationrateofrainwaterexceeds80%withabout25%substitutionwithtapwater.Usingthisapproachandtheassessmentprocedure,thevolumeofrainwaterstorageandtheperformanceofrainwaterusesystemsinbuildingdesign,canbedetermined.Intheformulaofthewaterconservationindex,Cisaspecialweightingforsomewaterrecyclingequipmentthatintermediateswaterorrain,andiscalculatedastheratioofthewater-consumptionquantityoftherecycledrainwatertothetotalwater-consumption.Therefore,thisassessmentprocedurecanalsoofferanapproximatevalueofCforthewaterconservationindex.5.Greenbuildinglabelandpolicy“GreenBuilding”iscalled“EnvironmentalCo-HabitualArchitecture”inJapan,“EcologicalBuilding”or“SustainableBuilding”inEuropeand“GreenBuildinginNorthAmericancountries.Manyfashionabletermssuchas“Greenconsumption”,“Greenliving”,“Green103 内蒙古科技大学毕业设计说明书illumination”havebeenbroadlyused.InTaiwan,currently,“Green”hasbeenusedasasymbolofenvironmentalprotectioninthecountry.TheConstructionResearchDepartmentoftheMinistryoftheInterioroftheExecutiveYuanhasdecidedtoadopttheterm“GreenBuilding”tosignifyecologicalandenvironmentalprotectionarchitectureinTaiwan.5.1.PrinciplesofevaluationGreenBuildingisageneralandsystematicmethodofdesigntoperusesustainablebuilding.Thisevaluationsystemisbasedonthefollowingprinciples:(1)Theevaluationindexshouldaccuratelyreflectenvironmentalprotectionfactorssuchasmaterial,water,landandclimate.(2)Theevaluationindexshouldinvolvestandardizedscientificquantification.(3)Theevaluationindexshouldnotincludetoomanyevaluationindexes;somesimilarqualityindexshouldbecombined.(4)Theevaluationindexshouldbeapproachableandconsistentwithrealexperience.(5)Theevaluationindexshouldnotinvolvesocialscientificevaluation.(6)Theevaluationindexshouldbeapplicabletothesub-tropicalclimateofTaiwan.(7)Theevaluationindexshouldbeapplicabletotheevaluationofcommunityorcongregateconstruction.(8)Theevaluationindexshouldbeusableinthepre-designstagetoyieldtheexpectedresult.Accordingtotheseprinciples,theseven-indexsystemshowninTable4isthecurrentGreenBuildingevaluationsystemusedinTaiwan.Thetheoryevaluatesbuildings’impactsontheenvironmentthroughtheinteractionof“EarthResourceInput”and“WasteOutput”.Practically,thedefinitionofGreenBuildinginTaiwanis“Consumetheleastearthresourceandcreatetheleastconstructionwaste”.Internationally,eachcountryhasadifferentwayofevaluatingGreenBuilding.Thissystemprovidesonlythebasicevaluationon“Lowenvironmentimpact”.Higherlevelissuessuchasbiologicaldiversity,healthandcomfortandcommunityconsciousnesswillnotbe103 内蒙古科技大学毕业设计说明书evaluated.Thissystemonlyprovidesabasic,practicalandcontrollableenvironmentalprotectiontoolforinclusioninthegovernment’surgentconstructionenvironmentprotectionpolicy.The“GreenBuilding”logoissettoawardGreenBuildingdesignandencouragethegovernmentandprivatesectortopayattentiontoGreenBuildingdevelopment.Fig.7isthelogoofGreenBuildinginTaiwan[6,8].5.2.WaterconservationmeasureThispaperfocusesonwaterconservationindexingreenbuildingevaluationsystem.Waterconservationisacriticalcategoryofthisevaluationsystem,andisconsideredinrelationtosavingwaterresourcesthroughbuildingequipmentdesign.Thisevaluationindexcontainsstandardizedscientificquantificationandcanbeusedinthepre-designstagetoobtainthedesiredresult.TheevaluationindexisalsobasedonresearchinTaiwanandispracticallyapplicable.Usingwater-savingequipmentisthemosteffectivewayofsavingwater;usingtwo-sectionedwater-savingtoiletsandwater-savingshoweringdeviceswithoutabathtubareespeciallyeffective.Variousothertypesofwater-recyclingequipmentforreusingintermediatewaterandrainarealsoevaluated.Inparticular,rainwater-usesystemsinbuildingdesignsareencouraged.WhenacandidateforaGreenBuildingprojectintroduceswaterrecyclingsystemorarainwaterusesystem,theapplicantshouldproposeanappropriatecalculationreporttotherelevantcommitteetoverifyitswater-savingefficiency.ThisguidelineactuallyappearstobeareasonabletargetforperformingGreenBuildingpolicyinTaiwan.Anewbuildingcaneasilyreachtheabovewaterconservationindex.Thisevaluationsystemisdesignedtoencouragepeopletosavemorewater,eveninexistingbuildings.Allthisamountstosayingthatlarge-scalegovernmentconstructionprojectsshouldtaketheleadinusingsuchwater-savingdevices,asanexampletosociety.6.ConclusionThispaperintroducestheGreenBuildingprogramandproposesawaterconservationindexwithstandardizedscientificquantification.Thisevaluationindexcontainsstandardizedscientificquantificationandcanbeusedinthepre-designstagetoobtaintheexpectedresults.103 内蒙古科技大学毕业设计说明书ThemeasureofevaluationindexisalsobasedontheessentialresearchonTaiwanandisapracticalandapplicableapproach.Theactualwater-savingrate(WR)forGreenBuildingprojectsshouldbe<0.8,andtheARofthewater-savingequipmentshouldbehigherthan0.8.Thus,qualifiedGreenBuildingprojectsshouldachieveawatersavingrateofover20%.Forthesustainablepolicy,thisprogramisaimednotonlyatsavingwaterresources,butalsoatreducingtheenvironmentalimpactontheearth.TheGreenBuildingLabelbegantobeimplementedfrom1stSeptember1999,andovertwentyprojectshavealreadybeenawardedtheGreenBuildingLabelinTaiwan,whilethenumberofapplicationscontinuestoincrease.Foracountrywithlimitedresourcesandahigh-densitypopulationlikeTaiwan,theGreenBuildingpolicyisimportantandrepresentsapositivefirststeptowardreducingenvironmentalimpactandpromotingsustainabledevelopment.AcknowledgementsTheauthorswouldliketothanktheArchitecture&BuildingResearchInstituteoftheMinistryoftheInteriorofTaiwan(ABRI)andtheNationalScienceCounciloftheRepublicofChinaforfinanciallysupportingthisresearchunderContractNo.NSC89-2211-E-011-034.References[1]ZeiherLC.Theecologyofarchitecture,acompleteguidetocreatingtheenvironmentallyconsciousbuilding.NewYork,NY:WhitneyLibraryofDesign,1996.[2]ChengCL,LiuAP.Astudyof energysavingsinresidentialplumbing systems.In:Proceedingsof theCIB-W62internationalsymposium, Edinburgh,Scotlands,1999.[3]ChengCL.Astudyonenergyconservationconceptinwatersupply anddrainageforGreenBuildingdesign,APECPROJECTEWG 6/2000,AShowcaseWorkshop,Taipei,Taiwan,2000.[4]ChengCL.Rainwaterusesysteminbuildingdesign—acasestudyof calculationandefficiencyassessmentsystem.In:ProceedingsoftheCIB-W62InternationalSymposium,2000.09,RiodeJaneiro,Brazil.[5]TakahasiYK,etal.Designandpracticeofrainwaterutilizationsystem.TheSocietyof103 内蒙古科技大学毕业设计说明书Heating,Air-ConditioningandSanitaryEngineersofJapan1997;57(1):50–4.[6]LinHT,ChengCL,etal.,EvaluationmanualforGreenBuildinginTaiwan,architecture&buildingresearchinstituteoftheministryoftheinteriorofTaiwan,Taipei,Taiwan,2000.p.3–5.[7]HuangKT,LinHT.Researchonrainwaterutilizationofhousing.JournalofArchitecture,1996;(19):71–83.[8]LinHT,HsiaoCP,ChenJL.TheevaluationsystemofGreenBuildinginChineseTaipei,APECPROJECTEWG6=2000,AShowcaseWorkshop,Taipei,Taiwan,2000.103 内蒙古科技大学毕业设计说明书中文译文:台湾的绿色建筑节约用水评价措施成立城在台湾绿色建筑评价是一个新的制度,在它的一个7个类别中,通过建筑设备设计节省水资源,使水资源保护置于优先地位。本文介绍了绿色建筑计划,提出了节约用水指标用定量方法和案例研究。这个评价指标涉及到规范的科学量化,可用于预先设计阶段,以取得预期效果。在台湾这项措施的评价指标,也是基于一个现实的和适用的办法的必需研究。关键词:绿色建筑;评价制度;节约用水;建筑设备1、导言环境问题在整个20世纪的后半段受到了全球深层关注。淡水短缺和污染正成为一个最严重的全球性问题之一。许多组织与会议就有关水资源政策和问题达成了共识:如果没有更好的解决方法,在21世纪水资源短缺可能导致战争。其实,台湾已经经历了明显的不和谐的超负荷供水。由于相应的环境问题,建设新的水坝已不再是一个可以接受的解决当前的水资源短缺问题的办法。以前的研究得出结论:节水是必要的,不仅是为了节约用水,而且还为降低能源消耗。台湾位于亚洲季风区,可以获得充足的雨水。年降水量平均约为2500毫米。但是,最近一个关键的问题在旱季缺水。关键的、核心的问题是分布不均,暴雨,陡峭的山坡和短的河流。此外,为满足国内城市地区对水的大量利用需求,在用水困难的地区建设新的水库,也是至关重要的因素。政府部门正全力传播众所周知的概念,节约用水。工业和商业在节约用水方面都取得了良好的进展,而公共场所在节约用水方面的进步却一直非常缓慢。由于全球性趋势,在台湾的建筑与建筑研究所(ABRI)还有财政部内部,提出"绿色建筑"的概念,并建立了评价指标体系。通过建筑设备的设计节省水资源。这个制度把优先节约用水作为它的一个七个类别之一。本文侧重于水资源的保护措施,为绿色建筑在台湾和用定量程序证明节水效率。这项工作的目的是,不仅是为节约水资源,而且还减少了在地球对环境的影响。2、节约用水指标103 内蒙古科技大学毕业设计说明书节约用水指标应是实际数量的水消耗在建筑物内,一般以平均水耗计。这个指数也被称为"节水率"。评价的水消费量,包括节水效率的评估,厨房,浴室和所有水龙头,以及回收的雨水和中水。2.1、使用节约用水指数的目标虽然台湾有很多的雨,由于其人口众多,平均雨量为分配给每一个人相比世界平均水平是很少的。如图1所示。因此,台湾是反而是用水紧缺的国家。然而,最近由于公民的生活水平的提高,导致城市用水需求较大幅度增长。并如图2所示,其中,再加上很难取得新的水资源,使水资源短缺问题更为严重。在过去由于不适当的供水设施的设计,低水费,以及人们在使用水的一般性行为,使台湾人往往使用了大量的自来水。在1990年,平均水的消费量在台湾每人每天是350升,而在德国每人每天约145升,和在新加坡每人每天约150升。这些统计数字显示,需要台湾人民节约用水。促进设计更好的节水设施,方便节水将成为一个新趋势,其中,市民和设计师,因为关注的环保问题。节约用水指数也旨在鼓励利用雨水,中水在日常生活中使用和使用节水型设备,以减少使用,从而节省水资源。2.2、有效利用水资源的方法一些为有效利用水资源的施工考虑和建设系统设计描述如下面。2.2.1、使用节水型设备研究家庭自来水消费显示,用在冲洗厕所和洗澡的比例大约占家庭总耗水量的50%,如所给表1。许多建筑设计师往往在房屋使用豪华的供水设施,以及大量的水造成浪费。使用节水型设备来取代这些设施可以节省大量的水。举例来说,用在淋浴间和浴室的水是不同的。一个单一的淋浴头使用70升左右的水,而用浴缸洗澡大约使用150升。此外,当前在台湾房屋的建筑设计往往设计两套浴缸和厕所,不少家庭都有自己的按摩浴缸。要使这种情况得以改善,只有通过淘汰浴缸和更换他们的淋浴喷头,以节约更多的水。现在在台湾普遍使用节水型设备包括新型水龙头,节水型厕所,多次使用水的壁橱,节水型淋浴喷头,自动传感器冲厕装置系统等。这些节水设备不仅用于房屋,而且还可用在其他类型的建筑物。如公共建筑物,特别是要带头使用节水型设备的公共建筑。2.2.2、建立一个雨水储存供水设备103 内蒙古科技大学毕业设计说明书雨水储存供水设备储存雨水是利用自然地貌或人为制造的设备,利用简单的水净化程序,就可以供给用户使用。雨水不仅可以用来替代淡水供应,而且可以作为消防用水。它的使用可以减少雨水的高峰期对城市的负荷。在台湾平均每年降雨量是约2500毫米,几乎高于全球平均水平的三倍。然而,由于地域限制,我们无法建立足够的水存储设备,如水坝,以保存所有雨水。很可惜的是,在台湾每年约80%的雨水被浪费,没有被保存和储存,直接流入海中。雨水储存供应系统被作为雨水收集系统,水处置系统,蓄水系统和供水系统。首先,它作为雨水收集系统用来收集雨水。然后,水流通过管道流向水处理系统,之前被送到水的存储系统。最后,它通过另外的管道送到用户的设施。在建筑物屋顶上留下的雨水,可以流向地下蓄水槽。这被认为是一种收集雨水的有效手段。雨水经过简单处理,可用于杂务,如内务清洁,清洗地板,安装空调或浇灌植物。2.2.3、建立中水系统中水是从城市收集的雨水,并包括已处理完毕的再造废水,并可以在一定范围内反复使用,但不可饮用或与人接触。冲厕所消耗的中水占所有中水的35%。如果每个人使用中水冲洗马桶,大量饮用水可以有效地节约。建议在一个大的区域建立大型中级中水系统设备。每个中水系统的设备可以从附近的政府建筑物,学校,住宅,酒店,和其他建筑物收集,处理和回收一定数量的废水。所得到的水可用于冲洗厕所,清洗车辆,灌溉植物及清洗街道,或为花园使用,并补充河流或湖泊的水。一个小规模的中水系统从日常使用生活污水的收集废水,然后,通过适当的水处理过程,改善水质到一定程度,最后成为可以重复使用的非饮用水。有很多的地方使用中水。它可用于卫生目的,如公共喷泉,花园的灌溉设备和清洗街道。相比雨水利用系统,为了回收高污染废水,成本较高,因为需要设立相关的水处理设备,因而处理费用更加昂贵,并且产生较少的经济效益。除了设置在一定区域的中水系统,如果我们又在这些大型社区或大型建筑工程建立中水系统的发展计划,那就一定能有效地节约更多的水资源,而且积极的为整个国家改善环境作出贡献。3、水节约指数和基础103 内蒙古科技大学毕业设计说明书目前的研究,水的利用认为主要是住宅楼宇用水,其他种类的建筑物用水相对较少。由于人们每天水耗主要是用在他们的私人住宅。从而侧重于关注住宅楼宇实际节水量的指标。研究认为,涉及到其他种类的建筑物只是简单的侧重于配备节水设备。表1显示每个台湾人平均和最大值每日家庭用水消费,得到每人每天标准估计总耗水量消耗250升,并定为计算基础。实际的节水率(WR)计算,根据公式(1)、公式(3)表明,WR得价值量必须小于0.8。具有合格的WR的大厦是有资格申请“绿色建筑”的奖励金。根据公式(2),节水设备效率(AR)可以用来估计在其他种类的建筑物节水条件。他的指标表现在公式(4)。一个合格的AR值应高于0.8。除住宅类型的大楼,具有合格AR值的大楼符合资格申请“绿色建筑”奖励金。计算住宅楼宇节约水指数公式(实际节水率;WR)如下:WR=(Wd-(Ts(Wc-Ql)al+Tu(Wu–Q2)a2+Tw(Wt–Q3)a3+Ba4))÷Wd–C(1)计算节约水指数公式用于其他种类的建筑物(节水设备的效率;AR)如下:AR=R+C:(2)标准化的合格条件是WR=0.8;(3)AR=0.8:(4)下列符号在公式(1)-(4)开始时看到的名称和表2显示常数(Wd;Ts;Wc;Tu;Wu;Tw;Wt)为所规定估计方法的评价值。3.2、计算基础和法规有关法规对公式(1)-(4)分列如下:(1)WR(实际节水率)=0.8计算,根据该假设,在2001年的基础上,参考国外的规范和经验,即平均每日水的消费。大多数发达国家平均每天水耗控制在200L以下。因此,台湾的绿色建筑规范制定的临时水消费标准为每人每天200L。(2)因子Tu=3.57和Tw=4.86为计算得到的加权平均数:按人体正常机能大便每天一次,尿液三次,在星期六及星期日为5次,每人每天高出平时的3.57倍。工作日平均每人每天排放的频率为4次,而周末为7次,是平时的4.86倍。此外,节水型设备不会同时用于统一施工项目,实用率a1〜a4应乘以,以反映对实际情况。(3)每次冲洗洗手间的水消耗量Wd=13L,在规范(1)被认为是计算冲洗洗手间的水节约率的基本水消耗量,并且对应于原有房屋最普遍类型的洗手间。换句话说,节水型洗手间使水消耗量降低到每排出9L水,将节约4L水。此外,二分式节水型洗手间使冲洗的水消耗量降低到4.5L,节约水超过8.5L。103 内蒙古科技大学毕业设计说明书洗手间的实际水消耗量应该是取决于以下不同的水消耗量和品牌规格。(4)当使用普通的水龙头是,在20s内每次的水消耗量为Wt=3,在规范(1)中被看作水龙头最基本的节水率。一个水龙头的实际用水量应该根据不同的用水量数量如各种各样的品牌说明来确定。其中,那些建议每次节约用水1.5L(一般用水量的50%)。但是这没有注意到用水量。(5)B的要求,公式(1)要求节水型洗浴设备的节约用水量应该考虑人们的各种各样洗澡的习惯;特别是那些使用淋浴或者浴缸的用水量。节水型淋浴的用水量大约是70L,并且同时,使用浴缸洗澡的用水超过150L,因此,当计算B时,没有澡盆是淋浴应再加上20L;当普通澡盆的使用功能不变时,应该以按摩澡盆(B=-20)减20L。此外,对于装有定时设备的浴室来说,有低的流速或者一些其他类节约用水设备的淋浴喷嘴,每个设备可以被增加10L到B。(6)使用雨水或者中水系统,在专业设计和效果被认为是相同。为了尊重每次专业设计,在这个计划里建议的标准化的公式里C没有被计算。对应于工程,那些大楼的管理者,使用这样的再循环系统,必须知道每个设备有关雨水或者中水再循环率的情况。雨水或者中水只能用于非饮用水,因此,在一座建筑物内C的比率不超过用于做家务(大约0.35)的比率的那些水。(7)蓄水设备,例如节水型洗手间,自动关闭喷头,汽车传感器冲洗设备,节水型淋浴喷嘴和澡盆应该得到水资源局台湾经济事务部(MOEA)的"节约用水模范"的评价;或者,业主应该提交相关证书。根据大楼的结构图纸大量的节约用水设备应该被统计。只有上述MOEA已经宣布的上述6个设备可以被统计。3.3.公认标准的原则一座大楼的用水量设计必须遵循下面的水资源索引的标准原则。(1)对节约用水设备的使用是最有效的。特别有效的方式是两分式节约用水洗手间和不带澡盆的节水型设备。(2)在整个建设发展期间通过奖励可能很容易通过使用节水型洗手间、水龙头、淋浴设备等达到节水标准。103 内蒙古科技大学毕业设计说明书(3)尽管它有很高的节水效率,但由于低水位费和昂贵的水处理设备,再循环雨水和中水系统并没取得很好的经济利益。可循环的雨水比中水更适应社会的需要。评价可循环雨水的方法将在下一章里讲解。3.4.案例研究的例子提到全部相关设备,包括针对性图表,说明图表,节约用水数量的证书,并且提交的全部计算指标在这里都被考虑。如果再循环雨水或者中水系统被采用,然后细节图和节水率报告应该被提交。这样的参考在案例研究过程中容易被忽略。案例1:简要说明节水型设备。(1)建设基地坐落于台北市,共有五大部分,其中每部分有五座楼房,每座楼房有两个住宅单位,共50个单位,每个单元有两个厕所。(2)一半以上的建设项目使用节水型设备,包括两分式节水型公厕(冲厕粪便时用水9升;冲洗尿液时则用水4.5L)和节水型水龙头(每次使用消耗水1.2升)。每个浴室配备了淋浴喷头(没有浴缸),一个带计时器的装置(没有浴缸的淋浴装置可以节省20L的水,使用计时器的装置可以在节省10L水)。水资源指数的计算方法如下:(1)估计一般每日每人消耗水250升。(2)WR=(250-((13-9)×0.5+3.57×(13-4.5)×0.5+4.86×(3-1.2)×0.5+(10+20)×0.5))÷250=0.857因此,案例一达不到水资源指数,不能获得“绿色建筑”的奖励金。案例2:节水设备的简要说明。(1)在上面的例子中仅仅一半以上的建设项目使用节水型设备。如果整个项目都使用这种节水型设备,那么计算数据如下,WR=(250-((13-9)×1.0+3.57×(13-4.5)×1.0+4.86×(3-1.2)×1.0+(10+20)×1.0))/250=0.714(2)当WR<0.8时,实例2实现了水的资源指数,能获得“绿色建筑”的奖励金。案例3:如果案例2中的工程包括一个回收雨水的系统,那么情况如下:(1)公寓的屋顶可以收集到625米雨水,集水槽可以收集到35M的雨水。因此,使用这些循环水可以用来冲洗厕所,清洁及其他用途(例如;浇灌植物和清洗车辆),这样每人每天可以节省30升的水。103 内蒙古科技大学毕业设计说明书(2)循环雨水的消耗量占水消耗总量的0.12,(C=30÷250=0.12)。(3)当水资源指数是0.594时(WR=0.714-0.12=0.594)。因此,案例3不能达到激励的标准,但也是一个模范绿色建筑的设计。4、回收雨水的评价方法因为水费低和水处理设备成本高,回收雨水和中水系统还不能产生很好的经济效益。然而,回收雨水系统比重谁更容易实施。在这里引入一种评估回收雨水的方法回收雨水的消耗占消耗水总量的比值。4.1、计算的基础上回收雨水设计一个循环回收雨水系统,首先要确定雨水的数量和需求,这将决定雨水收集装置区和储罐数量。雨水的数量其实由一个简单的方程式和收集降水装置区域决定。不过,降水不能均匀的分布在所有的日子和地点。特别是,降雨通常是集中在某些季节和地点。因此,临界点评价是估计和评估气象降水。气象纪录通常包括每年,每月,每日和每小时降水。每年及每月的降水只适合粗略的估计和评估。然而,这种近似结果带来的问题是确定该地区的雨水收集装置和大量的储罐。因此,最常见的考虑是每日降水。每小时降水理论上可以支持更准确地评估。然而,由于更多参数和计算数据的增加,使过程复杂和计算时间长,导致效率低下。在这里,每个建筑物的雨水系统是通过每天的降水来估计。4.2、循环再造雨水的评价系统首先,收集雨水的数量和使用必须知道的。一个基本的概念是在计算雨水利用系统是利用流入和流出来平衡四个参数。这两个流入是收集设备的雨水和自来水系统补充的自来水,而流出的消费量为用户消费和从存储设备溢出的水。图、三介绍了这个概念。设计对象的位置,例如在台北,必须确认每日降水资料的基础上,以气象降水资料为模拟或评估,然后再计算利用雨水。当作为模拟与评估对象条件的水资源利用情况,该地区必须在明年决定安装收集装置。表3列出了台北市每天的降水量,作为一个例子。计算如下:(1)收集的数量(CRW)取决于日常降水(Rd)和收集区(CA)。CRW(m3)=CA(m2)×Rd(mm/day)*ξ*10-3 (ξ103 内蒙古科技大学毕业设计说明书是流出系数由收集位置性质决定。作为典型的屋顶,这个参数通常是在0.85到0.95之间)。(2)溢流量(ORV)取决于收集量(CRW),储罐的容量(SV)和储罐的数量(RSV)。如果CRW+RSV>SV(m3);则OFV=CRW+RSV-SV.如果CRW+RSVSV;那么RSV′=SV;如果CRW+RSV′0;那么CW=0.(5)第二,经过上面的计算储罐身雨水量(RSV)的计算如下:如果RSV′-UW<0;那么RSV′′=0;如果RSV′-UW>0;那么RSV′′=RSV–UW.(6)第二,其余的数量,在储罐是,,第二储罐中的水量的数据(RSV′′)用来作为RSV初步数据,将每天的数据加起来和年循环利用情况来计算。(7)上述计算可以用来获取每年雨水利用量(YRU),每年的雨水收集量(YRC)和每年消耗量(YTU)。YRU=∑(UW-CW);YRC=∑CRW;YTU=∑UW:(8)雨水利用率(PRU%)和自来水替代率(PCW%),可以计算如下:PRU(%)=YRU÷YRC×100,PCW(%)=YRU÷YTC×100103 内蒙古科技大学毕业设计说明书上述计算雨水评估的程序是通过计算机程序和仿真结果迅速获得。图4说明了该程序的流程图。4.3、案例研究与分析以下为上述的指导建筑,一所小学采取雨水利用系统的建设就是采用仿真和验证评估结果的例子。在台北市有一个建筑面积1260平方米和总楼面面积6960平方米的多学科教学楼。大约屋面建筑面积的80%作为雨水收集面积约为1008平方米。雨水是用来作为中水用在洗手间,每天利用约为20立方米,其流量系数(y)是0.9。一组典型的气象积累作为一个数据库在台北在1992年获得通过。在使用仿真以前,雨水蓄洪池作为一个初始条件。在这里,四个储水罐被认为模拟雨水的利用——15,25,50,100立方米。结果表明,增加蓄水池容积,减少流量,可增加雨水利用。一个50立方米的储罐雨水收集量与可利用的雨水量最接近。因此,这一储罐取得足够的容量。当储罐的容量是100立方米时,使用率几乎是100%,溢流量几乎为零。尽管这一结果有利于得到利用,但如果容积大可能会占据很大的空间,从而对建设规划产生不利影响。因此,设计的原则是必须平衡所有这些因素。例子中楼房有六层,屋顶面积相比总楼面面积很少。每年壁橱消费的水接近7280立方米,但每年最多收集雨水2136立方米。因此,大量补充自来水是必需的。这一结果也导致一个结论,认为高楼群使用雨水系统的效率比其他建筑物较低。较低的建筑物(如少于3楼)可高效的利用雨水,因此没有必要从饮用水系统补充水。从雨水和自来水利用率来评价雨水储罐的效率。由于降水量和雨量分布不同因而产生了不同的结果。图5和图6的结果说明,,雨水利用率和效率是不同的。从1985年到1994年模拟运行这一个时期,储罐包括四个不同的容量。当雨水储罐容量是50立方米时,雨水的使用率超过80%,约25%的来自自来水。使用此方法和评估程序,在建筑设计才能确定雨水利用系统中雨水储罐的容积和性能。在公式的水利用指数,C在循环回收水消费量雨水消费总量比值计算中,一些中水或雨水的回收设备是一个特殊的比重。因此,这个评估程序,C可以作为近似价值水利用指数。5、绿色建筑的标志和政策在日本所谓的“绿色建筑”是“与环境和谐的建筑”,在欧洲成为“生态建筑”或“可持续发展建筑”,而在北美国家称为“绿色建筑”。许多时髦的术语如“103 内蒙古科技大学毕业设计说明书绿色消费”,“绿色生活”,“绿色照明”已被广泛采用。目前在台湾,“绿色”已被作为环境保护一种象征。建设部行政院已决定采取“绿色建筑”计划,标志在台湾生态和环境保护好的建筑。5.1、评价原则绿色建筑是一个普遍的和有系统的设计方法的可持续发展建筑。这个评价体系是基于以下原则:(1)评价指标应准确反映环保因素,如材料,水,土地和气候。(2)评价指标应包括规范的科学的量化评价。(3)评价指标不应包括太多的指标,一些类似的质量指标应结合起来。(4)评价指标应与实际经验一致并且容易让人理解。(5)评价指标不应涉及社会科学的评价。(6)评价指标应适用于台湾的热带气候。(7)评价指标应适用于评价社区或聚集的建筑。(8)评价指标应在预先设计阶段取得预期的结果。根据这些原则,表4所示七指标体系是台湾当前绿色建筑评价体系。通过动态的“地球的资源投入”和“废物输出”,从理论上评估建筑物对环境的影响。实际上,在台湾定义绿色建筑是“消耗最少地球资源,并创造最少建筑废料”。在国际上,每个国家都有不同的方式评价绿色建筑。这个系统提供的基本评价是“低环境影响”。更高层次的问题,例如生物多样性,卫生和舒适和社会意识将不会进行评估。这个系统提供了基本的,实用性和可控环境的保护工具,以便政府紧急制定保护施工环境的政策。“绿色建筑”标志设置是为了奖励绿色建筑设计,并鼓励政府和私营部门要注意绿色建筑的发展。图、七是在台湾绿色建筑的标识。5.2、节约用水措施103 内蒙古科技大学毕业设计说明书本文的重点是在绿色建筑评价体系中节约用水指数。节约用水评价制度通过建立设备设计来达到节约水资源的目的。这个评价指标包含了在预先设计阶段进行标准化的科学量化,以取得预想的结果。在研究的基础上进行评价,在台湾几乎是适用的。使用节水型设备是最有效的方法节水;采用两套节水型厕所和没有浴缸的节水型淋浴设备特别有效的。各种其他类型的中水和雨水回收再利用的设备也进行评估。特别是,雨水利用系统在建筑设计中让人感到鼓舞。当作为绿色建设项目的候选工程时,必须介绍循环用水系统或雨水利用系统,申请人应向有关的委员会提出适当的计算报告,以核实其节水效率。这一方针,在台湾实际上似乎是一个为达到绿色建筑目标合理的政策。一个新的建筑可以轻松地达到上述水利用指数。这个评价体系,旨在鼓励人们以节省更多的水,即使在现有的建筑物中。所有这等于说,政府的大型建设项目作为一个例子要带头在社会使用这种节水型设备。6、结论本文介绍了绿色建筑计划,并提出了节水指数并进行规范化、科学化和量化。这个标准化的科学量化的评价指标可用于预先设计阶段,以取得预期的结果。这项措施的评价指标也是基于台湾现实的和适用的必要研究。绿色建筑实际的节水率(WR)应<0.8,和AR型节水型设备应高于0.8。因此,合格的绿色建筑项目应实现节水率达20%以上。这个可持续的政策计划的主要目标是,不仅在节约水资源,但也减少在地球上对环境的影响。绿色建筑标签从1999年9月1日开始实施,在台湾超过20个项目已经获得绿色建筑标签,而申请的数目继续增加。对于一个资源有限的地区和高密度人口的台湾,绿色建筑的政策是很重要的也是积极的第一步,减少了对环境的影响和促进了可持续发展。鸣谢作者感谢ABRI和国家科学委员会的财政支持。这项研究依据合同号NSC89-2211--011-034。参考文献[1]zeiher。生态建筑,一个完整的指导,创造良好的环保意识建设。纽约:惠特尼图书馆的设计,1996年。[2]郑律,刘雅。研究在住宅水暖系统节省能源。在CIB-W62国际研讨会,爱丁堡,苏格兰,1999年。[3]郑多宽。在绿色建筑设计供水和排水系统对节约能源概念的研究,APECPROJECTEWG 6/2000,台北,台湾,200[4103 内蒙古科技大学毕业设计说明书]郑多宽。雨水利用系统在建筑设计-个案研究的计算和效率评估制度。在CIB-W62国际研讨会,2000.09,巴西的里约热内卢。[5]塔可汉思等人。暖气设计与雨水利用系统。空调及卫生工程师,日本1997年;57(1):50-4。[6]林汉,吕程,等人,在台湾绿色建筑评价手册,台湾,台北,台湾,2000.3.5[7]黄克拉,林汉。研究利用房屋的雨水。建筑学报,1996年;(19):71-83。[8]林汉,萧楚章,陈济黎。中国台北绿色建筑评价体系,APECPROJECTEWG6=2000,台北,台湾,2000年。103 内蒙古科技大学毕业设计说明书参考文献1、王增长.建筑给水排水工程(第六版)[M].北京:中国建筑工业出版社,1999.2、王春燕,张勤.高层建筑给水排水工程[M].重庆:重庆大学出版社,2011.3、陈耀宗,等.建筑给水排水设计手册[M].北京:中国建筑工业出版社,1992.4、李玉华,苏德俭.建筑给水排水工程设计计算[M].北京:中国建筑工业出版社,2005.5、曹冲,王大哲.给水排水与卫生设备[M].北京:中国建筑工业出版社,1986.6、何俊雅.建筑给水排水设计[M].北京:中国建筑工业出版社,1992.7、给水排水设计手册(1、2、8、9、10、11)[M].北京:中国建筑工业出版社,1986.8、高层民用建筑设计防火规范、建筑给排水设计规范、自动喷水灭火系统设计规范等.9、张大群,给水排水常用设备手册[M].北京:机械工业出版社,2008.10、樊建军,等.建筑给水排水及消防工程(第二版)[M].北京:中国建筑工业出版社,2009.11、中元国际工程设计研究院,给排水设计50[M].北京:机械工业出版社,2004.12、陈方肃.高层建筑给水排水设计手册[M].长沙:湖南科学技术出版社,2001.13、张勤.水工程经济[M].北京:中国建筑工业出版社,2002.14、陈耀宗.建筑给水排水设计手册[M].北京:中国建筑工业出版社,1995.15、张智.给排水工程专业毕业设计指南[M].北京:中国水利水电出版社,1999.16、钱维生.高层建筑给水排水工程[M].上海:同济大学出版社,1990.17、内蒙古自治区建筑安装工程概预算定额水暖电气工程[M].呼和浩特,1985.18、Sealedbuildingdrainageandventsystems—anapplicationofactiveairpressuretransientcontrolandsuppression19、Cheng-LiChengEvaluatingWaterConservationMeasuresForGreenBuildingInTaiwan103 内蒙古科技大学毕业设计说明书103 内蒙古科技大学毕业设计说明书致谢本次设计是在指导老师的指导下完成的,感谢老师的督促和教导,让我们在毕业设计的过程中锻炼了查阅资料的能力,并且让我认识到工程设计必须要有严谨认真的态度。在此,非常感谢专业老师们的悉心教导,是他们在课堂上教会我们很多专业知识,同时,他们在本次设计中对我的帮助也是很大的,每次遇到问题的时候他们都会耐心地为我讲解,他们对工作的态度也是我以后工作学习的榜样。再次真诚地向指导老师道一声感谢!115'