• 2.25 MB
  • 2022-04-22 11:45:48 发布

《离散的数学结构》课后习题答案.doc

  • 164页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'离散数学辅助教材概念分析结构思想与推理证明第一部分集合论刘国荣交大电信学院计算机系65 离散数学习题解答习题一(第一章集合)1.列出下述集合的全部元素:1)A={x|x∈N∧x是偶数∧x<15}2)B={x|x∈N∧4+x=3}3)C={x|x是十进制的数字}[解]1)A={2,4,6,8,10,12,14}2)B=Æ3)C={0,1,2,3,4,5,6,7,8,9}2.用谓词法表示下列集合:1){奇整数集合}2){小于7的非负整数集合}3){3,5,7,11,13,17,19,23,29}[解]1){nçnÎIÙ($mÎI)(n=2m+1)};2){nçnÎIÙn³0Ùn<7};3){pçpÎNÙp>2Ùp<30ÙØ($dÎN)(d¹1Ùd¹pÙ($kÎN)(p=k×d))}。3.确定下列各命题的真假性:1)ÆÍÆ2)Æ∈Æ3)ÆÍ{Æ}4)Æ∈{Æ}5){a,b}Í{a,b,c,{a,b,c}}6){a,b}∈(a,b,c,{a,b,c})7){a,b}Í{a,b,{{a,b,}}}8){a,b}∈{a,b,{{a,b,}}}[解]1)真。因为空集是任意集合的子集;2)假。因为空集不含任何元素;3)真。因为空集是任意集合的子集;4)真。因为Æ是集合{Æ}的元素;5)真。因为{a,b}是集合{a,b,c,{a,b,c}}的子集;6)假。因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;65 7)真。因为{a,b}是集合{a,b,{{a,b}}}的子集;8)假。因为{a,b}不是集合{a,b,{{a,b}}}的元素。4.对任意集合A,B,C,确定下列命题的真假性:1)如果A∈B∧B∈C,则A∈C。2)如果A∈B∧B∈C,则A∈C。3)如果AÌB∧B∈C,则A∈C。[解]1)假。例如A={a},B={a,b},C={{a},{b}},从而A∈B∧B∈C但A∈C。2)假。例如A={a},B={a,{a}},C={{a},{{a}}},从而A∈B∧B∈C,但、A∈C。3)假。例如A={a},B={a,b},C={{a},a,b},从而ACB∧B∈C,但A∈C。5.对任意集合A,B,C,确定下列命题的真假性:1)如果A∈B∧BÍC,则A∈C。2)如果A∈B∧BÍC,则AÍC。3)如果AÍB∧B∈C,则A∈C。3)如果AÍB∧B∈C,则AÍC。[解]1)真。因为BÍCÛ"x(x∈BÞx∈C),因此A∈BÞA∈C。2)假。例如A={a},B={{a},{b}},C={{a},{b},{c}}从而A∈B∧BÍC,但AÏC。3)假。例如A={a},B={{a,b}},C={{a,{a,b}},从而AÍB∧B∈C,但AÏC。4)假。例如A={a},B={{a,b}},C={{a,b},b},从而AÍB∧B∈C,但AÏC。6.求下列集合的幂集:1){a,b,c}2){a,{b,c}}3){Æ}4){Æ,{Æ}}5){{a,b},{a,a,b},{a,b,a,b}}[解]1){Æ,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}2){,{a},{{b,c}},{a,{a,b}}}3){Æ,{Æ}}4){Æ,{Æ},{{Æ}},{Æ,{Æ}}}65 5){Æ,{{a,b}}}7.给定自然数集合N的下列子集:A={1,2,7,8}B={x|x2<50}C={x|x可以被3整除且0≤x≤30}D={x|x=2K,K∈I∧O≤K≤6}列出下面集合的元素:1)A∪B∪C∪D2)A∩B∩C∩D3)B(A∪C)4)(A′∩B)∪D[解]因为B={1,2,3,4,5,6,7},C={3,6,9,12,15,18,21,24,27,30},D={1,2,4,8,16,32,64,},故此1)A∪B∪C∪D={1,2,3,4,5,6,7,8,9,12,15,16,18,21,24,27,30,32,64}2)A∩B∩C∩D=Æ3)B(A∪C)={4,5}4)(A′∩B)∪D={1,2,3,4,5,6,7,8,16,32,64}8.设A、B、C是集合,证明:1)(AB)=A(BC)2)(AB)C=(AC)(BC)3)(AB)C=(AC)B[证明]1)方法一:(AB)C=(A∩B′)∩C′(差集的定义)=A∩(B′∩C′)(交运算的结合律)=A∩(B∪C)′(deMorgan律)=A(B∪C)(差集的定义)方法二:对任一元素x∈(AB)C,则xÏC,同时,x∈AB,x∈A,xÏB,所以,x∈A,xÏB∪C,即x∈A(B∪C),由此可见(AB)CÍA(B∪C)。反之,对任一元素x∈A(B∪C),则x∈A,且xÏB∪C,也就是说xÏA,xÏB,xÏC。所以x∈(AB)C,由此可见A(B∪C)Í(AB)C。65 因此A(BC)。2)方法一:(AB)C=A(B∪C)(根据1))=A(C∪B)(并运算交换律)=A((C∪B)∩Ⅹ)(0—1律)=A((C∪B)∩(C∪C′))(0—1律)=A(C∪(B∩C′)(分配律)=(AC)(B∩C′)(根据1)=(AC)(B∩C)(差集的定义)方法二:对任一元素x∈(AB)C,可知x∈A,xÏB,xÏC,x∈AC。又由xÏB,xÏBC,x∈(AC)(BC)(BC)。所以(AB)CÍ(AC)(BC)。反之,对任x∈(AC)(BC),可知x∈AC,xÏBC。由x∈AC,可知x∈A,xÏC。又因为xÏBC及xÏC,可知xÏB。所以,x∈(AB)C。因此(AB)CÍ(AB)C。由此可得(AB)(BC)Í(AB)C。3)方法一:(AC)C=A(B∪C)(根据1))=A(C∪B)(并运算交换律)=(AC)B(根据1))方法二:对任一元素x∈(AB)C,可知x∈A,xÏB,xÏC。由为x∈A,xÏC,所以,x∈AC。又由xÏB,x∈(AC)B。所以,(AB)CÍ(AC)B。同理可证得(AC)BÍ(AB)C。9.设A、B是Ⅹ全集的子集,证明:AÍBÛA′∪B=XÛA∩B′=Æ[解](采用循环证法)(1)先证AÍBÞA′∪B=X;方法一:A′∪B=A′∪(A∪B)(因为条件AÍB及定理4)=(A′∪A)∪B(∪的结合律)=(A∪A′)∪B(∪的交换律)=X∪B(互补律)=X(零壹律)方法二:AÍBÞA∪B=B(定理4)65 ÞB=A∪B(等号=的对称性)ÞA′∪B=A′∪(A∪B)(两边同时左并上A′)ÞA′∪B==(A′∪A)∪B(∪的结合律)ÞA′∪B=(A∪A′)∪B(∪的交换律)ÞA′∪B=X∪B(互补律)ÞA′∪B=X(零壹律)方法三:因为A′ÍX且BÍX,所以根据定理2的3¢)就有A′∪BÍX;另一方面,由于BÍA′∪B及根据换质位律可得B′ÍA′ÍA′∪B,因此,由互补律及再次应用定理2的3¢),可得X=B∪B′ÍA′∪B,即XÍA′∪B;所以,A′∪B=X。(2)次证A′∪B=XÞA∩B′=Æ;A′∪B=XÞ(A′∪B)′=X′(两边同时取补运算′)Þ(A′)′∩B′=X′(deMorgan律)ÞA∩B′=X′(反身律)ÞA∩B′=X′(零壹律)(3)再证A∩B′=ÆÞAÍB;方法一:A=A∩X(零壹律)=A∩(B∪B′)(互补律)=(A∩B)∪(A∩B′)(分配律)=(A∩B)∪Æ(条件A∩B′=Æ)=A∩B(零壹律)ÍB(定理2的3))方法二:A∩B′=ÆÞB=B∪Æ(零壹律)=B∪(A∩B′)(条件A∩B′=Æ)=(B∪A)∩(B∪B′)(分配律)=(A∪B)∩(B∪B′)(∪的交换律)=(A∪B)∩X(互补律)=A∪B(零壹律)ÞAÍB(定理4的2))10.对于任意集合A,B,C,下列各式是否成立,为什么?1)A∪B=A∪CÞB=C2)A∩B=A∩CÞB=C65 [解]1)不一定。例如:A={a},B={a,b},C={b}。显然有A∪B=A∪C,但B≠C。2)不一定。例如:A={a},B={a,b},C={b,c}。显然有A∩B=A∩C,但B≠C。11.设A,B为集合,给出下列等式成立的充分必要条件:1)AB=B2)AB=BA3)A∩B=A∪B4)AÅB=A[解]1)AB=A∩B′,由假设可知AB=B,即A∩B′=B。由此可知B=A∩B′ÍB′,故此B=B∩B′=Æ。由假设可知A=AÆ=AB=B=Æ。所以当AB=B时有A=B=ÆÆ。反之,当A=B=Æ时,显然AB=B。因此AB=B的充分必要条件是A=B=Æ。2)设AB≠∈Æ,则有元素a∈AB,那么,a∈A,而由假设AB=BA。所以a∈BA,从而aÏA,矛盾。所以AB=,故AÍB。另一方面由BA=AB=Æ。可得BÍA。因此当AB=BA时,有A=B。反之,当A=B时,显然AB=BA=Æ因此,AB=BA的充要条件是A=B。3)由于A∪B=A∩B,从而AÍA∪B=A∩BÍB,以及BÍA∪B=A∩BÍA故此A∪B=A∩B,有A=B。5)根据定理6的1)有AÅÆ=A,由已知条件AÅB=A,可得AÅB=AÅÆ。从而由对称差的消去律可得B=Æ。反之,若B=Æ,则AÅB=AÅÆ=A。所以AÅB=A的充分必要条件为B=Æ。12.对下列集合,画出其文图:1)A′∩B′2)A(B∪C)′3)A∩(B′∪C)[解]ABA′∩B′A(B∪C)′BCA∩(B′∪C)ACBAXX65 13.用公式表示出下面图中的阴影部分[解]ACBx(A∪B∪C)∪(A∩B∩C)′BCAx(A∩C)B14.试用成员表法证明1)(AÅB)ÅC=A(BÅC)2)(A∪B)∩(B∪C)ÍAB′[解]1)成员表如下ABCAÅB(AÅB)ÅCBÅCAÅ(BÅC)00000000010111010111101110001001101101101011000101110101成员表中运算结果ÅC及AÅ(BÅC)的两列状态表明,全集中的每一个体对它俩有相同的从属关系,故(AÅB)ÅC=AÅ(BÅC)1)成员表如下:ABCA∪B(B∪C)(B∪C)′(A∪B)∩(B∪C)′B′A∩B′00000101000101001001011000001111000010010111165 101110011110110000111110000成员表中运算结果(A∪B)∩(B∪C)′及A∩B′的两列状态表明,全集中的每一个体,凡是从属(A∪B)∩(B∪C)′的,都从属A∩B′,故(A∪B)∩(B∪C)′ÍA∩B注:自然数集N取为{1,2,3,……,n,……}65 习题二(第二章关系)1.设A={1,2,3,},B={a,b}求1)A×B2)B×A3)B×B4)2B×B[解]1)A×B={(1,a),(1,b),(2,a),(2,a),(3,a),(3,b)}2)B×A={(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)}3)B×B={(a,a),(a,b),(b,a),(b,b)}4)2B={Æ,{a},{b},{a,b}}2B×B{(Æ,{a}),(Æ,b),({a},a),({a},b),({b},a),({b},b),({a,b},b)}2.使AÍA×A成立的集合A存在吗?请阐明理由。[解]一般地说,使AÍA×A成立的集合A不存在,除非A=Æ。否则A≠Æ,则存在元素x∈A×A,故有y1,y2∈A,使x=(y1,y2),从而y1,y2∈A×A,故此有y1,y2,y3,y4,使y1=(y1,y2),y2=(y3,y4),……。这说明A中每个元素x,其结构为元组的无穷次嵌套构成,这不可能。我们讨论的元素的结构必须是由元组的有限次嵌套构成。3.证明A×B=B×AÛA=Æ∨B=Æ∨A=B[证]必要性:即证A×B=B×AÞA=Æ∨B=Æ∨A=B若A×B=Æ,则A=Æ或者B=Æ若A×B≠Æ,则A≠Æ且B≠Æ,因此对任何x∈A及任何y∈B就有(x,y)∈A×B,根据A×B=B×A,可得(x,y)∈B×A,故此可得x∈B,y∈A,因此而得AÍB且BÍA,所以由Í的反对称性A=B。充分性:即证A=Æ∨B=Æ∨A=BÞA×B=B×A这是显然的。4.证明(A∩B)×(C∩D)=(A×C)∩(B×D)[证]证法一:(元素法)对任一(x,y)∈(A∩B)×(C∩D)有x∈A∩B,y∈C∩D,于是x∈A,x∈B,y∈C,y∈D。因而(x,y)∈A×C,且(x,y)∈B×D,所以(x,y)∈(A×C)∩(B×D)。因而(A∩B)×(C∩D)Í(A×C)∩(B×D)另一方面,对任一(x,y)∈(A×C)∩(B×D),于是有(x,y)∈A×C且(x,y)∈B×D,因而x∈A,y∈C,x∈By∈D。所以x∈A∩B,y∈(C∩D)。所以(x,y)∈(A∩B)×(C∩D)。因而(A×C)∩(B×D)Í(A∩B)×(C∩D)。65 综合这两个方面有(A∩B)×(C∩D)=(A×C)∩(B×D)。证法二:(逻辑法)对任何x,y(x,y)∈(A∩B)×(C∩D)Þx∈A∩BÙy∈C∩DÞ(x∈AÙx∈B)Ù(y∈CÙy∈D)Þ(x∈AÙy∈C)Ù(x∈BÙy∈D)(Ù的结合律、交换律)Þ(x,y)∈A×CÙ(x,y)∈B×DÞ(x,y)∈(A×C)∩(B×D)由x,y的任意性,可得:(A∩B)×(C∩D)=(A×C)∩(B×D)。5.下列各式中哪些成立,哪些不成立?对成立的式子给出证明,对不成立的式子给出反例。1)(A∪B)×(C∪D)=(A×C)∪(B×D)2)(AB)×(CD)=(A×C)(B×D)3)(AÅB)×(CÅD)=(A×C)Å(B×D)4)(AB)×C=(A×C)(B×C)5)(AÅB)×C=(A×C)Å(B×C)[解]1)不成立。设A={a},B={b},C={c},D={d},则(a,d)∈(A∪B)×(C∪D),但(a,d)Ï(A×C)∪(B×D)。所以(A∪B)×(C∪D)=(A×C)∪(B×D)不成立。事实上有:(A×C)∪(B×D)Í(A∪B)×(C)Í(A∪B)×(C∪D)。2)不成立。设A={a},B={b},C=D={c},则(a,c)∈(A×C)(B×D)但(a,c)Ï(AB)×(CD)。因而(Ab)×(CD)=(A×C)(B×D)不成立。事实上有:(AB)×(CD)Í(A×C)(B×D)。因为ABÍA,CDÍ,故有(A×C)(B×D)ÍA×C;又若(x,y)∈(AB)×(CD)故此x∈AB,从而xÏB,y∈CD,从而yÏD,故此(x,y)ÏB×D综合这两方面,有(AB)×(CD)Í(A×C)(B×D)。3)不成立。设A={a},B={b},C={a},D={b},则(a,b)∈(AÅB)×(CÅD),但(a,b)Ï(A×C)Å(B×D)。所以(AÅB)×(CÅD)Í(A×C)Å(B×D)不成立。又设A={a},B={b},C={a},D={c}则(a,c)∈(A×C)Å(B×D),但(a,c)Ï(AÅB)×(CÅD)。所以(A×C)Å(B×D)Í(AÅB)×(CÅD)不成立。因此(AÅB)×(CÅD)与(A×C)Å(B×D)无任何包含关系。总之(AÅB)×(CÅD)=(A×C)Å(B×65 D)不成立。4)成立。证明如下:对任一(x,y)∈(AB)×C,有x∈A,xÏB,y∈C于是(x,y)∈A×C,且(x,y)∈(AB)×C,且(x,y)ÏB×C(否则x∈B),所以(x,y)∈(A×C)(B×C)。因而(AB)×CÍ(A×C)(B×C)。又对任一(x,y)∈(A×C)(B×C),有(x,y)∈A×C,且(x,y)ÏB×C从而x∈A,y∈C及xÏB。即x∈AB,y∈C,故此(x,y)∈(AB)×C。所以(A×C)(B×C)Í(A×B)×C。因而(AB)×C=(A×C)(B×C)。另一种证明方法:(A×B)×C=(A∩B′)×C(差集的定义)=(A×C)∩(B′×C)(叉积对交运算的分配律)=(A×C)∩(B×C)′(因(B×C)′=(B′×C))∩(B×C′)∪(B′×C′)但(A×C)∩(B×C)′=((A×C)∩(B′×C))∪Æ=(A×C)∩(B′×C))=(A×C)∩(B′×C)(差集的定义)证法三:(逻辑法)对任何x,y(x,y)∈(A×C)(B×C)Þ(x,y)∈A×CÙ(x,y)ÏB×CÞ(x∈AÙy∈C)Ù(xÏBÚyÏC)Þ(x∈AÙy∈CÙxÏB)Ú(x∈AÙy∈CÙyÏC)(Ù对Ú的分配律)Þ(x∈AÙxÏBÙy∈C)Ú(x∈AÙy∈CÙyÏC)(Ù的结合律、交换律)Þ(x∈AÙxÏB)Ùy∈C(Ù及Ú的零壹律、Ù的结合律)Þx∈ABÙy∈CÞ(x,y)∈(AB)×C由x,y的任意性,可得:(AB)×C=(A×C)(B×C)。5)成立。证明如下:对任一(x,y)∈(AÅB)×C,故此x∈AÅB,y∈C于是x∈A且xÏB,或者xÏA且x∈B。因此(x,y)∈(A×C)Å(B×C)。所以(AÅB)×CÍ(A×C)Å(B×C)。对任一(x,y)∈(A×C)Å(B×C)。则(x,y)∈A×C且(x,y)ÏB65 ×C,或者(x,y)ÏA×C且(x,y)B×C。因此x∈A,yC,xÏB,或者x∈B,y∈C,xÏA。所以x∈AB,或x∈BA,并且y∈C,故此x∈AÅB,y∈C。因此(x,y)∈(AÅB)×C,即(A×C)Å(B×C)Í(AÅB)×C。综合两方面、就有(AÅB)×C=(A×C)Å(B×C)另一种证明方法:(AÅB)×C=((AB)∪(BA))×C(对称差的定义)=(((AB)×C)((BA)×C)(叉积对并运算的分配律)=((A×C)(B×C)∪(B×C)(A×C))(根据4))=(A×C)Å(B×C)(对称差的定义)6.设A={1,2,3},B={a},求出所有由A到B的关系。[解]:R0=Æ,R1={(1,a)},R2={(2,a)},R3={(3,a)},R4={(1,a),(2,a)},Rs={(1,a),(3,a)},R6={(2,a),(3,a)},R7={(1,a),(2,a),(3,a)}7.设A={1,2,3,4},R1={(1,3),(2,2),(3,4)},R2={(1,4),(2,3),(3,4)},求:R1∪R2,R1∩R2,R1R2,R1′,Ɗ(R1),Ɗ(R2),ℛ(R1),ℛ(R2),Ɗ(R1∪R2),ℛ(R1∩R2)[解]:R1∪R2={(1,3),(1,4),(2,2),(2,3),(3,4)}R1∩R2={(3,4)}R1R2={(1,3),(2,2)}R1′=(A×A)R={(1,1),(1,2),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4)}(R1)={1,2,3},ℛ(R1)={2,3,4},(R2)={1,2,3},ℛ(R2)={3,4}(R1∪R2)={1,2,3},ℛ(R1∩R2)={4}8.对任意集合A及上的关系R1和R2,证明1)ℛ(R1∪R2)=ℛ(R1)∪ℛ(R2)2)ℛ(R1∩R2)⊆ℛ(R1)∩ℛ(R2)[证]1)一方面,由于R1⊆R1∪R2,R2⊆R1∪R2,根据定理1,有ℛ(R1)⊆ℛ(R1∪R2),ℛ(R2)⊆ℛ(R1∪R2)故ℛ(R1)∪ℛ(R2)⊆ℛ(R1∪R2)另一方面,若x∈ℛ(R1∪R2)那么存在着y∈A,使(y,x)∈(R1∪R2)因此(y,x)∈R1,或者(y,x)∈R2,从而x∈ℛ(R1)或者x∈ℛ(R265 )于是x∈ℛ(R1)∪ℛ(R2),所以ℛ(R1∪R2)⊆ℛ(R1)∪ℛ(R2)。11.设A={1,2,3,4},定义A上的下列关系R1={(1,1),(1,2),(3,3),(3,4)},R2={(1,2),(2,1)}R3={(1,1),(1,2),(2,2),(2,1),(3,3),(3,4),(4,3),(4,4)}R4={(1,2),(2,4),(3,3),(4,1)}R5={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}R6=A×A,R7=Æ请给出上述每一个关系的关系图与关系矩陈,并指出它具有的性质。[解]:100230041)R1是反对称的,传递的。2)R2是反自反的,对称的。3)R3是自反的,对称的,传递的,因此是等价关系。循环的综合这两方面,就有(R1∪R2)=ℛ(R1)∪ℛ(R2)。2)由于R1∩R2⊆R1,R1∩R2⊆R2,根据定理1,有ℛ(R1∩R2)⊆ℛ(R1),ℛ(R1∩R2)⊆R2,所以ℛ(R1∩R2)⊆ℛ(R1)∩ℛ(R2)反方向的包含不成立,反全由第7题可得,那里ℛ(R1∩R2)={4},ℛ(R1)∩ℛ(R265 )={2,3,4}∩{3,4}={3,4}因此ℛ(R1)∩⊈ℛ(R2)⊈(R1∩R2)9.设A有n个元素的有限集合,请指出A上有多少个二元关系?并阐明理由。[解]A上有2n2个元关系。因为叉积A×A有n2个元素,因而A×A有2n2个子集,而每个子集都是A上的一个二元关系。10.定义在整数集合I上的相等关系、“≤”关系、“<”关系,全域关系,空关系,是否具有表中所指的性质,请用Y(有)或N(元)将结果填在表中。性质关系自反的反自反的对称的反对称的传递的相等关系YNYYY≤关系YNNYY<关系NYNYY全域关系YNYNY空关系NYYYY4)R4是反对称的,循环的。5)R5是反自反的,反对称的,传递的。6)65 R6是自反的,对称的,传递的,循环的。从而是等价关系。7)R7是反自反的对称的,传递的,循环的,反传递的,反对称的。12.设A是A上的关系,证明1)R是自反的当且反当IA⊆R2)R是反自反的当且仅当IA∩R=Æ3)R是对称的当且反当R=1)R是反对称的当且仅当R∩⊆IA5)R是传递的当且仅当RR⊆R[证]1)必要性若R是自反的,则对任何x∈A,都有(x,x)∈R,但是IA={(x,x)|x∈A},所以IA⊆R。充分性若IA⊆A则由IA={(x,x)|x∈A},可知对任何x∈A,都有(x,x)∈R,所以R是自反的。2)必要性若R是反自反的,则对任何x∈A,都是(x,x)ÏR,从而(x,x)∈R′,由IA={(x,x)|x∈A}可知IA⊆R′。于是IA∩R⊆R′∩R=Æ,另外Æ⊆IA∩R,所以IA∩R=Æ。充分性若IA∩R=Æ,则R是反自反的。否则,不是反自反的,那么应存在某一x0∈A,使得(x0,x0)∈R。但是(x0,x0)∈IA,从而(x0,x0)Æ65 。这不可能,矛盾。3)必要性,若R是对称的,则对任何(x,y)∈R,就有(y,x)∈R。于是根据逆关系的定义,可得(x,y)∈,于是R⊆;对任何(x,y)∈,由逆关系的定义,可得(y,x)∈R。再次利用R的对称性有(y,x)∈R,于是⊆R;综合两方面,有R=。充分性若R=,则对任何(x,y)∈R,由R=可得(x,y)∈。从而由逆关系的定义,可知(y,x)∈R这说明R是对称的。4)必要性若R是反对称的,则对任何(x,y)∈,即有(x,y)∈R及(x,y)∈,从逆关系的定义,就有(x,y)∈R及(y,x)∈R,因此,利用R的反对称性,可得x=y。于是就有(x,y)=(x,x)∈IA,所以R∩⊆IA。充分性若R∩⊆IA,则对任何(x,y)∈R及(y,x)∈R,从逆关系的定义,可得(x,y)∈R及(x,y)∈,也即(x,y)∈R∩,利用R∩=IA可得(x,y)∈IA,于是x=y。所以R是反对称的。5)必要性若R是传递的,则对任何(x,y)RоR,由复合关系的定义可知,存在着y∈A,使(x,y)∈R且(y,y)∈R,从而利用R的传递性,可知(x,y)∈R。所以RоR⊆R。充分性RоR。从而利用RоR⊆R可得(x,y)∈R。所以R是传递的。证法二:1)Þ):对任何x,x∈AÞ(x,x)∈IA(IA是幺关系,因此是自反关系)Þ(x,x)∈R(R是自反关系)所以IAÍR;Ü):对任何x∈A,x∈A65 Þ(x,x)∈IA(IA是幺关系,因此是自反关系)Þ(x,x)∈R(因IAÍR)所以,R是自反关系;2)Þ)首先ÆÍIAÇR;其次,对任何x,y∈A,若(x,y)∈IAÇRÞ(x,y)∈IAÙ(x,y)∈RÞx=yÙ(x,y)∈R(IA是幺关系,因此是自反关系)Þ(x,x)∈R则与R是反自反关系,(x,x)ÏR矛盾。故IAÇRÍÆ;因此,由包含关系Í的反对称性,可得IAÇR=Æ;Ü):对任何x∈A,若(x,x)∈RÞ(x,x)∈IAÙ(x,x)∈R(IA是幺关系,因此是自反关系)Þ(x,x)∈IAÇRÞ(x,x)∈Æ(因IAÇR=Æ)则与空集不含任何元素,(x,x)ÏÆ矛盾。故对任何x∈A,(x,x)ÏR;所以,R是反自反关系;3)Þ)对任何x,y∈A(x,y)∈RÛ(y,x)∈R(R是对称关系)Û(x,y)∈所以,R=;Ü):对任何x,y∈A(x,y)∈RÞ(x,y)∈(R=)Þ(y,x)∈R所以,R是对称的;4)Þ)对任何x,y∈A(x,y)∈RÇÞ(x,y)∈RÙ(x,y)∈65 Þ(x,y)∈RÙ(y,x)∈RÞx=y(R是反对称关系)Þ(x,y)∈IA(IA是自反关系)所以,RÇÍIA;Ü):对任何x,y∈A(x,y)∈RÞ(x,y)∈(R=)Þ(y,x)∈R所以,R是对称的;13.设A、B为有穷集合,R,S⊆A×B,MR=(xij)m×n,MS=(yij)m×n1)为了R⊆S,必须且只须"i"j(xij≤yij)2)设MR∪S=(Zij)m×n,那么Zij=xijVyij,I=1,2……,m,j=1,2,……n.3)设MR∩S=(tij)m×n,那么tij=xij^yiji=1,2,……m;j=1,2,……,n.[证]由于A、B是有穷集合,不妨设A={a1,a2……,am},B={b1,b2,……,bn}1)必要性若R⊆S,则对任何i∈{1,2,……,m},对任何j∈{1,2,……n},若(ai,bj)∈R,则R的关系矩阵MR=(xij)m×n中第I行第j列元素xij=1,根据R⊆S,可得(ai,bj)∈S,从而得S的关系矩阵MS=(yij)m×n中第I行第j列元素yij=1,由于是1≤1故此xij≤yij;若(ai,bj)ÏR,则R的关系矩阵MR=(xij)m×n中第i行第j列元素xij=0,因此由S的关系矩阵MS=(yij)m×n中第j列元素yij≥0,可得xij≤yij。总之,有("i)("j)(xij≤yij)。2)充分性若("i)("j)(xij≤yij),则对任何(ai,bj)∈R,就有R的关系矩阵MR=(xij)m×n中第i行第j列元素xij=1,由于xij≤yij,所以yij≥1,故此yij≥1这说明S的关系矩阵MS=(yij)m×n中第i行第j列元素yij为1,因此必有(ai,bj)∈S,所以R⊆S。2)对任何i∈{1,2,……,m},对任何j∈{1,2,……,n}若Zij=1,则(ai,bj)∈R∪S,故此(ai,bj)∈R或者(ai,bj)∈S,于是xij=1或者yij=1。从而65 bj)∉S,于是xij=0且yij=0。从而xij∨yij=0。因而Zij=xij∨yij=0;综合上述两种情况,就有zji=xij∨yij,i=1,2,……,m,j=1,2,……n,。3)对任何i∈{1,2,……m},对任何j∈{1,2,……,n}。若tij=1,则(ai,bj)∈R∩S,故此(ai,bj)∈S且(ai,bj)∈S,于是xij=1,且yij=1从而xij∧yij=1。因而tij=xij∧yij=1;若tij=0,则(ai,bj)∉R∩S,故此(ai,bj)∉S,于是xij=0或者yij=0,从而xij∧yij=0。因而tij=xij∧yij=0。综合上述两种情况,就有tij=xij∧yij,i=1,2,……,m,j=1,2,……,n。14.设A={1,2,3,4},R1,R2为A上的关系,R1={(1,1),(1,2),(2,4)},R2={(1,4),(2,3),(2,4),(3,2)},求R1оR2,R2оR1,R1оR2оR1[解],1)无论从复合关系图还是从复合关系矩阵都可得R1оR2={(1,3),(1,4)}R1R22)65 无论从复合关系图还是从复合关系矩阵都可得R2оR1={(3,4)}R2R13)无论从复合关系图还是从复合关系矩阵都可得R1оR2оR1=Æ4)无论从复合关系图还是从复合关系矩阵都可得R1оR1о={(1,1),(1,2),(1,4)}R1R1R115)设R1,R2,R3是A上的二元关系,如果R1⊆R2,证明65 1)R1R3⊆R2R32)R3R1⊆R3R2[证明]1)对任何(x,y)∈R1R3,由复合关系之定义,必存在z∈A,使得(x,z)∈R1且(z,y)∈R3,利用R1⊆R2可知(x,z)∈R2且(z,y)∈R3,再次利用复合关系之定义,有(x,y)∈R2R3。所以R1R3⊆R2R3。2)对任何(x,y)∈R3R1,由复合关系之定义,必有z∈A,使得(x,z)∈R3且(z,y)∈R1,再由复合关系之定义,有(x,y)∈R3R2。所以R3R1⊆R3R2。16.设A是有限个元素的集合,在A上确定两个不同的关系R1和R2,使得=R1,=R2因为,令R1=Æ,则R1R1=Æ,故此=R1=Æ。令R2=A×A,则=R2R2⊆A×A=R2,故需证明R2⊆R2οR2=。为此,对任何x,y∈A,(x,y)∈A×A=R2,一定存在着z∈A(至少有z=x或z=y存在),使(x,z)∈A×A=R2且(z,y)∈A×A=R2,故此(x,y)R2R2=,所以R2⊆R2R2=。于是=R2=A×A。2)由于A是有限个元素的集合,是不心设A={a1,a2,……an}令R1={(ai,aj)|ai∈A∧aj∈A∧|≤i≤n∧|≤j≤n-|}R2={(an,an)∪R1}则R1R2,即R1与R1是不同的关系。我们来证明=R1,=R2,(a)先征=R1若(ai,aj)∈R1,则由R1的定义必定1≤i≤n,1≤i≤n-1,并且一定存在着1≤k≤n-1(至少有k=j存在),使(ai,ak)∈R1且(ak,aj)∈R1,从而(ai,aj)∈R1R1=。故此R1⊆。若(ai,aj)∈=R1R1,则存在着k,1≤k≤n-1,使(ai,ak)∈R1且(ak,aj)∈R1,于是由R1的定义,必有1≤i≤n,1≤j≤n-1,从而根据R1的定义,有(ai,aj)∈R1。故此=R1综合两个方面,可得=R1。(b)次证=R2若(ai,aj)∈R2,则由R2的定义,要么1≤i≤n,1≤j≤n-1,要么I=n,j=n若1≤i≤n,1≤j≤n-1,则一定存在着1≤k≤n-1(至少有k=j存在),使(ai,ak)∈R2且(ak,aj)∈R2,从而(ai,aj)∈R2οR2=;若i=n,j=n,则(ai,aj)=(an,an)∈R2,那么(an,an)∈R2,所以(ai,aj)=(an,an)∈R2οR2=因此R2=。65 若(ai,aj)∈=R2οR2,则存在着k,使(ai,ak)∈R2且(ak,ai)∈R2,于是由R2的定义,有k=n或者1≤k≤n-1。若k=n,则由(ai,ak)∈R2必有I=n,所以无论1≤j≤n-1还是j=n,由R2的定义,有(ai,aj)=(an,aj)∈R2;若1≤k≤n-1,则由(ai,ak)∈R2必有1≤j≤n-1故此(ai,aj)∈R2总之证得=R2,综合两方面,我们证明了=R2。17.设R是集合A上的反对称关系,|A|=h,指了在R∩的关系矩阵中有多少个非零值?[解]由第12题的4)R是反对称关系当且反当R∩⊆IA,及|A|=n可知,在R∩的关系矩阵中非零值最多不超过n个。18.设R1和R2是集合A上的关系,判断下列命题的真假性,并阐明理由。1)如果R1和R2都是自反的,那么R1R2是自反的。2)如果R1和R2都是反自反的,那未R1R2是反自反的。3)如果R1和R2都是对称的,那末R1R2是对称的。4)如果R1和R2都是反对称的,那末R1R2是反对称的。5)如果R1和R2都是传递的,那末R1R2是传递的。[解]1)真。由于R1和R2和R2都是自反的,因而对任何,都有(x,x)∈R1,(x,x)∈R2。因此,对任何x∈A,都有(x,x)∈R1R2。所以R1R2是自反的。2)假。令A={a,b},R1={(a,b)},R2={b,a}。那么R1R2={(a,a)},它就不是A上的反自反关系。3)假。令A={a,b,c},R1={(a,b),(b,a)},R2={(b,c),(c,b)}。那末R1R2={(a,c)},就不是A的对称关系。4)假。令A={a,b,c,d},R1={(a,c),(b,c)}R2={(c,b),(d,a)}易证R1,R2都是反对称关系。但是R1R2={(a,b),(b,a)}就不是A上的反对称关系。5)假。令A={a,b,c},R1={(a,c),(b,a),(b,c)},R2={(c,b),(a,c),(a,b)},易证R1和R2都是传递关系,但R1R2={(a,b),(b,b),(b,c)}就不是A上的传递关系。19.设A={1,2,3,4,5},R⊆A×A,R={(1,2),(2,3),(2,5),(3,4),(4,3),(5,5)}用作图方法矩阵运算的方法求r(R),s(R),t(R)。[解]1)作图法:65 R的关系图(R)的关系图51234123455143253241S(R)的关系图t(R)的关系图因此:r(R)={(1,1),(1,2),(2,2),(2,3),(2,5),(3,3),(3,4),(4,3),(4,4),(5,5)}s(R)={(1,2),(2,1),(2,3),(2,5),(3,2),(3,4),(4,3),(5,2),(5,5)}t(R)={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,3),(3,4),(4,3),(4,4),(5,5)}2)矩阵运算法:65 Mr(R)==MS(R)====MRοR=MRMR===MR=65 因此r(R),s(R),t(R)与1)作图法一致。20.设R⊆A×A,证明1)(R+)++R+2)=R*[证明]1)一方面,由于(R+)+是R+的传递闭包,所以R+⊆(R+)+;另一方面,由于R+是R的传递闭包,故此R+是传递的。由于R+⊆R+及传递闭包(R+)+是包含R+的最小传递关系,就有(R+)+⊆R+(定理4之3);所以(R+)+=R+。2)一方面,由于(R*)*是R*的自反传递闭包,所以R*⊆(R*)*;另一方面,由于R*是R的自反传递闭包,故此R*是自反的传递的。由于R*⊆R*及自反传递闭包(R*)*是包含R*的最小自批传递关系,就有(R*)*⊆R*(定理5的3))。所以(R*)*=R*。21.设A={1,2,3,4},RAA,R={(1,2),(2,4),(3,4),(4,3),(3,3)}1)证明R不是传递的;2)求R1,使R1⊇R并且R1是传递的;3)是否存在R2,使R2⊇R,R2≠R1并且R2是传递的。65 [解]1)由于(1,2)∈R且(2,4)R但(1,4)∉R,这说明R不是传递的。2)由于R+是包含R的最小传递关系,所以,取R1=R+即为所求。现在来R+R2={(1,4),(2,3),(3,3),(3,4),}(4,3),(4,4)}R3={(1,3),(2,3),(2,4),(3,3),(3,4),(4,3),(4,4)}R4={(1,3),(1,4),(2,3),(2,4),(3,3),(3,4),(4,3),(4,4)}故此R1=R+=R∪R2∪R3∪R4={(1,2),(1,3),(1,4),(2,3),(2,4),(3,3),(3,4),(4,3)(4,4)}(因为|A|=4有限)其关系图如下:1124311243R的关系图R1的关系图3)能。因为R1并非全关系(否则,当R1是全关系时,就找不到了),所以只要取R2=A×A是A上的全关系就可满足R2⊇R,R2≠R,并且全关系R2显然是一个传递关系。22.设A={1,2,3,4……,9},定义A×A上的关系如下:(a,b)R(c,d)∷a+d=b+c1)证明R是A×A上的等价关系;2)求[(2,5)]R;3)R⊆A×A对吗?请阐明理由。1)[证明](a)R是自反的对于任何(a,b)∈A×A,由于a+b=b+a,所以(a,b)R(a,b)。(b)R是对称的对于任何(a,b),(c,d)∈A×A,若(a,b)R(c,d),则有a+d=b+c从而c+b+a,所以可得(c,d)R(a,b)。(c)R是传递的65 对于任何(a,b),(c,d),(e,f)∈A×A,若(a,b)R(c,d),且(c,d)R(e,f),于是有a+d=b+c及c+f=d+e,二式相加有a+f+c+d=b+e+c+d,两边同时减c+d,可得a+f=b+e,从而可得(a,b)R(e,f)。综合(a)、(b)、(c)、说明R是A×A上的等价关系。2)[解]因为{(2,5)}R={(a,b)|(a,b)∈A×A(a,b)R(2,5)}={(a,b)|(a,b)∈A×A∧a+5=b+2}={(a,b)|(a,b)∈A×A∧b=a+3}={(1,4),(2,5,(3,6),(4,7),(5,8),(6,9))3)[答]R⊆A×A不对。因为R是A×A上的关系,所以R⊆(A×A)×(A×A)=。23.设A是一个非空集合,R⊆A×A。如果R在A上是对称的,传递的,下面的推导说明R在A上是自反的:对任意的a,b∈A,由于R是对称的,有:aRbÞbRa于是aRbÞaRb∧bRa,又利用R是传递的,得:aRb∧bRaÞaRa从而说明R是自反的。上述推导正确吗?请阐明理由。[答]上述推导不正解。推殖民地的谬论误在于假设A的每个元素都由R关联着A的某一别的元素。如果这不是真的,那么对称性的条件的假设就始终是假的,因此结论当然是假的。因而在一个空集上的空关系都是平凡的对称和可传递,但不是自反的。另外关系{(a,a),(b,b),(a,b),(b,a)}是自反的和传递的,但在集合{a,b,c}上不是自反的。24.设R是集合A上的等价关系,证明也是集合A上的等价关系。[证明]证法一:(a)是自反的对任意的a∈A,由于R是自反的,所以(a,a)∈R,再由逆关系的定义有(a,a)∈(b)是对称的对任何(a,b)∈由逆关系的定义,有(b,a)∈R,由R的对称性,可得(a,b)∈R,再由逆关系的定义,就有(b,a)∈。(c)是传递的65 对任何(a,b)∈及(b,c)∈,由逆关系的定义,有(b,a)∈R及(c,b)∈R,根据R的传递性,可得(c,a)∈R,再次由逆关系的定义,就有(a,c)∈。综合(a)(b)(c)可知是等价关系。证法二:(a)是自反的:对任何a,aÎAÞ(a,a)ÎR(R都是自反的)Þ(a,a)Î所以,是自反的;(b)是对称的:对任何a,bÎA,(a,b)ÎÞ(b,a)ÎRÞ(a,b)ÎR(R是对称的)Þ(b,a)Î所以,是对称的;(c)是传递的:对任何a,b,cÎA,(a,b)ÎÙ(b,c)ÎÞ((b,a)ÎRÙ(c,b)ÎRÞ((c,b)ÎRÙ(b,a)ÎR(Ù的交换律)Þ(c,a)ÎR(R是传递的)Þ(a,c)Î(R是对称的)所以,是对称的;综合(a)、(b)、(c),可知是A上的等价关系。25.设R1和R2都是集合A上的等价关系1)证明R1∩R2也是A上的等价关系;2)用例于证明R1∪R2不一定是A上的等价关系(要尽可能小地选取集合A)。[证]1)证法一:(a)R1∩R2是自反的对任何a∈A,由于R1,R2都是A上的自反关系,所以(a,a)∈R1(a,a)∈R2,因此(a,a)∈R1∩R265 (b)R1∩R2是对称的对任何的(a,b)∈R1∩R2,就有(a,b)∈R1且(a,b)∈R2,由R1,R2都是A上的对称关系,所以(a,b)∈R1且(b,a)∈R2,所以(b,a)∈R1∩R2。(c)R1∩R2是传递的对任何的(a,b)∈R1∩R2及(b,c)∈R1∩R2,就有(a,b)∈R1,(a,b)∈R2及(b,c)∈R1,(b,c)∈R2,于是(a,b)∈R1且(b,c)∈R1及(a,b)∈R2且(b,c)∈R2由于R1,R2都是A上的传递关系,所以(a,c)∈R1及(a,c)∈R2,因此(a,c)∈R1∩R2。综合(a),(b),(c),可知R1∩R2是等价关系。证法二:(a)R1∩R2是自反的:对任何a,aÎAÞ(a,a)ÎR1Ù(a,a)ÎR2(R1,R2都是自反的)Þ(a,a)ÎR1ÇR2所以,R1ÇR2是自反的;(b)R1∩R2是对称的:对任何a,bÎA,(a,b)ÎR1ÇR2Þ(a,b)ÎR1Ù(a,b)ÎR2Þ(b,a)ÎR1Ù(b,a)ÎR2(R1,R2都是对称的)Þ(b,a)ÎR1ÇR2所以,R1ÇR2是对称的;(c)R1∩R2是传递的:对任何a,b,cÎA,(a,b)ÎR1ÇR2Ù(b,c)ÎR1ÇR2Þ((a,b)ÎR1Ù(a,b)ÎR2)Ù((b,c)ÎR1Ù(b,c)ÎR2)Þ((a,b)ÎR1Ù(b,c)ÎR1)Ù((a,b)ÎR2Ù(b,c)ÎR2)(Ù的结合律、交换律)Þ(a,c)ÎR1Ù(a,c)ÎR2(R1,R2都是传递的)Þ(a,c)ÎR1ÇR2所以,R1ÇR2是对称的;综合(a)、(b)、(c),可知R1ÇR2是A上的等价关系。65 2)两个自反的(对称的)关系的并将是自反的(对称的),但是,两个传递关系的并却未必是传递的。我们就从破坏传递性出发来构造反例:令R1={(a,a),(b,b),(c,c),(a,b),(b,a)}R2={(a,a),(b,b),(c,c),(b,c),(c,b)}当A={a,b,c}时,R1,R2显然都是等价关系。但是abcabcabcR1∪R2={(a,a),(b,b),(c,c),(a,b),(b,a)(b,c),(c,b)}都不是A上的等价关系,因为R1∪R2不传递:(a,b)∈R1∪R2且(bc,但(a,c)∉R1∪R2;同样(c,b)∈R1∪R2且(b,a)∈R1∪R2,但(c,a)∉R1∪R2。R1关系图R2关系图R1∪R2关系图而且|A|不可能再少了。因为任何少于3个元素的集合上的自反,对称关系一定是传递的!26.设R是A上的等价关系,将A的元素按R的等价类顺序排列,请指出此等价关系R的关系矩阵MR有何特征?[解]将A的元素按其上的等价关系R的等价类顺序排列,这样产生的等价关系R的关系矩阵MR,经过适当的矩阵分块,MR的分块矩阵将成为准对角阵,准对角阵的对角线上的每一块都是一个全1方阵,它正好对应于等价关系R的一个等价块。27.设A是n个元素的有限集合,请回答下列问题,并阐明理由。1)有多少个元素在A上的最大的等价关系中?2)A上的最大的等价关系的秩是多少?3)有多少个元素在A上的最小的等价关系中?4)A上的最小的等价关系的秩是多少?[答]1)A上最大的等价关系是全关系R1=A×A={(a,b)|a∈A∧b∈A}因此有n2个元素在A上的最大的等价关系R1中,因为所有n2个二元组都在R1=A×A中。2)A上的最大的等价关系R1的秩是1。这是因为A中任何两个元素都有全关系R1=A×A,因此R165 的等价块包含了A的所有元素,A的所有元素都在同一个等价块中。3)A上的最小的等价关系是么关系R2=IA={(a,a)a∈A}因此它中有n个元素,即n自反对。4)A上的最小的等价关系的秩是n,因为么关系的每一个元素都自成一个等价块,每一等价块中也只有一个元素。28.设R1和R2是非容集合A上的等价关系,对下列各种情况,指出哪些是A上的等价关系;若不是,用例子说明。1)A×AR12)R1R23)4)r(R1R2)(R1R2的自反闭包)5)R1R2[解]1)不是。设A={a},并且R1={(a,a)},则R1是A上的等价关系,但A×AR1={(a,a)(a,a)}=Æ就不是A上的等价关系,因为空关系不是自反的。2)不是。设A={(a,b)}并且R1={(a,a),(b,b),(a,b),(b,a)},R2={(a,a),(b,b)},则R1,R2都是A上的等价关系,但是,R1R2={(a,b),(b,a)}就不是A上的等价关系,因为R1R2不自反。3)是。证法一:因R1是等价关系,因而R1是传递的,故此由第12题之5)有=R1R1⊆R1。另一方面,结任何(a,b)∈R1,由于R1是自反的,故此(b,b)∈R1,从而由复合关系之定义,有(a,b)∈R1R1,所以R1⊆,从而=R1,因此由R1是等价关系,知也是等价关系。证法二:一方面,对任何a,bÎA,(a,b)ÎÞ($cÎA)((a,c)ÎR1Ù(c,b)ÎR1)Þ($cÎA)((a,b)ÎR1)(R1是传递的)Þ(a,b)ÎR1(带量词的基本逻辑等价式:($x)pÛp)所以,ÍR1;另一方面,对任何a,bÎA,(a,b)ÎR1Þ(a,b)ÎR1Ù(b,b)ÎR1)(R1是自反的)Þ(a,b)Î65 所以,R1Í;综合这两方面,就有=R1;4)是。设A={a,b,c},R1={(a,a),(b,b),(c,c),(a,b),(b,a),(a,c)(c,a),(b,c),(c,b)}。R1={(a,a),(b,b)(c,c)(a,a)(c,a)},则R1,R2都是A上的等价关系。R1R2={(a,b),(b,a),(b,c),(c,b)}r(R1R2)={(a,a),(b,b),(c,c),(a,b),(b,a),(b,c),(c,b)}因此r(R1R2)不是A上的等价关系,因为r(R1R2)不是传递的,(a,b)∈r(R1R2)且(b,c)∈r(R1R2),但是(a,c)∉r(R1R2)。5)不是。令A={a,b,c},R1={(a,a),(b,b),(c,c),(a,b),(b,a)},R2={(a,a),(b,b),(c,c),(a,b),(b,a),(b,c),(c,b),(a,c)}不上的等价关系,因为R1R2不对称,(a,c)∈R1R2,但(c,a)∉R1R2。29.设A={1,2,3,4},请指出A上所有等价关系是多少?并阐明理由。[解]A上的等价关系共有14个。根据A上的划分与A上的等价关系一一对应的原理,我们只需求出A上有多少个划分就行了。{{a},{b},{c},{d}}型划分,一个;{{a,b},{c},{d}}型划分,六个;{{a,b,},{c,d}}型划分,三个;{{a,b,c},{d}}型划分,四个;{{a,b,c,d}}型划分,一个。总计:1+6+3+4+1=15。30.设A={1,2,3,4,5,6},确定A上的等价关系R,使此R能产生划分{{1,2,3,},{4},{5,6}}123564[解]这样的R={(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2),(4,4),(5,5),(6,6),(5,6),(6,5)}R的关系图65 31.设R是集合A上的关系R是循环∷=("a∈A)("b∈A)("c∈A)(aRb∧bRcÞcRa)证明:R是自反的和循环的,当且仅当R是等价关系。[证]证法一:必要性若R是自反的和循环的,我们来证R是等价关系,为此证明(a)R是自反的。必要性条件所给。(b)R是对称的对任何(a,b)∈R,由于R是自反的,所以(b,b)∈R,再根据R是循环的可得(b,a)∈R。(c)R是传递的对任何(a,b)∈R,(b,c)∈R,由于R是循环的,所以(c,a)∈R,利用R是对称的,就得到(a,c)∈R。充分性若R是等价关系,我们来证R是自反的和循环的。1)R是自反的。因R是等价关系,故R是自反的。2)R是循环的对任何(a,b)∈R,(b,c)∈R,由于R是传递的,所以(a,c)∈R。由于R是对称的,(c,a)∈R。证法二:Þ):(a)R是自反的:已知;(b)R是对称的:对任何a,bÎA,(a,b)ÎRÞ(a,b)ÎRÙ(b,b)ÎR(R是自反的)Þ(b,a)ÎR(R是循环的)所以,R是对称的;(c)R是传递的:对任何a,b,cÎA,(a,b)ÎRÙ(b,c)ÎRÞ(c,a)ÎR(R是循环的)65 Þ(a,c)ÎR(R是对称的)所以,R是传递的;综合(a),(b),(c)可知R是等价关系;Ü):(a)R是自反的:因为R是等价关系,所以R是自反的;(b)R是循环的:对任何a,b,cÎA,(a,b)ÎRÙ(b,c)ÎRÞ(a,c)ÎR(R是传递的)Þ(c,a)ÎR(R是对称的)所以,R是循环的;32.设∏1和∏2是非空集合A的划分,说明下面各种情况哪些是A的划分?哪些不是A的划分?哪些可能是A的划分?并阐明理由。1)∏1∪∏22)∏1∩∏23)∏1∏24)(∏1∩(∏2∏1))∪∏1[解]1)可能。如果∏1=∏2,则∏1∪∏2是A的划分;如果,∏1≠∏2,则∏1∪∏2不是A的划分;例如A={a,b},∏1={{a},{b}},∏2={{a,b}},但∏1∪∏2={{a},{b},{a,b}}就不是A的划分,因为{a}∩{a,b}={a}≠Æ,就不是A的划分,因为{a}∩{a,b}={a}≠Æ。2)可能。如果∏1=∏2,则∏1∩∏2是A的划分;如果,∏1≠∏2,则∏1∩∏2不是A的划分;例如A={a,b},∏1={{a},{b}},∏2={{a,b}},∏1∩∏2=Æ,就不是A的划分。3)可能。如果∏1∩∏2=Æ,则∏1∏2=∏1是A的划分;如果∏1∩∏2≠Æ,则∏1∏2不是A的划分;例如A={a,b,c},∏1={{a},{b},{c}},∏2={{a},{b,c}},∏1∩∏2={{a}}因此∏1∏2={{b},{c}}就不是A的划分。因为{b}∪{c}={b,c}≠A。4)是。因为(∏1∩(∏2∏1))∪∏1=Æ∪∏1=∏1,是A的划分。33.对下列集合上的整除关系画出哈斯图,并对3)中的子集{2,3,6},{2,4,6},{4,8,12}找出最大元素,最小元素,极大元素,极小元素,上确界,下确界。1){1,2,3,4}65 2){2,3,6,12,24,36}3){1,2,3,4,5,6,7,8,9,10,11,12}4213243612623[解]1)的Hasse图2)的Hass图在3)的Hasse图中可以看出,1191263105718423)的Hasse图①{2,3,6}的最大元素为6;极大元素也为6;极汴元素为2和3;上确界为6;下确界为1;没有最小元素。②{2,4,6}的极大元素为4和6;最小素为2;极小元素也为2;上确界为12;下确界为2;③{4,8,12}的极大元素为8,12;最小元素为4;极小元素也为4;下确界为4;没有最大元素;没有上确界。性质集合最大元最小元极大元极小元上界下界上确界下确界{2,3,6}6无62,36,12161{2,4,6}无24,62121,2122{4,8,12}无48,124无1,2,4无43)的特殊元素表65213434.对下面半序集合(A,≼65 )的哈斯图,写出集合A及半序关系≼的所有元素。[解]A={0,1,2,3,4,5,6}第34题≼={(0,0),(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,1),92,20,(2,5),(3,3),(3,5),(4,4),(4,6),(5,5),(6,6)}第34题35.设R是集合X上的半序关系,AÍX,证明R∩(A×A)是A上的半序关系。[证].证法一:令R1=R∩(A×A),则R1ÌA×A,所以R1是A上的关系,我们只需证明在A上R是自反的,反对称的,传递的即可。(a)R1是自反的对任何a∈A,由于AÍX,所以a∈X,由于R在X上是自反的,故此(a,a)∈R;由于a∈A,显然(a,a)∈A×A;所以(a,a)∈R∩(A×A),即(a,a)R1。(b)R1是反对称的对任何(a,a)∈R1且(b,a)∈R1,由R1=R∩(A×A),故有(a,b)∈R且(b,a)∈R,以及a,b,c∈A。利用R的传递性,可得(a,c)∈R,利用a,c∈A可得(a,c)∈A×A,所以(a,c)∈R∩(A×A),即(a,c)∈R1。证法二:令R1=RÇ(A´A),由于RÇ(A´A)ÍA´A,所以R1ÍA´A,因此R1是A上的关系。①R1是自反的对任何a,aÎAÞ(a,a)ÎRÙ(a,a)ÎA´A(R是X上的自反关系及AÍX)Þ(a,a)ÎRÇ(A´A)Þ(a,a)ÎR1(R1的定义)所以,R1是自反的;②R1是反对称的对任何a,bÎA(a,b)ÎR1Ù(b,a)ÎR1Þ(a,b)ÎRÇ(A´A)Ù(b,a)ÎRÇ(A´A)(R1的定义)Þ((a,b)ÎRÙ(a,b)ÎA´A)Ù((b,a)ÎRÙ(b,a)ÎA´A)Þ((a,b)ÎRÙ(b,a)ÎR)Ù((a,b)ÎA´AÙ(b,a)ÎA´A)(Ù的结合律、交换律)Þ((a,b)ÎRÙ(b,a)ÎR)(基本逻辑蕴涵式:pÙqÞp)65 Þa=b(R是反对称的)所以,R1是反对称的;③R1是传递的对任何a,b,cÎA(a,b)ÎR1Ù(b,c)ÎR1Þ(a,b)ÎRÇ(A´A)Ù(b,c)ÎRÇ(A´A)(R1的定义)Þ((a,b)ÎRÙ(a,b)ÎA´A)Ù((b,c)ÎRÙ(b,c)ÎA´A)Þ((a,b)ÎRÙ(b,c)ÎR)Ù((a,b)ÎA´AÙ(b,c)ÎA´A)(Ù的结合律、交换律)Þ((a,c)ÎRÙ(a,c)ÎA´A(R是传递的,全关系A´A是传递的)Þ(a,c)ÎRÇ(A´A)Þ(a,c)ÎR1(R1的定义)所以,R1是传递的;综合①、②、③,可知R1是A上的半序关系。36.设(A,≼1)和(A,≼2)是两个半序集合,定义A×B上的关系≼3如下:对于a1,a2∈A,,b2∈B(a1,b1),(a2,b2)∈≼3Û(a1,a2)∈≼1∧(b1,b2)∈≼2证明≼3是A×B上的半序关系。[证].证法一:对于任何(a,b)∈A×B,就有a∈A及b∈B,从而利用≼1及的自反性,可得(a,a)∈≼1且(b,b)∈≼2因此由≼3的定义,可知((a,b),(a,b))∈≼3。(b)≼3是反对称的对任何((a1,b1),(a2,b2))∈≼3及((a2,b2),(a1,b1))∈,由≼3的定义,可知(a1,a2)∈≼1且(a2,a1)∈≼1及(b1,b2)∈≼2且(b2,b1)∈≼2利用≼1及≼2的反对称性,可得a1=a2及b1=b2,因此(a1,b1)=(a2,b2)。(c)≼3是传递的对任何((a1,b1),(a2,b2))∈≼3及((a2,b2),(a3,b3)))∈≼3,由≼3的定义,可知(a1,a2)∈≼1且(a2,a3)∈≼1及(b1,b2)∈≼2且(b2,b3)∈≼2。利用≼1及≼2的传递性,可得(a1,a3)∈≼1及(b1,b3)∈≼2。再次利用≼3的定义,可得((a1,b1),(a3,b3)))∈≼3。证法二:①≼3是自反的对任何(a,b),(a,b)ÎA´B65 ÞaÎAÙbÎBÞ(a,a)Î≼1Ù(b,b)Î≼2(≼1,≼2都是自反的)Þ((a,b),(a,b))Î≼3(≼3的定义)所以,≼3是自反的;②≼3是反对称的对任何(a,b),(c,d)ÎA´B((a,b),(c,d))Î≼3Ù((c,d),(a,b))Î≼3Þ((a,c)Î≼1Ù(b,d)Î≼2)Ù((c,a)Î≼1Ù(d,b)Î≼2)(≼3的定义)Þ((a,c)Î≼1Ù(c,a)Î≼1)Ù((b,d)Î≼2Ù(d,b)Î≼2)(Ù的结合律、交换律)Þa=cÙb=d(≼1,≼2都是反对称的)Þ(a,b)=(c,d)所以,≼3是反对称的;③≼3是传递的对任何(a,b),(c,d),(e,f)ÎA´B((a,b),(c,d))Î≼3Ù((c,d),(e,f))Î≼3Þ((a,c)Î≼1Ù(b,d)Î≼2)Ù((c,e)Î≼1Ù(d,f)Î≼2)(≼3的定义)Þ((a,c)Î≼1Ù(c,e)Î≼1)Ù((b,d)Î≼2Ù(d,f)Î≼2)(Ù的结合律、交换律)Þ(a,e)Î≼1Ù(b,f)Î≼2(≼1,≼2都是反对称的)65 Þ((a,b),(e,f))Î≼3(≼3的定义)所以,≼3是传递的;综合①、②、③,可知≼3是A´B上的半序关系。37.对于非空集合A,是否存在这样的关系R,它即是等价关系又是半序关系?若有,请举出例子。[解]有。只有一种,那就是A上的幺关系IA,它即是等价关系,又是半序关系。证法一:否则,如果有a∈A及b∈A且a≠b,使得(a,b)∈R,那么由R是对我的就将有(b,a)∈R,再由R是反对称的,就得到a=b,矛盾。这个矛盾说明同时为等价关系和半序关系的R只能是幺关系IA。证法二:设R即是一等价关系,又是一半序关系。则一方面,对任何元素a,bÎA,(a,b)ÎRÞ(a,b)ÎRÙ(b,a)ÎR(R的对称性)Þa=b(R的反对称性)Þ(a,b)ÎIA所以,RÍIA;另一方面,对任何元素aÎA,(a,a)ÎIAÞ(a,b)ÎR(R的自反性)所以,IAÍR;综合这两方面,有R=IA。38.对于下列每一种情况,举出有限集合和无限集合的例子各一个。1)非空半序集合,其中某些子集没有最大元素;2)非空半序集合,其中有一子集存在最大下界,但没有最小元素;3)非空序集合,其中有一子集存在上界,但没有最小上界。1)的(a)的Hasse图{a,b,c}{a,c}{a,b}{b,c}{c}{b}{a}Æ[解]1)(a)令A={a,b,c},则(2A,Í)为半序集,其中子集B1={{c},{a,b}}B2={{b},{a,c}}等均没有最大元素;(b)半序集(N,≤)65 的子集B1={x|x=2n∧n∈N}B2={P|P∈N∧P为素数}等均没有最大元素;2)(a)令={1,2,3,4,9,14,15}4149231152)(a)的Hasse图“1”为整除关系,a|b∷=a整除b则(A,1)为半序集合,其中子集B={4,9,14,15}有最大下界1,但没有界小元素。(b)半序集(R,≤)的子集B=(0,1)={x|x∈R∧o<x≤1}有最大下界0,但没有最小元素。30423123)的(a)的Hasse图3)(a)令A={1,2,3,30,42},“1”仍为2)的(a)所定义的整除关系。则(A,1)为半序集,其中子集B={2,3}有上界30,42,但没有最小上界。半序集(Q,≤)的子集B={x|x∈Q∧0<x=有上界2,等,但无界小上界(若有最小上界,必为,但ÏQ)。39.指出下面的集合中,哪些是半序集合,线序集合或良序集合?1)(2N,Í)2)(2{a},Í)3)(2Æ,Í)[解]结果如下表半序集合线性序集合良序集合(2N,Í)YNN(2{a},Í)YYY(2Æ,Í)YYY其中:Y—yes;N—not。40.设R是A上的二元关系,若R是自反的,对称的,则称R为一个相容关系。1)举出两个相容关系的例子65 1)设R1,R2是A上的相容关系,那么R1∩R2,R1∪R2是A上的相容关系吗?请阐明理由。[解]1)(a)令A={ba||,bed,dog,let,egg}R={(x,y)|x,y∈A∧x和y含有相同的字母}则R是A上的相容关系。(b)令A={2166,243,375,648,455}R={(x,y)|x,y∈A∧x和y含有相同的数字}则R是A上的相容关系。2)证法一(a)R1∩R2是A上的相容关系。因为①R1∩R2是自反的对任何a∈A,由于R1,R2都是相容关系,所以R1,R2都是自反的,从而(a,a)R1,(a,a)∈R2故(a,a)∈R1∩R2。②R1∩R2是对称的对任何(a,b)∈R1∩R2,可得(a,b)∈R1且(a,b)∈R2。由于R1,R2都是相容关系,所以R1,R2都是对称的,从而(b,a)∈R1且(b,a)∈R2,故此(b,a)∈R1∩R2。(b)R1∪R2是A上的相容关系。因为①R1∪R2是自反的对任—aA,由于R1,R2都是相容关系,所以R1,R2都是自反的,从而(a,a)∈R1,(a,a)∈R2,故此(a,a)∈R1∪R2。②R1∪R2是对称的对任何(a,b)∈R1∪R2,可得(a,b)∈R1或(a,b)∈R2。由于R1,R2都是相容关系,所以R1,R2都是对称的,从(b,a)∈R1或(b,a)∈R2,故此(b,a)∈R1∪R2。完(1996年1月20日)证法二(a)R1∩R2是A上的相容关系。因为①R1∩R2是自反的对任何a,aÎAÞ(a,a)ÎR1Ù(a,a)ÎR2(R1,R2都是自反的)Þ(a,a)ÎR1ÇR2所以,R1ÇR2是自反的;②R1∩R2是对称的对任何a,bÎA,(a,b)ÎR1ÇR2Þ(a,b)ÎR1Ù(a,b)ÎR2Þ(b,a)ÎR1Ù(b,a)ÎR2(R1,R2都是对称的)Þ(b,a)ÎR1ÇR2所以,R1ÇR2是对称的;综合①、②,可知R1ÇR2是相容关系;65 (b)R1ÈR2是A上的相容关系。因为①R1ÈR2是自反的对任何a,aÎAÞ(a,a)ÎR1Ú(a,a)ÎR2(R1,R2都是自反的)Þ(a,a)ÎR1ÈR2所以,R1ÈR2是自反的;②R1ÈR2是对称的对任何a,bÎA,(a,b)ÎR1ÈR2Þ(a,b)ÎR1Ú(a,b)ÎR2Þ(b,a)ÎR1Ú(b,a)ÎR2(R1,R2都是对称的)Þ(b,a)ÎR1ÈR2所以,R1ÈR2是对称的;综合①、②,可知R1ÈR2是相容关系;65 习题三(第三章函数)1.在下列关系中,哪些级构成函数?1){(x,y)|x,y∈N,x+y<10}2){(x,y)|x,y∈R,y=x2}3){(x,y)|x,y∈R,x=y2}[解]1)不能;1)能;3)不能。2.下列集合能否定义函数?若能,指出它的定义域和值域。1){(1,(2,3),(2,(3,4)),(3,(3,20))}2){(1,(2,3),(2,(3,4)),(1,(2,4))}3){(1,(2,3),(2,(3,4)),(3,(2,3))}4){(1,(2,3),(2,(3,4)),(3,(1,4)),(4,(1,4))}[解]1)能,(f)={1,2,3},(f)={(2,3),(3,4),(1,4)。};2)不能;3)能,(f)={1,2,3},(f)={(2,3)};4)能,(f)={1,2,3,4},(f)={(2,3),(3,4),(1,4)}。3.在下列函数中,哪些是单射的、满射的、双射的?1)f:N→N,f(n)=n2+12)f:N→{0,1},f(n)=3)f:N→N,f(n)=4)f:N2→N,f(m,n)=mn5)f:R→R,f(x)=3x-176)f:N→{0}R,f(n)=log10n7)f:(2x)2→(2A)2,f(A1,A2)=(A1∪A2,A1∩A2)[解]1)单射;2)满射;3)即不是单射,也不是满射;4)满射;5)双射;6)单射;7)即不是单射,也不是满射。4.设A,B为有限集合,|A|=m,|B|=n,为使下面的结论为真,m,n应满足怎样的条件?1)存在从A到B的单射函数;2)存在从A到B的满射函数;3)存在从A到B的双射函数;65 [解]1)mn;2)mn;3)m=n。5.对下称每一组集合X,Y,构造从X到Y的双射函数。1)X=(0,1),Y=(0,2)2)X=I,Y=N3)X=N,Y=N×N4)X=I×I,Y=N5)X=R,Y=(0,∝)6)6)X=(-1,1),Y=R7)7)X=[0,1],Y=(,)8)8)X=2{a,b,c},Y={0,1}{a,b,c}[解]1)构造f:(0,1)→(0,2),f(x)=2x,x∈(0,1)则f-1:(0,2)→(0,1),f-1(x)=,x∈(0,2)2)构造f:I→N,f(n)=n∈I则f--1:N→I,f—1(n)=n∈N3)构造f1:N→N×N,f1(n)=(k+1,L+1),n∈N这里k满足2|n,22|n,…,2K|n及2K+1n(k∈N∪{0})l=[(n/2K)-1](l=N∪{0})则:N×N→N,(k,l)=n,k,l∈N这里n=2k-1(2(l-1)+1)65 编码方法如下图所示:13579111315(1,1)2(1,2)6(1,3)10(1,4)14(1,5)18(1,6)22(1,7)26(1,8)……30(2,1)4(2,2)12(2,3)20(2,4)28(2,5)36(2,6)44(2),752(2,8)……60(3,1)8(3,2)24(3,3)40(3,4)56(3,5)72(3,6)88(3,7)104(3,8)……120(4.1)16(4,2)48(4,3)80(4,4)112(4,5)144(4,6)176(4,7)208(4,8)……240(5,1)32(5,2)96(5,3)160(5,4)224(5,5)288(5,6)352(5,7)416(5,8)……480(6,1)64(6,2)192(6,3)320(6,4)448(6,5)576(6,6)704(6,7)832(6,8)……960(7,1)(7,2)(7,3)(7,4)(7,5)(7,6)(7,7)(7,8)…………………………第5题3)的图(a)构造f2:f1:N→N×N其中:m满足不等式m(m+1)<n≤(m+1)(m+2),m∈N∪{0}则其中:65 编码方法如下图所示1267151628(1,1)3(1,2)5(1,3)8(1,4)14(1,5)17(1,6)27(1,7)30(2,1)4(2,2)9(2,3)13(2,4)18(2,5)26(2,6)31(2),743(3,1)10(3,2)12(3,3)19(3,4)25(3,5)32(3,6)42(3,7)49(4.1)11(4,2)20(4,3)24(4,4)33(4,5)41(4,6)50(4,7)62(5,1)21(5,2)23(5,3)34(5,4)40(5,5)51(5,6)61(5,7)72(6,1)22(6,2)35(6,3)39(6,4)52(6,5)60(6,6)73(6,7)85(7,1)(7,2)(7,3)(7,4)(7,5)(7,6)(7,7)……………………第5题3)的图(b)4)构造f:IIN,f(r,s)=nr,s∈I其中:k=|r|+|s|l=1+2k(k+1)n=则f-1:N→I×I,f-1(n)=(r,s),n∈N其中:寻找k满足不等式1+2k(k-1)<n≤1+2k(k+1)令l:=1+2k(k+1)若|n1|≤k,则令r=n1n1:=n-(l-3k+1)=(3k-1)-(l-n)s:=k-|r|n2:=n-(l-k+1)=(k-1)-(l-n)若|n2|<k,则令r:=-n2s:=-(k-|r|)5)构造f:R→(0,∞),f(x)=ex,x∈R65 则f-1:(0,∞)→R,f-1(x)=lnx,x∈(0,∞)6)构造f:(-1,1)→R,f(x)=-,x∈(-1,1)则f-1:R→(-1,1),f-1(x)=,x∈[0,1]7)构造f:[0,1]→,f=goh其中:h:[0,1]→,h(x)=(x+1),x∈[0,1]g:g(x)=这里r1,r2,…,rn…是该区间内所有的有理数。于是:f–1=h–1og–1,f–1:→[0,1]其中:g-1:→g-1(x)=r1,r2,…,rn…∈为该区间内所有有理数。65 h–1:→[0,1]h–1(x)=4(x-)=4x-18)构造:f:2{a,b,c}{0,I}{a,b,c}f(B)=g,B∈2{a,b,c}(或B⊆{a,b,c})g∈{0,1}{a,b,c}={h|h:{a,b,c}→{0,1}}g满足{x|x∈{a,b,c}g∧(x)=1}=B或者更明确地:f(Æ)=g0,g0(a)=0,g0(b)=0,g0(c)=0;f({a})=g1,g1(a)=1,g1(b)=0,g1(c)=0;f({b})=g2,g2(a)=0,g2(b)=1,g2(c)=0;f({c})=g3,g3(a)=0,g3(b)=0,g3(c)=1;f({a,b})=g4,g4(a)=1,g4(b)=1,g4(c)=0;f({a,c})=g5,g5(a)=1,g5(b)=0,g5(c)=1;f({b,c})=g6,g6(a)=0,g6(b)=1,g6(c)=1;f({a,b,c})=g7,g7(a)=1,g7(b)=1,g7(c)=1;于是f–1:{0,I}{a,b,c}→2{a,b,c}f–1(g)=B,B={x|x∈{a,b,c}∧g(x)=1}或者f–1(g0)=Æ;f–1(g1)={a};f–1(g2)={b};f–1(g3)={c};f–1(g4)={a,b};f–1(g5)={a,c};;f–1(g6)={b,c};f–1(g6)={a,b,c}117896545291731497197127(-5,3)88(-4,3)64(-3,3)44(-2,3)28(-1,3)16(0,3)8(1,3)18(2,3)32(3,3)50(4,3)72(5,3)98(-5,2)63(-4,2)43(-3,2)27(-2,2)15(-1,2)7(0,2)3(1,2)9(2,2)19(3,2)33(4,2)51(5,2)73(-5,0)85(-4,0)61(-3,0)41(-2,0)25(-1,0)13(0,0)5(1,0)11(2,0)21(3,0)35(4,0)53(5,0)75(-5,-1)112(-4,-1)84(-3,-1)60(-2,-1)40(-1,-1)24(0,-1)12(1,-1)22(2,-1)36(3,-1)54(4,-1)76(5,-1)102(-5,-2)(-4,-2-)(-3,-2)(-2,-2)(-1,-2)(0,-2)(1,-2)(2,-2)(3,-2)(4,-2)(5,-2)65 14211183593923375577103133(-5,-3)178(-4,-3)142(-3,-3)110(-2,-3)82(-1,-3)58(0,-3)38(1,-3)56(2,-3)78(3,-3)104(4,-3)1345,-3168(-5,-4)(-4.-4)(-3,-4)(-2,-4)(-1,-4)(0,-4)(1,-4)(2,-4)(3,-4)(4,-4)(5,-4)第5题4)的图6.设f和g是由数,f⊆g并且(g)⊆Ɗ(f),证明f=g。[证明]因为已知f⊆g,故只需证明g⊆f即可得f=g。为此用反证法。假设g⊈f,从而存在着(x,y)∈g,使得(x,y)∉f。由(x,y)∈g可知x∈Ɗ(g),根据已知Ɗ(g)⊆Ɗ(f),有x∈Ɗ(f)。于是存在着y1,使得(x,y)∈f。又从已知f⊆g,可得(x,y1)∈g。由于g是函数,根据函数是后者唯五的关系这个定义,就得到y=y1。从而(x,y)∈f,与反证假设(x,y)∉f矛盾,这个矛盾说明假设错误,于是必有g⊆f。7.设f和g是函数,证明也是函数。[证]只需证明对任何xƊ(f∩g)存在着唯一的y,使得(x,y)∈f∩g即可。(a)存在性若有x∈Ɗ,由于f及g是由数,因而也是关系,所以也是一个关系,从而应有y存在,使(x,y)∈f∩g.。若f∩g是空集,自然Ɗ(f∩g)=Ø,从而对任何x,x∉Ɗ(f∩g)。(b)唯一性若存在着y1,y2,使(x,y1)∈f∩g,(x,y2)∈f∩g,则(x,y1)∈f且(x,y2)∈f,由f是由数,后者唯一就可得y1=y2。8.设f:X→Y是函数,A,B是X的子集,证明:1)f(A∪B)=f(A)∪f(B)2)f(A∩B)⊆f(A)∩f(B)65 3)f(A)f(B)⊆f(AB)[证明]1)若y∈f(A∪B)则有x∈A∪B,使f(x)=y。即有x∈A或者x∈B,使f(x)=y。若x∈A,使f(x)=y,则y∈f(A);若x∈B,使f(x)=y,则y∈f(B)。总之y∈f(A)或y∈f(B),从而∪f(B)所以,f(A∪B)⊆f(A)∪f(B)若y∈f(A)∪f(B),则y∈f(A)或者y∈f(B),若y∈f(A),则存在着x1∈A,使f(x1)=y,即存在着x1∈A∪B,使f(x1)=y,故y∈f(A∪B);若y∈f(B),则存在着x2∈B,使y=f(x2),即存在着x2∈A∪B,使y=f(x2),故y∈(A∪B)。总之,y∈f(A∪B)。所以f(A)∪f(B)⊆f(A∪B)。因此f(A∪B)=f(A)∪f(B)。2)若y∈(A∪B),则存在着x∈A∩B,使y=f(x)。即x∈A且x∈B,使y=f(x)。从而y∈f(A)且y∈f(B),从而⊂y∈f(A)∩f(B)。所以f(A∩B)⊆f(A)∩f(B)。令f:X→X,X={1,2,3,4},f={(1,4),(2,3),(3,4),(4,2)}。并且取A={1,2},B+{2,3},则AB={2},f(A)=f(B)={3,4},f(A∩B)={3}。从而f(A∩B)⊂f(A)∩f(B)是严格真包含。因此等号一般不成立。3)设y是任一使得y∈f(A)f(B)的元素。那么有某-x∈A使得f(x)=y,但是,对每个z∈B,都有y≠f(z)。因此x∈AB,并且由于y=f(x),这就是推出y∈f(AB)。由y是任意的,这就建立了f(A)f(B)⊆f(AB)令X={1,2,3,4,5},f:X→X,f={(1,5),(2,4),(3,2),(4,5),(5,1)}。取A={1,2,3},B={3,4},则AB={1,2},于是f(A)={5,4,2},f(B)={2,5},f(AB)={5,4},f(A)f(B)={4}。由于{4}⊂{5,4},故此f(A)f(B)⊂f(AB)是真包含,等号不成立。9.设f:X→Y,定义函数g:Y→2X,使得对任意的y∈Yg(y)={x∈X|f(x)=y}证明:如果f是满射函数,则g是单射函数。[证明]对于任意的y1,y2∈Y且y1≠y2,我们来证g(y1)≠g(y2)。首先我们来证g(y1)≠Ø且g(y2)≠Ø。由于f:X→Y是满射函数,故此存在着x1,x2∈X,使得f(x1)=y2,因此x1∈g(y1)={x∈X|f(x)=y1},x2∈g(y2)={x∈X|f(x)=y2},所以g(y1)≠Ø,g(y2)≠Ø。其次来证g(y1)∩g(y2)=Ø65 。否则,此交集非空,则存在着x∈X,使x∈g(y1)∩g(y2),从而x∈g(y1)且x∈g(y2),于是f(x)=y1,f(x)=y2,从而y1=y2与y1≠y2的取法矛盾,因此这样的x不存在,g(y1)∩g(y2)=Ø。最后,g(y1)≠g(y2)。否则,g(y1)=g(y2),则g(y1)∩g(y2)=g(y1)Ø,矛盾。因此g是单射函数10.设f:R→R,f(x)=x2-1,g:R→R,g(x)=x+21)求fog和gof2)说明上述函数是单射、满射还是双射的?[解]1)fog:R→R对于任意x∈R(fog)(x)=f(g(x))=f(x+2)=(x+2)2-1=x2+4=3gof:R→R,对任意x∈R(gof)(x)=g(f(x))=g(x2-1)=(x2-1)+2=x2+12)(a)fog不是单射的因为(fog)(-(x+4))=(x+4)2-4(x+4)+3=(x+4)(x+4-4)+3=(x+4)x+3=x2+4x+3=(fog)(x)但是,除x=2外,一般-(x+4)≠x,故此fog不是单射函数。(b)fog不是满射的因为(fog)(x)=x2+4x+3=(x+2)2-1≥-1故此ℛ(fog)=[-1,+∞]≠R。所以fog不是满射的。(c)综合(a)、(b)、fog也不是双射的。(d)gof不是单射的因为(gof)(-x)=(-x)2+1=x2+1=(gof)(x)但是,除x=0外,一般-x≠x,故此gof不是单射的。(f)gof不是满射的因为(gof)(x)=x2+1≥1,故此ℛ(gof)=[1,+∞]≠R。所以gof不是满射的。65 (g)综合(d),(f),gof当然也不是双射的。11.设A={1,2,3,4}1)作双射函数f:A→A,使f≠IA,并求f2,f3,f–1,fof-12)是否存在双射函数g:A→A,使g≠IA,但g2=IA[解]散1)定义f:A→A,f={(1,2),(2,3),(3,4)(4,1)}则显然f是双射的且f≠IA={(1,1),(2,2),(3,3),(4,4)}。f=5-xf2=ff={(1,3),(2,4),(3,1),(4,2)}f2=xf3=ff2={(1,4),(2,1),(3,2),(4,3)}f3=5-xf–1={(1,4),(2,1),(3,2),(4,3)}f–1=5-xff–1={(1,1),(2,2),(3,3),(4,4)}=IAff–1=IA2)存在。定义g:AA,g={(1,2),(2,1),(3,4),(4,3)}则显然gf,gIA且g是双射的,但是有g2=gg={(1,1),(2,2),(3,3),(4,4)}=IA。12.设|X|=n,从X到X的双射函数P数为集合X上的置换,整数n称为置换的阶。一个n阶置换P:X→X,用如下形式表示:P=,P(xi)∈X给定三阶置换P=,求逆置换P-1及P与P-1的复合P◇P-1。[解]P-1=P◇P-1=◇=13.设A是无限集合,B是有限集合,回答下列问题并阐明理由1)A∩B是无限集合吗?2)A∪B是无限集合吗?3)AB是无限集合吗?[答]1)不是。因为A∩B⊆B,而B是有限集合,所以A∩B是有限集合。65 2)是。因为A∪B⊆A,而A是无限集合,所以A∪B是无限集合。3)是。因为A是无穷集合,因此A含有一可数子集A1,从而A=A1∪A2这里A2=AA1。于是AB=(A1∪A2)B=(A1B)∪(A2B)。由(另一证法否则AB有限,则A=(AB)∪B两个有限集合之并仍为有限矛盾)于任何可数集中取出有穷个元素之后,剩下的集合仍旧是可数集,故此可数集A1与有限集合的差A1B仍是一可数集,因此由AB=(A1B)∪(A2B)⊆A1B,即知AB中含有一可数子集A1B。所以AB是无限集合。14.设A、B、C、D为集合,若A≈C,B≈D,证明A×B≈C×D。[证明]由于A≈C,B≈D,所以由等势的定义知存在着二个双射函数g:A→C和h:B→D。从而我们可构造一个双射函数:f:A×B→C×D对于任何(a,b)∈A×B,f(a,b)=(g(a),h(b))于是f是双射函数,其逆函数为f–1:C×D→A×B对于任何(c,d)∈C×D,f–1(c,d)=(g–1(c),h–1(d))因此,A×B≈C×D15.设a,b为任意实数,a<b,证明[0,1]≈[a,b][证明]构造函数f:[0,1]→[a,b]f(x)=(b-a)·x+a,x∈[0,1]此函数是双射的,其逆函数为f–1:[a,b]→[0,1]f–1(x)=,x∈[a,b](由于a<b,故b-a>0=因此[0,1]≈[a,b]。16.计算下列集合的基数1){(a,b,c)|a,b,c∈I};2)所有整系数的一次多项式集合;3){(a,b)|a,b∈R∧a2+b2=1};4)实数轴上所有两不相交的有限开区间组成集合。[解]1)|{(a,b,c)|a,b,c∈I}|=因为整数集I是可数的(参见第5题的2)。又从{a,b,c|a,b,c∈I}=I×I×I65 为三个(有限个)可数集的叉积,因而是可数的。2)所有整系数的一次多项式集合={ax+b|a,b∈I},因此|{ax+b|a,bI}|=|{(a,b)|a,b∈I}|=|I×I|=。3)|{(a,b)|a,b∈R∧a2+b2=1}|=。因为存在着双射函数:S:{(a,b)|a,b∈R∧a2+b2=1}→[0,1]S(x,y)=,(x,y)∈{(a,b)|a,b∈R∧a2+b2=1}其中其逆函数S-1:[0,1]→{(a,b)|a,b∈R∧a2+b2=1}S-1(x)=(cos2πx,Sin2πx),x∈因此|{(a,b)|a,b∈R∧a2+b2=1}=|[0,1]|=4)实数轴上所有两两不相交的有限开区间组成的集合的基数是。。因为我们可在每个开区间中任取一有理数与此区间对应,由于这此开区间是两两不相交的,因而不同的区间就对应于不同的有理数(实际上是建立了一个单射),故所述开区间类与有理数集的一子集等势,从而或是有限的或是可当选的;但不可能是有限的。因为已知每个开区间都是有限的,而有限个有限开区间的并仍是有限集(有限开集),从而必能包含在区间与它之内的每个有限开区间的均不相交,符合所述开区间类的条件,故而应在此大区间之内,矛盾。所以这类开区间是可数的。17.找出三个与N等势的N的真子集。[解]A={2n|n∈N}N.双射函数f:A→Nf(m)=,m∈A,这是所有偶自然数集合。B={2n=+1|n∈N}⊂N,双射函数g:B→N,g(m)=,m∈B,这是所有奇自然数集合。C={Pi|i∈N∧PiN∧Pi为第i个素数}⊂N,素数是无限多的。否则,只有有限个,不妨设为P1,…,Pk,从而来考虑≈M=4P1P2…Pk+1这个数,因为P1M,P2M,…PkM,从而M不能分解成素数这积,说明M又是一另外的素数,与素数只有P1,P2,…,Pk65 个矛盾。所以C是可数的,C与N等势。18.证明1)设A为有限集,B为可数集,则A×B为可数集。2)设A、B为可数集,则A×B是可数集。3)设A是不可数无限集合,B是A的可数子集,则(AB)≈A。4)设A是任意无限集合,B是可数集,则(A∪B)≈A[证明]1)由于A为有限集,B为可数集,故可设A={a0,a1,a2,…,an}B={b0,b1,b2,…,bn…}从而AB={(ai,bj)|ai∈A∧bj∈B∧1≤i≤n∧j∈N}从而可建立A×B到N的双射f:A×B→N(n+1)j+if(ai,bj)=n(j-1)+i,(ai,bj)∈A×B其逆函数为:N→A×Bf–1(m)=(ai,bj),m∈Nf–1:NAB寻找k满足n(k-1)mnk其中i=j=因此,A×B为可数集。2)因A、B为可数集,故可设A={a1,a2,…,an…}B={b1,b2,…,bn…}从而A×B={(ai,bj)|ai∈A∧bj∈B∧i∈N∧j∈N}存在着从A×B到N的双射g:A×B→N,对(ai,bj)∈A×B,g(ai,bj)=其逆由函数可见第5题3)的函数f2所以AB是可数的。3)首先AB不可能是有限集合,否则由A=(AB)∪B65 及B是可数集合,根据有限集与可当选集之并集为可数集(可数集去掉有限集仍为可数集的逆用),可知A是可数集,与已知A是不可数集矛盾。所以AB是无限集合,因此包含一可数子集C={c1,c2,…cn…},即C⊆AB由B是可数集,故此不妨设B={b1,b2,…bn,…}可建立从A到AB的双射如下:g:AABg(x)=因此AB≈A。4)由于B是可数集,不妨设B={b1,b2,…bn,…}。由于A是无限集合,因此存在某一可数集C⊆AB,不妨设①若AB是有限集合故AB=(AB)B是可数集即又A是无穷集,故故此半A∪BxA②若AB是无穷集合则C=(c1,c2,…cn,…)从而可建立从AB到A的双射如下:f:A∪B→Af(x)=所以A∪B≈A(完)96年1月25日离散数学习题解第二部分65 代数系统习题四第四章代数系统1.设I为整数集合。判断下面的二元关系是否是I上的二元运算a)+={(x,y),z|x,y,zI且z=x+y}b)-={((x,y),z)|x,y,zI且z=x-y}c)×={((x,y),z)|x,y,zI且z=x×y}d)/={((x,y),z)|x,y,zI且z=x/y}e)R={((x,y),z)|x,y,zI且z=xy}f)={((x,y),z)|x,y,zI且z=}g)min={((x,y),z)|x,y,zI且z=max(x,y)}h)min={((x,y),z)|x,y,zI且z=min(x,y)}i)GCD={((x,y),z)|x,y,zI且z=GCD(x,y)}j)LCM={((x,y),z)|x,y,z∈I且z=LCM(x,y)}[解]a)是。由于两个整数之和仍为整数,且结果唯一,故知+:I2→I是I上的一个二元运算。b)是。由于两个整数之差仍为整数,且结果唯一,故知一:I2→I是I上的一个二元运算。c)是。由于两个整数这积仍为整数,且结果唯一,故知x:I2→I是I上的一个二元运算。d)不是:例如若x=5,y=6,则z=x/y=5/6I;当y=0时z=x|y=x/0无定义。e)不是。例如若x=2,y=-2,则z=xy=2–2==;若x=y=0,则z=xy=0,则z=;g)是。由于两个整数中最大者仍为整数,且结果唯一。故知max:I2→I是I上的一个二元运算。h)是。由于两个整数中最小者仍为整数,且结果唯一。故知min:I2→I是I上的一个二元运算。i)是。由于两个整数的最大公约数仍为整数,且结果唯一。故知GCD:I2→I是I上的一个二元运算。65 j)是。由于两个整数的最小公倍数仍为整数,且结果唯一。故知LCD:I2→I是I上的一个二元运算。注:两个整数a和b的最大公约数GCD(a,b)定义为同时除尽a和b的正整数中最大的一个;两个数a数b的最小公倍数LCM(a,b)定义为同时是a和b的正倍数中最小的一个。2.设X={x|x=2n,n∈N}问普通数的加法是否是X上的二元运算?普通数的乘法呢?[答]普通的加法运算不是X是X上的二元运算,因为存在着x1=2∈X,x2=22∈X,使x1+x2=2+22=6X。普通的乘法运算是X上的二元运算,因为对于任意的x1=X,x2=X,这里n1,n2N,都有x1·x2=·=X(因为n1+n2∈N)。3.设是代数系统,*是X上的二元运算,若有元素el∈X,使,有el*x=x,则称el是关于*的左幺元。若有元素erX,使,有x*el=x,则称er是关于*的右幺元。a)试举出公含有左幺的代数系统的例子。b)试举出仅含有左幺的代数系统的例子。c)证明:在代数系统中,若关于*有左幺元和右幺元,则左幺元等于右幺元。[解]:a)构造代数系统如下:令X={a,b,c,d},*:X×→X→X,其运算表如下:*abcdadabcbabcdcabccdabcd则此代数系统含有左幺元b,d,但不含右幺元。b)构造代数系统如下:令X={1,2,3,4}*:X×→X→X,其运算表如下:*12341124365 221343341244423则此代数系统含有右幺元1,但不含左幺元。c)[证]因为代数系统关于*运算存在着左、右幺元,ei,er∈X则el=el*er=er∈4.设是代数系统,*是X上的二元运算。若有元素Ol∈X,使"x∈X,有Ol*x=Ol是关于*的左零元。若有元素Or∈X,使"x∈X,有x*Or=Or,则称Or是关于*的右零元。a)试举出公含有左零元的代数系统的例子。b)试举出仅含有左零元的代数系统的例子。c)证明:在代数系统中,若关于*有左零元和右右零元,则左零元等于右零元。[解]a)构造代数系统如下:令X={a,b,c},*:X×X→X,其运算表如下:*abcaaaabbbbcbca则a和b都是左零元,但没有右零元。b)构造代数系统如下:令X={1,2,3},*:X×→X→X,其运算表如下:*12312332313312365 则3是右零元,但没有左零元。c)[证]因为代数系统关于*运算存在着左、右零元,Ol,Or∈X,则Ol=Ol*Or=Or5.当给出一个代数系统的二元运算表时,如何从表上判断这个二元运算是否满足结合律,是否满足交换律,是否有幺元,是否有零元,每个元素是否有逆元。[答]在一个代数系统中,1)运算*满足结合律,当且仅当在运算表中,对任何x,y∈X,x行每个元素与y的*积对应的等于x与y列每个元素的*积。2)运算*满足交换律,当且仅当运算表关于主对角线是对称的。3)运算*有幺元,当且仅当存在一元素,它所对应的行和列依次与运算表的行和列相一致。4)运算*有零元,当且仅存在一元素,它所对应的行和列中每个元素都是蛇自己。5)若运算*有幺元,X中每个元素x有逆元,当且仅当存在一元素y∈Y,使得x所在行,y所在列的元素以及y所在行,x所在列的元素都是幺元。6.设是代数系统,*是X上的二元运算,e是关于*的幺元。对于X中的元素x,若存在y∈X,使得y*x=e,则称y是x的左逆元。若存在z∈X,使得x*z=e,则称z是x的右逆元。指出下表中各元素的左、右逆元的情况。*abcdeaabcdebbdacdccababddacdceedace[解]a是幺元;b的左逆元和右逆元都是c;即b和c互为逆元;d的左逆元是c而左逆元是b;b有两个左逆元c和d;e的右逆元是c,但e没有左逆元;c有两个左逆元b和e有两个右逆元b,d。7.设是代数系统,*是X上的二元运算。"x,y∈X,有x*y=x。问*是否满足结合律,是否满足交换律,是否有幺元,是否有零元,每个元素是否有逆元。65 [解]a)*运算满足结合律因为对任何x,y,z∈X,都有x*(y*z)=x*y=x=x*y=(x*y)*zb)*运算不满足交换律因为对于二个元素x,y∈X,有x*y=x,而y*x=y。所以当X包含多于一个元素时,能使x≠y,从而x*y≠y*x。c)没有幺元因为若有幺元e∈X存在,则对任何x∈X,应有e*x*e,但是e*x=e,x*e=x,于是推得x=e,当X中包含多于一个元素时,就会有x≠e,矛盾。d)没有零元,仿c)保证。e)对于每个元素都没有逆元。因为没有幺元存在。并且若存在一个元素a∈X,使得对每个元素x∈X,都有一个元素y∈X,使y*x=x*y=a,则有y=x=a,当X中包含多一个元素时,这将不总是成立的(只在x=a,且a具有幂等性时才成立)8.设是代数系统,*是N上的二元运算,"x,y∈N,x*y=LCM(x,y)。问*是否满足结合律,是否满足交换律,是否有幺元,是否有零元,每个元素是否有逆元。[解]a)*运算满足结合律因为,对于任何x,y,z∈N,(x*y)*z=LCM((x*y),z)=LCM(LCM(x,y),z)=LCM((x,y,z)=LCM((x,(y*z)=LCM((x*y),z)=x*(y*z)注:关于LCM(LCM(x,y),z)=LCM(x,y,z)我们可证明如下:设C1=LCM(x,y,z),d=LCM(x,y),从而C1=LCM(d,z),C2=LCM(x,y,z),因此只需证C1=C2即可,为此由于C2=LCM(x,y,z),故此x|C2,y|C2,z|C2,因此由d=LCM(x,y)及x|C2,y|C2,从d2的最小性有d≤C2于是d|C2(否则C2=kd+r,0<r<d,由于x|d,y|d及x|C2,y|C2,故有x|r,y|r,这与d=LCM(x,y)的最小性矛盾)。即d|C2且z|C2故此由C1=LCM(d,z)的最小性,可知C1≤C2。另一方面,由C1=LCM(d,z)知d|C1,z|C1,又由d=LCM(x,y)知x|d,65 y|d,y|d,因此有x|C1,y|C1,并且z|C1。因而C2=LCM(x,y,z)的最小性可知C2≤C1。所以,C1=C2。同理可证LCM(x,LCM(y,z))=LCM(x,y,z)。b)*运算满足交换律因为对于任何x,y∈N,x*y=LCM(x,y)=LCM(y,x)=y*x(c)*运算有幺元1∈N。因为,对于任何x∈N,x*1=LCM(x,1)=x=LCM(1,x)=1*x(d)*运算没有零元。因为0ÏN。(e)对于每个元素x∈X,若x≠1,则对每个元素y∈N,都有x*y=y*x=LCM(x,y)≥x≠1,故此没有逆元素。9.设是代数系统,*是X上的二元运算。X是X中的任一元素,若有x*x=x,则称x是幂等元。若*是可结合的,且"x,yX,当x*y=y*x时,有x=y。证明:X中每个元素都是幂等元。[证]对于任何x∈X,令xi=x*x,xj=x,于是xi*xj=(x*x)*x=x*(x*x)(结合律)=xj*xi从而由怕给性质,有xi=xj,即x*x=x。因此,由x的任意性,可知X中每个元素都是幂等元。10.设是代数系统,和分别是X上的两上二元运算。若"x∈X,有xy=x。证明关于是可分配的。[证]对于任何x,y,z∈XxÄ(yÅz)=xÄy=(xÄy)Å=(yÅz)Äx=yÄx=(yÄx)(zÄx)65 因此代数系统中Ä关于Å是可分配的。11.设是代数系统,Å和Ä分别是X上的两上二元运算。e1和e2分别是关于Ä和Å的幺元,且Å对于满足分配律,Ä对于Å满足分配律。证明:"x∈X,有xÄx=x,xÄx=x[证](a)先证e1Äe1=e1e1Äe1=e1Å(e1Äe1)(e1是Ä幺元)=(e2Äe1)(e1Äe1)(e2是Ä幺元)=(e2Åe1)Äe1(Ä对Å的分配)=(e2Äe1)(e1是Å幺元)=e1(e2是Ä幺元)(b)次证e2Åe2=e2e2Åe2=e2Ä(e2Åe2)(e2是Ä幺元)=(e1Åe2)Ä(e2Åe2)(e1是Å幺元)=(e1Äe2)Åe2(对Ä的分配)=e1Åe2(e2是Ä幺元)=e2(e1是Å幺元)(c)最后,我们来证xÅx=x,xÄx=xxÅx=(xÄe2)Å(xÄe2)(e2是Ä幺元)=xÄ(e2Åe2)(Ä对Å的分配)=xÄe2(利用(b))=x(e2是Ä幺元)xÄx=(xÅe1)Ä(xÅe1)(e1是Å幺元)=xÅ(e1Äe1)(Å对Ä的分配)=xÅe1(利用(a))=x(e1是Å幺元)证法二:x=xÅe2(e2为Ä的幺元)=xÄ(e2Åe1)(e1为幺Ä元)=xÄ[e2Å(e1e2)](e2为Ä幺元)=xÄ[(e2Åe1)Ä(e2Åe2)](Å对Ä的分配律)=xÄ[(e2Ä(e2Åe2))(e1为Å幺元)=xÄ(e2Åe2)(e2为Ä幺元)=(xÄe2)Å(xÄe2)(Ä对Å分配律)65 =xÅx(e2为Ä幺元)x=xÅe1(e1为Ä的幺元)=xÅ(e1Äe2)(e2为Ä幺元)=xÅ[e1Ä(e1Åe2)](e2为Å幺元)=xÅ[(e1Äe1)Å(e1Äe2)](Ä对Å的分配律)=xÅ[(e1Äe1)Åe1](e2为Ä幺元)=xÅ(e1Äe1)(e1为Ä幺元)=(xÅe1)Å(xÅe1)(Å对Ä分配律)=xÄx(e1为Å幺元)12.设X={a,b,c,d},Å和Ä分别是X上的两个二元运算,其运算表如下:算表如下:65abcdaaaaabababcaaccdabcdÄabcdaabcdbbbddccdcdddddd65取S1={b,d},S2{a,d},S3={b,c},问,分别是的子代数系统吗?为什么?因此的子代数。因Å,Ä在S2={b,d}内封闭。ÄbdbbddddÅbdbbbdbd[解]65 Äabaaababcaadab因此的子代数。因Å,Ä在S3={b,d}内封闭。ÅbdbbddddÅbcbbacaccaadabÄbcbbdcdccaadab13.设*是X上的二元运算。若"a,b,c∈X,有a*a=a且(a*b)*(c*d)=(a*c,b*d)证明:a*(b*c)=(a*b)*(a*c)[证]对任何a,b,c∈X,a*(b*c)=(a*a)*(b*c)(幂等性a*a=a)=((a*b)*(a*c)=((a*b)*(c*d))=(a*c)*(b*d)利用)14.设是代数系统,*是X上的二元运算,R是X上的等价关系。若"a,b,c,d∈X当(a,b)∈R且(c,d)∈R时,有(a*c,b*d)∈R,则称R是X上关于*的同余关系,称R产生的等价类是关于*的同余类。考察代数系统,I是整数集合,十是整数加法。问以下的元关系是I上的关于十的同余关系吗?a)R={(x,y)|x,y∈I且((x<0且y<0)或(x≥0且y≥0))}b){(x,y)|x,y∈I且((x<0且|x—y|<10c){(x,y)|x,y∈I且((x=0且y=0)或(x≠0且y≠0))}d){(x,y)|x,y∈I且x≥y}[解]a)这不是一个同余关系,因为(-1,-2)∈R且(1,1)∈R,但(-1+1,-2+1)=(0,-1)ÏR。b)164 这不是一个同余关系,因为它不是一个等价关系。实际上它是自反的和对称的,但不是传递的,例如取x=-8,y=1,z=8,由于|-8-1|=9<0,|1-8|=7<10,故有(-8,1)∈R且(1,8)∈R。但|-8-8|=6>10,所以[-8,8]ÏRc)这不是一个同余关系,因为(-1,-2)∈R且(1,1)∈R,但(-1+1,-2+1)=(0,-1)ÏRd)这不是一个同余关系,因为它不是一个等价关系。实际上它是自反的和传递的,但不是对称的,例如取x=8,y=7,于是有8≥7,从而(8,7)∈R,但7≠8,故(7,8)ÏR。15.设S={a,b},X=<25,∩,∪,>,Y=〈{0,1},∧,∨,-〉。证明:Y是X的同态象。[证]如下构造的函数h是一个从X到Y的同态:h:2S→{0,1}h(Ø)=0h({a})=0,h({b})=1,h(S)=1容易验证:h(A∩B)=h(A)∧h(B)h(A∪B)=h(A)∨h(B)(A,B⊆S)h(A′)=并且h显然是满射的,因此Y是X同态象。16.设R是实数集合,十和X是实数的加法和乘法。X=〈R,+〉,Y=〈R,x〉,问Y是否是X的同态象。[答]Y不是X的同态象。否则将存在着从X到Y的满同态函数h,从而对于0∈R,由h是满射的,可知存在着r0∈R,使h(r0)=0,于是对任何r∈R,由于r-r0=r+(-r0)∈R,所以h(r)=h(r0+(r-r0))={r′|r′∈R∧(Er∈R)(h(r)=r′)}={0}≠R17.设N是自然数集合,x是自然数乘法,X=〈N,x〉,Y=〈{0,1},x〉,证明:Y是X的同态象。[证]如下构造的函数h是一个从X到Y的同态h:N→{0,1}于是h(2m×2n)=h(2·2mn)=0=0×0=h(2m)×h(2n)h(2m×(2n-1))=h(2·m(2n-1))=0=0×1=h(2m)×h(2n-1)h((2m-1)×(2n-1))=h(2(mn-m-n+1)-1)=1=1×1=h(2m-1)×h(2n-1)164 所以h满足同态公式,另外h显然是满射,因而Y是X的同态象。18.设S={a,b,c},X=〈{Ø,S},∩,∪,′〉,Y=〈{a,b},S,∩,∪,′〉。问X和Y是否同构,为么?[答]X和Y不同构。因为Y=〈{{a,b},S},∩,∪,′〉不是代数系统,补运算′关于{{a,b},S}不封闭,这可见下表:′{a,b}{c}SØ而如果存在着X和Y的同构,则从X是代数系统,知Y也应该是代数系统,矛盾。19.设〈X,*〉和〈Y,Å〉是两个代数系统,*和Å分别是X和Y上的二元运算,且满足交换律,结合律。f1和f2都是从〈X,*〉到〈Y,Å〉的同态函数。令h:X→Yh(x)=f1(x)Åf2(x)证明:h是从〈X,*〉到〈Y,〉的同态函数。[证]对于任何a,b∈X,h(a*b)=f1(a*b)Åf2(a*b)(h的定义)=(f1(a)Åf1(b))Å(f2(a)Åf2(b))(f1和f2是同态函数)=(f1(a)Åf1(b))Å(f2(a)Åf2(b))(Å的结合律)=(f1(a)Åf2(a))Å(f1(b)Åf2(b))(Å的结合律)=(f1(a)Åf2(a))Å(f1(b)Åf2(b))(Å的结合律)=h(a)Åh(b)(h的定义)20.设〈X,f1〉,〈Y,f2〉,〈Z,f3〉是三个代数系统。f1,f2,f3分别是X,Y,Z上的二元运算。证明:若h1是从〈X,f1〉到〈Y,f2〉的同态函数,h2是从〈Y,f2〉到〈Z,f3〉的同态函数,则h2oh1是从〈X,f1〉到〈Z,f3〉的同态函数。[证]对于任何x,y∈X,(h2οh1)(xf1y)=h2(h1(xf1y))=h2(h1(x)f2h1(y))(h1是〈X,f1〉到〈Y,f2〉的同态)=h2(h1(x)f3h2(h1(y))(h2是〈X,f2〉到〈Y,f3〉的同态)=(h2οh1)(x)f3(h2h1)(y)所以h2οh1是从〈X,f1〉到〈Z,f3〉的同态函数。21.设〈S,*〉是有限含幺半群。证明:在*的运算表中,任何两行或任何两列均不相同。164 [证]因为〈S,*〉是有限含幺半群,故可设s={s0=e,s1,…,sn-1}则在*的运算表中,对庆于任何si,sj∈s(si≠sj,0≤i,j≤n-1)的两行为:si*s0,si*s1,…,si*sn-1;sj*s0,sj*s1,…,sj*sn-1为证此两行互不相同,只需证明(∃k)(0≤k≤n-1∧si*sk≠sj*sk)即可。而这样的k是存在的,只需取k=0即得:si*s0=si*e=si≠sj=sj*e=sj*s0从而,由si,sj∈s的任意性,可知,在*运算表中,任何两行均互不相同。关于列的结论,同理可证。22.设k是一正数,Nk={0,1,2,…,k-1},*k是Nk上的一个二元运算。"a,b∈Nk,a*kb=(a×b)modk。a)当k=6时,写出*6的运算表;b)证明:对任意的正整数k,〈Nk,*k〉是半群。a)[解]*6012345000000010123452024024303030340420425054321b)[证]1)*k是Nk上的二元运算由于0≤(a×b)modk<k,故a*kbNk,即*k关于Nk封闭,并且运算结果唯一(因为若有i=(a×b)modk,j=(a×b)modk,则0≤k<k,0≤j<k,a×b=kr1+i,a×b=kr2+j,于是有kr1+I=kr2+j不妨设ji从而k(r1-r2)=j-i,故此k|j-i,但是0≤j-i<k(因为j≥i)故只能j-i=0,因此j=i=。2)*k满足结合律因为对于任何a,b,c∈Nk(a*kb)*kc=[(a×b)modk]*kc={[(a×b)modk]×c}modk=((a×b×c))modk164 ={a×[(b×c)modk]}modk=a*k[(b×c)modk]==a*k(b*kc)综合1),2)可得〈Nk,*k〉是半群23.设〈S,*〉是半群,a∈s。在s上定义二元运算Å如下"x,y∈s,xÅy=x*a*y证明:〈S,Å〉是半群。[证](a)Å是s上的二元运算由于〈S,*〉是半群,故*是s上的二元运算,因此*运算具有封闭性和运算结果唯一性。因此由Å的定义可知Å具有封闭性和运算结果唯一性。(b)Å满足结合律对于任何x,y,z∈s(xÅy)Åz=(x*a*y)Åz=(y)*a*z=x*a*(y*a*z)(*运算的结合律)=x*a*(yÅz)=xÅ(yÅz)综合(a),(b)可知〈S,Å〉是半群。24.设〈S,*〉是半群。证明:s中至少有一个幂等元。[证]因为〈S,*〉是半群,所以*运算具有封闭性,因而可知对于任何元素y∈s,都有y2=y*y∈s,y3=y2*y∈s,…。又由〈S,*〉是有限的,可知s是有限集,所以存在着j>i,使得yj=yi,从而令P=j-i,那么就有yi=yj=yp+I=yp*yi,因此可得yi+1=yp*yi+1,…,也就是对任何g≥i,都有yg=yp*yg。所以,从p1总可找到k≥1,使kp≥i。故此,令x=ykp∈s,则x就是s中的一个幂等元,推证如下:x*x=ykp*ykp=(yP+*y(k-1)p)*ykp(利用上述性质)=y(k-1)p*ykp=……=yp*ykp=ykp=x25.设R是实数集合。在R上定义二元运算*如下"x,y∈R,x*y=x+y+xy164 证明:〈R,*〉是含幺半群。[证](1)*运算是实数集R上的二元运算。因为普通实数加法+和乘法×都是封闭的和运算结果唯一的,因此由它们定义的*运算也是封闭的、运算结果唯一。(2)*运算满足结合律。对于任何x,y,z∈R,因为(x*y)*z=(x*y)+z+(x*y)z=(x+y+xy)+z+(x+y+xy)z=x+y+z+xy+xz+yz+xyz(x*y)*z=x+(y*z)+x(y*z)=x+(y+z+yz)+x(y+z+yz)=x+y+z+xy+xz+yz+xyz所以(x*y)*z=x(y*z)(3)o∈R为幺元对于任何x∈R因为o*x=o+x+o·x=xx*o=x+o+x·o=x故此o*x=x*o=x综合(1)(2)(3)证得〈R,*〉是含幺半群。26.设〈S,*〉是可交换半群。证明:"x,y∈S,若x,y是幂等元,则有(x*y)*(x*y)=x*y。[证](x*y)*(x*y)=x*(y*x)*y(*可结合)=x*(x*y)*y(*可交换)=(x*x)*(y*y)(*可结合)=x*y(x,y为幂等元)27.设〈S,*〉是半群。,y∈s,若x≠y,则x*y≠y*x。证明:a)"x∈s,有x*x=xb)"x,y∈s,有x*y*x=x;c)"x,z∈s,有x*y*z=x*z;[证]对任何x,y∈s若x*y=y*x,则x=y(否则x≠y,于是x*y≠y*x,矛盾)。a)对任何x∈s,因为(x*x)*x=x*(x*x)(*可结合)所以x*x=xb)对任何x,y∈s,(x*y*x)*x=x*y*(x*x)(*可结合)=x*y*x(由a))164 =(x*x)*y*x(由a))=x*(x*y*x)(*可结合)所以x*y*x=xc)对任何x,y,z∈s,有(x*y*z)*(x*z)=x*y*(z*x*z)(*可结合)=x*y*z(由b))=(x*z*x)*y*z(由b))=(x*z)*(x*y*z)(*可结合)所以x*y*z=x*z28.设〈S,*〉是半群。证明:"x,y,z∈s,若x*z=z*x且y*z=z*y,则(x*y)*z=z*(x*y)。[证]对任何x,y,x∈s(x*y)*z=x*(y*z)(*可结合)=x*(z*y)(y与z可交换)=(x*z)*y(*可结合)=(z*x)*y(x与z可交换)=z*(x*y)(*可结合)29.设〈{x,y},*〉是半群,x*x=y。证明:a)x*y=y*x;b)y*y=y。[证]a)x*y=x*(x*x)(因x*x=y)=(x*x)*x(*可结合)=y*x(因x*x=y)b)y*y=(x*x)*y(因x*x=y)=x*(x*y)(*可结合)根据*运算的封闭性,可知x*y=x或者x*y=y若x*y=x,则y*y=x*(x*y)=x*x(由x*y=x)=y(由x*x=y)若x*y=y,则y*y=x*(x*y)=x*y(由x*y=y)=y(由x*y=y)因此无论如何,y*y=y。164 30.〈S,*〉是半群。若有a∈s,"x∈s,∃u,Q∈S,使得a*u=v*a=x证明:〈S,*〉是含幺半群。[证]只需证明半群〈S,*〉中含有幺元即可。取x=a,那么,存在ua,va∈s,使a*ua=va*a=a对于s中任一元素b,那么存在ub,vb∈s,使得a*ub=vb*a=b于是bua=(vb*a)*ua(因vb*a=b)=vb(a*ua)(*可结合)=vb*a(因aua=a)=b(因ub*a=b)所以ua是右幺元。并且vab=va*(a*ub)(因a*ub=b)=(va*a)*ub(*可结合)=a*ub(因ua*a=a)=b(因a*ub=b)所以va是左幺元。但是将b*ua=b中的b取为ua,则有va*ua=va;将ua*b=b中的b取为ua,则有va*ua=ua;故此,可得ua=va。所ua(=va)是〈S,*〉的幺元。从而,〈S,*〉是含幺半群。31.设〈S,*〉是含幺半群。Zs,z是关于*的左零元。证明:"x∈s,x*z也是关于*的左零元。[证]由于z是关于*的左零元,所以对于任意a∈s,都有z*a=z因而对任何x∈s,对任何a∈s,都有(x*z)*a=x*(z*a)(*可结合)=x*z(z为左零元,z*a=z)这说明x*z也为左零元。32.设〈S,*〉是含幺半群。Ss={f|f:s→s},)ο是函数的合成运算。a)证明:〈Ss,*〉是半群;b)证明:存在从〈S,*〉到〈Ss,ο〉的同态函数。[证]a)由于ο是函数的合成运算,而Ss={f|f:s→s}是所有从s到s164 的函数的集合,因此ο运算封闭且运算结果唯一;并且ο运算当然具有结合律,故此〈Ss,ο〉是一半群。b)令h:s→ss,对于所有的a∈sh(a)=fa;这时fa:s→s,对于任何x∈s有fa(a)=a*x由于〈S,*〉是半群,故*是s上的二元运算。因此*运算封闭,且运算结果唯一,因此如上定义的fa后者唯一,是从s到s的函数,即fass。因此h的定义是良定义的。对于任何a,b∈sh(a*b)=fa*b而对于任何x∈s,(x)fa*b(x)=(a*b)*x=a*(b*x)(*的结合律)=a*(fb(x))=fa(fb(x))=(faοfb)(x)所以,有fa*b=faοfb,因此,h(a*b)=faοfb=h(a)οh(b)。故此h满足同态公式。因而存在从到〈Ss,ο〉的同态函数。33.设f是从半群〈X,*〉到〈Y,〉的同态函数,证明:若x是X中的幂等元,则Y中也存在幂等元。[证]由于f(x)f(x)=f(x*x)(f是同态函数,满足同态公式)=f(x)(因x是幂等元,故x*x=x)且f(x)∈Y,故此f(x)是Y中的幂等元。即Y中也存在幂等元。34.设f是从半群〈X,*〉到〈Y,〉的同态函数,问下列结论是否为真。a)〈X,*〉在f下的同态象是〈Y,〉的子代数系统;b)〈X,*〉在f下的同态象是半群;c)若〈X,*〉是含幺交换半群,则〈X,*〉在f下的同态象也是含幺可交换半群。[解]a)真。因为1)f(X)⊆Y。这点是根据事实f:X→Y得出的。2)集合f(X)在运算Å下是封闭的,即,如果a,b∈f(X),那么aÅb∈f(X)。因为若a,b∈ff(X),那么存在着x,y∈X,使得f(x)=a且f(y)=b。进一步,由X在*运算下封闭(因〈X,*〉为半群)可知存在着某一z∈X,使z=x*y因此aÅb=f(x)Åf(y)164 =f(x*y)(f是同态函数,满足同态公式)=f(z)∈f(X)运算结果的唯一性是自动遗传,因为〈Y,Å〉至少是一代数系统,故Å应是Y上的二元运算,具有运算结果唯一性。故由1)和2),可知〈X,*〉在f下的同态象〈f(X),Å〉是〈Y,Å〉的子代数系统。b)真。因为3)运算Å在集合f(X)上满足结合律,即,如果a、b、c∈f(X),那么(aÅb)Åc=aÅ(bÅc)。因若a,b,c∈f(X),那么存在着x,y,z∈X,使f(x)=a且f(y)=b及f(z)=c,故此(aÅb)Åc=(f(x)Åf(y))f(z)=f(x*y)Åf(z)(f满足同态公式)=f((x*y)*z)(f满足同态公式)=f(x*(y*z))(〈X,*〉为半群,*运算有结合律)=f(x)Åf(y*z)(f满足同态公式)=f(x)Å(f(y)f(z))(f满足同态公式)=aÅ(bÅc)于是由a)的1),2)及这里的3),可知〈X,*〉在f下的同态象〈f(X),Å〉是半群。c)真。因为4)〈f(X),Å〉含有幺元,即若e∈X是含幺半群〈X,*〉的幺元,那么f(e)∈f(X)就是〈f(X),Å〉的幺元。因为对任何a∈f(X),存在着x∈X,使f(x)=a,故此aÅf(e)=f(x)Åf(e)=f(x*e)(f满足同态公式)=f(x)(x*e=x)=a同理可证f(e)Åa=a,因而aÅf(e)=f(e)Åa=a。5)运算Å在f(X)上满足交换律,即,对任何a,b∈f(X),都有aÅb=bÅa。因若a,b∈f(X)则存在着x,y∈X,使f(x)=a且f(y)=b,因此aÅb=f(x)Åf(y)=f(x*y)(f满足同态公式)=f(y*x)(〈X,*〉是含幺可交换半群,故*有交换律)=f(y)f(x)(f满足同态公式)164 =bÅa综合a)的1)2),b)的3),和这里的4)和5),可知,若〈X,*〉是含幺可交换半群,则〈X,*〉在f下的同态象〈f(X),Å〉也是含幺可交换半群。35.设N6={0,1,2,3,4,5},N6上的+6运算定义如下"a,b∈N6,a+6b=(a+b)mod6求了半群〈N6,+6〉的运算表如下:+6012345001234511234502234501334501244501235501234从运算表看出〈N6,+6〉是一循环半群,生成元是1,5。因而除两个平凡子半群〈{0},+6〉及〈N6,+6〉外,任何包含1或5的子集都不能构成真子半群。所以考虑{0,2,3,4}的子集,由于2+63=5,3+64=1,故此任何包含2或4的子集中不能包含3。另外2+62=4,3+63=0,4+64=2,故此单元素集上运算+6不封闭。因而〈N6,+6〉的真子半群只有二个〈{0,3},+6〉及〈{0,2,4},+6〉,它们的运算表如下:+6024002422404402+60300333036.证明:含幺半群的子半群可以是一个含幺半群,但不是子含幺半群。[证]〈N6,+6〉是一个含幺半群,其幺元为1。运算表如下:164 X6012345000000010123452024024303030340420425054321〈{4,2},x6〉是〈N6,+6〉的子半群,并且是含幺半群,其幺元为4运算为但是它不是〈N6,+6〉的子含幺半群,因为〈N6,+6〉的幺元|∉{4,2}。x642442224幺元不遗传37.设〈S,*〉是含幺半群,幺元为eS1={x|x∈S1且∃y(y*x)=e}证明:〈S1,*〉是〈S1,*〉的子含幺半群。[证]1)集合S1在运算*下是封闭的,即,若x1,x2∈S1,则x1*x2∈S1。因若x1,x2∈S1则x1,x2∈S,存在着y1,y2使y1*x1=e,y2*x2=e。于是有x1*x2∈S(S在*运算下封闭,因〈S,*〉是半群),并且存在着z=y2*y1,使z*(x1*x2)=(y2*y1)(x1*x2)=y2*(y1*x1)*x2(的结合律)=y2*(e*x2)=y2*x2(e是幺元,e*x2=x2)=e故此x1*x2∈s。2)*运算在S1上满足结合律,这点由*运算在S上的结合律遗传而来。3)〈S1,*〉含有〈S,*〉的幺元e。因为e∈S,且存在着e使e*e=e,所以e∈S1。综合上述1),2),3),证得〈S1,*〉是〈S,*〉的子含幺半群。38.写出所有不同构的一阶,二阶,三阶,四阶,五阶,六阶,七阶,八阶群。[解]由于素数阶群是循环群,故此一阶,二阶,三阶,五阶,七阶群各只有一个,其运算表分别如下:164 *eaeeaaae*eabeeabaabebbea*eee一阶群二阶群三阶群*eabcdeeabcdaabcdebbcdeaccdeabddeabc*eabcdfgeeabcdfgaabcdfgebbcdfgeaccdfgeabddfgeabcffgeabcdggeabcdf五阶群七阶群四阶群已知有两个,一个是循环群,一个是Kiein4群,其运算表如下:*eabceeabcaabcebbceaccdea*eabceeabcaaecbbbceaccbae四阶循环群Klein四群而六阶和八阶的情况比较复杂。我们先来讨论六阶群的情况:(一)(1)六阶群〈G,*〉一定有三阶子群。对于|G|=6,6的正因子只有1,2,3和6。若G=是6阶循环群,则H=164 是一个三阶子群;若G不是循环群,则G中非幺元的阶只能是2或3。若G中有一个非幺元b的阶是三,则H=是G的一个三阶子群。若G中非幺元的阶都是二,则对任何a,b∈G,并且a和b是不同的非幺元,就有a2=e,b2=e,()2=e从而a-1=a,b-1=b,(a*b)-1=a*b又因为(a*b)-1=b-1*a-1=b*a,所以a*b=b*a,所以G是交换群。现在来考察G的子集H={e,a,b,a*b},这里a,b是G中的两个不同的非幺元。显然a*b≠e,≠a,≠b,(如a*b≠e,否则,有a-1=b,又a-1=a,从而a=b与a与b不同矛盾。余者同理可证)*关于H的运算表如下:*eaba*beeaba*baaba*bbbba*bea*ba*bde(运算表利用G的可交换性来编制)所以H在*运算下封闭,实际上与Klein四群同构。于是H是G的一个四阶子群,根据Lagrange定理,必有4|6,这不可能。因此G中非幺元都是二阶的。(2)偶阶群〈G,*〉一定含有一个二阶的非么元(见41题)即含有二阶子群。(3)若任何群〈G,*〉的子群〈H,*〉在G中的指数为2,则〈H,*〉为正规子群,即HG。(见58题(a))设六阶群的含有的三阶子群为H1=〈a〉={e,a,a2}二阶子群为G2=〈b〉={e,b},令H=H1H2,即H={e,aa2,b,ab,a2b}(这里a*b简记为ab,a2*b简记为a2b,以下类同,不再交代)。由于a,b分别是三、二阶元素,故H1∩H2={e}。容易验证H=H1H2中6个元素是两两不同的(例,如a2≠b,否则a2=bH1∩H2={e},矛盾。略验证)。所以G=H=H1H2。下面分两种情况来讨论:(a)若a*b=b*a,这时G是交换群,又由于a*b=ab是阶元素,因此G是六阶循环群。利用G的可交换性及a3=e,b2=e可构成*运算的运算表发下:164 *eaba2baa2beeaba2baa2bababa2baa2bea2a2baa2beabbbaa2beaba2aaa2beaba2ba2ba2beaba2ba它与〈N6,+6〉同构,同构函数f:G→N6f(e)=[0]6,f(ab)=[1]6,f(a2)=[2]6,f(b)=[3]6,f(a)=[4]6,f(a2b)=[5]6。(b)若a*b≠b*a,这时G是非交换群。由于H1=〈a〉={e,a,a2}在G中指数|G|/|H1|=6/3=2,所以H1G。因此对于b∈G,a∈H1根据正规子群的条件可知b-1ab=bab∈H1(因为b2=e,故b-1=b)显然可得bab=a2(否则,若bab=e,则a=(b-1)2=b2=e,矛盾;同样,若bab=a,则ab=b-1a=ba,于是G是交换群,矛盾)。故此ab=b-1a2=ba2。利用b2=e,a3=e,b-1=b及bab=a2,ab=ba2等可编制*的运算表如下,计算过程如右:*eaba2baa2beeaba2baa2bababa2baa2bea2a2baa2beabbbaa2beaba2aaa2beaba2ba2ba2beaba2bab*a2b=abb=ab*a=babb-1=a2ba2b*a2b=a2abb=ea2b*ab=a2b=aa2b*a=aba2b=aba2b*a2=aabb=a2ab*ab=aa2=eab*a=ba2a=bab*a2=aab=a2b它与三次六阶对称群〈S3,◇〉同构,其中s3={e,τ,σ2τ,στ,σσ2}={p1,p2,p3,p4,p5,p6}σ=(123),τ=(12),e=(1)同构函数f:G→S3,f(e)=e=p,f(b)=τ=p2,f(a2b)=σ2τ=p3,f(ab)=στp4,f(a)=σ=p5,f(a2)=σ2=p6所以,六阶群只有六阶循环群及三次六阶对称群〈S3,◇〉(二)(1)八阶群〈G,*〉一定含有四阶子群。164 对于|G|=8,8的正因子只有1,2,4和8。若G=〈a〉是8阶循环群,则H=〈a〉是一个四阶子群;若G不是循环群,则G中非幺元的阶数只能是2或4。若G中有一有一个非幺元b的阶是四,则H=〈b〉是G的一个四阶子群,这样得到的都是四阶循环群。若G中非幺元的阶都是2,则对任何a,b∈G,并且a和b是不同的非幺元,就有a2=e,b2=e,(a*b)2=e从而a-1=a,b-1=b,(a*b)-1=a*b*eababeeababaaeabbbbabeaababbae又因为(a*b)-1=b-1*a-1=b*a所以a*b=b*a,即G是交换群。现在来考察G的子集H={e,a,b,ab},这里a,b是G中的两个不同的非幺元。显然ab≠e,≠a,≠b(如a≠e,否则,有a-1=b,又a-1=a,从而a=b,与a与b不同矛盾。余者同理要证)*关于H的运算如下:(编制可用G的可交换性)所以H在*运算下封闭,〈H,*〉实际上与Kliin四群同构。2)(a)设八阶群〈G,*〉所含的四阶群为四阶循环H1=〈a〉={e,a,a2,a3},由于H1在G中的指数为2,故可取b∈G而b∉H,那么由右陪集理论可知。G=H1H1b={e,a,a2,a3,b,ab,a2b,a3b}由于|G|=8,故此这八个元素应该是两两不相同的(实际上,利用b∉H,即b≠e,b≠a,b≠a2,b≠a3,可以a是四阶的,可证它们互不相同,例如,a2≠a3b,否则ab=e,从而a-1=b,但a-1=a3,故有b=a3矛盾,其余略去验证)。现在我们来考虑b2,当然有b2b,b2≠ab,b2≠a2b,b2≠a3b否则,由消去律,将有b=e或b=a或b=a2或b=a2或b=a3,与b∉H矛盾,因此,只能b2=e或b2=a或b2=a2或b2=a3。(1)若b2=e,则b-1=b(10)若ab=ba,则G是交换群,利用交换性及a4=e,b2=e,b-1=b,等构成的*运算表如下:164 *eaa2a3baba2ba3b由于a,a3,ab,a3b是G中四阶元素,a2b,a2b是G中的二阶元素,因此G中元八阶元素,因而G不是循环群。eeaa2a3baba2ba3baaa2a3eaba2ba3bba2a2a3eaba2ba3bbaba3a3eaa2a3bbaba2bbbaba2ba3beaa2a3ababa2ba3bbaa2a3ea2ba2ba3bbaa2a3eaa3ba3bbaba2ba3eaa2G=〈S2,*〉(20)若ab≠ba,则G是非交换群,由于H1在G中指数为2故H1G,因此对于b∈G,a∈H1,显然bab=a3(否则,若bab=e,则a=(b-1)2=b2=e,矛盾;同样,若bab=a,则ab=b-1a=ba,于是G可交换,矛盾;最后,若bab=a2,则ab=b-1a2=ba2,于是(ab*ab)*ab=a3*ab=bab*(ab*ab)=ab*a3=ba3=ba=babb=a2b由于b≠a2b,(否同有a2=e,则a为二阶的,与a四阶的矛盾)故此(ab*ab)*ab≠ab*(ab*ab),从而G不具有结合律,与G是群矛盾。故此ab=b-1a3=ba3。利用b2=e,a4=e,b-1=b及bab=a3,ab=ba3等可编制的*运算表如下,计算过程如右:*eaa2a3baba2bb*a=babb=a3bb*a2=ba2aa3=aba3=aab=a2bb*a3=abb*a2b=a2bb=a2b*a3b=abb=a四阶元素:a,a3;二阶元素:a2,b,ab,a2b,a3b;因G中无八阶元素,因而G不是循环群;又因G不可交换,故与(10)中的可交换八阶群不同构。a3beeaa2a3baba2ba3baaa2a3eaba2ba3bba2a2a3eaba2ba3bbaba3a3eaba2a3bbaba2bbba3ba2babea3a2aababba3ba2baea3a2a2ba2babba3ba2aea3a3ba3ba2babba3a2aeG=〈S3,*〉(2)若b2=a,则b8=(b2)4=a4=e,故b是G是的八阶元素。另外164 ab=b2b=b3=bb2=ba,故此G是可交换的,因此G是八阶循环群,即G=〈b〉,因此与(2)的结果相同。(4)若b2=a2,于是(10)若ab=ba,则G是交换群,利用交换性及a4=e,b2=a2,等,并令c:=ab,可构成运算如下:当然,表中c=abc2=abab=e,c-1=cac=aab=a2bac=aab=aba=caa2c=a2ab=a3b具有交换律a3c=a3ab=b*eaa2a3caca2ca3ceeaa2a3caca2ca3caaa2a3eaca2ca3cca2a2a3eaa2ca3ccaca3a3eaca2a3ccaca2cccaca2ca3ceaa2a3acaca2c2a3ccaa2a3ea2ca2ca3ccaca2a3eaa3ca3ccaca2ca3eaa2G=〈,*〉它显然与(1)中(10)的可交换非循环八阶群同构,这里的a对应于那群中的a,这里的c对应那群中的b。(2)若ab≠ba,则G是非交换群。由于H1在G中指数为2,故H1G,因此对于b∈G,a∈H1,根据正规子群的条件可知b-1ab=b3ab∈H1,(因为b4=e,b-1=b3,(b3)-1=b)显然b3ab=a3(否则,若b3ab=e,则a=b4=e,矛盾;同样,若b3ab=a,则ab=ba,于是G可交换,矛盾;最后,若b3ab=a2,则ab=ba2=b3)于是164 (ab*ab)*ab=b6*ab=a2*ab=a3bab*(ab*ab)=ab*b6=ab*a2=a.ab=a2b但a3b≠a2b(否则a=e,矛盾),因此(ab*ab)*ab≠ab*(ab*ab)故G将不满足结合律,与G是群矛盾。)故此ab=ba3等编制*的运算表如下,计算过程如右:*eaa2a3baba2bb*a=ba3a2=abb=a3bb*a2=aba3=aab=a2bb*ab=bba3=a2a3=ab*a2b=a2bb=aa2=eb*a3b=abb=aa2=a3四阶元素:a,a3,b,ab,a2b,a3b二阶元素:a2;没有八阶元素,故不是循环群;不可交换,故与(1)的(10)中的交换群不同构;由于引群中只有一个二阶元素,所以与(1)的(20)中的不可交换群不同构(因为那个群有五个二阶元素)。a3beeaa2a3baba2ba3baaa2a3eaba2ba3bba2a2a3eaa2ba3bbaba3a3eaa2a3bbaba2bbba3ba2baba2aea3ababba3ba2ba3a2aea2ba2babba3bea3a2aa3ba3ba2babbaea3a2G=〈S4,*〉实际上,此八阶群称为四元数群(有关四元数及其群的详细定义请参见莫宗坚等著《代数学》北京大学出版社(上下班册)第二章§1习题7)(b)若八阶群〈G,*〉所含的四阶子群为kiein四群H2={e,a,b,c}其中a2=b2=c2=e其中c=ab。由于H2在G中的指数为2,故可取d∈G且d∉H2,那么由右陪集理论可知G=H2∪H2d={e,a,b,c,d,ad,bd,cd}现在我们来考虑d的阶:首先d的阶不可能是八。否则G是循环群G=={e,d,d2,d3,d4,d5,d6,d7},其中二阶元素只有d4一个,这与已知G中有三个二阶元素矛盾。其次右d的阶为四,则G中存在着一个四子循环子群={e,d,d2,d3}这种情况我们在(a)讨论过了;所以我们可设d的阶为二,即22=e,故d-1=d。由于H2在G中指数为2,故H2G,因此对于d∈G,a,b,c∈H,根据正规子群的条件可知164 d-1ad=dad∈H2,d-1bd=dbd∈H2,d-1cd=dcd∈H2(1)若dad=a,则(10)若dbd=b,于是dcd=c,故此有ad=da,bd=db,cd=dc,从而由H2是交换群,知G也是交换群,于是*的运算如下:eababdadbdabdeeababdadbdabdaaeabbaddabd二阶元素为:a,b,ab,d,ad,bd,abd。所以,没有八阶元素,不循环群,没有四阶元素,所以与s2,s3,s4都不同构。bdbbabeabdabddadababbaeabdbdaddddadbdabdeababadaddabdbdaeabbbdbdabddadbabeaabdabdbdaddabbaeG=〈S5,*〉(20)若dbd=c,则dcd=b,于是有bd=dc等,从而由bd*bd=dc*bd=dabbd=dad=a,故bd是四阶元素,这种情况我们在(a)中讨论过了。(2)若dad=b,则dbd=a,dcd=c这种情况同(1)的(20)ad将是四阶的。(3)若dad=c,则dcd=a,dbd=b这种情况也同(1)的(20)ad仍是四阶的。综合(a)、(b)可知,不同构的八阶群共有五个,一个是八阶循环群,一个是可交换群〈S2,*〉,一个是不可交换群〈S3,*〉,一个是四元数群〈S4,*〉,一个是可交换的元素阶全为二的群〈S5,*〉。39.设〈G,*〉是群。证明:,"a,b∈Ga)存在唯一的x∈G,使得a*x=b;b)存在唯一的y∈G,使得y*a=b。[证]a)由于〈G,*〉是群,故对任何元素a∈G,其逆元素a-1∈G存在。因此存在着x=sa-1*b∈G,使得a*x=a(a-1*b)=(a*a-1)*b=e*b=b另外,若还存在着c∈G,使a*c=b,则164 c=e*c=(a-1*a)*c=a-1*(a*c)=a-1*b这说明这样的x=a-1*b的存在是唯一的。b)同理可证。40.设〈S,*〉是半群,e是关于*的的左幺元。若"x∈S,存在y∈S,使得y*x=e。证明a)"a,b,c∈S,若a*b=a*c,则b=cb)〈S,*〉是群。[证]a)对任何a,b,c∈S,若a*b=a*c则由于存在着d∈S,使d*a=e,故此,有d*(a*b)=d*(a*c)根据半群〈G,*〉的结合律,有(d*a)*b=(d*a)*c从而e*b=e*c根据e为左幺元,可得b=cb)由于〈G,*〉已是半群,为此只需证以下两点:1)e是*的幺元由于e是*的左幺元,故只需证e是*的右幺元即可,对任何x∈S,因为存在着y∈S,使y*x=e,故y*(x*e)=(y*x)*e=e*e=ey*x=e故此y*(x*e)=y*x,因此由a)的结论,可得x*e=x2)对于每个元素x∈S,存在着y∈S,使y*x=x*y=e即x-1=y。即逆元存在。因为已知存在着左逆元,因此只需证明左逆元也是右逆元即可。对任何x∈S,已知存在着y∈S,使y*x=e,关于这个左逆元y,有y*(x*y)=(y*x)*y=e*y=yy*e=y故此y*(x*y)=y*e,因此由(a)的结论,可得x*y=e41.设〈G,*〉是群,|G|=2n。证明:G中至少有一个二阶元素。164 [证]因为群〈G,*〉中的元素互逆,即元素a的逆元是a-1,a-1的逆元是a。因而,G中逆元不等于自身的元素必为偶数个(包括零个)。但是G包含偶数个元素,因此G中逆元等于自身的元素个数也必为偶数个,而G的幺元e,它的逆元等于自身,所以,G中至少还有另一个元素a,使a-1=a,从而a2=a*a=a-1*a=e,且a≠e即a是一个二阶元素。42.设〈G,*〉是群。证明:〈G,*〉是交换群的充分必要条件是"a,b∈G,有(a*b)*(a*b)=(a*a)*(b*b)。[证]1)必要性若〈G,*〉是交换群(阿贝尔群),那么对任何的a,b∈G,(a*b)*(a*b)=a*(b*a)*b(结合律)=a*(a*b)*b(交换律)=(a*a)*(b*b)(结合律)2)充分性若对任何的a,b∈G,有(a*b)*(a*b)=(a*a)*(b*b)则〈G,*〉是交换群,这可证明如下:a*b=e*(a*b)*e=(a-1*a)*(a*b)(b*b-1)=a-1*((a*a)*(b*b))b-1(结合律)=a-1*((a*b)*(a*b))b-1(已知条件)=(a-1*a)*(b*a)*(b*b-1)(结合律)=e*(b*a)*e=b*a43.设〈S,*〉是含幺半群。证明:若"x∈S,有x∈x=e,则〈S,*〉是交换群[证]因为对任x∈S,有x*x=e,因此x-1=x。所以〈S,*〉是群。又对任何a,b∈S,因为有a*b=a-1*b-1=(b*a)-1=b*a所以〈S,*〉是交换群。44.设〈G,*〉是群。证明:若"a,b∈G,有a3*b3=(a*b)3,a4b4=(a*b)4,a5*b5=(a*b)5则〈G,*〉是交换群。[证]对任何a,b∈G,因为群有结合律,故a*b=a-4*a5*b5*b-4=a-4*(a*b)5*b-4(利用a5*b5=(a*b)5)164 =a-3(b*a)4*b-3((a*b)5=a*(b*a)4*b利用结合律)=a-4*(a*b)4*b-1*(b*a)*b-3=a-4*(a4*b4)b-1*(b*a)*b-3(利用a4*b4=(a*b)4)=(b4*a)*b-3=b*a-2*(a2*b2)*(b*a)*b-3=b*a-3*(a3*b3)*b-1*(b*a)*b-3=b*a-3*(a*b)3*b-1*(b*a)*b-3(利用a3*b3=(a*b)3)=b*a-2*(b*a)3*b-3=b*a-3*(a*b)4*b-4=b*a-3*(a4*b4)4*b-4(利用a4*b4=(a4*b4))=b*a因此〈G,*〉是交换群。45.设〈G,*〉是群。证明;除幺元外,不可能有别的幂等元。[证]用反证法。假设除幺元外,还存在着别的幂等元,不妨设是a,那么a∈≠G,a≠e且a*a=a。但是a=e*a=(a1*a)*a=a-1*(a*a)=a-1*a=e,矛盾。46.设〈H1,*〉和〈H2,*〉是群〈G,*〉的子群。证明:〈H1∩H2,*〉是〈G,*〉的子群。[证]显然H1∩H2⊆G。又因为e∈H1且e∈H2,故e∈H1∩H2,从而H1∩H2非空。对于任意的a,b∈H1∩H2,则有a,b∈H1,且a,b∈H2,由于〈H1,*〉和〈H2,*〉都是〈G,*〉的子群,所以a*b-1∈H1且a*b-1∈H2,因此a*b-1∈H1∩H2,从而〈H1∩H2,*〉是群〈G,*〉的子群。47.设〈H1,*〉和〈H2,*〉是群〈G,*〉的子群。令H1H2={h1*h2|h1∈H1且h2∈H2}H2H1={h2*h1|h2∈H2且h1∈H1}证明:〈H1H2,*〉是群〈G,*〉的子群的充分必要条件是H1H2=H2H1[证]先证必要性若〈H1H2,*〉是〈G,*〉的子群,则H1H2=H2H1。对于任何h1*h2∈H1H2,因为〈H1H2,*〉构成群,所以(h1*h2)-1∈H1H2,因此存在着∈H1,∈H2,使(h1*h2)-1=*,并且由于〈H1,*〉和〈H2,*〉都构成群,因此()-1∈H1,()-1∈H2,从而()-1*()-1H2H1。于是164 h1*h2=((h1*h2)-1)-1=(*)-1=()-1*()-1∈H2H1所以H1H2⊆H2H1。对于任何h2*h1∈H2H1,于是h2∈H2,h1∈H1。由于〈H1,*〉和〈H2,*〉都构成群,所以∈H2,∈H1,从而(h2*h1)-1=h1-1*h2-1∈H1H2又因为〈H1H2,*〉构成群,故此h2*h1=(h2*h1)-1∈H1H2因此H2H1⊆H1H2。由此可得H1H2=H2H1次证充分性若H1H2=H2H1,则〈H1H2,*〉是〈G,*〉的子群。根据群〈G,*〉的封闭性及H1H2的定义可得H1H2⊆G。又由〈H1,*〉和〈H2,*〉都是〈G,*〉的子群,因而e∈H1,e∈H2,所以e=e1*e∈H1H2故H1H2非空。对于任何a=h1*k1∈H1H2,b=h2k2∈H1H2,从而h1,h2∈H1,k1,k2∈H2,由于〈H1,*〉和〈H2,*〉构成群,故h2-1∈H1,k2-1∈H2,从而有b-1=(h2*k2)-1=k2-1*h2-1∈H2H1。由于H1H2=H2H1,于是存在着h3∈H1,k3∈H2,使b-1=h3*k3∈H1H2,另外由k1*h3∈H2H1可知存在着h4∈H1,k4∈H2,使k1*h3=h4*k4∈H1H2,最后,由〈H1,*〉及〈H2,*〉的封闭性,可知存在着hs∈H1,ksH2,使h5=h1*h4∈H1,ks=k4*k3∈H2。因而a*b-1=(h1*k1)*(h3*k3)=h1*(k1*h3)*k3=h1*(h1*k4*)k3=(h1*h4)*(k4*k3)=h5*k5∈H1H2所以〈H1H2,*〉是〈G,*〉的子群。48.证明:循环群的子群是循环群。[证]设〈H,*〉是循环群〈G,*〉=〈a〉的一个子群,则H中的元素都可表示成a的一些正方幂。设am是H中指数最小的正方幂,我们来证〈H,*〉=〈am〉。为此只要证明H中任一元素都可表示成am的正方幂。任取H中一个元素al,根据带余除法,可知有非负整数q及n,使l=qm+n且0≤n<m于是由〈H,*〉构成群,可知(am)q∈H,从而(am)-q=H,于是al*(am)-q=an∈H由m的选择必须有n=0,所以al=(am)q,这说明〈H,*〉=〈am〉,因而〈H,*〉循环群。164 49.设〈H,*〉是群〈G,*〉的子群。[证]XG是显然的。由于eH=H=He,故e∈X,从而X非空。对任何x,y∈X,则有x,y∈G,xH=Hx,yH=Hy。对于任何y-1h∈y-1*H,有h∈H,从而h*y∈Hy,从而存在着h1∈H1,使y*h1∈yH且h*y=y*h1,故此y-1*h=h1y-1,因此y-1*h∈Hy-1,因而y-1Hhy-1,同理可证Hy-1⊆y-1H,故此y-1H=Hy1,于是对任何(x*y-1)*h(x*y-1)H,存在着h1h2∈H,使得(x*y-1)*h=x*(y-1*h)=x*(h1*y-1)(因为y-1H=Hy-1)=(x*h1)*y-1=(h2*x)*y-1(因为xH=Hx)=h2*(x*y-1)=H(x*y-1)所以(x*y-1)H⊆H(x*y-1)。同理可证H(x*y-1)⊆(x*y-1)H。故此(x*y-1)H=H(x*y-1)。显然x*y-1∈G,因此x*y-1∈X从而〈X,*〉是〈G,*〉的子群。50.设G={f|f:R/R且f(x)=ax+b,a,b∈R,a≠0},其中R是实数集合,0是G上的函数复合运算。a)证明:〈G,0〉是群;b)设S1={f|f(x)=x+b,x,b∈R},S2={f|f(x)=ax,a,x∈R,a≠0}。证明:〈S1,0〉和〈S2,0〉都是〈G,0〉的子群。[证]a)[1]0运算关于G是封闭的对于任何f1,f2∈G,f10f2是函数的复合,因而运算结合唯一。对任何x,有f1(x)=a1x+b1f2(x)=a2x+b2,a1,a2,b1,b2∈R,a1≠0,a20于是(f10f2)(x)=f1(f2(x))=f1(a2x+b2)=a1(a2x+b2)+b1=a1a2x+(a1b2+b1)由于a1a2,a1b2+b1∈R,且a1a2≠0故此f10f2∈G[2]0运算在G上是结合的。因为函数的复合运算是结合的。[3]幺元为I(x)=x。由于1≠0,1∈R,0∈R,故I(x)=x∈G,另外对任何f∈G,显然有I0f=f0I=f,所以I(x)为G的幺元。[4]对于每个f∈G,f的逆元f-1∈G存在。164 对于任何f∈G,f(x)=ax+b,a,b∈R,a≠0,其逆元素f-1(x)=(显然,∈R,≠0)属于G,很容易验证f--10f=f0f–1=I因此〈G,0〉是群。b)因为S1是由G中a=1的那些函数构成的,所以S1是G的一个特殊子集,即S1⊆G;又I(x)=x∈S1,故S1非空。又对任何f,g∈S1,f(x)=x+b,g(x)=x+c,b,c∈R,g-1(x)=x-c∈S,使得(f0g-1)(x)=f(g-1(x))=f(x-c)=(x-c)+b=x+(b-c),由于b-c∈R,故f0g-1∈S1,所以〈S1,0〉是〈G,0〉的子群。因为S2是由G中b=0的那些函数构成的,所以S2是G的一个特殊子集,即S2⊆G;又I(x)=x∈S2,故S2非空。又对任何f、g∈S2,f(x)=ax,g(x)=dx,a,d∈R,a≠0,d≠0,g-1(x)=,使得(f0g-1)(x)=f(g-1(x))=f()=因为∈R,且≠0,故此f0g-1∈S2。所以〈S2,0〉是〈G,0〉的子群。51.设Z6={[1],[2],[3],[4],[5]},+6是Z6上的模6加法。"[a],[b]∈Z6,[a]+6[6]=[(a+b)mod6]写出群〈Z6,+6〉的所有子群及其相应的左陪集。[解]由于〈Z6,+6〉是循环群,[1]是生成元。[0]是幺元。根据循环群的子群都是循环群,知〈Z6,+6〉的子群都是循环群。根据Lagrange定理:〈Z6,+6〉的子群的阶只能是1,2,3,6除平凡子群外,只需找Z6中的二阶元素和三阶元素即可生成二、三阶子循环群。〈{[0]},+6〉为一阶子群,其左陪集为{[0]},{[1]},{[2]},{[3]},{[4]},{[5]}二阶子群为:〈{[0],[3]},+6〉其左陪集为:{[0],[3]},{[1],[4]},{[2],[5]}164 三阶子群:〈[0],[2],[4],+6〉其左陪集为:{[0],[2],[4]},{[1],[3],[5]}六阶子群就是〈Z6,+6〉,其左陪集为:{[0],[1],[2],[3],[4],[5]}52.证明:在由群〈G,*〉的子群〈H,*〉所确定的左陪集中,只有一个陪集是子群。[证]群〈G,*〉中子群〈H,*〉的所有左陪集中,有一个是〈G,*〉的子群,这就是eH=H。这说明了存在性。如果还有a∈G,使得〈H,*〉的左陪集aH是〈G,*〉的子群,那么至少有e∈aH,从而存在着d∈H,使a*d=e,从而a=d-1,由于H是群,故有a=d-1∈H,从而aH=H。这证明了唯一性。53.设P是素数。证明:Pm阶群中必有一个P阶子群。[证]设群〈G,0〉是任一阶为Pm的群。由于P>1,故Pm>1,从而必存在一元素a∈G,a≠e,设a的阶为n,那么由Lagrange定理,必有n|Pm。便n≠1(因a≠e),所以可设n=Pt,t≥1。若t=1,那么n=P,因而循环子群〈a〉是一个阶为P的子群。若t>1,则令b=,那么b的阶为P,而循环子群〈b〉是一个阶为P的子群。54.证明:循环群的同态象是循环群。[证]设群〈G,0〉是任一循环群,〈h(G),*〉是该循环群之同态象,h为同态函数。设a∈G是G的生成元,子是G=〈a〉,并设g0=h(a),则g0∈h(G),由同态象的定义,可知有am∈G=〈a〉,使h(am)=g,根据同态公式可知g=h(am)=[h(a)]m=(g0)m。这样,h(G)的每一个元都是g0的方幂。因而h(G)=,从而〈h(G),*〉也为循环群。55.设〈G,*〉是群,a∈G,f:G→G,f(x)=a*x*a1。证明:f是从〈G,*〉到〈G,*〉的同构函数。[证](1)f是双射函数(a)f是单射函数。对于任何x,y∈G,若f(x)=f(y),从而有a*x*a-1=a*y*a-1,于是由群的消长律,就有x=y。因此f是单射。(b)f是满射函数。对于任何y∈G,存在着x=a-1*y*a∈G,使得f(x)=a*x*a-1=a*(a-1*y*a)*a-1=(a*a-1)*y*(a*a-1)=e*y*e=y0故f是满射。(2)f是同态函数对于任何x,y∈G,f(x*y)=a*(x*y)*a-1164 =(a*x*a-1)*(a*y*a-1)=f(x)*f(y)。从而f满足同态公式,故此f是同态函数。由(1),(2)可见,f是从〈G,*〉到〈G,*〉的同构函数。56.设f,g是从群〈X,*〉到群〈Y,Å〉的同态函数。证明〈H,*〉是群〈X,*〉的子群。其中H={x|x∈X且f(x)=g(x)}[证]根据H的定义,显然有H⊆X。设eX群〈X,*〉的幺元,eY是群〈Y,Å〉的幺元,那么由f,g都是群同态可知:f(eX)=eY=g(eX)从而eX∈H,故H非空。对于任何a,b∈H,于是就有f(a)=g(a),f(b)=g(b)。由f,g是群同态可知,f(b-1),g(b-1)=(g(b))-1,即得f(b-1)=g(b-1),因此f(a*b-1)=f(a)*f(b-1)=g(a)g(b-1)=g(a*b-1)所以,a*b-1∈H,因此〈H,*〉是群〈X,*〉的子群。57.设〈G,*〉是群R={(x,y)|x,y∈G且∃z(y=z*x*z-1)}证明:R是G上的等价关系。[证](a)R是自反的对于任何x∈G,由于存在着x∈G,使x=x*x*x-1故此(x,x)∈R。因而R自反。(b)R是对称的如果(x,y)∈R,那么一定存在着z∈G,使y=zx-1从而存在着z-1∈G,使x=z-1*y(z-1)1故此(y,x)∈R,所以R对称。(c)R是传递的如果(x,y)∈R,且(y,z)∈R,那么存在着g1,g2∈G使y=g1*x*g1-1,z=g2*y*g2-1,从而存在着g=g2*g1,使z=g2*y*g2-1=g2(g1*x*g1-1)*g2-1=(g2*g1)*x(g1-1*g2-1)=(g2*g1)*x*(g2*g1)-1=g*x*g,故此(x,z)∈R。于是R是传递的。164 由(a),(b),(c)可见,R是G上的等价关系。58.设〈H,*〉是群〈G,*〉的子群。若"a∈G,有aH=Ha,则称〈H,*〉为群〈G,*〉的不变子群。a)设〈G,*〉是偶数阶群,〈H,*〉是群〈G,*〉的子群,|H|=|G|/2,证明:〈H,*〉是〈G,*〉的不变子群。b)设〈G,*〉是群,H={a|a∈G且("b∈G)(a*b=b*a)}。证明:〈H,*〉是〈G,*〉的不变子群。c)设〈H1,*〉,〈H2,*〉是群〈G,*〉的不变子群。证明:〈H1∩H2,*〉是群〈G,*〉的不变子群。[证]不变子群也称为正规子群。记作Hv或GwH。a)|G|/|H|称为子群H在群G的指数,记作|G:H|。因而这里|G:H|=2。对于任意的a∈G,若a∈H,则有aH=H=Ha若a∉H,则由于H的指数为2,从而有G=H∪aH且G=H∪Ha,因此,有aH=Ha。因此〈H,*〉是不变子群。b)先证〈H,*〉是一子群。由H的定义,显然有H⊆G。其次由于e∈G且对任何的b∈G,有e*b=b=b*e,故e∈H,因而H非空。对于任何a,c∈H,对于一切的b∈G,有a*b=b*a以及c*b=b*c,即c-1*b=b*c-1。所以,对一切的b∈G,就有(a*c-1)*b=a*(c1*b)=a*(b*c-1)=(a*b)*c-1=(b*a)*c-1=b*(a*c-1)因此,a*c-1∈H。所以,〈H,*〉是一个子群。对于任何元素b∈G,对于任何元素a∈H,因为有a*b=b*a,所以bH=Hb。故此〈H,*〉是不变子群。c)由于〈H1,*〉和〈H2,*〉是G的两个不变子群。那么〈H1∩H2,*〉是G的一个子群(习题46)。我们先来证对任何元素a∈G,均有a(H1∩H2)=aH1∩aH2,(H1∩H2)a=H1a∩Ha对于任何a*h∈a(H1∩H2),这里h∈H1∩H2,则有h∈H1且h∈H2,故此a*ha∈H1且a*h∈aH2,因此a*h∈aH1∩aH2,从而a(H1∩H2)⊆aH1∩aH2164 ;另一方面,若b∈aH1∩aH2,那么b∈aH1且b∈aH2,从而存在着h1∈H1及h1∈H2,使b=a*h1,和b=a*h2,于是a*h1=a*h2,根据群G的消去律可知,h1=h2,不妨设为h,于是有h∈H1及h∈H2,从而h∈H1∩H2,因此b=a*h∈a(H1∩H2),因而aH1∩aH2⊆a(H1∩H2)。由此可见a(H1∩H2)=aH1∩aH2。同理可证(H1∩H2)a=H1a∩H2a。对于任何元素a∈G,由于〈H1,*〉和〈H2,*〉是G的不变子群,因此有aH1=H1a和aH1=H1a和aH2=H2a,从而a(H1∩H2)=aH1∩aH2=H1a∩H2a=(H1∩H2)a所以〈H1∩H2,*〉是G的不变子群。59.设I是整数集合,Ä和Å是I上的两个二元运算。"a,b∈I,aÅb=a+b-1aÄb=a+b-ab证明:〈I,Å,Ä〉是有幺元的交换环。[证]1)〈I,Å〉是交换群封闭性:对于任何a∈I,b∈I,aÅb=a+b-1∈I,且运算结果唯一。结合律:结对任何a∈I,b∈I,c∈I,(aÅb)Åc=(a+b-1)Åc=(a+b-1)+c-1=a+b+c-2aÅ(bÅc)=aÅ(b+c-1)=a+(b+c-1)-1=a+b+c-2故(aÅb)Åc=aÅ(bÅc)有幺元:幺元为1∈I,对任何a∈I,1Åa=1+a-1=a+1-1=aÅ1有逆元:对任何a∈I,有-a+2∈I,使得(-a+2)Åa=(-a+2)+a-1=1aÅ(-a+2)=a+(-a+2-1)=1故(-a+2)Åa=aÅ(-a+2)=1交换律:对任何a,b∈I,有aÅb=a+b-1=b+a-1=bÅa2)〈I,Ä〉是交换半群封闭性:对任何a,b∈I,aÄb=a+b-ab∈I,且运算结果唯一。结合律:对任何a,b,c∈I(aÄb)Äc=(a+b-ab)Äc=(a+b-ab)+c-(a+b-ab)c=a+b+cg(ab+ac+bc)+abcaÄ(bÄc)=aÄ(b+c-bc)=a+(b+c-bc)-a(b+c-bc)164 =a+b+c-(ab+ac+bc)+abc故(aÄb)Äc=aÄ(bÄc)交换律:对任何a,b∈I,有aÄb=a+b-ab=b+a-ba=bÄa3)Ä对Å满足分配律对任何a,b,c∈I,有aÄ(bÅc)=aÄ(b+c-1)=a+(b+c-1)-a(b+c-1)=a+b+c-1-ab-ac+a=(a+b-ab)+(a+c-ac)-1=(aÄb)+(aÄc)-1=(aÄb)Å(aÄc)由于Ä是可交换的,因此另一分配公式(bÅc)Äa=(bÄa)Å(cÄa)也成立。由此可见〈I,Å,Ä〉是一个交换环。60.设〈X,+,×〉是代数系统,+和×是普通数的加法和乘法。问当X取下列集合时,〈X,+,×〉是整环吗?为什么?a)X={x|x=2n,n∈I}b)X={x|x=2n+1,n∈I}c)X={x|x≥0,x∈I}d)X={x=a+b,a,b∈R}e)X={x|x=a+b,a,b∈R}。[解]a)不是整环。因为关于普通乘法没有幺元,即1∉X。b)不是整环。因为〈X,+,×〉不是环,两个奇数相加是偶数,不是奇数,普通加法运算在奇整数集X上不封闭。c)不是整环。因为〈X,+,×〉不是环,每个正整数的负元小于零,普通加法运算没有负元(加法幺元)存在。d)是整环。证明如下:对任何a,b,c,d∈R,(a+b)(c+d)=(ac+bd)+(ad+bc)这里(a+c),(b+d),(ac+bd),(ad+bc)仍是实数。所以X对普通加法和乘法来说是封闭的。普通加法和乘法运算适合结合律,交换律和分配律。164 零元为0=0+0·∈X幺元为1=1+0·∈X对于任何a+b∈X,其负元(-a)+(-b)∈X且(a+b)+((-a)+(-b))=0两个非零实数的乘积不等于零。所以〈X,+,×〉是一个整环。e)是整环。证明如下:对任何a,b,d∈R,](a+b)+(c+d)=(a+c)+(b+d)(a+b)+(c+d)=(ac+3bd)+(ad+bc)这里(a+c),(b+d),(ac+3bd),(ad+bc)仍是实数。所以X对普通加法和乘法来说是封闭的。普通加法和乘法运算适合结合律,交换律和分配律。零元为0=0+0·∈X幺元为1=1+0·∈X对任何a+b∈X,其负元为-a-b∈X。即(a+b)+(-a-b)=0。两个非零实数的乘积不等于零。所以〈X,+,×〉是一个整环。61.设〈R,Å,Ä〉是环,"x∈R,有xÅx=0,其中0是关于Å的幺元;a)"x∈R,有xÅx=0,其中0是关于Å的幺元;b)〈R,Å,Ä〉是交换环。[证]a)对于任意的元素a∈R,因为Å的封闭性,所以有aÅa∈R。因而((aÄa)Å(aÄa))Å((aÄa)Å(aÄa))=aÅa再次利用aÄa=a,就有(aÅa)Å(aÅa)=aÅa因为〈R,Å〉是一个群,所以aÅa的逆元(负元)存在,即-(aÅa)∈R,故此有(aÅa)Å(aÅa)Å(-(aÅa))=(aÅa)Å(-aÅa))因此aÅa=0c)对于任意元素a,b∈R,由Å运算的封闭性,有aÅb∈R故此(aÅb)Ä(aÅb)=aÅb利用Å运算对Å运算的分配律,可得164 (aÄa)Å(aÄb)Å(bÄa)Å(bÄb)=aÅb再次利用aÄa=a,bÄb=b,就得到aÅ(aÄb)Å(bÄa)Åb=aÅb由a,b的负元-a,-b∈R存在,可得(aÄb)Å(bÄa)=0又由Ä运算的封闭性,可知aÄb∈R因而由a)的结论可得(aÄb)Å(aÄb)=0所以(aÄb)Å(aÄb)Å(bÄa)=0Å(bÄa)即aÄb=bÄa所以Ä运算是可交换的,故〈R,Å,Ä〉是交换环。62.设X是所有有理数对(x,y)的集合。在X上定义两个二元运算,Ä如下"(x1,y1),(x2,y2)∈X(x1,y1)Å(x2,y2)=(x1+x2,y1+y2)(x1,y1)Ä(x2,y2)=(x1+x2,y1+y2)问〈X,Å,Ä〉是否地环,它有元零因子,关于Ä运算是否有幺元,哪些元素关于Ä运算有逆元。[解]对于任何a,b,c,d∈Q由于a+c,b+d,ac,bd∈Q,故此(a,b)Ä(c,d)∈X,(a,b)Ä(c,d)∈X,即X对Å运算,Ä运算封闭。由于普通加法和乘法有结合律,交换律和分配律,所以易验证Å运算和Ä运算有结合律,交换律和分配律。Å运算的幺元(零元)存在,为(0,0)∈X对任何(a,b)∈X,其负元为(-a,-b)∈X存在所以,〈X,Å,Ä〉是环。关于Ä运算有幺元存在,为(1,1)∈X它有零因子,因为当,a,b∈Qa≠0b≠0时,有(a,0)≠(0,0),(0,b)≠(0,0)但是(a,0)Ä(0,b)=(0,0)对于a,b∈Q,a≠0且b≠0时(a,b)∈X有逆元(关于Ä运算)其逆元为()∈X。63.设I是整数集合,+和×是整数的加法和乘法。证明:对任何整数m,〈{mx|x∈164 I},+,×〉是环〈I,+,×〉的子环。[证]对于任何a,b∈I,ma+mb=m(a+b)ma·mb=m·mab这里a+b,mab仍是整数,所以{mx|x∈I}对普通加法和乘法封闭。普通加法和乘法具有结合律、交换律和分配律。零元0=m·0∈{mx|x∈I}对于任何mx∈{mx|x∈I}其负元-mx=m·(-x)∈{mx|x∈I}存在。显然{mx|x∈I}⊆I,故此,〈{mx|x∈I},+,×〉是环〈I,+,×〉的子环。64.证明:环的同态象是环。[证]设〈X,+,*〉是一环,h是X上的同态函数,h(X)为其同态象,我们来证〈h(X),Å,Ä〉是一环。〈h(X),Å〉是交换群封闭性:对任何a,b∈h(X),存在着x,y∈X,使h(x)=a,h(y)=b,因此根据同态公式,有aÅb=h(x)Åh(y)=h(x+y)根据+运算的封闭性知x+y∈X,因而aÅb=h(x+y)∈h(X)。结合律:对任何a,b,c∈h(X),存在着x,y,z∈X,使h(x)=a,h(y)=b,h(z)=c,根据同态公式及+运算的结合律有(aÅb)Åc=(h(x)Åh(y))Åh(z)=h(x+y)h(z)=h((x+y)+z)=aÅ(bÅc)有幺元:设0∈X为交换群〈X,+〉的幺元,则0′=h(0)∈h(X)是〈h(X),Å〉的幺元,因为对任何a∈h(X),存在着x∈X,使h(x)=a,由x+0=0+x=x,及同态公式就有aÅ0′=h(x)Åh(0)=h(x+0)=h(x)=a0′Åa=h(0)Åh(x)=h(0+x)=h(x)=a从而aÅ0′=0′Åa=a有逆元:对任何a∈h(X),存在着x∈X,使h(x)=a,由交换群〈X,+〉中每一元都存在着逆元,可得有-x∈X存在使x+(-x)=(-x)+x=0因此,令-a=h(-x)∈h(X),则-a为a的逆元因为由同态公式,有aÅ(-a)=h(x)Åh(-x)=h(x+(-x))=h(0)=0′164 (-a)Åa=h(-x)Åh(x)=h((-x)+x)=h(0)=0′从而aÅ(-a)=(-a)Åa=0′可交换:对a,b∈(X),存在着x,y∈X,使h(x)=a,h(y)=b根据同态公式及运算+的交换律,可得aÅb=h(x)Åh(y)=h(x+y)=h(y+x)=h(y)+h(x)=bÅa〈h(X),Ä〉是半群封闭性:对任何a,b∈h(X),存在着x,y∈X,使h(x)=a,h(y)=b,因此由同态公式及×运算的封闭性,就有aÄb=h(x)Äh(y)=h(x*y)∈h(X)结合律:对任何a,b,c∈h(X),存在着x,y,z∈X,使h(x)=a,h(y)=b,h(z)=c,根据同态度公式及*运算的结合律,有aÄbÄc=(h(x)Äh(y))Äh(z)=h(x*y)Äh(z)=h((x*y)*z)=h(x*(y*z))=h(x)Äh(y*z)=h(x)Ä(h(y)Äh(z))=aÄ(bÄc)Ä运算对Å运算有分配律:对任何a,b,c∈h(X),存在着x,y,z∈X,使h(x)=a,h(y)=b,h(z)=c,根据*运算对+运算的分配律及两个同态公式,就有aÄ(bÅc)=h(x)Ä(h(y)Åh(g))=h(x)Äh(y+z)=h(x*(y+z))=h((x*y)+(x*z))=h(x*y)Åh(x*z)=(h(x)Äh(y))Å(h(x)h(z))=(aÄb)Å(aÄc)同理可证(bÅc)Äa=(bÄa)Å(cÄa)65.设〈S,Å,Ä〉是环〈R,Å,Ä〉的子环。若"x∈S,"y∈R,有xÄy∈S,yÄx∈S,则称〈S,Å,Ä〉是环〈R,Å,Ä〉的理想。a)求环〈Nm,+m,×m〉的所有子环和理想,其中m分别是6,8,11。b)设〈S1,Å,Ä〉和〈S2,Å,Ä〉是环〈R,Å,Ä〉的理想。证明:〈S1∩S2,Å,Ä〉和〈S1S2,Å,Ä〉也是〈R,Å,Ä〉的理想,其中S1S2={xÅy|x∈S1,y∈S2}。164 c)设〈R,Å,Ä〉是交换环,a∈R,0是关于Å的幺元。证明:〈S1,Å,Ä〉是环〈R,Å,Ä〉的理想,其中S={x|x∈R且xÄa=0}[解]a)环〈N6,+6,×6〉,N6={[0]6,[1]6,[2]6,[3]6,[4]6,[56]}它的子环有〈{[0]6},+6,×6〉〈{[0]6,[3]6},+6,×6〉〈{[0]6,[2]6,[4]6},+6,×6〉〈N6,+6,×6〉它们都是环〈N6,+6,×6〉的理想。环〈N8,+8,×8〉,N8={[0]8,[1]8,[2]8,[3]8,[4]8,[5]8,[6]8,[7]8},它的子环有〈{[0]8},+8,×8〉〈{[0]8,[4]8},+8,×8〉〈{[0]8,[2]8,[4]8,[6]8},+8,×8〉〈N8,+8,×8〉它们都是环〈N8,+8,×8〉的理想。环〈N11,+11,×11〉〈{[0]11},+11,×11〉和〈N11,+11,×11〉。它们是环〈R,Å,Ä〉的仅有的两个理想。b)1°先证〈S1∩S2,Å,Ä〉是环〈R,Å,Ä〉的理想。由于〈S1,Å〉和〈S2,Å〉都是〈R,Å〉的子交换群,因此,根据习题46,知〈S1∩S2,Å〉也是〈R,Å〉的子群;Å的交换遗传,故此,〈S1∩S2,Å〉也是〈R,Å〉的子交换群。由于〈S1,Å〉和〈S2,Å〉都是〈R,Å〉的子半群,显然S1∩S2⊆R;又因为0∈S1,所以0∈S1∩S2,从而S1∩S2非空;对于任何a,b∈S1∩S2,则有a,b∈S1,a,b∈S2,从而由〈S1,Å〉和〈S2,Å〉的封闭性可得aÄb∈S1,aÄb∈S2,所以aÄb∈S1∩S2,因而〈S1∩S2,Ä〉具有封闭性;Ä运算的结合遗传;所以〈S1∩S2,〉是〈R,Ä〉的子半群。Ä运算对Å运算的分配律遗传。,,已证明了〈S1∩S2,Å,Ä〉是环〈R,Å,Ä〉的子环。由于对于任何x∈S1,x∈S2,y∈R,都有xÄy,yÄx∈S1,xÄy,yÄx∈S2,因此,对任何x∈S1∩S2,y∈R,就有x∈S1,x∈S2,所以xÄy,yÄx∈S1及xÄy∈S2,因而xÄy,yÄx∈S1∩S2。所以〈S1∩S2,Å,Ä〉具有内吸性。164 综合这四点,可知是环〈R,Å,Ä〉的一个理想。2°次证〈S1S2,Å,Ä〉是环〈R,Å,Ä〉的理想。由于〈S1,Å〉和〈S2,Å〉都是〈R,Å〉的子交换群,并由〈R,Å〉是交换群,Å运算具有交换律。得到S1S2={S1ÅS2|S1∈S1且S2∈S2}={S2S1|S1∈S2且S1∈S1}=S2S1从而根据习题47可得〈S1S2,Å〉是〈R,Å〉的子群;Å运算的交换律遗传;所〈S1S2,Å〉是〈R,Å〉的子交换群。由于〈S1,Ä〉和〈S2,Ä〉都是〈R,Ä〉的子半群,根据R对Å运算的封闭性,可知S1S2={S1ÅS2|S1∈S1且S2∈S2}⊆R;由于0=0∈S1S2,知S1S2非空;对于任何a,b∈S1S2,知存在着s1,s1′∈S1,s1,s2′∈S2,使得a=s1Ås2,b=s1′Ås2′,根据对Å的分配律以及的结合律可知aÄb=(s1Ås2)Ä(s1′Ås2′)=((s1Äs1′)Å(s1Ås2′))Ä((s2Äs1′)Å(s2Äs2′))根据〈S1,Å,Ä〉是理想,具有内吸性,所以s1Ås2′∈S1,s1Ås1′∈S1从而由S1对Å运算的封闭性,可知(s1Äs1′)Å(s1Ås2′)∈S1,根据〈S1,Å,Ä〉是理想,具有内吸性,所以s2Äs1′∈S2,s2Äs2′∈S2,从而由S2对运算的封闭性,可知(s2ÄS1′)Å(s1Ås2′)∈S2,因而aÄb=((s1Äs1′)Å(s1Ås2′))Å((s2Äs1′)Å(s2Äs2′))∈S1S2,所以〈S1S2,Ä〉是封闭的;Ä运算的结合律遗传;所以〈S1S2,Ä〉是〈R,Ä〉的子半群。Ä运算对运算的分配律遗传。,,已证明了〈S1S2,Å,Ä〉是环〈R,Å,Ä〉的子环。由于〈S1,Å,Ä〉和〈S2,Å,Ä〉都是环〈R,Å,Ä〉的理想,故都具有内吸性。因此,对任何x=s1Ås2∈S1S2(其中s1∈S2),y∈R,根据Ä对Å的分配律,可得xÄy=(s1Ås2)y=(s1Äy)(s2Äy)yÄx=yÄ(s1Äs2)=(yÄs1)(yÄs2)根据内吸性,可知s1Äy,yÄs1∈S1,s2y,yÄs2∈S2,因此xÄy=(s1Äy)Å(s2Äy)∈S1S2,yÄx=(yÄs1)(yÄs2)∈S1S2故此环〈S1S2,Å,Ä〉具有内吸性。综合这四点,可知〈S1S2,Å,Ä〉是环〈R,Å,Ä〉的一个理想。c)由于0Äa=0,故0∈S={x|x∈R且xÄa=0},所以S非空;对于任何x,y∈164 S,就有xÄa=0,yÄa=0,所以根据Ä对Å的分配律以及Ä的结合律可得(xÅy)Äa=(xÄa)Å(yÄa)=0Å0=0(xÄy)a=(xÄa)Ä(yÄa)=0Ä0=0所以xÅy,xÄy∈S,故此S关于Å和Ä运算封闭;Å运算的结合律,交换律,Ä运算的结合律,对Å的分配律等都遗传;由于0∈S已知,故关于Å运算有幺元(零元);对于任何x∈S,就有xÄa=0,因而由Ä的分配,可得0=0Äa=(xÅ(-x))Äa=(xÄa)Å((-x)Äa)=0Å((-x)Äa)=(-x)Äa故此-x∈S;所以〈S,Å,Ä〉是〈R,Å,Ä〉的子环。对于任何x∈S,y∈R,就有xÄa=0,于是,由〈R,Å,Ä〉是交换环,知Ä运算具有交换律,加上Ä运算的结合律,可得(xÄy)Äa=xÄ(yÄa)=xÅ(aÄy)=(xÄa)Äy=0Åy=0(yÄx)Äa=yÄ(xÄa)=yÄ0=0因此,xy,yÄx∈S,所以〈S,Å,Ä〉具有内吸性。综合各点,可知〈S,Å,Ä〉是环〈R,Å,Ä〉的一个理想。66.求解域〈F,Å,〉中的方程组xÅ(cÄy)=a(1)(cÄx)Åy=b(2)[解]由于〈F,Å,Ä〉是域,所以0,I∈F并且对任何元素x∈F,存在着负元和逆元,-x,x-1∈F。我们采用缩记法,对任何x,y∈F,xÅy,记为x+y,xÅy记为x·y或xy,并且xÅ(-y)记为x-y,利用-x=(-1)·x及x·(-y)=(-x)·y=-x·y,我们可以将(1)(2)变为x+cy=a(3)cx+y=b(4)从而由(3)可得x=as-cy(5),将(5)代入(4)可得c(a-cy)+y=b或者ca-c2y+y=b或者(c2-1)y=ca-b从而y=(c2-1)-1(ca-b)(6)代入(5)可得164 x=a-c(c2-1)-1(ca-b)(7)因此,原方程组的解为或者67.设〈F,Å,Ä〉是域,〈R,Å,Ä〉是〈F,Å,Ä〉的子环。问〈R,Å,Ä〉是否是整环?[解]不一定。有反例,令F=实数集,Å为普通加法Ä为普通乘法,故此〈F,Å,Ä〉是实数域。令R=偶整灵敏集{…-6,-4,-2,0,2,4,6},则〈R,+,×〉是〈F,+,×〉的子环。但〈F,+,×〉的乘法幺元1R,故此〈R,+,×〉不是整环。68.设〈X,+,×〉是代数系统,+和×是普通数的加法和乘法,当X为下列集合时,问〈X,+,×〉是否是域?为什么?a)X={x|x≥0,x∈I}b)X={x|x=a+b,a,b∈Q}c)X={x|x=a+b,a,b∈Q}d)X={x|x=a+b,a,b∈Q}e)X={x|x=a/b,a,b∈N,a≠kb}其中,I为整数集合,Q为有理数集合,N为自然数集合。[解]a)不是。因为对于任何x∈X,x≠0,x的负元和逆元不存在。b)是域。根据习题60的e)的解,已证得〈X,+,×〉是整环。其次,设a+b是F的任一非零元,那么a与b不能都等于零,此时a2-3b2≠0,否则将有a2=3b2。若b=0,将有a=0,与假设矛盾;若b≠0,将有±,与是有理数矛盾。容易算出(a+b)()=1并且∈Q故此(a+b)-1=∈X164 即逆元(关于乘法)存在因此〈X,+,×〉是域。c)不是。因为关于乘法不封闭。即对于任何a,b,c,d∈Q(a+b)∈X,(c+d)∈X,当bd≠0(即b≠0且d≠0)时(a+b)(c+d)=ac+(ad+bc+bd)虽然ac∈Q,但是ad+bc+bdQ,不是有理数,因此ac+(ad+bc+bd)X故(a+b)(c+d)Xd)是域。仿习题60的e)的证明,易证〈X,+,×〉是整环。并且仿上边b)易证,对任何元素a+b∈X,且a与b不同时为零,有乘法逆元存在(a+b)-1=∈X所以〈X,+,×〉是域。e)不是。因为关于加法没有零元及负元。69.设〈F,Å,Ä〉是域,〈S1,Å,Ä〉和〈S2,Å,Ä〉是证明:〈S1∩S2,Å,Ä〉是〈F,Å,Ä〉的子域。[证]显然S1∩S2⊆F;另外由于0,1∈S1,0,1∈S2,故0,1∈S1∩S2,所以S1∩S2非空;对任何a,b∈S1∩S2由于〈S1,Å,Ä〉和〈S2,Å,Ä〉是〈F,Å,Ä〉的子域,所以aÅ(-b),aÄb-1∈S1,aÅ(-b),aÄb-1∈S2,故此aÅ(-b),aÄb-1∈S1∩S2,所以〈S1∩S2,Å,Ä〉是域〈F,Å,Ä〉的子域。70.问是否有4个元素的域。若有,请写出其运算表。若没有,请说明理由。[解]有4个元素的域。因为4=22,2为素数,根据有限域的Galois理论,对任何素数p,对任何自然数n,Pn阶有限域存在,因此4阶有限域存在。模1+x+x2的多项环为〈F2[x],Å,Ä〉,其中F2[x]={0,1,x,1+x},运算表如下:164 Ä01x1+xq0000101x1+xx0x1+x11+x01+x1xÅ01x1+x001x1+x1101+xxxx1+x011+x1+xx10容易验证环〈F2[x],Å,Ä〉是域,因为乘法有幺元1,运算表对称、乘法有交换律,乘法各逆元存在(1的逆元为自己,x与1+x互为逆元),所以〈F2[x],Å,Ä〉是4个元素的域。离散数学习题解答习题五(第五章格与布尔代数)1.设〈L,≼〉是半序集,≼是L上的整除关系。问当L取下列集合时,〈L,≼〉是否是格。a)L={1,2,3,4,6,12}b)L={1,2,3,4,6,8,12}c)L={1,2,3,4,5,6,8,9,10}1263124[解]a)〈L,≼〉是格,因为L中任两个元素都有上、下确界。164 b)〈L,≼〉不是格。因为L中存在着两个元素没有上确界。例如:8Å12=LUB{8,12}不存在。8631241210c)〈L,≼〉不是格。因为L中存在着两个元素没有上确界。842698731510倒例如:4Å6=LUB{4,6}不存在。2.设A,B是两个集合,f是从A到B的映射。证明:〈S,⊆〉是〈2B,⊆〉的子格。其中S={y|y=f(x),x∈2A}[证]对于任何B1∈S,存在着A1∈2A,使B1=f(A1),由于f(A1)={y|y∈B∧($x)(x∈A1∧f(x)=y)}⊆B所以B1∈2B,故此S⊆2B;又B0=f(A)∈S(因为A∈2A),所以S非空;对于任何B1,B2∈S,存在着A1,A2∈2A,使得B1=f(A1),B2=f(A2),从而L∪B{B1,B2}=B1∪B2=f(A1)f(A2)164 =f(A1∪A2)(习题三的8的1))由于A1∪A2⊆A,即A1∪A2∈2A,因此f(A1∪A2)∈S,即上确界L∪B{B1,B2}存在。对于任何B1,B2∈S,定义A1=f–1(B1)={x|x∈A∧f(x)∈B1},A2=f-1(B2)={x|x∈A∧f(x)∈B2},则A1,A2∈2A,且显然B1=f(A1),B2=f(A2),于是GLB{B1,B2}=B1∩B2=f(A1)∩f(A2)⊇f(A1∩A2)(习题三的8的2))又若y∈B1∩B2,则y∈B,且y∈B2。由于y∈B1=f(A1)={y|y∈B∧($x)(x∈A1∧f(x)=y)},于是存在着x∈A1,使f(x)=y,但是f(x)=y∈B2。故此x∈A2=f-1(B2)={x|x∈A∧f(x)∈B2},因此x∈A1∩A2,从而y=f(x)∈f(A1∩A2),所以GLB{B1,B2}=B1∩B2=f(A1)∩f(A2)⊆f(A1∩A2)这说明GLB{B1,B2}=B1∩B2=f(A1)∩f(A2)=f(A1∩A2)于是从A1∩A2∈2A可知f(A1∩A2)∈S,即下确界GLB{B1,B2}存在。因此,〈S,⊆〉是〈2B,⊆〉的子格。3.设〈L,≼〉是格,任取a,b∈L且a≼b。证明〈B,≼〉是格。其中B={x|x∈L且a≼x≼b}[证]显然B⊆L;根据自反性及a≼b≼b所以a,b∈B,故此B非空;对于任何x,y∈B,则有a≼x≼b及a≼y≼b,由于x,y∈L,故有z1=xÅy为下确界∈L存在。我们只需证明z1,z2∈B即可,证明方法有二,方法一为:由于a≼x,所以aÅx=x,于是z1=xÅy=(aÅx)Åy(利用aÅx=x)=aÅ(xÅy)(由Å运算结合律)因此a≼z1;另一方面,由y≼b可知yÅb=b,由x≼b可知xÅb=b,于是z1Åb=(xÅy)Åb=xÅ(yÅb)(由Å运算结合律)=xÅb(利用yÅb=b)=b(利用xÅb=b)因此z1≼b,即a≼z1≼b所以z1∈B由于a≼x及a≼y,所以a*x=a,a*y=a,因而164 a*z2=a*(x*y)=(a*x)*y(由*运算结合律)=a*y(利用a*x=a)=a(利用a*y=a)因而a≼z2;又由于y≼b,所以y*b=y于是z2=x*y=x*(y*b)=(x*y)*b(利用*运算结合律)=z2*b从而z2≼b,即a≼z2≼b所以z2∈B因此〈B,≼〉是格(是格〈L,≼〉的子格)。方法二:根据上、下确界性质,由a≼x,a≼y,可得a≼x*y,(见附页数)4.设〈L,≼,*,Å〉是格。"a,b∈L,证明:(附页)a≼x≼Åy,即a≼z2,a≼又由x≼b,y≼b,可得xÅy≼b,x*y≼y≼b,即z1≼b,z2≼b所以a≼z1≼b,a≼z2≼b,故此z1,z2∈Ba*b≺a且a*b≺bÛa与b是不可比较的。[证]先证Þ用反证法,假设a与b是可比较的,于是有a≼b或者b≼a。当a≼b时,a*b=a与a*b≺a(得a*b≠a)矛盾;当b≼a时,a*b=b与a*b≺b(得a*b≠b)矛盾;因此假设错误,a与b是不可比较的。次证Ü由于a*b≼a,a*b≼b。如果a*b≼a,则a≼b,与a和b不可比较的已知条件矛盾,所以a*b≠a,故此a*b≺a;如果a*b=b,则b≼a,也与a和b不可比较的已知条件矛盾,所以a*b≠b,故此可得a*b≺b。5.设〈L,≼,*,Å〉是格。证明:a)(a*b)Å(c*d)≼(aÅc)*(bÅd)b)(a*b)Å(b*c)≼(cÅa)≼(aÅb)*(bÅc)*(cÅa)[证]a)方法一,根据上、下确界的性质,由a*b≼a≼aÅc及a*b≼b≼bÅd所以得到a*b≼(aÅc)*(bÅd)164 又由c*d≼c≼aÅc及c*d≼d≼bÅd,所以得到c*d≼(aÅc)*(bÅd)因此(a*b)Å(c*d)≼(aÅc)*(bÅd)方法二(a*b)Å(c*d)≼[(aÅc)*(aÅd)]*[(aÅc)*(bÅd)](分配不等式,交换律,结合律,保序性)≼(aÅc)*(bÅd)(保序性)b)方法一,根据上、下确界的性质由a*b≼a≼aÅb,a*b≼b≼bÅc,a*b≼a≼cÅa可得a*b≼(aÅb)*(bÅc)*(cÅa)同理可得b*c≼(aÅb)*(bÅc)*(cÅa)及c*a≼(aÅb)*(bÅc)*(cÅa)所以(aÅb)Å(bÅc)Å(cÅa)≼(aÅb)*(bÅc)*(cÅa)方法二:(aÅb)Å(bÅc)Å(cÅa)≼[b*(aÅc)]Å(c*a)(交换律,结合律,分配不等式,保序性)≼[bÅ(c*a)]*[(aÅc)Å(c*a)](分配不等式,交换律,)≼[(aÅb)*(bÅc)]*(aÅc)(分配不等式,结合律,交换律,吸收律,保序性)≼(aÅb)*(bÅc)*(cÅa)(结合律)6.设I是整数集合。证明:〈I,min,max〉是分配格。[证]由于整数集合I是全序集,所以任何两个整数的最小者和最大者是存在的,因此〈I,min,max〉是格是格是显然的。下面我们来证〈I,min,max〉满足分配律对于任何a,b,c∈I有a*(bÅc)=min{a,max{b,c}}(a*b)Å(a*c)=min{min{a,b},min{a,c}}(1)若b≤c时,当(a)a≤b,则a≤c,故此min{a,max{b,c}}=min{a,c}=amax{min{a,b},min{a,c}}=max{a,a}=a(b)b≤a≤c,则164 min{a,max{b,c}}=min{a,c}=amax{min{a,b},min{a,c}}=max{b,a}=a(c)c≤a,则b≤a,因此min{a,max{b,c}}=min{a,c}=cmax{min{a,b},min{a,c}}=max{b,a}=c(2)若c≤b时,当(a)a≤c,则a≤b,故此min{a,max{b,c}}=min{a,b}max{min{a,b},min{a,c}}=min{a,a}=a(b)c≤a≤b,则min{a,max{b,c}}=min{a,b}=amax{min{a,b},min{a,c}}=max{a,c}=a(c)b≤a,则c≤a,因此min{a,max{b,c}}=min{a,b}=bmax{min{a,b}},min{a,c}}=max{b,c}=b综合(1)(2)总有a*(bÅc)=(aÅb)*(aÅc)根据对偶原理,就还有aÅ(b*c)=(aÅb)*(aÅc)因此〈I,min,max〉是分配格。7.设〈A,*,Å,max〉是分配格,a,b∈A且a≼b。证明:f(x)=(xÅa)*b是从A到B的同态函数。其它B={x|x∈A且a≼x≼b}[证]由于a≼xÅa,及已知a≼b,所以a≼(xÅa)*b;其次(xÅa)*b≼b,所以a≼f(x)≼b,因而f(x)是从A到B的函数。对于任何x,y∈A,f(xÅy)=((xÅy)Åa)*b=((xÅa)Å(yÅa))*b(幂等律,交换律,结合律)=((xÅ*a)b)((yÅa)*b)(分配律)=f(x)Åf(y)f(x*y)=((x*y)Åa)*b=((xÅa)*(yaÅ))*b(分配律)164 =((xÅa)*b)((yÅa)*b)(幂等律,交换律,结合律)=f(x)*f(y)所以,f满足同态公式,因而f是从A到B的同态函数。8.证明:一个格是分配格的充分必要条件是"a,b,c∈L,有(a*b)Å(b*c)Å(c*a)=(aÅb)*(bÅc)*(cÅa)[证]必要性。对于任何a,b,c∈L,(a*b)Å(b*c)Å(c*a)=(b*(aÅc))Å(c*a)(交换律,分配律)=(bÅ(c*a))*((aÅc)Å(c*a))(分配律)=(bÅc)*(bÅa)*(aÅc)(分配律,吸收律)=(aÅb)*(bÅc)*(cÅa)(交换律)充分性,f满足同态公式,因而f是从A到B的同态函数。8.证明:一个格是分配格的充分必要条件是"a,b,c∈L,有(a*b)Å(b*c)Å(c*a)=(aÅb)*(bÅc)*(cÅa)[证]必要性。对于任何a,b,c∈L,(a*b)Å(b*c)Å(c*a)=(b*(aÅc))Å(c*a)(交换,分配律)=(bÅ(c*a))((aÅc)Å(c*a))(分配律)=(bÅc)*(bÅa)*(aÅc)(分配律,吸收律)=(aÅb)*(bÅc)*(cÅa)(交换律)充分性,对于任何a,b,c∈LaÅ(b*c)=(aÅ(a*c))Å(b*c)(吸收律)=((aÅ(a*b))Å(a*c))Å(b*c)(吸收律)=(a*b)Å(b*c)Å(c*a)Åa(交换律,结合律)=((aÅb)*(bÅc)*(cÅa))Åa(已知条件)=((aÅb)*(aÅc)*(bÅc))Å((bÅc)*a)Åa(交换律,吸收律)=((aÅb)*(aÅc)*(bÅc))Å((bÅc)*a)Å(a*(aÅb)*(aÅc))(吸收律)=(((aÅb)*(aÅc))Å(bÅc))*((bÅc)Åa)*(aÅ((aÅb))*(aÅc)))(已知条件)=(((aÅb)*(aÅc))Å(bÅc))*(aÅbÅc)*((aÅb)*(aÅc))(因为aÅ((aÅb)*(aÅc))=(aÅb)*(aÅc)=(((aÅb)*(aÅc))Å(bÅc))*(((aÅb)Åc)*(aÅb)*(aÅc)(结合律)164 =(((aÅb)*(aÅc))Å(bÅc))*((aÅb)*(aÅc))(吸收律,结合律)cehabdfig=(aÅb)*(aÅc)(吸收律)根据对偶原理还有a*(bÅc)=(aÅb)*(aÅc)所以格L是分配格。9.设〈L,≼〉是格。其Hasse图如右a)找出格中每个元素的补元;b)此格是有补格吗?c)此格是分配格吗?[解]a)最小元0=i;最大元1=a;故此格为有界格。a和i互为补元;f和C互为补元;其余b,d,e,g,h等都没有补元。b)根据a)可知,此格不是有补格。c)此格不是分配格,因为fÅ(g*h)=fÅi=f(fÅg)*(fÅh)=b*d=d因为去掉g结点后所形成的子格与分配格〈S24,I,GCD,LCM,1,24〉同构,因此若此格不是分配格,则必有子格h*(fÅg)=h*b=ha1a3a2a4a52484213612b1b4b5b3b2(h*f)Å(h*g)=iÅi=I〈S24,I,GCD,LCM,1,24〉两个不是分配格的特殊格与两个不是分配格的特殊格同构,并且此子格必含有g点。而特殊不分配格之图或是含有五个结点的圈,或是有六个结点:gebdfi;gebdhi;gehdfi;或是有八个结:gecabdfi;gecabdhi;或是只有一个四结点的圈:gehi164 。因此此格绝不会有含g点的子格与两个不是分配格的特殊格同构。10.设〈L,≼,*,Å〉是有界格。x,y∈L,证明:a)若xÅy=0,则x=0且y=0。b)若x*y=1,则x=1且y=1。[证]a)对任何x,y∈L,若xÅy=0,则x=x*(xÅy)(吸收律)=x*0(xÅy=0)=0(0—1律)y=y*(yÅx)(吸收律)=y*(xÅy)(交换律)=y*0(xÅy=0)=0(0—1律)b)对任何x,y∈L,若x*y=1,则x=xÅ(x*y)(吸收律)=xÅ1(x*y=1)=1(0—1律)y=yÅ(y*x)(吸收律)=yÅ(x*y)(交换律)=yÅ1(x*y=1)=1(0—1律)11.在有界格中,0是1的唯一补元,1是0的唯一补元。[证]由于1Å0=1,1*0=0,所以0与1互为补元。下面我们先来证0是1的唯一补元:对于任何元素a属于有界格,若a是1的补元,则必有1Åa=1,及1*a=0,于是必有a=a*(aÅ1)(吸收律)=a*(1Åa)(交换律)=a*1(由1Åa=1)=1*a(交换律)=0(由1*a=0)从而0是1的唯一补元。次证1是0的唯一补元。对于任何元素a属于有界格,若a是0的补元,则必有0Åa=1,0*a=0164 。于是必有a=a(a*0)(吸收律)=a(0Åa)(交换律)=aÅ0(由0*a=0)=0Åa(交换律)=1(由0Åa=1)12.设〈L,≼〉是格,|L|≥2。证明:L中不存在以自己为补元的元素。[证]用反证法,假设L中存在着以自己为补元的元素,不妨是b∈L,那么bÅb=1,b*b=0,于是由幂等律,可得b=b*b=0,bÅb=1,从而有0=b=1,即0=1因此,对于任何元素a≼L,都有a=0=1(因为0≼a≼1),从而|L|=1,这与已知|L,|≥2矛盾。13.设〈L,≼〉是全序集,|L|≥3。证明:〈L,≼〉是格,但不是有补格。[证]由于〈L,≼〉是全序集,那么L中任意两个元素都可比较,于是L中任意两个元素都有上确界和下确界,因此〈L,≼〉是格。下面我们来证〈L,≼〉不是有补格,用反证法:否则〈L,≼〉是有补格,则对任何a∈L,都存在着一个元素b∈L,使aÅb=1及a*b=0。由于〈L,≼〉是全序集,所以任二元素可比较,从而①若a≼b,则a=a*b=0②若b≼a,则a=aÅb=1因此|L|=2,与已知|L|≥3矛盾。14.在有界的分配格中,证明:具有补元的那些元素组成一个子格。[证]设〈L,*,Å,0,1〉是有界分配格,令L′={x|x∈L∧($y∈L)(x*y=0∧xÅy=1)}我们来证〈L′,*,Å,0,1〉是〈L,*,Å,0,1〉的子格:显然L′⊆L;其次易证0,1∈L′,故此L′非空;对于任何a1,a2∈L′,我们来证a1*a2,a1Åa2∈L′为证a1*a2∈L′,只需找出a1*a2的补元即可。由于a1,a2∈L′,故此存在着b1,b2∈L,使a1*b1=0,a1Åb1=1以及a2*b2=0,a2Åb2=1,于是构造出a1*a2补元为b1b2∈L。这是因为(a1*a2)*(b1Åb2)=((a1*a2)*b1)Å((a1*a2)*b2)(分配律)=((a1*b1)*a2)Å(a1*(a2*b2)(交换律)164 =(0*a2)Å(a1*0)(由a1*b1=0,a2b2=0)=0Å0(由0—1律)=0(a1*a2)Å(b1Åb2)=(a1Å(b1Åb2))*(a2Å(b1Åb2))(分配律)=((a1Åb2)Åb2)*((a2Åb2)Åb1)(交换律,结合律)=(1Åb2)*(1Åb1)(由a1Åb1=1及a2Åb2=1)=1*1(由0—1律)=1为证a1Åa2∈L′只需找出a1Åa2的补元即可。由于a1,a2的补元是b1,b2,故构造出a1Åa2的补元为b1*b2∈L。这是因为(a1Åa2)*(b1*b2)=(a1*(b1*b2))Å(a2*(b1*b2))(分配律)=((a1*b2)*b2)Å((a2*b2)*b1)(交换律,结合律)=(0*b2)Å(0*b1)(由a1*b1=0及a2*b2=0)=0Å0(由0—1律)=0(a1Åa2)Å(b1*b2)=((a1Åa2)Åb1)*((a1Åa2)Åb2)(分配律)=((a1Åb1)Åa2)*(a1Å(a2Åb2))(交换律,结合律)=(1Åa2)*(a1Å1)(由a1Åb1=1及a2Åb2=1)=1*1(由0—1律)=1124213615.求〈S12,1〉的所有子格,其中,S12是12的所有因子的集合1是S12上的整除关系。[解]一个结点:{1},{2},{3},{4},{6},{12}二个结点:{1,2},{1,3},{1,4},{1,6},{1,12}{2,4},{2,6},{2,12}{3,6},{3,12}{4,12}{6,12}三个结点:{1,2,4},{1,2,6},{1,2,12}〈S12,1〉的图{1,3,6},{1,3,12}{1,4,12}{1,6,12}164 {2,4,12},{2,6,12}{3,6,12}四个结点:{1,2,4,12},{1,2,6,12},{1,3,6,12}{1,2,3,6},{2,4,6,12},{1,3,4,12}五个结点:{1,2,4,12},{1,2,3,6,12}六个结点:S12={1,2,3,4,6,12}都是〈S12,1〉的子格。16.证明:一个格〈L,≼〉分配格的充分必要条件是"a,b,c∈L,有(aÅb)*c≼aÅ(b*c)[证]必要性对任何a,b,c∈L(aÅb)*c=(a*c)Å(b*c)(分配律)≼aÅ(b*c)(由a*c≼a,及保序性)充分性一方面,由aÅ(b*c)≼aÅb(根据b*c≼b及保序性)和aÅ(b*c)≼aÅc(根据b*c≼c及保序性)及上、下确界的性质可得aÅ(b*c)≼(aÅb)*(aÅc)另一方面(aÅb)*(aÅc)≼aÅ(b*(aÅc))(已知条件)=aÅ((aÅc)*b)(交换律)≼aÅ(aÅ(c*b))(已知条件(aÅc)*b≼aÅ(c*b)及保序性)=(aÅa)Å(b*c)(结合律,交换律)=aÅ(b*c)(幂等律)所以,综合这两方面,得到分配律aÅ(b*c)=(aÅb)*(aÅc)根据对偶原理,可得另一分配律a*(bÅc)=(a*b)Å(a*c)所以格〈L,≼〉是分配格。17.设〈L1,R1〉和〈L2,R2〉是两个格,f:L1→L2是从〈L1,R1〉到〈L2,R2〉的同态函数。证明:f的同态象是〈L2,R2〉的子格。[证]f的同态象f(L1)={y:y∈L2∧($x∈L1)(f(x)=y)}我们来证〈f(L1),R2〉是〈L2,R2〉的子格:显然f(L1)⊆L2;若L1非空,则有a∈L1,从而有b=f(a)∈f(L1)故f(L1)非空。164 对于任何b1,b2∈f(L1),存在着a1,a2∈L1,使b1=f(a1),b2=f(a2),从而b1Å2b2=f(a1)Å2f(a2)110102221555=f(a1Å1a2)(同态公式)∈f(L1)(因〈L1,R1〉是格,故Å1运算封闭,从而a1Å1a2∈L1)因此〈f(L1),R1〉是〈L2,R2〉子格。18.设B={1,2,5,10,11,22,55,110}。证明:〈B,GCD,LCM〉是布尔代数。其中,GCD是求最大公约数,LCM是求最小公倍数,x′=110/x。[证]我们已证过〈N,GCD,LCM,〉是分配格,故此为证〈B,GCD,LCM〉是分配格,只需证〈B,GCD,LCM〉是〈N,GCD,LCM,〉的子格即可。易于验证,对于任何a,b∈B,恒有GCD{a,b},LCM{a,b}∈B故此两个运算GCD,LCM关于B封闭。因而〈B,GCD,LCM〉是分配格。又由于1和110互为补元;2和55互为补元;5和22互为补元;10和11互为补元,所以〈B,GCD,LCM,′〉是有补的分配格,故此〈B,GCD,LCM,′〉是布尔代数。19.设L1={1,2,3,4,6,12},L2={1,2,3,4,6,8,16,24}。2412631248a)〈L1,GCD,LCM,′〉是布尔代数吗?为什么?b)〈L2,GCD,LCM,′〉是布尔代数吗?为什么?[解]a)〈L1,GCD,LCM,′〉不是布尔代数。因为〈L1,GCD,LCM,′〉虽是分配格(〈N,1,GCD,LCM,〉的子格)但不是有补格,元素2,6没有补元。所以不是布尔代数。b)〈L2,GCD,LCM,′〉也不是布尔代数。因为虽然〈L2,GCD,LCM,′〉是分配格(〈N,1,GCD,LCM,〉的子格),但不是有补格,元素2,4,6,12没有补元。所以也不是布尔代数。20.设〈B,*,Å,′〉是布尔代数。证明下列布尔恒等式。a)aÅ(a′*b)=aÅbb)a*(a′Åb)=a*bc)(a*c)Å(a′*b)Å(b*c)=(a*c)Å(a′*b)d)(aÅb′)*(bÅc′)*(cÅa′)=(a′Åb)*(b′Åc)*(c′Åa)164 e)(aÅb)*(bÅc)*(cÅa)=(a*b)Å(b*c)Å(c*a)[证]a)aÅ(a′*b)=(aÅa′)*(aÅb)(分配律)=1*(aÅb)(由aÅa′=1)=aÅb(0—1律)b)a(a′Åb)=(a*a′)Å(a*b)(分配律)=1Å(a*b)(由a*a′=0)=a*b(0—1律)c)由于(a*c)Å(a′*b)=(aÅa′)*(aÅb)*(a′*c)*(b*c)(分配律,结合律,交换律)=(aÅb)*(a′Åc)*(bÅc)(由aÅa′=1)并且因为b*aÅb,c*aÅc,从而由保序性,得到b*c≤(aÅb)*(a′Åc)又由b*c≤bÅc及下确界的性质,得到b*c≤(aÅb)*(a′Åc)*(bÅc)所以b*c≤(a*c)Å(a′*b)所以(a*c)Å(a′*b)Å(b*c)=(a*c)Å(a′*b)d)令B=(aÅb′)*(bÅc′)*(cÅa′),C=(aÅb)*(b′Åc)*(c′Åa)于是为证B=C,根据布尔代数的性质:消去律。=a′*b′*c′(交换律)所以a′*B=a′*c从而由消去律,有B=C即(aÅb′)*(bÅc′)*(cÅa′)=(a′Åb)*(b′Åc)*(c′Åa)e)令B=(aÅb)*(bÅc)*(cÅa)C=(a*b)Å(b*c)Å(c*a)由于a*B=a*(aÅb)*(bÅc)*(cÅa)=a*(bÅc)*(cÅa)(吸收律)=a*(aÅc)*(bÅc)(交换律)=a*(bÅc)(吸收律)a*C=a*[(a*b)Å(b*c)Å(c*a)]=(a*a*b)Å(a*b*c)Å(a*a*c)(分配律,交换律)=(a*b)Å(a*b*c)Å(a*c)(幂等律)164 =(a*b)Å(a*c)(分配律)所以a*B=a*C又由于a′*B=a′*(aÅb)*(bÅC)*(cÅa)=a′*b*(bÅc)*(cÅa)(反身性,及本题b))=a′*b*(cÅa)(吸收律)=a′*b*c(交换律,反身律,本题b))a′*C=a′[(a*b)Å(b*c)Å(c*a)]=(a′*a*b)Å(a′*b*c)Å(a′*a*c)(分配律,交换律)=(0*b)Å(a′*b*c)Å(0*c)(由a′*a=0)=0Å(a′*b*c)Å0(1—1律)=a′*b*c只需证a*B=a*C和a′*B=a′*C即可由于a*B=a*(aÅb′)*(bÅc′)*(cÅa′)=a*(bÅc′)*(cÅa′)(吸收律)=a*(a′Åc)*(bÅc′)(交换律)=a*c*(c′Åb)(本题b)及交换律)=a*c*b(本题b))=a*b*c(交换律)a*C=a*(a′Åb)*(b′ÅC)*(c′Åa)=a*b*(b′ÅC)*(c′Åa)(本题b))=a*b*c*(c′Åa)(本题b))=a*b*c*a(本题b))=a*a*b*c(交换律)=a*b*c(幂等律)所以a*B=a*C又由于a′*B=a′*(aÅb′)*(bÅc′)*(cÅa′)=a′*((a′)Åb′)*(bÅc′)*(cÅa′)(反身性)=a′*b′*((b′)′Åc′)*(cÅa′)(本题b)及反身性)=a′*b′*c′*((c′)′Åa′)(本题b)及反身性)=a′*b′*c′*a′(本题b))=a′*a′*b′*c′(交换律)=a′*b′*c′(幂等性)164 a′*C=a′*(a′Åb)*(b′Åc)*(c′Åa)=a′*(b′Åc)*(c′Åa)(吸收律)=a′*((a′)Åc′)*(b′Åc)(交换律及反身性)=a′*c′*((c′)′Åb′)(本题b)及反身性交换律)=a′*c′*b′(本题b))所以a*B=a′*C故根据消去律得到B=C,即(aÅb)*(bÅC)*(cÅa)=(a*b)Å(b*c)Å(c*a)21.设〈B,*,Å,′〉是布尔代数,简化下列布尔表达式。a)(a*b)Å(a*b*c)Å(b*c)b)(a*b)Å(a*b′*c)Å(b*c)c)(a*b)Å(a′*b*c′)Å(b*c)d)((a*b′)Åc)*(aÅb)*c[解]a)(a*b)Å(a*b*c)Å(b*c)=(a*b)Å(b*c)(因为吸收律)=b*(aÅc)(分配律)b)(a*b)Å(a*b′*c)Å(b*c)=(a*b)Å[((a*b′)Åb)*c]](分配律)=(a*b)Å[((a*b)*c)](20题a))=(a*b)Å(a*c)Å(b*c)(分配律)c)(a*b)Å(a′*b*c′)Å(b*c)=(b*(aÅ(a′*c′)))Å(b*c)(分配律)=(b*(aÅa′)*(aÅc′))Å(b*c)(分配律)=(b*(aÅc))Å(b*c)(互补aÅa′=1)=b*(aÅc′Åc)(分配律)=b(互补c′Åc=1)d)((a*b′)Åc)*(aÅb′)*C=((a*b′)Åc)*c*(aÅb′)(交换律)=c*(aÅb′)(吸收律)22.设〈B,*,,Å,′〉是布尔代数。在B上定义二元运算如下"a,b∈B,ab=(a*b′)(a′*b)证明:〈B,Ä〉是交换群164 [证]①封闭性对于任何a,b∈B,由于*,Å,′运算的封闭性,可知ab=(a*b)Å(a*)∈B,因此运算具有封闭性。②结合律对于任何a,b,c∈B,(ab)c((ab)*c′)Å((ab)′*c)=(((a*b′)Å(a′*b))*c′)Å(((a*b′)Å(a′*b))′*c)=(a*b′*c′)Å(a′*b*c′)Å(((a′Åb)*(aÅb′))*c)(分配律,deMorgan律,反身律)=(a*b′*c′)Å(a′*b*c′)Å(((a*b)Å(a′Åb′))*c)(分配律,互补律,0—1律)=(a*b′*c′)Å(a′*b*c′)Å(a*b*c)Å(a′*b′*c)=(a*b*c)Å(a*b′*c′)Å(a′*b*c′)Å(a′*b′*c)(交换律)a(bc)=(a*(bc)′)Å(a′*(bc))=(a*((b′Åc)*(bÅc′)))Å(a′*b*c′)Å(a′*b′*c))(deMorgam律,反身律,分配律)=(a*((b*c)Å(b′*c′)))Å(a′*b*c′)Å(a′*b′*c)(分配律)所以(ab)c=a(bc)所以运算具有结合律③交换律对任何a,b∈B,ab=(a*b′)Å(a′*b)=(a′*b)Å(a*b′)(Å运算交换律)=(b′*a)(b′*a)(*运算交换律)=ba所以运算具有结合律④有幺元0:首先0∈B,其次a0=(a*0′)Å(a′*0)=(a*1)(a′*0)(由0′=1)164 =aÅ0(0—1律)=a(0—1律)由运算交换律也有0a=a即0a=a0=a所以0是运算的幺元。⑤于任何a∈B,其逆元是a自己,因为aa=(a*a′)Å(a′*a)=0Å0(互补律)=0(幂等律)因此,〈B,〉是一个交换群。23.设〈B,*,,′〉是一个交换群。如下"a,b∈B,a+b=(a*b′)Å(a′b)a·b=a*ba)证明:〈B,+,·〉是环b)找出关于·的幺元;c)证明:"a∈B,a+a=0,a+0=a,a+1=a′;d)证明:"a,b∈B,(a+b)+b=a;e)证明:"a,b,c∈B,a·(b+c)=(a·b)+(a·c)[证]a)由于这里定义的十运算与22题的运算的定义相同,因此〈B,十〉是交换群。其次·运算就是运算,故此具有封闭性及结合律,因此〈B,·〉是半群。对任何a,b,c∈B,由于a·(b+c)=a*((b*c′)Å(b′*c))=(a*b*c)Å(a*b*c)(分配律)(a·b)+(a·c)=((a*b)*(a*c)′)(a*b)′*(a*c)=((a*b)*(aÅc))Å((aÅb)*(a*c))(deMorgan律)=(a*b*c′)Å(a*b′*c)(分配律,互补律,0—1律)所以a·(b+c)=(a·b)+(a·c)由于·和十运算都有交换律,故另一分配律不需证所以〈B,+,·〉是环(实际上是含幺交换环)164 b)·的幺元是1,因为1·a=1*a=a=a*1=a·1c)对任何a∈B,a+a=0在22题的证明⑤已证;a+0=a在22题的证明中④已证;a+1+=(a*1′)Å(a′*1)=(a*0)Å(a′*1)(由1′=0)=0Åa′(0—1律)=a′(0—1律)d)对任何a,b∈B(a+b)+b=((a+b)*b′)Å((a+b)′*b)=(((a*b′)Å(a′*b))*b′)Å(((a*b′)*(a*b))′*b)=(a*b′*b′)Å(a′*b*b′)Å(((a′Åb)*(aÅb′))*b)(分配律,结合律deMorgan律,反身律)=(a*b′)Å(((a*b)Å(a′*b))*b)(幂等律,互补律0-1律,分配律,交换律)=(a*b′)Å(a*b*b)Å(a′*b′*b)(分配律)=(a*b′)Å(a*b)(幂等,互补律,0-1律)=a*(bÅb)(分配律)=a(互补律,0-1律)e)根据a)的证明,分配律已成立。24.设〈A,∧,∨∩∪-〉和〈B,∩,∪,-〉是两个布尔代数,f是从〈A,∧,∨∩∪-〉到〈B,∩,∪,-〉的满同态函数。证明:f(OA)=OBf(1A)=1B其中,OA和OB分别是A,B中的最小元,1A和1B分别是A,B中的最大元。[证]对于任何a∈A,由于A是布尔代数,所以存在着补元∈A使得OA=a∧及1A=a∨(互补律)又由于B是布尔代数,f是从A到B的同态函数,从而有f()=(f(a))′(同态公式)于是f(OA)=f(a∧)164 =f(a)∩f()(同态公式)=f(a)∩(f(a))′=OB(互补律)f(1A)=f(a∨)=f(a)∪f()(同态公式)=f(a)∪(f(a))′=1B25.设a,b,b2,…br是布尔代数〈B,≼,*,Å,′〉的原子。证明:ab1Åb1Å…Åbr的充分必要条件是存在i(1≤i≤r),使a=bi。[证]必要性用反证法。假设对每个i,1≤i≤r,都有a≠bi,那么由a,bi(1≤i≤r)都是原子,因此a*bi=0(否则有a=a*bi=bi,与假设a≠bi矛盾)。从而a*(b1Åb2Å…Åbr)=(a*b1)Å(a*b2)Å…Å(a*br)(分配律)=0Å0Å…Å0=0(0-1律)但是由已知a≼b1Åb2Å…Åbr,从下确界的性质可知a*(b1Åb2Å…br)=a从而得到a=0,这与已知a是原子,a≠0矛盾,充分性若对某个i。1≤i0≤r,使a=bi0。则由上确界的性质可知a≼b1Åb2Å…Å-1ÅaÅ+1Å…Åbr=b1Åb2Å…Å-1Å+1…Åbr(因为a=)26.设b1,b2…,br是有限布尔代数〈B,*,Å,′〉的所有原子。证明:y=0的充分必要条件"i(1≤i≤r),都有y*bi=0[证]必要性对于任何bi(1≤i≤r)y*bi=0*bi=0总是成立,因为y=0充分性根据布尔代数的元素的原子表示定理,可知y=这里S(y)={bi:1≤i≤r∧bi≼y}因此,y=y*y(幂等律)164 =y=(分配律)=0(因为对任何i,1≤i≤r,都有y*bi=0)=0(0-1律)27.设〈{0,1},*,Å,′〉是布尔代数。写出下列布尔表达式的析取范式和合取范式。a)(x1*x2)Å(x2*x3)Å(*x3)b)(x1*x2*)Å(x1**x4)Å(x2**)[解]a)令f(x1,x2,x3)=(x1*x2)Å(x2*x3)Å(*x3)是{0,1}3到{0,1}函数,则其运算表为x1x2x3f(x1,x2,x3)00000011010001111000101111011111根据f(x1,x2,x3)=0的元组可构造出f的合取范式为(x1Åx2Åx3)*(x1ÅÅx3)(x2ÅÅx3)=M3*M5*MT根据f(x1,x2,x3)=1的元组可构造出f的析取范式为(ÅÅx3)Å(Åx2Åx3)Å=m1Åm3Åm5Åm6Åm7b)令g(x1,x2,x3,x4)=(x1*x2*x3)Å(x1**x4)Å(x2**)是{0,1}4到{0,1}的函数,于是析取范式:f(x1,x2,x3,x4)=(x1*x2*)Å(x1**x4)Å(x2**)164 =(x1*x2*(x4Å))Å(x1**(x3Å)*x4)Å((x1Å)x2**)=(x1*x2**x4)Å(x1***)Å(x1**x3*)=m4Åm9Åm11Åm12Åm13合取范式:(f(x1,x2,x3,x4))′(由去掉f中的那些小项后剩下的小项构成)=(x1,x2,x3,x4)Å(x1,x2,x3,)Å(x1**x3*)Å(x1***)Å(*x2*x3*x4))Å[解]a)令f(x1,x2,x3)=(x1*x2)Å(x2*x3)Å(*x3)是{0,1}3到{0,1}函数,则其运算表为x1x2x3f(x1,x2,x3)00000011010001111000101111011111根据f(x1,x2,x3)=0的元组可构造出f的合取范式为(x1Åx2Åx3)*(x1ÅÅx3)(x2ÅÅx3)=M3*M5*MT根据f(x1,x2,x3)=1的元组可构造出f的析取范式为(ÅÅx3)Å(Åx2Åx3)Å=m1Åm3Åm5Åm6Åm7b)令g(x1,x2,x3,x4)=(x1*x2*x3)Å(x1**x4)Å(x2**)是{0,1}4到{0,1}的函数,于是析取范式:f(x1,x2,x3,x4)=(x1*x2*)Å(x1**x4)Å(x2**)=(x1*x2*(x4Å))Å(x1**(x3Å)*x4)Å((x1Å)x2**)=(x1*x2**x4)Å(x1***)Å(x1**x3*)=m4Åm9Åm11Åm12Åm13合取范式:164 (f(x1,x2,x3,x4))′(由去掉f中的那些小项后剩下的小项构成)=(x1,x2,x3,x4)Å(x1,x2,x3,)Å(x1**x3*)Å(x1***)Å(*x2*x3*x4))Å(*x2*x3*)Å(*x2**x4)Å(**x3*x4)Å(x1**x3*)Å(***x4)Å(***)因此f(x1,x2,x3,x4)=(f(x1,x2,x3,x4))″(反身律)=(ÅÅÅ)*(ÅÅÅx4)*(*x2**x4)*(Åx2Åx3Åx4)*(x1ÅÅÅ)*(x1ÅÅÅx4)*(Åx2Åx3Åx4)*(x1Åx2ÅÅ)(x1Åx2ÅÅx4)*(x1Åx2ÅÅx3Å)*(x1Åx2Åx3Åx4)=M0*M1*M5*M7*M8*M9*M10*M12*M13*M14*M1528.设〈2X,∩,∪,′〉到〈B,∧,∨,—〉的满同态函数。[证](1)后者唯一用反证法。对于任何x2X,若有y1,y2∈B,且y1y2使得g(x)=y1,且g(x)=y2,则由于(x,y1)∈g∧(x,y2)∈gÞ(x,0)∈g(x,1)∈g(由于y1≠y2,且y1,y2,且y1,y2∈B={0,1})Þb∈x∧b∉x矛盾,故引假设y1≠y2错误,从而y1=y2,g是后者唯一的。(2)Ɗ(g)=2X(3)g是满射数,ℛ(g)=B由于B={0,1},并且存在着x1={a,c},和x2={a,b}使g(x1)=0,g(x2)=1,故ℛ(g)=B。(4)g满足同态公式,即g保持运算。对于任何x∈2X,由于g(x′)=1Ûb∈x′Ûb∉xÛg(x)=0164 =1所以g(x′)=对于任何x1,x∈2X,由于g(x1∩x2)=1Ûb∈x1∩x2Ûb∈x1∧b∈x2Ûg(x1)=1∧g(x2)=1Ûg(x1)∧g(x2)=1所以g(x1∩x2)=g(x1)∧g(x2)由于g(x1∪x2)=1Ûb∈x1∪x2Ûb∈x1∨b∈x2Ûg(x1)=1∨g(x2)=1Ûg(x1)∨g(x2)=1所以g(x1∪x2)=g(x1)∨g(x2)综合以上四条,可知g是从〈2X,∩,∪,′〉到〈B,∧,∨,—〉到的满同态函数。离散数学习题解答习题六(第六章图论)1.从日常生活中列举出三个例子,并由这些例子自然地导出两个无向图及一个向图。[解]①用V代表全国城市的集合,E代表各城市间的铁路线的集合,则所成之图G=(V,E)是全国铁路交通图。是一个无向图。②V用代表中国象棋盘中的格子点集,E代表任两个相邻小方格的对角线的集合,则所成之图G=(V,E)是中国象棋中“马”164 所能走的路线图。是一个无向图。③用V代表FORTRAN程序的块集合,E代表任两个程序块之间的调用关系,则所成之图G+(V,E)是FORTRAN程序的调用关系图。是一个有向图。2.画出下左图的补图。图[解]左图的补图如右图所示。v1′v2′v3′v4′v5′v6′v6v13.证明下面两图同构。图G′图Gv5v4v3v2[证]存在双射函数j:V→V′及双射函数y:E→E′j(v1)=v1′j(v1,v2)=(v1′,v2′)j(v2)=v2′j(v2,v3)=(v2′,v3′)j(v3)=v3′j(v3,v4)=(v3′,v4′)j(v4)=v4′j(v4,v5)=(v4′,v5)j(v5)=v5′j(v5,v6)=(v5′,v6′)j(v6)=v6′j(v6,v1)=(v6′,v1′)j(v1,v4)=(v1′,v4′)j(v2,v5)=(v2′,v5′)j(v3,v6)=(v3′,v6′)164 显然使下式成立:y(vi,vj)=(vi,vj′)Þj(vi)=vi′∧j(vj)=vj′(1≤i·j≤6)于是图G与图G′同构。v1v2v3v4v88v78v58v68v4¢v1¢v2¢v7¢v6¢v8¢v5¢v3¢v1v2v3v4v58v1¢v2¢v3¢v4¢v584.证明(a),(b)中的两个图都是不同构的。GG′GG′图G中有一个长度为4的圈v1v2v6v5v1,其各顶点的度均为3点,而在图G′中却没有这样的圈,因为它中的四个度为3的顶点v1¢,v5¢,v7¢,v3¢不成长度的4的圈。图G中′有四个二度结点,v6¢,v8¢,v4¢,它们每个都和两个三度结点相邻,而G中一个区样的结点都没有。在(b)中,图G¢中有一2度结点v3¢,它相邻的两个项点v2¢,v4¢的度均为4,而在图G中却没有这样的点。5.一个图若同构于它的外图,则称此图为自补图。在满足下列条件的无向简单图中:1)给出一个五个结点的自补图;2)有三个或一结点的自补图吗?为什么?3)证明:若一个图为自补图,则它对应的完全图的边数不清必然为偶数。[解]1)五个结点的自补图如左图G所示GGbedcaaebcd164 同构函数j:V→V及y:E→如下:j(a)=ay(a,b)=(a,c)j(b)=cy(b,c)=(c,e)j(c)=ey(c,d)=(e,d)j(d)=by(d,e)=(b,d)j(e)=d(e,a)=(d,a)2)(a)没有三个结点的自补图。因为三个结点的完备图的边数为=3为奇数,所以由下面3)的结论,不可能有自补图。(b)有五个结点的自补图。1)中的例子即是一个五个结点的自补图。3)证:一个图是一个自补图,则它对应的完全图的边数必为偶数。因为若一个图G是自补图,则G∪=对应的完全图,而且E∩=φ,G现同构,因此它们的边数相等,即|E|=||,因此对应的完全图的边数|E*|=|E|+||=2|E|,是偶数。实际上,n个项点(n>3)的自补图G,由于其对应的完全图的边数|E*|=,因此有=2|E|,为偶数。这里n≥4。对于所有大于或等于4的正整数,都可表达成n=4k,4k+1,4k+2,4k+3的形式,这里k=1,2,…。其中只有n=4k,4k+1,才能使为偶数,所以自补图的项点数只能是4k或4k+1形式,(k∈N)6.证明在任何两个或两个以上人的组内,总存在两个人在组内有相同个数的朋友。[证]令上述组内的人的集合为图G的项点集V,若两人互相是朋友,则其间联以一边。所得之图G是组内人员的朋友关系图。显然图G是简单图,图中项点的度恰表示该人在组内朋友的个数,利用图G,上述问题就抽象成如下的图认论问题:在简单图G中,若|V|≥2,则在G中恒存在着两个项点,v1,v2∈V,使得它们的度相等,即deg(v1)=deg(v2)。其证明如下:若存在着一个项点v∈V,使得deg(v)=0,则图G中各项点的度最大不超过164 n-2。因此n个项点的度在集合{0,1,2,…,n-2}里取值,而这个集合只有n-1个元素,因此,根据鸽笼原理,必有两个项点的度相同。若不存在一个度为零的项点,则图G中各项点的度最大不超过n-1。因此n个项点的度在集合{1,2,…,n-1}中取值,这个集合只有n-1个元素,因此,根据鸽笼原理,必有两具项点的度相同。ADEFCB7.设图G的图示如右所示:1)找出从A到F的所有初级路;2)找出从A到F的所有简单路;3)求由A到F的距离。[解]1)从A到F的初级路有7条P1:(A,B,C,F),P2(A,B,C,E,F),P3:(A,B,E,F)P4:(A,B,E,C,F),P5:(A,D,C,E,F),P6:(A,D,E,C,F)P7:(A,D,E,B,C,F)。2)从A到F的简单路有9条除了上述1)中7条外,不有P8:(A,D,E,C,B,E,F)P9:(A,D,E,B,C,E,F)。3)从A到F的距离为3。由图可看出,显然从A到F,一步不可能到达,二步也不可到达;但有长度为3的路,比如P1,P3,P5等能从A到F,故从A到F的距离为3。8.在下面的图中,哪此是边通图?哪些是简单图?(a)(b)(c)[解](1)图(2)与图(b)不连通,它们能分成两个边通支。所以只有图(c)是连能图。164 (2)图(c)是简单图,图为它显然无平等边,无自环。图(a)、(b)是多重图(a)有平行边(b)有自环。9.求出所有具有四个结点的简单无向连通图。[解]在不同构的意义下,具有四个结点的简单无向连通图共有6个。如下面所示:G1G2G3G4G5G6G6G5G4G2(实际上,具有四个结点的简单图共有11个,这可由P定理得证。参见卢开澄的《组合数学一算法与分析》上册P241-P244)。10.设G是一个简单无向图,且为(n,m)图,若证明G是连通图。[证]用反证法。假若简单无向图G不是连通图,那么G必可成K(≥2)个连通分支G1,G2,…,Gk,每个连通分支Gi(1≤i≤k)都是一个简单无向图,因此它们分别为(n1,m1),(n2,m2),…(nk,mk)图显然有n=n1+n2+…nk,m=m1+m2+…mk,且ni≤n-1(1≤i≤k)于是有m=m1+m2+…mk=(n-1)··((n1-1)+(n2-1)+…+(nk-1))=(n-1)((n1+n2+…+nk)-k)=(n-1)(n-k)≤(n-1)(n-2)(k≥2)164 这与已知M>(n-1)(n-2)矛盾。因此假设错误,G是连通图。11.设G=(V,E)是无向完全图(无自环),|V|=n1)求G中有多少初级圈?2)设e∈E,求含有e的初级圈有几个?3)设u,v∈V,u≠v,求由u到v有几条初级路?[解]1)在一个有n个结点的无向完全图(无自环)中,构成一个初级圈,至少需3个结点,至多有n个结点,故G中初级圈的个数为即将从n个结点中选出的k个结点进行排列,然后除去重复:每个排列的倒排列(除2);长为k的圈排列可形成k个线排列(除k)。2)含有边e的初级圈为即,从u到v的直接边(完全图,该边存在)是一条;再将该直接边加到其它初级路里,就构成了含边(u,v)的初级圈,从而由2)可得如上数值。12.试证在简单有向图中1)每个结点及每条边都属于且只属于一个弱分图;2)每个结点及每条边都至少属于一个单向分图。[证]1)有向图中的弱连通性建立了G中结点集合V上的等价关系,因此构成了V上的一个划分;同时,还建立了边集上的一个划分。因此,每一个弱连通支就是一个“划分块”。设G1,G2,…,Gk为G的所有弱连通分图,则有:V(G)=V(G1)∪V(G2)…∪V(Gk)E(G)=E(G1)∪E(G2)…∪E(Gk)并且,当i≠j时,V(Gi)∩V(Gj)=φ,E(Gi)∩E(Gj)=φ。因此,每个结点及每条边都属于且只属于一个弱图。164 2)有向图中的单向连通性建立了G中结点集合V上的一个相容关系,因此构成了V上的一个覆盖;同时,还建立了边集上的一个覆盖;每一个单向分图就是一个“覆盖快”。设G1,G2…,Gk为G的所有单向分图,则有V(G)=V(G1)∪V(G2)∪…∪V(Gk)E(G)=E(G1)∪E(G2)∪…∪E(Gk)因此,每个结点及每条边都至少属于一个单向分图。13.试用有向图描述出下述问题的解法路径:某人m带一条狗d,一只猫c和一只兔子r过河,没有船,他每次游过河时只能带一只动物,当没有人管理时狗和兔子不能相处,猫和兔子也不能相处。在这些条件的约束下,他怎样才能将这三只动物从北岸带往南岸?[解]将人,狗,兔中任意几种在一起的情况看作是一种状态;一个布局是一个二元组,由两个互补的状态构成,二元组的前者表示河北岸的状态,后者表示河南岸的状态。初始布局为(pdcr,φ),终止布局为(φ,pdcr)安全布局有十种,不安全布局有六种,它们是:(dr,pc),(cr,pd),(dcr,p),(pc,dr),(pd,cr),(p,dcr)。pdc,rpdcr,φdc,prc,pdrpcr,ddpc,rpdr,cpr,dcφ,pdcr按题意构造有向图,其解法路径如下:14.求下列图中的所有强连通支,单向连通支,弱连通支。v5v1v10v9v8v7v4v3v2v6[解]1)有六个强连通支,它们是:G1=({v1,v2,v3,v9,v10},{(v1,v2),(v2,v9),(v9,v10),(v10,v1),(v2,v3),(v3,v9)})164 G2=({v4},φ),G3=({v8},φ),G4=({v7},φ),G5=({v5},{(v5,v5)}),G6=({v6},φ)。2)有四个单向连通支,它们是:G1=({v1,v2,v3,v4,v9,v10},{(v1,v2),(v2,v9),(v9,v10),(v10,v1),(v2,v3),(v3,v9),(v3,v4)}),G2=({v4,v7,v8},{(v7,v8),(v8,v4)}),G3=({v5},{v5,v5}),G4=({v6},φ)3)有三个弱连通支,它们是G1=({v1,v2,v3,v4,v7,v8,v9,v10},{(v1,v2),(v2,v9),(v9,v10),(v10,v1),(v2,v3),(v3,v9),(v3,v4),(v7,v8),(v8,v4)})G2=({v5},{(v5,v5)}),G3=({v6,φ})v1v4v3v215.给出有向图如下所示:1)求它的邻接矩阵A;2)求A2,A3,A4,指出从v1到v4长度为1,2,3,4的路径各有几条?3)求AT,ATA,AAT,说明ATA和AAT中元素(2,3)和(2,2)的意义;4)求A(2),A(3),A(4)及可过矩陈R;5)求出强度通支。[解]1)它的邻接矩阵164 从v1到v4长度为1的路有1条,是(v1,v4);从v1到v4长度为2的路有1条,是(v1,v2),(v2,v4);从v1到v4长度为3的路有2条,是:(v1,v2),(v2,v8),(v3,v4);(v1,v4),(v4,v2),(v2,v4)。从v1到v4长度为4的路有3条,是:(v1,v2),(v2,v3),(v3,v2),(v2,v4);(v1,v2),(v2,v4),(v4,v2),(v2,v4);(v1,v4),(v4,v2),(v2,v3),(v3,v4);3)AT=164 在ATA中,元素(2,3)=0的意义是:不存在着这样的结点,从它发出的边同时终止于结点v2及v3;在ATA中,元素(2,3)=3的意义是:(v2)=3,即结点v2的入度为3。在AAT中,元素(2,3)=1的意义是:存在着一个结点,v4从v2及v3发出的边同时终之于它;在AAT中,元素(2,2)=2的意义是:(v2)=2,即结点v2的出度为2。4)164 5)·强连通支为G1=({v1},φ)G2=({v2,v3,v4},{(v2,v3),(v2,v4),(v3,v2),(v3,v4),(v4,v2)})uv345126853422973116.利用Dijkstra算法,求出下面图中从u到v的所有最短路径及路径长度。1052101042215836663825vu(1)1052⑩1042∞1∞3⑥6638∞0①∞2852610③1u∞v52(a)1052⑩1042∞1∞3⑥6638∞0112852610③1u∞v52(b)164 1052⑩1042∞13663828526101u∞v52(c)1052⑩1042∞1⑧3⑤6638∞2852610③1u∞v52(d)1052⑩10421⑧3⑤66382852610③1uv52(e)164 1052104213663828526101uv52(f)1052104213663828526101uv52(g)1052104213663828526101uv52(h)从u到v的最短路径共有三条:P1=(u,u1,u3,u4,v)P2=(u,u1,u2,u3,u5,u6,v)P3=(u,u12,u2,u3,u6,v)P4=(u,u1,u2,u3,u5,u8,u6,v)P5=(u,u7,u8,u6,v)从u到v的最短路长为:W(P1)=W(P2)=W(P3)=15。1052104213663828526101uv52(j)u7u8u5u6u2u3u4u1164 (2)v345268534u(a)731892221v345268534u(b)731892221164 v345268534u(d)7318922v345268534u(c)73189222v345268534u(e)731892221164 v345268534u(f)731892221v345268534u(g)73189222117.在Dijjkstra算法中,增加一个记忆系统,使得此算法不仅能给出从u到v的最短路的路长,而且可以给出一条最短路径。[解]观察Dijkstra算法的N02,容易看出每当确定出一个新的标记点t0时,由初始结点u到结点t0的最短路就可以确定下来了(但可能不唯一)。因而,该路中心至少有一点P。直接与结点t0相邻。故此,修正的算法如下:算法一:在确定从结点u到结点v的最短路的路长的同时,No1.P:={u};T:=VP;S(u):=[u];d(u):=0;("t∈T)(d(t):=∞)No2.("t∈T)(d(t):={d(t),d(P)+W(P,t)};($t0∈T)("t∈T)(d(t0)≤d(t));($P0∈P)(d(t0)=d(p0)+W(p0,t0));164 S(t0):=[S(p0)|t0];(表结构)No3.P:=PU{t0};T:=T{t0};mark(t0):=d(t0)No4.ift0=vthenexitelsegotoNo2;我们也可以采用回溯方法。算法二:在Dijkstra算法之后增加一个回溯系统,求出一条从u到v的最短路径。No1.P:={u};T:=VP;d(u):=0;("t∈T)(d(t):=∞);No2.("t∈T)(d(t):={d(t),d(p)+w(p,t)});($t0∈T)("t∈T)(d(t0)≤d(t));No3.P:=PU{t0};T:=T{t0};mar(t0):=d(t0)No4.S:=[v];g:=vNo5.($p∈P)(d(p)=d(g)=W(p,q));s:=[p|s];q:=p;No6.ifg=uthenexitelsegotoNo3以上两种算法都直接给出了从结点u到结点v的最短路径。但是,算法一的记忆比较庞大,而算法二又重复了Dijkstra算法中的一些判断过程。我们综合以上两种算法,又有如下算法三:在求出从结点u到结点v的最短路径之间各结点的最短长度d值以及前驱结点(紧前结点)No1.P:={u};T:=VP;d(u):=0;("t∈T)(d(t):=∞);No2.("t∈T)(d(t):={d(t),d(p)+w(p,t)});($t0∈T)("t∈T)(d(t0)≤d(t));($p∈P)(d(p)=d(p0)+w(p0,t0));No3.P:=PU{t0};T:=T{t0};mark(t0):=(p0,d(t0));No4.ift0=vthenexitelsegotoNo2;算法三并未直接给出从结点u到结点v的最短路径,但它的记忆系统比较简单,计算方便。要给出从结点u到v的最短路经时,只要从终步v开始,根据标记的第一个分量,向前回溯即可得到。18.判断下列图示能否一笔画。164 bca[解]根据本章§2定理2:图中奇结点的个数是偶数。所以奇结点的个数为2k,当k=0,1时,此图是一笔画的,而当k>1时,则此图是k笔画的。于是图(a),不是一笔画,因为它的奇结点为四个(用表示);图(b),(c)都是一笔画,因为它的奇结点是二个;19.设G是有向图,证明G是Euler图的充要条件是:G是强连通的,且G中每一结点的进度等于出度。[证]必要性若G是Euler图,则G中含有有向Euler圈,并且G中无狐立点,从而G中每个结点都与一条有向边相连。由于每条向边都必须在有向Euler圈上,因此每个结点也都在有向Euler圈上,所以从任一结点出发都可到达另一任意结点,故此G是强连通的。而且,又由于每条有向边只能在有向Euler圈中出现一次,于是每一个结点,有一边进来,就应有一边出去,再有一边进来,就应再有一边出来;这样,每一结点的进度必然等于度。充分性因为G是强连通的,故G中任何两个结点都可互相到达,因此G中存在着有向简单圈。不妨设C是G中长度最长的有向简单圈套,则C必是G中的有向Euler圈,从而G是Euler图。否则,必有边e不在圈C中,但e164 的一个端点在C上,不然的话,则图G一定不强连通,这和已知条件矛盾。由于对于图G中每个点v,(u)=(u),并且C是一个有向圈,从而对图G1=(V(G),E(G)C)仍有=(u)=(u),故此在G1中一定存在含有e的有向圈C1中一定存在含e的有向圈C1,C∪C1显然仍是G中的有向圈,且此有向圈的长度大于C的长度,这和C是G中最长的有向圈的假定相矛盾,故C一定是G中的有向Euler圈。这个有向Euler圈C可利用一个算法给出:No1.以G中任一结点出发,沿着有向边走成一个圈,而且是简单圈套;No2.若此圈已是有向Euler圈,出口;No3.否则,除此圈外,必仍有若于边不在其中,这些边中至少有一条边以引中至少有一条边以此圈中的某一结点为起点,以这个结点为起点走出一个圈(这个别圈不应含原圈中的任一边,并且是一简单圈);No4.将此圈插入原圈中,得到一个新的长度更长的简单圈,然后gotoNo2.20.设G是连通的无向图,且有2k>0奇结点。证明:在G中存在k条边不重的简单路G1,C2,C3…Ck,使E(G)=E(C1)∪E(C2)∪E(E3)∪…∪E(Ck)[证]设v1,v2,…,vk,vk+1…,v2k为G中的2k个奇结点,在vi和vi+k两个结点间连以新边ei*(i=1,2,…,k),所得之图记为G*,则G*的每个结点的度均为偶数,又由于G连通,则G*也是连通的,根据Euler定理,知在G*中存在Euler圈C*。若我们从C*中除去这k条新边ei*(i=1,2,…,k),则C*就分解成k条边不重的简单路C1,C2,C3…Ck,并且显然有E(G)=E(C1)∪E(C2)∪E(C3)…∪E(Ck)。21.构造一个长度为16的DeBruijn序列。[解]我们定义一个有向图D4如下:D4的项点是3位二进制数p1p2p3,其中pi=0或1。存在一条以项点p1p2p3为起点,以项点q1q2q3为终点的向边(p1p2p3,q1q2q3)当且仅当p2=q,p3=q2。另外,D4的每条有向边(p1p2p3,p2p3p4)上都标以四位二进制数p1p2p3p4。D4如下图1所示:显然,D4是连通的,并且D4的每个项点都具有入度2和出度过2,故由有向图的Euler定理,知D4中存在着一条有向Euler圈,这条有向Euler164 圈从图1可容易得到为a1,a2,,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16。它可看作是D4的弧的序列,它产生一个长为24=16位二进制数0000111100101101(它恰好是由ai(i=)的第一位数字组成),和鼓轮表面的设计要求符合。用这个16位二进制数设计的鼓轮如图2所示:这个16位二进制数就是要求的长度为16的DeBruijn序列。图1000001100110011111101010a4a3a1a2a5a6a7a8a16a15a11a9a10a12a13a14弧标号a10000a20001a30011a40111a51111a61110a71100a81001a90010a100101a111011a120110a131101a141010a150100a161000图222.1)画一个图示,使它既有一条E-圈,又有一条H—圈;2)画一个别图示,使它有一条E—圈,但没有一条H—圈;164 3)画一个图示,使它没有一条E—圈,但有一条H—圈;4)画一个图示,使它既没有一条E—圈,又没有一条H—圈;[解](a)图1既有E-圈,又有H圈。(b)图2有E-圈,但没有H-圈。(c)圈3有H-圈,但没有E-圈。(d)图4既没有E-圈,又没有H-圈。图4图3图2图1图2不存在H-圈,是因为存在着S={中间点},使W(GS)=2个连通支数,而|S|=1,从而W(GS)≰|S|故由定理1判定H-图的必要条件可知不存在H-圈。图3不存在E—圈,是因为G中存在8个结点的度均为3,是奇数。图4中不存在H—圈,因为G是一个偶图(二分图),而偶图要有圈,必须结点数为偶数(即|X|=|Y|,|V|=|X|+|Y|=2|X|),而G的结点数为11个,是奇数,不是偶数。23.若G=(V,E)有Hamilton路,证明对V中任一非空子集S,均有W(GS)|S|+1。[证]设G=(V,E)中的Hamilton路为C,路的两个端点为v1,及v2。我们给G增加一个新结点,v*及两个新边(v*,v1)和(v*,v2)而得到图G*,于是G*中就有Hamilton圈G*(它由Hamilton路C及关联新点v*的两个新边构成)。令S*=S∪{v*},则显然有GS=C*S*。从而根据定理1有Hamiltou圈的必要条件,有W(GS)=W(G*S*)≤|S*|=|S|+1。24.雄辩地证明下面的图示中没有Hamilton路。图2图1[证](1)将图1标记为图3。图3中存在着Hamilton路,此如H=(b,c,h,g,k,i,d,e,a,f,j)164 但是,图3中不存在Hamilton圈。因为,结点e,j均为2度结点,故若Hamilto圈,则引H-必通过e,j及其关联的四条边,因此在边(a,e)及(f,j)上各增加一个结点l,m,得到图4,显然,图1,即图3有H-圈当且仅当图4有H-圈。取S={a,e,l,g,i,c},则GS={m,f,j,k,b,h,d}这7个孤立点,因此W(GS)=7,而|S|=6,故此有W(GS)≰|S|BAAAAAABBBBBBBBB图5根据定理1,有H-圈的必要条件,知图4中没有H-圈,因此图中没有H-圈。(2)图2中不存在H路。证法一:将图中偶结点全标为A,奇结点全标为B,取S={偶结点}则GS为8个孤立奇结点,于是W=8,而|S|=6。从而有W(GS)≰|S|+1,于是根据第23题的结论,有H-路的必要条件,知无H-路存在。证法二:注意到图中的标号,奇、偶结点交错,因此是一个偶图(二分图)于是若有H-路,则奇偶结点之差不得超过1。但是这里奇结点(标为B)有8个,偶结点(标为A)有6个,其差为2。所以不可能有一条H-路。25.有七位客人入席,A只会讲英语;B会讲汉语;C会讲英语,意大利语及俄语;D会讲汉语及日语;E会讲意大利语及德语;F会讲法语,日语及俄语;G会讲德语和法语。问主人能否把诸位安排在一张圆桌上,使每一位客人与左右邻不用翻译便可交谈。若能安排,请给出一个方案。GECABDF德语英语俄语英语英语[解]能安排,其方案为:H=(A,B,D,F,G,E,C,A)图G将每个人作为一个项点,如果两个人会讲同一种语言,就在代表他们的二个项点间连一条边,边上标明二人公用的语言,这样就可得一简单无向图G。所求问题转化为图G中有无Hamilton圈问题。而上边指出的圈H正好是图G的一条Hamilton圈,因此问题得到解决。26.假设在一次集合上,任意两人合起来能够认识其余n-2个人。证明这n个人可以排成一行,使得除排头与排尾外,棋逢对手余的每个人都认识自己的左右邻。[证]我们来构造一个n阶图G,图G的项点代表n164 个人,两个认识的人对应的顶点间连一条边,从而图G满足:对任意二顶点u和v,都有deg(u)+deg(v)≥h-2(不包括u,v在内)。所求问题转化为,证明图G中存在一条Hamilton路。为此,我们证明:对任意二顶点u和v,都有deg(u)+deg(v)≥h-1。分情况证明如下:1)若u和v相邻(即u和v表示之二人认识),则有deg(u)+deg(v)≥(n-2)+2=n>n-12)若u和v不相邻(即u和v表示之二人不认识)则仍有deg(u)+deg(v)≥n-1>n-2其余n-2个顶点uvw否则,由已知deg(u)+deg(v)≥n-2知deg(u)+deg(v)=n-2。那么,G中除u和v外的余n-2个点,每个顶点都恰与u或v之一相邻。今考察其中一点w,设它与v相邻,则它必不与u相邻。于是对于v,w这一对顶点,它们都不与除去它们之后的n-2个顶点中之一顶点u相邻,这就与题设条件:任二顶点合起来都与其余n-2个项点相邻,相矛盾。综合1),2)并且根据定理2,有Hamiltou路的充分条件,可知图G中存在着一条H路。27.如何由无向图G的邻接矩阵判断G是否为二分图?[解]二分图G=(V,E)实际上是项点集V的一个划分{X,Y},有两上划分块,而划分和等价关系对应,因此我们将判定G是二分图转化为判定某一相应的关系是等价关系。No1.令A:=(aij)nxn,其中aij=(于是A显然是对称短矩阵,即AT=A。)No2.求A(2):=AοA=()nxn,其中=(aik∧akj)。(由于(A(2))T=ATοAT=AοA=A(2)故A(2)是对称矩阵。)vi,vj∈XVY,164 =1Ûvi,vj∈Y(同时)No3.令B:=E∨A(2)=(bij),(其中E是n阶单位)其中bij=No4.求B(2)=BB=(),(其中E是n阶单位)其中=(bik∧bkj)。No5.求B(2)=B,(即B是传递的,因而是等价的。)输出“图G是二分图”,出口;否则(即B不是传递的,因而不是等价的。)输出“G不是二分图”,出口。28.证明:如果G是二分图G为(n,m)图,那么。[证]设二分图G=(V,E)的项点集V是划分为二部分X,Y。因为|V|=n,所以不妨设,(这里k≥0)从而。因于二分图的边数小于其对应的完全二分图的边数故此:29.设G=(V,E)是二分圈,V=V1∪V2,证明:1)若G中有H—圈,则|V1|=|V2|;2)若G中有H—路,则|V2|-1≤|V1|≤|V2|+1。[证]1)证法一:若G中有H—图,由于G是二分图,则在G中去掉V2后,就只剩下V1中的|V1|个孤立点;同样,在G中去掉V1后,就只剩下V2中的|V2|个孤立点。因此由定理1,有Hamilton圈的必要条件,可知:|V1|=W(GV2)≤|V2|,|V2|=W(GV1)≤|V1|因此,可得|V1|=|V2|。证法二:设C=(v1,v2,v3,…,vl-1,vl,v1)是二分图中的一条Hamilton圈,从而有V={v1,v2,…vl},于是|V|=l。不妨设v1∈V1,观察圈C中的各结点,有:v1∈V1Þv2∈V2Þv3∈V1Þv4∈V2Þ…Þvτ∈V2从而有v1,v3…,vτ-1∈V1∪V2,故此164 V1={v1,v3,…vτ-1},V2={v2,v4,…vτ}所以|V1|==|V2|。2)证法一:若G中有H—路,由于G是二分图,则在G中去掉V2后,就只剩下V1中的|V1|个孤立点;同样,在G中去掉V1后,就只剩下V2中的|V2|个孤立点。因此由习题23有Hamilton路的必要条件,可知|V1|=W(GV2)≤|V2|+1|V2|=W(GV1)<=|V1|+1,于是|V2|-1≤|V1|故此|V1|-1≤|V1|≤|V2|+1。证法二:设C=(v1,v2,…vτ)是二分图中的一条Hamilton路,从而V={v1,v2,…,v},于是|V|=τ。根据1)的证法二:(a)若v1∈V1,vτ∈V1,则vτ-1∈V2故此τ-1为偶数,τ为奇数,于是|V1|=因此|V1|=|V2|+1(b)若v1∈V1vτ∈V1,则τ为偶数,于是|V1|==|V2|(c)若v1∈V2,vτ∈V1,同(b)可证|V1|=|V2|(d)若v1∈V2,vτ∈V2,则同(a)可证|V2|=|V1|+1,即|V2|-1=|V1|综合以上四点,有|V2|-1≤|V1|≤|V2|+1。30.在下面的图示中,是否存在{v1,v2,v3,v4}到{u1,u2,u3,u4,u5}的完美匹配?若存在,请指出它的一个完美匹配。v1v2v3v4u5u3u4u2u1164 [解]不存在{v1,v2,v3,v4}到{u1,u2,u3,u4,u5}的完美匹配。因为这两个互补结点子集的结点个数不相同。31.某展览会共有25个展室,布置如下图所示,有阴影的展室陈列实物,无阴影的展室陈列图片,邻室之间均有门可通。有人希望每个展室都恰去一次,您能否为他设计一条路线?入口[解]不能。u入口uu因为,若我们将每个展室看作一个项点,并且V1是无阴影展室的项点集,V2是有阴影展室的项点集,将邻室之间的门通道看作相应两顶点的边,于是我们得到一个二分图G。从而问题转化为问图G中是否有从起点(入口)uv1到终点(出口)v∈V2的一条Hamilton路?而这样的H路存在的必须条件是|V1|=|V2|(参见29的2)证法=b))。但是|V1|=121≠3=|V2|,故不满足必要条件,所以没有从u到v的Hamilton路。32.证明:小于30条边的平面简单图有一个结点的度数小于等于4。[证]用反法:假设简单平面图的所有结点的度数都大于4,因而都大于等于5,则由§2定理1,有故此n≤由于简单平面图无平行边,自环,所以任一区域都至少由三条或以的边围成,故利用欧拉公式的推论公式:m≤3n-6,有m≤3·因此,m≥30,这与已知条件m<30矛盾。所以,假设错误,小于30164 条边的简单平面图必有一个结点的度数小于等于4。33.在由(r+1)2个结点构成的r2个正方形网格所组成的平面图上,验证Euler公式的正确性。[证]如此的平面图,结点数n=(r+1)2边数m=(r+1)r+(r+1)r=2(r+1)r=2r2+2r面数f=r2+1(外部为-4r条边围成的面)于是n-m+f=(r+1)2-(2r2+2r)+(r2+1)=(r2+2r+1)-(2r2+2r)+(r2+1)=2故此Euler公式对此类图正确。34.运用kuratowski定理证明下图是非平面图。[证](1)给图G中结点打上标号,并用黑点标记要删去的边。125473图G图G6(2)去掉图G中打黑点的边,得图G的子图。图G的子图1254736164 (3)对图G的子图进行变形。6521374图G的子图(4)用kuratowski技术对图G的子图(变形后的)进行处理:从而,在kwratowski技术下,(3)与K3·3同构,因而根据Kwratowski定理,此图G是非平面图。1253741164 离散数学习题解答习题七1.证明树是只有一个区域的平面图。[证]证法一由于树无圈套在,因此根据kuratowski定理,可知树是平面图(否则,必须有圈,矛盾),因此可用Euler定理。对于树,m=n-1,故此由n-m+r=2,得树的区域数r=2+m-n=2+(n-1)-n=1证法二用归纳法,施归纳于树的结点个数n。当n=1时,只显然为平面图只有一个区域,题意为真当n=k时,假设题意为真。当n=k+1时,我们来证题意为真。事实上,由于T是树,故T中至少有一个悬挂点,在T中删去此结点,得到一个k个结点的边通图T′,显然T′中无圈。于T′是一个具有k个结点的树,于是根据归纳假设,T′是只有一个区域的平面图。这时将删去的结点重新扦入T′中以得到T,由于悬挂点不改变图的平面性和区域数,因此T仍是中仍一个区域的平面图。2.请画出具有六个结点的各种不同构的自由树。[解]共有六种,图示如下:(1)(2)(3)(4)(5)(6)3.证明任意一棵树中至少有两片叶子。164 [证]当结点数n≥2时,任意一棵树必至少有两片叶子。否则,假设某树中最多只有一片叶了,那么其中n-1结点都不是叶子,故此这n-1个点的度都大于等于2,于是根据各结点的度的总和是边数的二倍可知2n-2=2(n-1)=2m=≥2(n-1)+1=2n-1,矛盾。4.在一棵树中,度数为2的结点有n2个;度数为了的结点有n3个;…;度数为k的结点有nk个;问它有几个度数为1的结点?[解]设这棵树的项点数为n,边数为m,度为1的结点数为x。从而n=x+n2+n3+…+nk=2m=2(n-1)=2n-2但是=1·x+2·n2+3·n3+…k·nk=2(x+n2+n3+…+nk)-2于是解得x=n3+2n4…+(k-2)nk+2因此,度为1的结点共有n3+2n4+…+(k-2)nk+2个。5.设G=(V,E)是连通的(n,m)无向图,证明m≥n-1。[证]既然G是一个连通的无向图,那么G一定包含一个生成树。又因|V|=n,于是生成树的边数为n-1,从而m=|E|≥n-16.若G=(V,E)是(n,m)无向图,且n≤m,则G中必有圈。[证]用反证法。假设G中无圈,则(a)当G连通时,有G是一棵树,从而m=n-1<n,与已知n≤m矛盾。(b)当G不连通时,有G是森林,不妨设G有k个树,每个树的结点数分别为n1,n2,…nk,边数分别是n1-1,n2-1,…,nk-1。显然ni=n因此,G的总数m=(ni-1)=ni-1=n-k<n(k>1)与已知n≤m矛盾。7.求出左上图中的全部生成树。[解]此图共有16个生成树,(详见王朝瑞《图论》P259164 Cayley(1889)定理:n阶完全图的生成树有nn-2个,故4阶完全图的生成树有42=16个)(1)(2)(3)(4)(5)(6)(7)(8)(8)(9)(11)(10)(12)(13)(14)(15)(16)164 8.求出左下图的最小生成树。[解]利用kruskal算法,先将各边按大小排队如图(a)(树相等的边顺序任意)。然后逐边检查,若ei和T不构成圈,就将ei插入T中。最后得到最小生成树T如图(b)所示。123735659111621e2e6e8e13e7e10e12e9e14e15e11e5e3e4e1(a)(b)e2(1)e9(5)e3(1)e4(2)e1(1)e6(2)e5(2)T:={e1,e2,e3,e4,e5,e6,e9}W(T)=W(e1)+W(e2)+W(e3)+W(e4)+W(e5)+W(e6)+W(e9)=1+1+1+2+2+2+5=149.由简单有向图的邻接矩阵如何判断它是否为有根树?若是有根树,又如何确定树根及树叶?[答](a)邻接矩阵,只有当一列其元素全为零且其余n-1列均只有一个元素为1,其它元素都为零时,该简单有向图是有根树。(b)若是有根树,其邻接矩阵中元素全为零的一列所对庆的项点是树根;而元素全为零的行所对应的顶点都是树叶。10.没G为有根树,证明:当把有向边视为无向边时,G为自由树叶。[证](1)注意到有根树中只有一个结点进数为零(即根结点),其它n-1个结点的进数均为1。根据第六章§164 2定理1(2),有向图中诸结点的进数之和等于边数,可知有根树的边数为n-1;(2)又因为有根树从根结点可达任一结点(第七章§2定义1(3)),于是当把有向边视为无向边时,有根树应为弱连通图。综合(1)、(2)根据第七章§1定理1的3),可知,当我们把有向边视为无向边时,有根树G是自由树。11.设G=(V,E)为有向图,若G在弱连通意义下无圈,证明G中必有入度为0的结点,且G中必有出度为0的结点。[证]用反证法。假设有向图G中无进度为0的结点,于是G中任一结点,之进度都大于等于1,从而G中诸结点的进度之和大于等于n。根据第六章§2定义1(2),有向图中诸结点的进数之和等于边数,可知有向图G的边数m大于等于n。又当忽视有向边的方向时,已知G是一个连通图,从而G中有圈(否则,G连通且无圈,根据树的定义,G为树,根据第七章§1的定理1.3)或4)知m=n-1,这与m≥n矛盾),这与G在弱连通意义下无圈矛盾。因此可见G中必有进度为0的结点。同理可证G中必有出度为0的结点。12.设T为二叉树,证明:1)T的第l层上的结点总数不超过2l(其中l≥0);2)若T的高度为h,则T至多只有2h+1-1个结点。[证]1)用归纳法。[基始步],当l=0时,由二叉树只有一个结点,即根结点,故结论为真。[归纳假设],当l=k时,结论为真。即第k层上的结点总数不超过2k。[归纳步],当l=k+1时,由于二叉树中,每个结点至多有2个儿子,于是第k+1层结点总数不超过第k层结占总数·2≤2k·2(归纳假设)=2k+1即当l=k+1时,结论也真。故对于任何自然数l≥0,1)是真的。2)由于每一层(第l层)结点总数不超过2l,于是二叉树T的结点部数不超过2°+2′+…+2h=因此2)得证。AEBFCDJhGIR13.将下图表示成以R为根的自顶向下的有根树,然后再将有根树化为二叉树。164 [解]转化后的自顶向下的有根树如图(a)所示:ABRFEHGIJCD(a)RBAIDCFJGH相关的二叉树如图(b)所示:14.对于表达式(35xyz2+6w/x)—x3/(yw)用中序画成二叉树。[解]要把所给表达式表示成二对树,首先要变换成:(35*x*y*(z*z)+(6w)/x)—(x*x*x)/(y*w)再由此式画出二叉树如图(a)因此,其前序波兰表达式(前序历遍):—+***35xy*zz/*6wx/*xxx*yw其后序波兰表达式(后序历遍):164 35x*y*zz**6w*x/+xx*x*yw*/—vvvvv(a)164'