• 3.22 MB
  • 2022-04-22 11:35:43 发布

《概率》(韩旭里)习题解答.doc

  • 101页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'概率论与数理统计习题及答案习题一1.略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A(2)AB(3)ABC(4)A∪B∪C=C∪B∪A∪BC∪AC∪AB∪ABC=(5)=(6)(7)BC∪AC∪AB∪C∪A∪B∪==∪∪(8)AB∪BC∪CA=AB∪AC∪BC∪ABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P().【解】P()=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)101 =++-=7.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】p=8.对一个5人学习小组考虑生日问题:(1)求5个人的生日都在星期日的概率;(2)求5个人的生日都不在星期日的概率;(3)求5个人的生日不都在星期日的概率.【解】(1)设A1={5个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故P(A1)==()5(亦可用独立性求解,下同)(2)设A2={5个人生日都不在星期日},有利事件数为65,故P(A2)==()5(3)设A3={5个人的生日不都在星期日}P(A3)=1-P(A1)=1-()59.略.见教材习题参考答案.10.一批产品共N件,其中M件正品.从中随机地取出n件(n30.如图阴影部分所示.22.从(0,1)中随机地取两个数,求:(1)两个数之和小于的概率;(2)两个数之积小于的概率.【解】设两数为x,y,则0乙反)由对称性知P(甲正>乙正)=P(甲反>乙反)因此P(甲正>乙正)=46.证明“确定的原则”(Sure-thing):若P(A|C)≥P(B|C),P(A|)≥P(B|),则P(A)≥P(B).【证】由P(A|C)≥P(B|C),得即有同理由得故47.一列火车共有n节车厢,有k(k≥n)个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】设Ai={第i节车厢是空的},(i=1,…,n),则其中i1,i2,…,in-1是1,2,…,n中的任n-1个.显然n节车厢全空的概率是零,于是101 故所求概率为48.设随机试验中,某一事件A出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A迟早会出现的概率为1.【证】在前n次试验中,A至少出现一次的概率为49.袋中装有m只正品硬币,n只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r次,已知每次都得到国徽.试问这只硬币是正品的概率是多少?【解】设A={投掷硬币r次都得到国徽}B={这只硬币为正品}由题知则由贝叶斯公式知50.巴拿赫(Banach)火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r根的概率又有多少?【解】以B1、B2记火柴取自不同两盒的事件,则有.(1)发现一盒已空,另一盒恰剩r根,说明已取了2n-r次,设n次取自B1盒(已空),n-r次取自B2盒,第2n-r+1次拿起B1,发现已空。把取2n-r次火柴视作2n-r重贝努里试验,则所求概率为式中2反映B1与B2盒的对称性(即也可以是B2盒先取空).(2)前2n-r-1次取火柴,有n-1次取自B1盒,n-r次取自B2盒,第2n-r次取自B1盒,故概率为51.求n重贝努里试验中A出现奇数次的概率.101 【解】设在一次试验中A出现的概率为p.则由以上两式相减得所求概率为若要求在n重贝努里试验中A出现偶数次的概率,则只要将两式相加,即得.52.设A,B是任意两个随机事件,求P{(+B)(A+B)(+)(A+)}的值.【解】因为(A∪B)∩(∪)=A∪B(∪B)∩(A∪)=AB∪所求故所求值为0.53.设两两相互独立的三事件,A,B和C满足条件:ABC=F,P(A)=P(B)=P(C)<1/2,且P(A∪B∪C)=9/16,求P(A).【解】由故或,按题设P(A)<,故P(A)=.54.设两个相互独立的事件A和B都不发生的概率为1/9,A发生B不发生的概率与B发生A不发生的概率相等,求P(A).【解】①②故故③101 由A,B的独立性,及①、③式有故故或(舍去)即P(A)=.55.随机地向半圆00,P(A|B)=1,试比较P(A∪B)与P(A)的大小.(2006研考)解:因为所以.101 习题二1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.【解】故所求分布律为X345P0.10.30.62.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X表示取出的次品个数,求:(1)X的分布律;(2)X的分布函数并作图;(3).【解】故X的分布律为X012P(2)当x<0时,F(x)=P(X≤x)=0当0≤x<1时,F(x)=P(X≤x)=P(X=0)=101 当1≤x<2时,F(x)=P(X≤x)=P(X=0)+P(X=1)=当x≥2时,F(x)=P(X≤x)=1故X的分布函数(3)3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率.【解】设X表示击中目标的次数.则X=0,1,2,3.故X的分布律为X0123P0.0080.0960.3840.512分布函数4.(1)设随机变量X的分布律为101 P{X=k}=,其中k=0,1,2,…,λ>0为常数,试确定常数a.(2)设随机变量X的分布律为P{X=k}=a/N,k=1,2,…,N,试确定常数a.【解】(1)由分布律的性质知故(2)由分布律的性质知即.5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求:(1)两人投中次数相等的概率;(2)甲比乙投中次数多的概率.【解】分别令X、Y表示甲、乙投中次数,则X~b(3,0.6),Y~b(3,0.7)(1)+(2)=0.243101 6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?【解】设X为某一时刻需立即降落的飞机数,则X~b(200,0.02),设机场需配备N条跑道,则有即利用泊松近似查表得N≥9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?【解】设X表示出事故的次数,则X~b(1000,0.0001)8.已知在五重贝努里试验中成功的次数X满足P{X=1}=P{X=2},求概率P{X=4}.【解】设在每次试验中成功的概率为p,则故所以.9.设事件A在每一次试验中发生的概率为0.3,当A发生不少于3次时,指示灯发出信号,(1)进行了5次独立试验,试求指示灯发出信号的概率;(2)进行了7次独立试验,试求指示灯发出信号的概率.【解】(1)设X表示5次独立试验中A发生的次数,则X~6(5,0.3)(2)令Y表示7次独立试验中A发生的次数,则Y~b(7,0.3)10.某公安局在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为(1/2)t101 的泊松分布,而与时间间隔起点无关(时间以小时计).(1)求某一天中午12时至下午3时没收到呼救的概率;(2)求某一天中午12时至下午5时至少收到1次呼救的概率.【解】(1)(2)11.设P{X=k}=,k=0,1,2P{Y=m}=,m=0,1,2,3,4分别为随机变量X,Y的概率分布,如果已知P{X≥1}=,试求P{Y≥1}.【解】因为,故.而故得即从而12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.【解】令X为2000册书中错误的册数,则X~b(2000,0.001).利用泊松近似计算,得13.进行某种试验,成功的概率为,失败的概率为.以X表示试验首次成功所需试验的次数,试写出X的分布律,并计算X取偶数的概率.【解】101 14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.【解】以“年”为单位来考虑.(1)在1月1日,保险公司总收入为2500×12=30000元.设1年中死亡人数为X,则X~b(2500,0.002),则所求概率为由于n很大,p很小,λ=np=5,故用泊松近似,有(2)P(保险公司获利不少于10000)即保险公司获利不少于10000元的概率在98%以上P(保险公司获利不少于20000)即保险公司获利不少于20000元的概率约为62%15.已知随机变量X的密度函数为f(x)=Ae-|x|,-∞a时,F(x)=1即分布函数101 18.设随机变量X在[2,5]上服从均匀分布.现对X进行3次独立观测,求至少有2次的观测值大于3的概率.【解】X~U[2,5],即故所求概率为19.设顾客在某银行的窗口等待服务的时间X(以分钟计)服从指数分布.某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数,试写出Y的分布律,并求P{Y≥1}.【解】依题意知,即其密度函数为该顾客未等到服务而离开的概率为,即其分布律为20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X服从N(40,102);第二条路程较长,但阻塞少,所需时间X服从N(50,42).(1)若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些?(2)又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些?【解】(1)若走第一条路,X~N(40,102),则101 若走第二条路,X~N(50,42),则++故走第二条路乘上火车的把握大些.(2)若X~N(40,102),则若X~N(50,42),则故走第一条路乘上火车的把握大些.21.设X~N(3,22),(1)求P{20;(2)f(x)=试确定常数a,b,并求其分布函数F(x).【解】(1)由知故即密度函数为当x≤0时当x>0时101 故其分布函数(2)由得b=1即X的密度函数为当x≤0时F(x)=0当00时,故(2)当y≤1时当y>1时故(3)当y≤0时当y>0时101 故31.设随机变量X~U(0,1),试求:(1)Y=eX的分布函数及密度函数;(2)Z=-2lnX的分布函数及密度函数.【解】(1)故当时当10时,101 即分布函数故Z的密度函数为32.设随机变量X的密度函数为f(x)=试求Y=sinX的密度函数.【解】当y≤0时,当00)=1,故0<1-e-2X<1,即P(06,则P(X1时,即故101 51.设随机变量X的密度函数为fX(x)=,求Y=1-的密度函数fY(y).【解】故52.假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布.(1)求相继两次故障之间时间间隔T的概率分布;(2)求在设备已经无故障工作8小时的情形下,再无故障运行8小时的概率Q.(1993研考)【解】(1)当t<0时,当t≥0时,事件{T>t}与{N(t)=0}等价,有即即间隔时间T服从参数为λ的指数分布。(2)53.设随机变量X的绝对值不大于1,P{X=-1}=1/8,P{X=1}=1/4.在事件{-1P{|Y-μ2|<1},试比较σ1与σ2的大小.(2006研考)解:依题意,,则,.因为,即,所以有,即.101 习题三1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和Y的联合分布律.【解】X和Y的联合分布律如表:XY01231003002.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.【解】X和Y的联合分布律如表:XY0123000102P(0黑,2红,2白)=03.设二维随机变量(X,Y)的联合分布函数为F(x,y)=求二维随机变量(X,Y)在长方形域内的概率.【解】如图101 题3图说明:也可先求出密度函数,再求概率。4.设随机变量(X,Y)的分布密度f(x,y)=求:(1)常数A;(2)随机变量(X,Y)的分布函数;(3)P{0≤X<1,0≤Y<2}.【解】(1)由得A=12(2)由定义,有(3)5.设随机变量(X,Y)的概率密度为f(x,y)=(1)确定常数k;(2)求P{X<1,Y<3};(3)求P{X<1.5};(4)求P{X+Y≤4}.【解】(1)由性质有101 故(2)(3)(4)题5图6.设X和Y是两个相互独立的随机变量,X在(0,0.2)上服从均匀分布,Y的密度函数为fY(y)=求:(1)X与Y的联合分布密度;(2)P{Y≤X}.题6图【解】(1)因X在(0,0.2)上服从均匀分布,所以X的密度函数为而101 所以(2)7.设二维随机变量(X,Y)的联合分布函数为F(x,y)=求(X,Y)的联合分布密度.【解】8.设二维随机变量(X,Y)的概率密度为f(x,y)=求边缘概率密度.【解】101 题8图题9图9.设二维随机变量(X,Y)的概率密度为f(x,y)=求边缘概率密度.【解】题10图10.设二维随机变量(X,Y)的概率密度为f(x,y)=(1)试确定常数c;(2)求边缘概率密度.【解】(1)得.(2)101 11.设随机变量(X,Y)的概率密度为f(x,y)=求条件概率密度fY|X(y|x),fX|Y(x|y).题11图【解】所以101 12.袋中有五个号码1,2,3,4,5,从中任取3个,记这3个号码中最小的号码为X,最大的号码为Y.(1)求X与Y的联合概率分布;(2)X与Y是否相互独立?【解】(1)X与Y的联合分布律如下表YX345120300(2)因故X与Y不独立13.设二维随机变量(X,Y)的联合分布律为XY2580.40.80.150.300.350.050.120.03(1)求关于X和关于Y的边缘分布;(2)X与Y是否相互独立?【解】(1)X和Y的边缘分布如下表XY258P{Y=yi}0.40.150.300.350.80.80.050.120.030.20.20.420.38101 (2)因故X与Y不独立.14.设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)=(1)求X和Y的联合概率密度;(2)设含有a的二次方程为a2+2Xa+Y=0,试求a有实根的概率.【解】(1)因故题14图(2)方程有实根的条件是故X2≥Y,从而方程有实根的概率为:15.设X和Y分别表示两个不同电子器件的寿命(以小时计),并设X和Y相互独立,且服从同一分布,其概率密度为f(x)=101 求Z=X/Y的概率密度.【解】如图,Z的分布函数(1)当z≤0时,(2)当00)的泊松分布,每位乘客在中途下车的概率为p(01}=P{}=0,P{X=1,Y=-1}=P{U>-1,U≤1}.故得X与Y的联合概率分布为.(2)因,而X+Y及(X+Y)2的概率分布相应为,.从而所以101 31.设随机变量X的概率密度为f(x)=,(-∞105}≈0.3485.有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100根,问其中至少有30根短于3m的概率是多少?101 【解】设100根中有X根短于3m,则X~B(100,0.2)从而6.某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药品对这种疾病的治愈率是0.8,问接受这一断言的概率是多少?(2)若实际上此药品对这种疾病的治愈率是0.7,问接受这一断言的概率是多少?【解】令(1)X~B(100,0.8),(2)X~B(100,0.7),7.用Laplace中心极限定理近似计算从一批废品率为0.05的产品中,任取1000件,其中有20件废品的概率.【解】令1000件中废品数X,则p=0.05,n=1000,X~B(1000,0.05),E(X)=50,D(X)=47.5.故8.设有30个电子器件.它们的使用寿命T1,…,T30服从参数λ101 =0.1[单位:(小时)-1]的指数分布,其使用情况是第一个损坏第二个立即使用,以此类推.令T为30个器件使用的总计时间,求T超过350小时的概率.【解】故9.上题中的电子器件若每件为a元,那么在年计划中一年至少需多少元才能以95%的概率保证够用(假定一年有306个工作日,每个工作日为8小时).【解】设至少需n件才够用.则E(Ti)=10,D(Ti)=100,E(T)=10n,D(T)=100n.从而即故所以需272a元.10.对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1名家长、2名家长来参加会议的概率分别为0.05,0.8,0.15.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布.(1)求参加会议的家长数X超过450的概率?(2)求有1名家长来参加会议的学生数不多于340的概率.【解】(1)以Xi(i=1,2,…,400)记第i个学生来参加会议的家长数.则Xi的分布律为Xi012P0.050.80.15易知E(Xi=1.1),D(Xi)=0.19,i=1,2,…,400.而,由中心极限定理得于是(2)以Y记有一名家长来参加会议的学生数.则Y~B(400,0.8)由拉普拉斯中心极限定理得101 11.设男孩出生率为0.515,求在10000个新生婴儿中女孩不少于男孩的概率?【解】用X表10000个婴儿中男孩的个数,则X~B(10000,0.515)要求女孩个数不少于男孩个数的概率,即求P{X≤5000}.由中心极限定理有12.设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为0.9.以95%概率估计,在一次行动中:(1)至少有多少个人能够进入?(2)至多有多少人能够进入?【解】用Xi表第i个人能够按时进入掩蔽体(i=1,2,…,1000).令Sn=X1+X2+…+X1000.(1)设至少有m人能够进入掩蔽体,要求P{m≤Sn≤1000}≥0.95,事件由中心极限定理知:从而故所以m=900-15.65=884.35≈884人(2)设至多有M人能进入掩蔽体,要求P{0≤Sn≤M}≥0.95.查表知=1.65,M=900+15.65=915.65≈916人.13.在一定保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡者其家属可向保险公司领得1000元赔偿费.求:(1)保险公司没有利润的概率为多大;(2)保险公司一年的利润不少于60000元的概率为多大?【解】设X为在一年中参加保险者的死亡人数,则X~B(10000,0.006).101 (1)公司没有利润当且仅当“1000X=10000×12”即“X=120”.于是所求概率为(2)因为“公司利润≥60000”当且仅当“0≤X≤60”于是所求概率为14.设随机变量X和Y的数学期望都是2,方差分别为1和4,而相关系数为0.5试根据契比雪夫不等式给出P{|X-Y|≥6}的估计.(2001研考)【解】令Z=X-Y,有所以15.某保险公司多年统计资料表明,在索赔户中,被盗索赔户占20%,以X表示在随机抽查的100个索赔户中,因被盗向保险公司索赔的户数.(1)写出X的概率分布;(2)利用中心极限定理,求被盗索赔户不少于14户且不多于30户的概率近似值.(1988研考)【解】(1)X可看作100次重复独立试验中,被盗户数出现的次数,而在每次试验中被盗户出现的概率是0.2,因此,X~B(100,0.2),故X的概率分布是(2)被盗索赔户不少于14户且不多于30户的概率即为事件{14≤X≤30}的概率.由中心极限定理,得16.一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.101 【解】设Xi(i=1,2,…,n)是装运i箱的重量(单位:千克),n为所求的箱数,由条件知,可把X1,X2,…,Xn视为独立同分布的随机变量,而n箱的总重量Tn=X1+X2+…+Xn是独立同分布随机变量之和,由条件知:依中心极限定理,当n较大时,,故箱数n取决于条件因此可从解出n<98.0199,即最多可装98箱.101 习题六1.设总体X~N(60,152),从总体X中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于3的概率.【解】μ=60,σ2=152,n=100即2.从正态总体N(4.2,52)中抽取容量为n的样本,若要求其样本均值位于区间(2.2,6.2)内的概率不小于0.95,则样本容量n至少取多大?【解】则Φ(0.4)=0.975,故0.4>1.96,即n>24.01,所以n至少应取253.设某厂生产的灯泡的使用寿命X~N(1000,σ2)(单位:小时),随机抽取一容量为9的样本,并测得样本均值及样本方差.但是由于工作上的失误,事后失去了此试验的结果,只记得样本方差为S2=1002,试求P(>1062).【解】μ=1000,n=9,S2=10024.从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差.【解】,由P(|-μ|>4)=0.02得101 P|Z|>4(σ/n)=0.02,故,即查表得所以5.设总体X~N(μ,16),X1,X2,…,X10是来自总体X的一个容量为10的简单随机样本,S2为其样本方差,且P(S2>a)=0.1,求a之值.【解】查表得所以6.设总体X服从标准正态分布,X1,X2,…,Xn是来自总体X的一个简单随机样本,试问统计量Y=,n>5服从何种分布?【解】且与相互独立.所以7.求总体X~N(20,3)的容量分别为10,15的两个独立随机样本平均值差的绝对值大于0.3的概率.【解】令的容量为10的样本均值,为容量为15的样本均值,则~N(20,310),~N(20,),且与相互独立.则101 那么所以8.设总体X~N(0,σ2),X1,…,X10,…,X15为总体的一个样本.则Y=服从分布,参数为.【解】i=1,2,…,15.那么且与相互独立,所以所以Y~F分布,参数为(10,5).9.设总体X~N(μ1,σ2),总体Y~N(μ2,σ2),X1,X2,…,和Y1,Y2,…,分别来自总体X和Y的简单随机样本,则=.【解】令则又那么101 10.设总体X~N(μ,σ2),X1,X2,…,X2n(n≥2)是总体X的一个样本,,令Y=,求EY.【解】令Zi=Xi+Xn+i,i=1,2,…,n.则Zi~N(2μ,2σ2)(1≤i≤n),且Z1,Z2,…,Zn相互独立.令则故那么所以11.设总体X的概率密度为f(x)=(-∞0),那么时,L=L(θ)最大,所以θ的极大似然估计值=0.9.因为E()=E()≠θ,所以=不是θ的无偏计.6.设X1,X2,…,Xn是取自总体X的样本,E(X)=μ,D(X)=σ2,=k,问k为何值时为σ2的无偏估计.【解】令i=1,2,…,n-1,则于是那么当,即时,有7.设X1,X2是从正态总体N(μ,σ2)中抽取的样本试证都是μ的无偏估计量,并求出每一估计量的方差.【证明】(1),所以均是μ的无偏估计量.(2)101 8.某车间生产的螺钉,其直径X~N(μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm)如下:14.715.014.814.915.115.2试求μ的置信概率为0.95的置信区间.【解】n=6,σ2=0.06,α=1-0.95=0.05,,μ的置信度为0.95的置信区间为.9.总体X~N(μ,σ2),σ2已知,问需抽取容量n多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L?【解】由σ2已知可知μ的置信度为1-α的置信区间为,于是置信区间长度为,那么由≤L,得n≥10.设某种砖头的抗压强度X~N(μ,σ2),今随机抽取20块砖头,测得数据如下(kg·cm-2):64694992559741848899846610098727487844881(1)求μ的置信概率为0.95的置信区间.(2)求σ2的置信概率为0.95的置信区间.【解】(1)μ的置信度为0.95的置信区间(2)的置信度为0.95的置信区间101 11.设总体X~f(x)=X1,X2,…,Xn是X的一个样本,求θ的矩估计量及极大似然估计量.【解】(1)又故所以θ的矩估计量(2)似然函数.取对数所以θ的极大似然估计量为12.设总体X~f(x)=X1,X2,…,Xn为总体X的一个样本(1)求θ的矩估计量;(2)求.101 【解】(1)令所以θ的矩估计量(2),又于是,所以13.设某种电子元件的使用寿命X的概率密度函数为f(x,θ)=其中θ(θ>0)为未知参数,又设x1,x2,…,xn是总体X的一组样本观察值,求θ的极大似然估计值.【解】似然函数由那么当所以θ的极大似然估计量14.设总体X的概率分布为X0123Pθ22θ(1-θ)θ21-2θ101 其中θ(0<θ<)是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极大似然估计值.【解】所以θ的矩估计值(2)似然函数解得.由于所以θ的极大似然估计值为.15.设总体X的分布函数为F(x,β)=其中未知参数β>1,α>0,设X1,X2,…,Xn为来自总体X的样本(1)当α=1时,求β的矩估计量;(2)当α=1时,求β的极大似然估计量;(3)当β=2时,求α的极大似然估计量.【解】当α=1时,101 当β=2时,(1)令,于是所以的矩估计量(2)似然函数所以的极大似然估计量(3)似然函数显然那么当时,,所以的极大似然估计量.16.从正态总体X~N(3.4,62)中抽取容量为n的样本,如果其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问n至少应取多大?101 z1.281.6451.962.33j(z)0.90.950.9750.99【解】,则于是则,∴n≥35.17.设总体X的概率密度为f(x,θ)=其中θ是未知参数(0<θ<1),X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值x1,x2,…,xn中小于1的个数.求:(1)θ的矩估计;(2)θ的最大似然估计.解(1)由于.令,解得,所以参数的矩估计为.(2)似然函数为,取对数,得两边对求导,得101 令得,所以的最大似然估计为.101 习题八1.已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N(4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为4.284.404.424.354.37问若标准差不改变,总体平均值有无显著性变化(=0.05)?【解】所以拒绝H0,认为总体平均值有显著性变化.2.某种矿砂的5个样品中的含镍量(%)经测定为:3.243.263.243.273.25设含镍量服从正态分布,问在=0.01下能否接收假设:这批矿砂的含镍量为3.25.【解】设所以接受H0,认为这批矿砂的含镍量为3.25.3.在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差s2=0.1(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取=0.05).【解】设所以接受H0,认为这堆香烟(支)的重要(克)正常.101 4.某公司宣称由他们生产的某种型号的电池其平均寿命为21.5小时,标准差为2.9小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短?设电池寿命近似地服从正态分布(取=0.05).【解】所以接受H0,认为电池的寿命不比该公司宣称的短.5.测量某种溶液中的水分,从它的10个测定值得出=0.452(%),s=0.037(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平=0.05下检验.(1)H0:μ=0.5(%);H1:μ<0.5(%).(2)=0.04(%);<0.04(%).【解】(1)所以拒绝H0,接受H1.(2)所以接受H0,拒绝H1.6.某种导线的电阻服从正态分布N(μ,0.0052).今从新生产的一批导线中抽取9根,测其电阻,得s=0.008欧.对于=0.05,能否认为这批导线电阻的标准差仍为0.005?【解】故应拒绝H0,不能认为这批导线的电阻标准差仍为0.005.7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到:第一批棉纱样本:n1=200,=0.532kg,s1=0.218kg;第二批棉纱样本:n2=200,=0.57kg,s2=0.176kg.101 设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显著差异?(=0.05)【解】所以接受H0,认为两批强度均值无显著差别.8.两位化验员A,B对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为0.4322(%2)与0.5006(%2).若A,B所得的测定值的总体都是正态分布,其方差分别为σA2,σB2,试在水平=0.05下检验方差齐性的假设【解】那么所以接受H0,拒绝H1.9~12.略101 101'