- 2.56 MB
- 2022-04-22 11:35:50 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'概率论与数理统计习题及答案习题一1.略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A(2)AB(3)ABC(4)A∪B∪C=C∪B∪A∪BC∪AC∪AB∪ABC=(5)=(6)116
(7)BC∪AC∪AB∪C∪A∪B∪==∪∪(8)AB∪BC∪CA=AB∪AC∪BC∪ABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P().【解】P()=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)=++-=7.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】p=8.对一个五人学习小组考虑生日问题:(1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率;116
(3)求五个人的生日不都在星期日的概率.【解】(1)设A1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故P(A1)==()5(亦可用独立性求解,下同)(2)设A2={五个人生日都不在星期日},有利事件数为65,故P(A2)==()5(3)设A3={五个人的生日不都在星期日}P(A3)=1-P(A1)=1-()59.略.见教材习题参考答案.10.一批产品共N件,其中M件正品.从中随机地取出n件(n30.如图阴影部分所示.22.从(0,1)中随机地取两个数,求:116
(1)两个数之和小于的概率;(2)两个数之积小于的概率.【解】设两数为x,y,则0乙反)由对称性知P(甲正>乙正)=P(甲反>乙反)因此P(甲正>乙正)=46.证明“确定的原则”(Sure-thing):若P(A|C)≥P(B|C),P(A|)≥P(B|),则P(A)≥P(B).【证】由P(A|C)≥P(B|C),得即有同理由得故47.一列火车共有n节车厢,有k(k≥n)个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】设Ai={第i节车厢是空的},(i=1,…,n),则116
其中i1,i2,…,in-1是1,2,…,n中的任n-1个.显然n节车厢全空的概率是零,于是故所求概率为116
48.设随机试验中,某一事件A出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A迟早会出现的概率为1.【证】在前n次试验中,A至少出现一次的概率为49.袋中装有m只正品硬币,n只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r次,已知每次都得到国徽.试问这只硬币是正品的概率是多少?【解】设A={投掷硬币r次都得到国徽}B={这只硬币为正品}由题知则由贝叶斯公式知50.巴拿赫(Banach)火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r根的概率又有多少?116
【解】以B1、B2记火柴取自不同两盒的事件,则有.(1)发现一盒已空,另一盒恰剩r根,说明已取了2n-r次,设n次取自B1盒(已空),n-r次取自B2盒,第2n-r+1次拿起B1,发现已空。把取2n-r次火柴视作2n-r重贝努里试验,则所求概率为式中2反映B1与B2盒的对称性(即也可以是B2盒先取空).(2)前2n-r-1次取火柴,有n-1次取自B1盒,n-r次取自B2盒,第2n-r次取自B1盒,故概率为51.求n重贝努里试验中A出现奇数次的概率.【解】设在一次试验中A出现的概率为p.则由以上两式相减得所求概率为若要求在n重贝努里试验中A出现偶数次的概率,则只要将两式相加,即得.52.设A,B是任意两个随机事件,求P{(+B)(A+B)(+)(A+)}的值.116
【解】因为(A∪B)∩(∪)=A∪B(∪B)∩(A∪)=AB∪所求故所求值为0.53.设两两相互独立的三事件,A,B和C满足条件:ABC=F,P(A)=P(B)=P(C)<1/2,且P(A∪B∪C)=9/16,求P(A).【解】由故或,按题设P(A)<,故P(A)=.54.设两个相互独立的事件A和B都不发生的概率为1/9,A发生B不发生的概率与B发生A不发生的概率相等,求P(A).【解】①②故故③116
由A,B的独立性,及①、③式有故故或(舍去)即P(A)=.55.随机地向半圆00,P(A|B)=1,试比较P(A∪B)与P(A)的大小.(2006研考)解:因为所以.116
习题二1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.【解】故所求分布律为X345P0.10.30.6116
2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X表示取出的次品个数,求:(1)X的分布律;(2)X的分布函数并作图;(3).【解】故X的分布律为X012P(2)当x<0时,F(x)=P(X≤x)=0当0≤x<1时,F(x)=P(X≤x)=P(X=0)=当1≤x<2时,F(x)=P(X≤x)=P(X=0)+P(X=1)=116
当x≥2时,F(x)=P(X≤x)=1故X的分布函数(3)3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率.【解】设X表示击中目标的次数.则X=0,1,2,3.116
故X的分布律为X0123P0.0080.0960.3840.512分布函数4.(1)设随机变量X的分布律为P{X=k}=,其中k=0,1,2,…,λ>0为常数,试确定常数a.(2)设随机变量X的分布律为P{X=k}=a/N,k=1,2,…,N,试确定常数a.【解】(1)由分布律的性质知116
故(2)由分布律的性质知即.5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求:(1)两人投中次数相等的概率;(2)甲比乙投中次数多的概率.【解】分别令X、Y表示甲、乙投中次数,则X~b(3,0.6),Y~b(3,0.7)(1)+(2)116
=0.2436.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?【解】设X为某一时刻需立即降落的飞机数,则X~b(200,0.02),设机场需配备N条跑道,则有即利用泊松近似查表得N≥9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?116
【解】设X表示出事故的次数,则X~b(1000,0.0001)8.已知在五重贝努里试验中成功的次数X满足P{X=1}=P{X=2},求概率P{X=4}.【解】设在每次试验中成功的概率为p,则故所以.9.设事件A在每一次试验中发生的概率为0.3,当A发生不少于3次时,指示灯发出信号,(1)进行了5次独立试验,试求指示灯发出信号的概率;(2)进行了7次独立试验,试求指示灯发出信号的概率.【解】(1)设X表示5次独立试验中A发生的次数,则X~6(5,0.3)(2)令Y表示7次独立试验中A发生的次数,则Y~b(7,0.3)10.某公安局在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为(1/2)t的泊松分布,而与时间间隔起点无关(时间以小时计).(1)求某一天中午12时至下午3时没收到呼救的概率;116
(2)求某一天中午12时至下午5时至少收到1次呼救的概率.【解】(1)(2)11.设P{X=k}=,k=0,1,2P{Y=m}=,m=0,1,2,3,4分别为随机变量X,Y的概率分布,如果已知P{X≥1}=,试求P{Y≥1}.【解】因为,故.而故得即从而12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.【解】令X为2000册书中错误的册数,则X~b(2000,0.001).利用泊松近似计算,得116
13.进行某种试验,成功的概率为,失败的概率为.以X表示试验首次成功所需试验的次数,试写出X的分布律,并计算X取偶数的概率.【解】14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.【解】以“年”为单位来考虑.(1)在1月1日,保险公司总收入为2500×12=30000元.设1年中死亡人数为X,则X~b(2500,0.002),则所求概率为由于n很大,p很小,λ=np=5,故用泊松近似,有116
(2)P(保险公司获利不少于10000)即保险公司获利不少于10000元的概率在98%以上P(保险公司获利不少于20000)即保险公司获利不少于20000元的概率约为62%15.已知随机变量X的密度函数为f(x)=Ae-|x|,-∞a时,F(x)=1即分布函数18.设随机变量X在[2,5]上服从均匀分布.现对X进行三次独立观测,求至少有两次的观测值大于3的概率.116
【解】X~U[2,5],即故所求概率为19.设顾客在某银行的窗口等待服务的时间X(以分钟计)服从指数分布.某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数,试写出Y的分布律,并求P{Y≥1}.【解】依题意知,即其密度函数为该顾客未等到服务而离开的概率为,即其分布律为116
20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X服从N(40,102);第二条路程较长,但阻塞少,所需时间X服从N(50,42).(1)若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些?(2)又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些?【解】(1)若走第一条路,X~N(40,102),则若走第二条路,X~N(50,42),则++故走第二条路乘上火车的把握大些.(2)若X~N(40,102),则若X~N(50,42),则116
故走第一条路乘上火车的把握大些.21.设X~N(3,22),(1)求P{20;(2)f(x)=试确定常数a,b,并求其分布函数F(x).【解】(1)由知116
故即密度函数为当x≤0时当x>0时故其分布函数(2)由得b=1即X的密度函数为116
当x≤0时F(x)=0当00时,故(2)当y≤1时当y>1时116
故(3)当y≤0时当y>0时故31.设随机变量X~U(0,1),试求:116
(1)Y=eX的分布函数及密度函数;(2)Z=-2lnX的分布函数及密度函数.【解】(1)故当时当10时,即分布函数故Z的密度函数为32.设随机变量X的密度函数为f(x)=试求Y=sinX的密度函数.【解】当y≤0时,116
当00)=1,故0<1-e-2X<1,即P(06,则P(X1时,即故51.设随机变量X的密度函数为fX(x)=,求Y=1-的密度函数fY(y).【解】116
故52.假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布.(1)求相继两次故障之间时间间隔T的概率分布;(2)求在设备已经无故障工作8小时的情形下,再无故障运行8小时的概率Q.(1993研考)【解】(1)当t<0时,当t≥0时,事件{T>t}与{N(t)=0}等价,有即即间隔时间T服从参数为λ的指数分布。(2)53.设随机变量X的绝对值不大于1,P{X=-1}=1/8,P{X=1}=1/4.在事件{-1P{|Y-μ2|<1},试比较σ1与σ2的大小.(2006研考)解:依题意,,则,.因为,即116
,所以有,即.习题三1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和Y的联合分布律.【解】X和Y的联合分布律如表:XY0123100116
3002.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.【解】X和Y的联合分布律如表:XY0123000102P(0黑,2红,2白)=03.设二维随机变量(X,Y)的联合分布函数为F(x,y)=求二维随机变量(X,Y)在长方形域内的概率.116
【解】如图题3图说明:也可先求出密度函数,再求概率。4.设随机变量(X,Y)的分布密度f(x,y)=求:(1)常数A;(2)随机变量(X,Y)的分布函数;(3)P{0≤X<1,0≤Y<2}.116
【解】(1)由得A=12(2)由定义,有(3)5.设随机变量(X,Y)的概率密度为f(x,y)=(1)确定常数k;(2)求P{X<1,Y<3};(3)求P{X<1.5};(4)求P{X+Y≤4}.【解】(1)由性质有116
故(2)(3)(4)题5图6.设X和Y是两个相互独立的随机变量,X在(0,0.2)上服从均匀分布,Y的密度函数为fY(y)=116
求:(1)X与Y的联合分布密度;(2)P{Y≤X}.题6图【解】(1)因X在(0,0.2)上服从均匀分布,所以X的密度函数为而所以116
(2)7.设二维随机变量(X,Y)的联合分布函数为F(x,y)=求(X,Y)的联合分布密度.【解】8.设二维随机变量(X,Y)的概率密度为f(x,y)=求边缘概率密度.【解】116
题8图题9图9.设二维随机变量(X,Y)的概率密度为f(x,y)=求边缘概率密度.【解】116
题10图10.设二维随机变量(X,Y)的概率密度为f(x,y)=(1)试确定常数c;(2)求边缘概率密度.【解】(1)得.(2)116
11.设随机变量(X,Y)的概率密度为f(x,y)=求条件概率密度fY|X(y|x),fX|Y(x|y).题11图【解】116
所以12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X,最大的号码为Y.(1)求X与Y的联合概率分布;(2)X与Y是否相互独立?【解】(1)X与Y的联合分布律如下表116
YX345120300(2)因故X与Y不独立13.设二维随机变量(X,Y)的联合分布律为XY2580.40.80.150.300.350.050.120.03(1)求关于X和关于Y的边缘分布;(2)X与Y是否相互独立?【解】(1)X和Y的边缘分布如下表116
XY258P{Y=yi}0.40.150.300.350.80.80.050.120.030.20.20.420.38(2)因故X与Y不独立.14.设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)=(1)求X和Y的联合概率密度;(2)设含有a的二次方程为a2+2Xa+Y=0,试求a有实根的概率.【解】(1)因故116
题14图(2)方程有实根的条件是故X2≥Y,从而方程有实根的概率为:15.设X和Y分别表示两个不同电子器件的寿命(以小时计),并设X和Y相互独立,且服从同一分布,其概率密度为f(x)=116
求Z=X/Y的概率密度.【解】如图,Z的分布函数(1)当z≤0时,(2)当00)的泊松分布,每位乘客在中途下车的概率为p(0
1}=P{}=0,P{X=1,Y=-1}=P{U>-1,U≤1}.故得X与Y的联合概率分布为.(2)因,而X+Y及(X+Y)2的概率分布相应为,.从而所以116
31.设随机变量X的概率密度为f(x)=,(-∞
您可能关注的文档
- 《标准韩国语》第一册 课后答案.pdf
- 《桥梁工程》考试习题及答案.doc
- 《植物学》习题集.doc
- 《植物生理学》习题及答案.doc
- 《植物病虫害防治》课后习题及答案.doc
- 《概率》(韩旭里)习题解答.doc
- 《概率与数理统计》练习册及答案.doc
- 《概率论》习题解答(不完全版).pdf
- 《概率论与数理统计》 经管类 第四版 吴赣昌著 课后习题答案.pdf
- 《概率论与数理统计》习题册答案(西农版).doc
- 《概率论与数理统计》习题及答案.doc
- 《概率论与数理统计》习题答案(复旦大学出版社)1~6章全.doc
- 《概率论与数理统计》习题答案(复旦大学出版社)2.doc
- 《概率论与数理统计》浙江大学第四版课后习题答案.doc
- 《概率论与数理统计》科学出版社课后习题答案.doc
- 《概率论与数理统计》第三版,科学出版社_课后习题答案.pdf
- 《概率论与数理统计》第三版,科学出版社课后习题答案.doc
- 概率论与数理统计》第三版__课后习题答案(1).pdf
相关文档
- 施工规范CECS140-2002给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程
- 施工规范CECS141-2002给水排水工程埋地钢管管道结构设计规程
- 施工规范CECS142-2002给水排水工程埋地铸铁管管道结构设计规程
- 施工规范CECS143-2002给水排水工程埋地预制混凝土圆形管管道结构设计规程
- 施工规范CECS145-2002给水排水工程埋地矩形管管道结构设计规程
- 施工规范CECS190-2005给水排水工程埋地玻璃纤维增强塑料夹砂管管道结构设计规程
- cecs 140:2002 给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程(含条文说明)
- cecs 141:2002 给水排水工程埋地钢管管道结构设计规程 条文说明
- cecs 140:2002 给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程 条文说明
- cecs 142:2002 给水排水工程埋地铸铁管管道结构设计规程 条文说明