0theexpressionfortheprobabilityoferrortakestheform1VT1∞P(error)=p(r|s1(t))dr+p(r|s0(t))dr202VT2√1VTrr+EbrE1∞rr2−b−=e2σ2I0dr+e2σ2dr20σ2σ22Vσ2T204
TheoptimumthresholdlevelisthevalueofVT√thatminimizestheprobabilityoferror.However,whenEb1theoptimumvalueisclosetoEbandwewillusethisthresholdtosimplifytheN02analysis.TheintegralinvolvingtheBesselfunctioncannotbeevaluatedinclosedform.InsteadofI0(x)wewillusetheapproximationexI0(x)≈√2πxwhichisvalidforlargex,thatisforhighSNR.Inthiscase√√E11VTrr2+EbrE12br√−b−(r−Eb)2/2σ2e2σ2I0dr≈√edr20σ2σ2202πσ2EbThisintegralisfurthersimplifiedifweobservethatforhighSNR,theintegrandisdominantinthe√vicinityofEbandtherefore,thelowerlimitcanbesubstitutedby−∞.Also1(r1√≈2πσ2Eb2πσ2andtherefore,√1√EbEb(√√12r−(r−E)2/2σ2121−(r−E)2/2σ2√ebdr≈ebdr202πσ2Eb2−∞2πσ211Eb=Q22N0Finally11E1∞2rr2b−P(error)=Q+√eN0dr22N2EbN00211E1−Ebb≤Q+e4N0课后答案网22N02Problem7.54(a)FourphasePSKIfweuseapulseshapehavingaraisedcosinespectrumwitharolloffα,thesymbolrateisdeter-minedfromtherelationwww.hackshp.cn1(1+α)=500002THence,1105=T1+αwhereW=105Hzisthechannelbandwidth.Thebitrateis22×105=bpsT1+α(b)BinaryFSKwithnoncoherentdetectionInthiscaseweselectthetwofrequenciestohaveafrequencyseparationof1,where1istheTTsymbolrate.Hence1f1=fc−2T1f2=f+c+2T205
wherefcisthecarrierinthecenterofthechannelband.Thus,wehave1=500002Torequivalently15=10THence,thebitrateis105bps.(c)M=4FSKwithnoncoherentdetectionInthiscasewerequirefourfrequencieswithadjacentfrequenciesseparationof1.Hence,weselectT1.5111.5f1=fc−|,f2=fc−,f3=fc+,f4=fc+T2T2TTwherefisthecarrierfrequencyand1=25000,or,equivalently,c2T1=50000TSincethesymbolrateis50000symbolspersecondandeachsymbolconveys2bits,thebitrateis105bps.Problem7.55a)Fornrepeatersincascade,theprobabilityofioutofnrepeaterstoproduceanerrorisgivenbythebinomialdistributionnin−iPi=p(1−p)iHowever,thereisabiterrorattheoutputoftheterminalreceiveronlywhenanoddnumberofrepeatersproducesanerror.Hence,theoverallprobabilityoferrorisnP=P=pi(1−p)n−inoddii=oddLetPevenbetheprobabilitythatanevennumberofrepeatersproducesanerror.Then课后答案网nP=pi(1−p)n−ievenii=evenandtherefore,nwww.hackshp.cnnin−inPeven+Podd=p(1−p)=(p+1−p)=1ii=0OnemorerelationbetweenPevenandPoddcanbeprovidedifweconsiderthedifferencePeven−Podd.Clearly,nin−inin−iPeven−Podd=p(1−p)−p(1−p)iii=eveni=oddanin−inin−i=(−p)(1−p)+(−p)(1−p)iii=eveni=odd=(1−p−p)n=(1−2p)nwheretheequality(a)followsfromthefactthat(−1)iis1forievenand−1wheniisodd.SolvingthesystemPeven+Podd=1P−P=(1−2p)nevenodd206
weobtain1nPn=Podd=(1−(1−2p))2b)Expandingthequantity(1−2p)n,weobtainnn(n−1)2(1−2p)=1−n2p+(2p)+···2Since,p1wecanignoreallthepowersofpwhicharegreaterthanone.Hence,1−6−4Pn≈(1−1+n2p)=np=100×10=102Problem7.56Theoverallprobabilityoferrorisapproximatedby1EbP(e)=KQN0%Thus,withP(e)=10−6andK=100,weobtaintheprobabilityofeachrepeaterP=QEb=rN010−8.TheargumentofthefunctionQ[·]thatprovidesavalueof10−8isfoundfromtablestobe1Eb=5.61N0Hence,therequiredEbis5.612=31.47N0Problem7.57a)Theantennagainforaparabolicantennaofdiameter课后答案网Dis2πDGR=ηλIfweassumethattheefficiencyfactoris0.5,thenwithcwww.hackshp.cn3×108λ===0.3mD=3×0.3048mf109weobtainGR=GT=45.8458=16.61dBb)TheeffectiveradiatedpowerisEIRP=PTGT=GT=16.61dBc)ThereceivedpowerisPTGTGR−9PR=2=2.995×10=−85.23dB=−55.23dBm4πdλ207
NotethatactualpowerinWattsdBm=10log1010−3=30+10log10(powerinWatts)Problem7.58a)TheantennagainforaparabolicantennaofdiameterDis2πDGR=ηλIfweassumethattheefficiencyfactoris0.5,thenwithc3×108λ===0.3mandD=1mf109weobtainGR=GT=54.83=17.39dBb)TheeffectiveradiatedpowerisEIRP=PTGT=0.1×54.83=7.39dBc)ThereceivedpowerisPTGTGR−10PR=2=1.904×10=−97.20dB=−67.20dBm4πdλProblem7.59Thewavelengthofthetransmittedsignalis课后答案网3×108λ==0.03m10×109Thegainoftheparabolicantennais22πDπ105GR=ηwww.hackshp.cn=0.6=6.58×10=58.18dBλ0.03ThereceivedpowerattheoutputofthereceiverantennaisPTGTGR3×101.5×6.58×105−13PR=(4πd)2=4×1072=2.22×10=−126.53dBλ(4×3.14159×0.03)Problem7.60a)SinceT=3000K,itfollowsthatN=kT=1.38×10−23×300=4.14×10−21W/Hz0Ifweassumethatthereceivingantennahasanefficiencyη=0.5,thenitsgainisgivenby22πD3.14159×505GR=ηλ=0.53×108=5.483×10=57.39dB2×109208
Hence,thereceivedpowerlevelisPTGTGR10×10×5.483×105−13PR=d2=1082=7.8125×10=−121.07dB(4πλ)(4×3.14159×0.15)b)IfEb=10dB=10,thenN0−1−13PREb7.8125×10−17R==×10=1.8871×10=18.871Mbits/secN0N04.14×10−21Problem7.61TheoverallgainofthesystemisGtot=Ga1+Gos+GBPF+Ga2=10−5−1+25=29dBHence,thepowerofthesignalattheinputofthedemodulatorisP=(−113−30)+29=−114dBs,demThenoise-figureforthecascadeofthefirstamplifierandthemultiplierisFos−10.5100.5−1F1=Fa1+=10+=3.3785Ga101WeassumethatF1isthespotnoise-figureandtherefore,itmeasurestheratiooftheavailablePSDoutofthetwodevicestotheavailablePSDoutofanidealdevicewiththesameavailablegain.Thatis,Sn,o(f)F1=Sn,i(f)Ga1GoswhereSn,o(f)isthepowerspectraldensityofthenoiseattheinputofthebandpassfilterandSn,i(f)isthepowerspectraldensityattheinputoftheoverallsystem.Hence,课后答案网−175−30−0.5−20Sn,o(f)=1010×10×10×3.3785=3.3785×10Thenoise-figureofthecascadeofthebandpassfilterandthesecondamplifierisFa−1100.5−120.2F2=FBPFwww.hackshp.cn+G=10+10−0.1=4.307BPFHence,thepowerofthenoiseattheoutputofthesystemisP=2S(f)BGGaF=7.31×10−12=−111.36dBn,demn,oBPF22Thesignaltonoiseratioattheoutputofthesystem(inputtothedemodulator)isPs,demSNR==−114+111.36=−2.64dBPn,demProblem7.62Thewavelengthofthetransmissionisc3×108λ===0.75mf4×109209
If1MHzisthepassbandbandwidth,thentherateofbinarytransmissionisRb=W=106bps.Hence,withN0=4.1×10−21W/HzweobtainPREb6−211.5−13=Rb=⇒10×4.1×10×10=1.2965×10N0N0Thetransmittedpowerisrelatedtothereceivedpowerthroughtherelation2PTGTGRPRdPR=d2=⇒PT=4π(4π)GTGRλλSubstitutinginthisexpressionthevaluesGT=100.6,GR=105,d=36×106andλ=0.75weobtainPT=0.1185=−9.26dBWProblem7.63SinceT=2900+150=3050K,itfollowsthatN=kT=1.38×10−23×305=4.21×10−21W/Hz0Thetransmittingwavelengthλisc3×108λ===0.130mf2.3×109Hence,thegainofthereceivingantennais22πD3.14159×646GR=η=0.55=1.3156×10=61.19dBλ0.130andtherefore,thereceivedpowerlevelisPTGTGR17×102.7×1.3156×106−12PR=(4πd)2=课后答案网1.6×10112=4.686×10=−113.29dBλ(4×3.14159×0.130)IfEb/N0=6dB=100.6,then−1−12PREb4.686×10−0.69R==×10=4.4312×10=4.4312Gbits/secN0N04.www.hackshp.cn21×10−21Problem7.64Inthenondecision-directedtimingrecoverymethodwemaximizethefunctionΛ(τ)=y2(τ)2mmwithrespecttoτ.Thus,weobtaintheconditiondΛ2(τ)dym(τ)=2ym(τ)=0dτdτmSupposenowthatweapproximatethederivativeofthelog-likelihoodΛ2(τ)bythefinitedifferencedΛ2(τ)Λ2(τ+δ)−Λ2(τ−δ)≈dτ2δ210
Then,ifwesubstitutetheexpressionofΛ2(τ)inthepreviousapproximation,weobtaindΛ2(τ)dτmym2(τ+δ)−mym2(τ−δ)=2δ221=r(t)u(t−mT−τ−δ)dt−r(t)u(t−mT−τ+δ)dt2δmwhereu(−t)=gR(t)istheimpulseresponseofthematchedfilterinthereceiver.However,thisistheexpressionoftheearly-lategatesynchronizer,wherethelowpassfilterhasbeensubstitutedbythesummationoperator.Thus,theearly-lategatesynchronizerisacloseapproximationtothetimingrecoverysystem.Problem7.65Anon-offkeyingsignalisrepresentedass1(t)=Acos(2πfct+θc),0≤t≤T(binary1)s2(t)=0,0≤t≤T(binary0)Letr(t)bethereceivedsignal,thatisr(t)=s(t;θc)+n(t)wheres(t;θ)iseithers(t)ors(t)andn(t)iswhiteGaussiannoisewithvarianceN0.Thec122likelihoodfunction,thatistobemaximizedwithrespecttoθcovertheinterval[0,T],isproportionaltoT22Λ(θc)=exp−[r(t)−s(t;θc)]dtN00MaximizationofΛ(θc)isequivalenttothemaximizationofthelog-likelihoodfunction课后答案网T22ΛL(θc)=−[r(t)−s(t;θc)]dtN002T4T2T=−r2(t)dt+r(t)s(t;θ)dt−s2(t;θ)dtccN00N00N00Sincethefirsttermdoesnotinvolvetheparameterofinterestwww.hackshp.cnθcandthelasttermissimplyaconstantequaltothesignalenergyofthesignalover[0,T]whichisindependentofthecarrierphase,wecancarrythemaximizationoverthefunctionTV(θc)=r(t)s(t;θc)dt0Notethats(t;θc)cantaketwodifferentvalues,s1(t)ands2(t),dependingonthetransmissionofabinary1or0.Thus,amoreappropriatefunctiontomaximizeistheaveragelog-likelihoodTT11V¯(θc)=r(t)s1(t)dt+r(t)s2(t)dt2020Sinces2(t)=0,thefunctionV¯(θc)takestheformT1V¯(θc)=r(t)Acos(2πfct+θc)dt20211
SettingthederivativeofV¯(θc)withrespecttoθcequaltozero,weobtainTϑV¯(θc)1=0=r(t)Asin(2πfct+θc)dtϑθc20TT11=cosθcr(t)Asin(2πfct)dt+sinθcr(t)Acos(2πfct)dt2020Thus,themaximumlikelihoodestimateofthecarrierphaseisT0r(t)Asin(2πfct)dtθc,ML=−arctanT0r(t)Acos(2πfct)dt课后答案网www.hackshp.cn212
Chapter8Problem8.11)ThefollowingtableshowsthevaluesofEh(W)/TobtainedusinganadaptiverecursiveNewton-Cotesnumericalintegrationrule.WT0.51.01.52.02.53.0Eh(W)/T0.22530.34420.37300.37480.34790.3750AplotofEh(W)/TasafunctionofWTisgiveninthenextfigure0.40.350.30.250.2Energy/T0.150.10.0500.511.522.533.5WT2)ThevalueofEh(W)asW→∞is∞TlimE课后答案网(W)=g2(t)dt=g2(t)dthTTW→∞−∞0T212πT=1+cost−dt40T2T1T2πT=+cost−dtwww.hackshp.cn420T21T2πT+1+cos2t−dt80T2TT3T=+==0.3750T488Problem8.2Wehavea+n−1withProb.124y=a+n+1withProb.124a+nwithProb.12Bysymmetry,Pe=P(e|a=1)=P(e|a=−1),hence,11311Pe=P(e|a=−1)=P(n−1>0)+Pn−>0+Pn−>024242111311=Q+Q+Q2σn42σn42σn213
Problem8.3a)Ifthetransmittedsignalis∞r(t)=anh(t−nT)+n(t)n=−∞thentheoutputofthereceivingfilteris∞y(t)=anx(t−nT)+ν(t)n=−∞wherex(t)=h(t)h(t)andν(t)=n(t)h(t).Ifthesamplingtimeisoffby10%,thenthesamplesattheoutputofthecorrelatoraretakenatt=(m±1)T.Assumingthatt=(m−1)Twithout1010lossofgenerality,thenthesampledsequenceis∞11ym=anx((m−T−nT)+ν((m−)T)1010n=−∞∞1IfthesignalpulseisrectangularwithamplitudeAanddurationT,thenn=−∞anx((m−10T−nT)isnonzeroonlyforn=mandn=m−1andtherefore,thesampledsequenceisgivenby111ym=amx(−T)+am−1x(T−T)+ν((m−)T)10101092121=amAT+am−1AT+ν((m−)T)101010Thepowerspectraldensityofthenoiseattheoutputofthecorrelatoris2N0222Sν(f)=Sn(f)|H(f)|=ATsinc(fT)2Thus,thevarianceofthenoiseis∞2课后答案网N0222N0221N02σnu=ATsinc(fT)df=AT=AT−∞22T2andtherefore,theSNRis222292(AT)812ATSNR==www.hackshp.cn10N0A2T100N0Asitisobserved,thereisalossof10log81=−0.9151dBduetothemistiming.10100b)Recallfromparta)thatthesampledsequenceis9212ym=amAT+am−1AT+νm1010A2TThetermam−110expressestheISIintroducedtothesystem.Ifam=1istransmitted,thentheprobabilityoferroris11P(e|am=1)=P(e|am=1,am−1=1)+P(e|am=1,am−1=−1)22−A2T2−8A2T2νν1−110−=√eN0A2Tdν+√eN0A2Tdν2πN0A2T−∞2πN0A2T−∞1112A2T1822A2T=Q+Q2N0210N0214
SincethesymbolsofthebinaryPAMsystemareequiprobablethepreviousderivedexpressionistheprobabilityoferrorwhenasymbolbysymboldetectorisemployed.ComparingthiswiththeprobabilityoferrorofasystemwithnoISI,weobservethatthereisanincreaseoftheprobabilityoferrorby111822A2T12A2TPdiff(e)=Q−Q210N02N0Problem8.41)ThepowerspectraldensityofX(t)isgivenby12Sx(f)=Sa(f)|GT(f)|TTheFouriertransformofg(t)issinπfT−jπfTGT(f)=F[g(t)]=ATeπfTHence,|G(f)|2=(AT)2sinc2(fT)Tandtherefore,S(f)=A2TS(f)sinc2(fT)=A2Tsinc2(fT)xa2)Ifg1(t)isusedinsteadofg(t)andthesymbolintervalisT,then12Sx(f)=Sa(f)|G2T(f)|T12222=(A2T)sinc(f2T)=4ATsinc(f2T)T3)Ifweprecodetheinputsequenceas课后答案网bn=an+αan−3,then1+α2m=0Rb(m)=αm=±3www.hackshp.cn0otherwiseandtherefore,thepowerspectraldensitySb(f)isS(f)=1+α2+2αcos(2πf3T)bToobtainanullatf=1,theparameterαshouldbesuchthat3T1+α2+2αcos(2πf3T)=0=⇒α=−1|1f=34)Theanswertothisquestionisno.ThisisbecauseSb(f)isananalyticfunctionandunlessitisidenticaltozeroitcanhaveatmostacountablenumberofzeros.Thispropertyoftheanalyticfunctionsisalsoreferredasthetheoremofisolatedzeros.215
Problem8.51)Thepowerspectraldensityofs(t)isσ21S(f)=a|G(f)|2=|G(f)|2sTTTTTheFouriertransformGT(f)ofthesignalg(t)ist−Tt−3TG(f)=FΠ4−Π4TTT22TT−j2πfTTT−j2πf3T=sinc(f)e4−sinc(f)e42222TT−j2πfTj2πfT−j2πfT=sinc(f)e2e4−e422TTT−j2πfT=sinc(f)sin(2πf)2je2224Hence,222T2T|GT(f)|=Tsinc(f)sin(2πf)24andtherefore,2T2TSs(f)=Tsinc(f)sin(2πf)242)Iftheprecodingschemebn=an+kan−1isused,then1+k2m=0Rb(m)=km=±10otherwiseThus,课后答案网S(f)=1+k2+2kcos(2πfT)bandthereforethespectrumofs(t)is22T2TSs(f)=(1+k+2kcos(2πfT))Tsinc(f)sin(2πf)www.hackshp.cn24Inordertoproduceafrequencynullatf=1wehavetochoosekinsuchawaythatT1+k2+2kcos(2πfT)=1+k2+2k=0|f=1/TTheappropriatevalueofkis−1.3)Iftheprecodingschemeofthepreviouspartisused,theninordertohavenullsatfrequenciesf=n,thevalueoftheparameterkshouldbesuchthat4T1+k2+2kcos(2πfT)=1+k2=0|f=1/4TAsitisobserveditisnotpossibletoachievethedesirednullswithrealvaluesofk.Insteadofthepre-codingschemeofthepreviouspartwesuggestpre-codingoftheformbn=an+kan−2216
Inthiscase1+k2m=0Rb(m)=km=±20otherwiseThus,S(f)=1+k2+2kcos(2π2fT)bandthereforeS(n)=0fork=1.b2TProblem8.6a)ThepowerspectraldensityoftheFSKsignalmaybeevaluatedbyusingequation(8.5.32)withk=2(binary)signalsandprobabilitiesp=p=1.Thus,whentheconditionthatthecarrier012phaseθ0andandθ1arefixed,weobtain∞1nn2n12S(f)=2|S0()+S1()|δ(f−)+|S0(f)−S1(f)|4Tbn=−∞TbTbTb4TbwhereS0(f)andS1(f)aretheFouriertransformsofs0(t)ands1(t).Inparticular,TbS(f)=s(t)e−j2πftdt0001T2Ebbj2πft∆f=cos(2πf0t+θ0)edt,f0=fc−Tb021=12EbsinπTb(f−f0)+sinπTb(f+f0)e−jπfTbejθ02Tbπ(f−f0)π(f+f0)Similarly,TbS(f)=s(t)e−j2πftdt1101=12EbsinπTb(f−f1)+sinπTb(f+f1)e−jπfTbejθ12课后答案网Tbπ(f−f1)π(f+f1)∆fwheref1=fc+2.ByexpressingS(f)as∞1n2n2n∗nnS(f)=2|S0()|+|S1()|+2Re[S0()S1()]δ(f−)4Tbn=−∞www.hackshp.cnTbTbTbTbTb1+|S(f)|2+|S(f)|2−2Re[S(f)S∗(f)]01014Tbwenotethatthecarrierphasesθ0andθ1affectonlythetermsRe(S0S1∗).Ifweaverageovertherandomphases,thesetermsdropout.Hence,wehave∞1n2n2nS(f)=2|S0()|+|S1()|δ(f−)4Tbn=−∞TbTbTb1+|S(f)|2+|S(f)|2014Tbwhere2TbEbsinπTb(f−fk)sinπTb(f+fk)|Sk(f)|=+,k=0,12π(f−fk)π(f+fk)NotethatthefirstterminS(f)consistsofasequenceofsamplesandthesecondtermconstitutesthecontinuousspectrum.217
b)ItisapparentfromS(f)thattheterms|S(f)|2decayproportionallyas1.alsonotethatk(f−fk)2222TbEbsinπTb(f−fk)sinπTb(f+fk)|Sk(f)|=+2π(f−fk)π(f+fk)becausetheproductsinπTb(f−fk)sinπTb(f+fk)×≈0π(f−fk)π(f+fk)duetotherelationthatthecarrierfrequencyf1.cTbProblem8.71)Theautocorrelationfunctionoftheinformationsymbols{an}is∗12Ra(k)=E[ana+n+k]=×|an|δ(k)=δ(k)4Thus,thepowerspectraldensityofv(t)is1212SV(f)=Sa(f)|G(f)|=|G(f)|TTt−TwhereG(f)=F[g(t)].Ifg(t)=AΠ(2),weobtain|G(f)|2=A2T2sinc2(fT)andtherefore,TS(f)=A2Tsinc2(fT)VInthenextfigureweplotSV(f)forT=A=1.10.90.80.70.60.5Sv(f)0.4课后答案网0.30.20.10-5-4www.hackshp.cn-3-2-1012345frequencyf2)Ifg(t)=Asin(πt)Π(t−T/2),then2T1111−j2πfTG(f)=Aδ(f−)−δ(f+)Tsinc(fT)e22j42j4AT11−j(2πfT+π)=[δ(f−)−δ(f+)]sinc(fT)e22244AT−jπ[(f−1)T+1]11−jπT=e42sinc((f−)T)−sinc((f−)T)e2244Thus,222AT2121|G(f)|=sinc((f+)T)+sinc((f−)T)44411πT−2sinc((f+)T)sinc((f−)T)cos442218
andthepowerspectralofthetransmittedsignalis2AT2121SV(f)=sinc((f+)T)+sinc((f−)T)44411πT−2sinc((f+)T)sinc((f−)T)cos442InthenextfigureweplotSV(f)fortwospecialvaluesofthetimeintervalT.TheamplitudeofthesignalAwassetto1forbothcases.0.450.80.40.70.350.6T=10.30.50.25T=20.4Sv(f)0.2Sv(f)0.30.150.20.10.050.100-5-4-3-2-1012345-5-4-3-2-1012345frequencyffrequencyf3)Thefirstspectralnullofthepowerspectrumdensityinpart1)isatposition1Wnull=TThe3-dBbandwidthisspecifiedbysolvingtheequation:1SV(W3dB)=SV(0)2Sincesinc2(0)=1,weobtain211sinc(W3dB课后答案网T)=2=⇒sin(πW3dBT)=√πW3dBT2Solvingthelatterequationnumericallywefindthat1.39160.443W3dB==www.hackshp.cnπTTTofindthefirstspectralnullandthe3-dBbandwidthforthesignalwithpowerspectraldensityinpart2)weassumethatT=1.Inthiscase2A2121SV(f)=sinc((f+))+sinc((f−))444andasitisobservedthereisnovalueoffthatmakesSV(f)equaltozero.Thus,Wnull=∞.Tofindthe3-dBbandwidthnotethatA21A2SV(0)=2sinc()=1.6212444Solvingnumericallytheequation1A2SV(W3dB)=1.621224wefindthatW3dB=0.5412.Asitisobservedthe3-dBbandwidthismorerobustasameasureforthebandwidthofthesignal.219
Problem8.8ThetransitionprobabilitymatrixPis010110011P=211001010Hence,102124461211014264P2=andP4=4011216462412016442andtherefore,2446100−11426401−104Pγ=1646240−1106442−1001−400410−4401==−γ1604−404400−4Thus,P4γ=−1γandbypre-multiplyingbothsidesbyPk,weobtain4k+41kPγ=−Pγ4Problem8.9课后答案网a)TakingtheinverseFouriertransformofH(f),weobtain−1ααh(t)=F[H(f)]=δ(t)+δ(t−t0)+δ(t+t0)www.hackshp.cn22Hence,ααy(t)=s(t)h(t)=s(t)+s(t−t0)+s(t+t0)22b)Ifthesignals(t)isusedtomodulatethesequence{an},thenthetransmittedsignalis∞u(t)=ans(t−nT)n=−∞Thereceivedsignalistheconvolutionofu(t)withh(t).Hence,∞ααy(t)=u(t)h(t)=ans(t−nT)δ(t)+δ(t−t0)+δ(t+t0)22n=−∞∞∞∞αα=ans(t−nT)+ans(t−t0−nT)+ans(t+t0−nT)22n=−∞n=−∞n=−∞220
Thus,theoutputofthematchedfilters(−t)atthetimeinstantt1is∞∞w(t1)=ans(τ−nT)s(τ−t1)dτn=−∞−∞∞∞α+ans(τ−t0−nT)s(τ−t1)dτ2−∞n=−∞∞∞α+ans(τ+t0−nT)s(τ−t1)dτ2−∞n=−∞Ifwedenotethesignals(t)s(t)byx(t),thentheoutputofthematchedfilteratt1=kTis∞w(kT)=anx(kT−nT)n=−∞∞∞αα+anx(kT−t0−nT)+anx(kT+t0−nT)22n=−∞n=−∞c)Witht0=Tandk=ninthepreviousequation,weobtainwk=akx0+anxk−nn=kαααα+akx−1+anxk−n−1+akx1+anxk−n+12222n=kn=kαααα=akx0+x−1+x1+anxk−n+xk−n−1+xk−n+12222n=kThetermsunderthesummationistheISIintroducedbythechannel.Problem8.10a)Eachsegmentofthewire-linecanbeconsideredasabandpassfilterwithbandwidth课后答案网W=1200Hz.Thus,thehighestbitratethatcanbetransmittedwithoutISIbymeansofbinaryPAMisR=2W=2400bpsb)TheprobabilityoferrorforbinaryPAMtransmissioniswww.hackshp.cn12EbP2=QN0Hence,usingmathematicaltablesforthefunctionQ[·],wefindthatP2=10−7isobtainedfor12EbEb=5.2=⇒=13.52=11.30dBN0N0c)ThereceivedpowerPRisrelatedtothedesiredSNRperbitthroughtherelationPREb=RN0N0Hence,withN0=4.1×10−21weobtainP=4.1×10−21×1200×13.52=6.6518×10−17=−161.77dBWR221
SincethepowerlossofeachsegmentisLs=50Km×1dB/Km=50dBthetransmittedpowerateachrepeatershouldbePT=PR+Ls=−161.77+50=−111.77dBWProblem8.11Thepulsex(t)havingtheraisedcosinespectrumiscos(παt/T)x(t)=sinc(t/T)1−4α2t2/T2Thefunctionsinc(t/T)is1whent=0and0whent=nT.Ontheotherhandcos(παt/T)1t=0g(t)==1−4α2t2/T2boundedt=0Thefunctiong(t)needstobecheckedonlyforthosevaluesoftsuchthat4α2t2/T2=1orαt=T.2However,cos(πx)cos(παt/T)lim=lim2αt→T1−4α2t2/T2x→11−x2andbyusingL’Hospital’srulecos(πx)πππlim2=limsin(x)=<∞x→11−xx→1222Hence,1n=0x(nT)=课后答案网0n=0meaningthatthepulsex(t)satisfiestheNyquistcriterion.Problem8.12SubstitutingtheexpressionofXrcwww.hackshp.cn(f)inthedesiredintegral,weobtain∞−1−α1−α2TTπT1−α2TXrc(f)df=1+cos(−f−)df+Tdf−∞−1+α2α2T−1−α2T2T1+α2TTπT1−α+1+cos(f−)df1−α2α2T2T−1−α1+α2TT1−α2TT=df+T+df−1+α2T1−α22T2T−1−α1+α2TπT1−α2TπT1−α+cos(f+)df+cos(f−)df−1+αα2T1−αα2T2T2T0απTTπT=1+cosxdx+cosxdx−αα0αTαTπT=1+cosxdx=1+0=1−ααT222
Problem8.13LetX(f)besuchthatTΠ(fT)+U(f)|f|<1V(f)|f|<1Re[X(f)]=TIm[X(f)]=T0otherwise0otherwisewithU(f)evenwithrespectto0andoddwithrespecttof=1Sincex(t)isreal,V(f)isodd2Twithrespectto0andbyassumptionitisevenwithrespecttof=1.Then,2Tx(t)=F−1[X(f)]1112Tj2πft2Tj2πftTj2πft=X(f)edf+X(f)edf+X(f)edf−1−11T2T2T112Tj2πftTj2πft=Tedf+[U(f)+jV(f)]edf−1−12TT1Tj2πft=sinc(t/T)+[U(f)+jV(f)]edf−1T1ConsiderfirsttheintegralT1U(f)ej2πftdf.Clearly,−T101Tj2πftj2πftTj2πftU(f)edf=U(f)edf+U(f)edf−1−10TTandbyusingthechangeofvariablesf=f+1andf=f−1forthetwointegralsontheright2T2Thandsiderespectively,weobtain1Tj2πftU(f)edf−1T11−jπt2T课后答案网1j2πftjπt2T1j2πft=eTU(f−)edf+eTU(f+)edf−12T−12T2T2T1ajπt−jπt2T1j2πft=eT−eTU(f+)edf−12T2T1π2T1j2πft=2jsin(t)www.hackshp.cnU(f+)edfT−12T2Twhereforstep(a)weusedtheoddsymmetryofU(f)withrespecttof=1,thatis2T11U(f−)=−U(f+)2T2T1FortheintegralT1V(f)ej2πftdfwehave−T1Tj2πftV(f)edf−1T01j2πftTj2πft=V(f)edf+V(f)edf−10T11−jπt2T1j2πftjπt2T1j2πft=eTV(f−)edf+eTV(f+)edf−12T−12T2T2T223
However,V(f)isoddwithrespectto0andsinceV(f+1)andV(f−1)areeven,thetranslated2T2Tspectrasatisfy112T1j2πft2T1j2πftV(f−)edf=−V(f+)edf−12T−12T2T2THence,1π2T1j2πftx(t)=sinc(t/T)+2jsin(t)U(f+)edfT−12T2T1π2T1j2πft−2sin(t)U(f+)edfT−12T2Tandtherefore,1n=0x(nT)=0n=0Thus,thesignalx(t)satisfiestheNyquistcriterion.Problem8.14ThebandwidthofthechannelisW=3000−300=2700HzSincetheminimumtransmissionbandwidthrequiredforbandpasssignalingisR,whereRistherateoftransmission,weconcludethatthemaximumvalueofthesymbolrateforthegivenchannelisRmax=2700.IfanM-aryPAMmodulationisusedfortransmission,theninordertoachieveabit-rateof9600bps,withmaximumrateofRmax,theminimumsizeoftheconstellationisM=2k=16.Inthiscase,thesymbolrateis9600R==2400symbols/seckandthesymbolintervalT=1课后答案网=1sec.Theroll-offfactorαoftheraisedcosinepulseusedforR2400transmissionisisdeterminedbynotingthat1200(1+α)=1350,andhence,α=0.125.Therefore,thesquaredrootraisedcosinepulsecanhavearoll-offofα=0.125.Problem8.15www.hackshp.cnSincethebandwidthoftheideallowpasschannelisW=2400Hz,therateoftransmissionisR=2×2400=4800symbols/secThenumberofbitspersymbolis14400k==34800Hence,thenumberoftransmittedsymbolsis23=8.Ifaduobinarypulseisusedfortransmission,thenthenumberofpossibletransmittedsymbolsis2M−1=15.Thesesymbolshavetheformbn=0,±2d,±4d,...,±12dwhere2distheminimumdistancebetweenthepointsofthe8-PAMconstellation.Theprobabilitymassfunctionofthereceivedsymbolsis8−|m|P(b=2md)=,m=0,±1,...,±764224
Anupperboundoftheprobabilityoferrorisgivenby(see(8.4.33))121π6kEb,avPM<21−QM24M2−1N0WithPM=10−6andM=8weobtainkEb,av3=1.3193×10=⇒Eb,av=0.088N0Problem8.16a)Thespectrumofthebasebandsignalis1212SV(f)=Sa(f)|Xrc(f)|=|Xrc(f)|TTwhereT=1and2400T0≤|f|≤14TX(f)=T(1+cos(2πT(|f|−1))1≤|f|≤3rc24T4T4T0otherwiseIfthecarriersignalhastheformc(t)=Acos(2πfct),thenthespectrumoftheDSB-SCmodulatedsignal,SU(f),isASU(f)=[SV(f−fc)+SV(f+fc)]2AsketchofSU(f)isshowninthenextfigure.2AT课后答案网2-fc-3/4T-fc-fc+3/4Twww.hackshp.cnfc-3/4Tfcfc+3/4Tb)Assumingbandpasscoherentdemodulationusingamatchedfilter,thereceivedsignalr(t)isfirstpassedthroughalinearfilterwithimpulseresponsegR(t)=Axrc(T−t)cos(2πfc(T−t))Theoutputofthematchedfilterissampledatt=Tandthesamplesarepassedtothedetector.Thedetectorisasimplethresholddevicethatdecidesifabinary1or0wastransmitteddependingonthesignoftheinputsamples.Thefollowingfigureshowsablockdiagramoftheoptimumbandpasscoherentdemodulator.t=TBandpassDetectorr(t)matchedfilter.(ThresholdgR(t)device)225
Problem8.17a)IfthepowerspectraldensityoftheadditivenoiseisSn(f),thenthePSDofthenoiseattheoutputoftheprewhiteningfilterisS(f)=S(f)|H(f)|2νnpInorderforSν(f)tobeflat(whitenoise),Hp(f)shouldbesuchthat1Hp(f)=&Sn(f)2)Lethp(t)betheimpulseresponseoftheprewhiteningfilterHp(f).Thatis,hp(t)=F−1[Hp(f)].Then,theinputtothematchedfilteristhesignal˜s(t)=s(t)hp(t).Thefrequencyresponseofthefiltermatchedto˜s(t)isS˜(f)=S˜∗(f)e−j2πft0==S∗(f)H∗(f)e−j2πft0mpwheret0issomenominaltime-delayatwhichwesamplethefilteroutput.3)Thefrequencyresponseoftheoverallsystem,prewhiteningfilterfollowedbythematchedfilter,is∗2−j2πftS∗(f)0−j2πft0G(f)=S˜m(f)Hp(f)=S(f)|Hp(f)|e=eSn(f)4)Thevarianceofthenoiseattheoutputofthegeneralizedmatchedfilteris∞∞|S(f)|2σ2=S(f)|G(f)|2df=dfn−∞−∞Sn(f)Atthesamplinginstantt=t0=课后答案网T,thesignalcomponentattheoutputofthematchedfilteris∞∞y(T)=Y(f)ej2πfTdf=s(τ)g(T−τ)dτ−∞−∞∞S∗(f)∞|S(f)|2=S(f)df=dfwww.hackshp.cn−∞Sn(f)−∞Sn(f)Hence,theoutputSNRisy2(T)∞|S(f)|2SNR==dfσ2−∞Sn(f)Problem8.18ThebandwidthofthebandpasschannelisW=3300−300=3000HzInordertotransmit9600bpswithasymbolrateR=2400symbolspersecond,thenumberofinformationbitspersymbolshouldbe9600k==42400Hence,a24=16QAMsignalconstellationisneeded.Thecarrierfrequencyfcissetto1800Hz,whichisthemid-frequencyofthefrequencybandthatthebandpasschanneloccupies.Ifapulse226
withraisedcosinespectrumandroll-offfactorαisusedforspectralshaping,thenforthebandpasssignalwithbandwidthWR=1200(1+α)=1500andα=0.25Asketchofthespectrumofthetransmittedsignalpulseisshowninthenextfigure.1/2Tf-3300-1800-300300600180033003000Problem8.19ThechannelbandwidthisW=4000Hz.(a)BinaryPSKwithapulseshapethathasα=1.Hence21(1+α)=20002Tand1=2667,thebitrateis2667bps.T(b)Four-phasePSKwithapulseshapethathasα=1.From(a)thesymbolrateis1=2667and2Tthebitrateis5334bps.(c)M=8QAMwithapulseshapethathasα=1.From(a),thesymbolrateis1=2667and2Thencethebitrate3=8001bps.T(d)BinaryFSKwithnoncoherentdetection.Assumingthatthefrequencyseparationbetweenthetwofrequenciesis∆f=1,where1isthebitrate,thetwofrequenciesaref+1andf−1.TTc2Tc2TSinceW=4000Hz,wemayselect1=1000,or,equivalently,1=2000.Hence,thebitrateis2TT2000bps,andthetwoFSKsignalsareorthogonal.课后答案网(e)FourFSKwithnoncoherentdetection.Inthiscaseweneedfourfrequencieswithseparationof1betweenadjacentfrequencies.Weselectf=f−1.5,f=f−1,f=f+1,andT1cT2c2T3c2Tf=f+1.5,where1=500Hz.Hence,thesymbolrateis1=1000symbolspersecondand4cT2TTsinceeachsymbolcarriestwobitsofinformation,thebitrateis2000bps.(f)M=8FSKwithnoncoherentdetection.Inthiscasewerequireeightfrequencieswithfrequencywww.hackshp.cnseparationof1=500Hzfororthogonality.Sinceeachsymbolcarries3bitsofinformation,theTbitrateis1500bps.Problem8.201)ThebandwidthofthebandpasschannelisW=3000−600=2400HzSinceeachsymboloftheQPSKconstellationconveys2bitsofinformation,thesymbolrateoftransmissionis2400R==1200symbols/sec2Thus,forspectralshapingwecanuseasignalpulsewitharaisedcosinespectrumandroll-offfactorα=1,thatisT12π|f|Xrc(f)=[1+cos(πT|f|)]=cos224002400227
IfthedesiredspectralcharacteristicissplitevenlybetweenthetransmittingfilterGT(f)andthereceivingfilterGR(f),then(1π|f|1GT(f)=GR(f)=cos,|f|<=120012002400TAblockdiagramofthetransmitterisshowninthenextfigure.anG(f)×toChannelTQPSKcos(2πfct)2)Ifthebitrateis4800bps,thenthesymbolrateis4800R==2400symbols/sec2InordertosatisfytheNyquistcriterion,thethesignalpulseusedforspectralshaping,shouldhavethespectrumfX(f)=TΠW√fThus,thefrequencyresponseofthetransmittingfilterisGT(f)=TΠW.Problem8.21ThebandwidthofthebandpasschannelisW=4KHz.Hence,therateoftransmissionshouldbelessorequalto4000symbols/sec.Ifa8-QAMconstellationisemployed,thentherequiredsymbolrateisR=9600/3=3200.Ifasignalpulsewithraisedcosinespectrumisusedforshaping,themaximumallowableroll-offfactorisdeterminedby1600(1+α)=2000whichyieldsα=0.25.Sinceαislessthan50%,weconsideralargerconstellation.Witha16-QAM课后答案网constellationweobtain9600R==24004andwww.hackshp.cn1200(1+α)=20000rα=2/3,whichsatisfiestherequiredconditions.TheprobabilityoferrorforanM-QAMconstellationisgivenbyP=1−(1−P√)2MMwhere113EavP√=21−√QMM(M−1)N0WithPM=10−6weobtainP√=5×10−7andthereforeM113Eav=5×10−72×(1−)Q415×2×10−10UsingthelastequationandthetabulationoftheQ[·]function,wefindthattheaveragetransmittedenergyisE=24.70×10−9av228
NotethatifthedesiredspectralcharacteristicXrc(f)issplitevenlybetweenthetransmittingandreceivingfilter,thentheenergyofthetransmittingpulseis∞∞∞g2(t)dt=|G(f)|2df=X(f)df=1TTrc−∞−∞−∞Hence,theenergyEav=PavTdependsonlyontheamplitudeofthetransmittedpointsandthesymbolintervalT.SinceT=1,theaveragetransmittedpoweris2400Eav−9−7Pav==24.70×10×2400=592.8×10TIfthepointsofthe16-QAMconstellationareevenlyspacedwithminimumdistancebetweenthemequaltod,thentherearefourpointswithcoordinates(±d,±d),fourpointswithcoordinates22(±3d,±3d),fourpointswithcoordinates(±3d,±d),andfourpointswithcoordinates(±d,±3d).222222Thus,theaveragetransmittedpoweris1161d29d210d2P=(A2+A2)=4×+4×+8×=20d2avmcms2×162224i=1SincePav=592.8×10−7,weobtain1Pavd==0.0017220Problem8.22Theroll-offfactorαisrelatedtothebandwidthbytheexpression1+α=2W,orequivalentlyTR(1+α)=2W.ThefollowingtableshowsthesymbolrateforthevariousvaluesoftheexcessbandwidthandforW=1500Hz.α.25.33.50.67.751.00R240022562000179617141500Problem8.23课后答案网Thefollowingtableshowstheprecodedsequence,thetransmittedamplitudelevels,thereceivedsignallevelsandthedecodedsequence,whenthedatasequence10010110010modulatesaduobinarytransmittingfilter.Dataseq.dn:www.hackshp.cn10010110010Precodedseq.pn:011100100011Transmittedseq.an:-1111-1-11-1-1-111Receivedseq.bn:0220-200-2-202Decodedseq.dn:10010110010Problem8.24Thefollowingtableshowstheprecodedsequence,thetransmittedamplitudelevels,thereceivedsignallevelsandthedecodedsequence,whenthedatasequence10010110010modulatesamodifiedduobinarytransmittingfilter.Dataseq.dn:10010110010Precodedseq.pn:0010111000010Transmittedseq.an:-1-11-1111-1-1-1-11-1Receivedseq.bn:20020-2-20020Decodedseq.dn:10010110010229
Problem8.25LetX(z)denotetheZ-transformofthesequencexn,thatisX(z)=xz−nnnThentheprecodingoperationcanbedescribedasD(z)P(z)=mod−MX(z)whereD(z)andP(z)aretheZ-transformsofthedataandprecodedsequencesrespectively.Forexample,ifM=2andX(z)=1+z−1(duobinarysignaling),thenD(z)−1P(z)==⇒P(z)=D(z)−zP(z)1+z−1whichinthetimedomainiswrittenaspn=dn−pn−1andthesubtractionismod-2.However,theinversefilter1existsonlyifx,thefirstcoefficientofX(z)isrelativelyprimeX(z)0withM.Ifthisisnotthecase,thentheprecodedsymbolspncannotbedetermineduniquelyfromthedatasequencedn.Problem8.26Inthecaseofduobinarysignaling,theoutputofthematchedfilterisx(t)=sinc(2Wt)+sinc(2Wt−1)andthesamplesxn−maregivenby课后答案网1n−m=0xn−m=x(nT−mT)=1n−m=10otherwiseTherefore,themetricµ(a)intheViterbialgorithmbecomeswww.hackshp.cnµ(a)=2anrn−anamxn−mnnm=2ar−a2−aannnnn−1nnn=an(2rn−an−an−1)nProblem8.27Theprecodingfortheduobinarysignalingisgivenbypm=dmpm−1Thecorrespondingtrellishastwostatesassociatedwiththebinaryvaluesofthehistorypm−1.Forthemodifiedduobinarysignalingtheprecodingispm=dm⊕pm−2230
Hence,thecorrespondingtrellishasfourstatesdependingonthevaluesofthepair(pm−2,pm−1).Thetwotrellisesaredepictedinthenextfigure.Thebrancheshavebeenlabelledasx/y,wherexisthebinaryinputdatadmandyistheactualtransmittedsymbol.Notethatthetrellisforthemodifiedduobinarysignalhasmorestates,buttheminimumfreedistancebetweenthepathsisdfree=3,whereastheminimumfreedistancebetweenpathsfortheduobinarysignalis2.(pm−2,pm−1)ModifiedDuobinary000/-1Duobinarypm−11/10/-10011/11/11010/-111Problem8.281)Theoutputofthematchedfilterdemodulatoris∞∞y(t)=akgT(τ−kTb)gR(t−τ)dτ+ν(t)−∞k=−∞∞=akx(t−kTb)+ν(t)k=−∞where,sinπtcosπtx(t)=g(t)g(t)=TTTRπtt2T1−4T2Hence,课后答案网∞y(mTb)=akx(mTb−kTb)+v(mTb)k=−∞11=am+am−1+am+1+ν(mTb)ππTheterm1a+1arepresentstheISIintroducedbydoublingthesymbolrateoftransmission.πm−1πm+1www.hackshp.cn2)InthenextfigureweshowonetrellisstagefortheMLsequencedetector.SincethereispostcursorISI,wedelaythereceivedsignal,usedbytheMLdecodertoformthemetrics,byonesample.Thus,thestatesofthetrelliscorrespondtothesequence(am−1,am),andthetransitionlabelscorrespondtothesymbolam+1.Twobranchesoriginatefromeachstate.Theupperbranchisassociatedwiththetransmissionof−1,whereasthelowerbranchisassociatedwiththetransmissionof1.am+1(am−1,am)-1-1-1-11-11-111-11-1111231
Problem8.29a)TheoutputofthematchedfilteratthetimeinstantmTis1ym=amxk−m+νm=am+am−1+νm4kTheautocorrelationfunctionofthenoisesamplesνmisN0E[νkνj]=xk−j2Thus,thevarianceofthenoiseis2N0N0σν=x0=22√Ifasymbolbysymboldetectorisemployedandweassumethatthesymbols√am=am−1=Ebhavebeentransmitted,thentheprobabilityoferrorP(e|am=am−1=Eb)is&&P(e|am=am−1=Eb)=P(ym<0|am=am−1=Eb)√525&1−4Eb−νm=P(νm<−Eb)=√eN0dνm4πN0−∞%1−52Eb214N0−ν52Eb=√e2dν=Q2π−∞4N0√Ifhoweveram−1=−Eb,then1&&3&32EbP(e|am=Eb,am−1=−Eb)=P(Eb+νm<0)=Q44N0√√SincethetwosymbolsEb,−Ebareusedwithequalprobability,weconcludethat&&P(e)=P(e|am=Eb)=P(e|am=−Eb)课后答案网11152Eb132Eb=Q+Q24N024N0b)Inthenextfigureweplottheerrorprobabilityobtainedinpart(a)(logwww.hackshp.cn10(P(e)))vs.theSNRperbitandtheerrorprobabilityforthecaseofnoISI.Asitobservedfromthefigure,therelativedifferenceinSNRoftheerrorprobabilityof10−6is2dB.-2-2.5-3-3.5-4-4.5log(P(e)-5-5.5-6-6.5-767891011121314SNR/bit,dB232
Problem8.30Thepowerspectraldensityofthenoiseattheoutputofthematchedfilteris2N0N01πfSν(f)=Sn(f)|GR(f)|=|X(f)|=cos()22W2WHence,theautocorrelationfunctionoftheoutputnoiseis∞−1N01πfj2πfτRν(τ)=F[Sν(f)]=cos()edf2−∞W2W∞N01πf−jπfj2πf(τ+1)=cos()e2We4Wdf2−∞W2W∞N0j2πf(τ+1)=X(f)e4Wdf2−∞N01=x(τ+)24Wandtherefore,N01N0112N0Rν(0)=x()=sinc()+sinc(−)=24W222π1N0312N0Rν(T)=Rν()=sinc()+sinc()=2W2223πSincethenoiseisofzeromean,thecovariancematrixofthenoiseisgivenbyRν(0)Rν(T)2N011C==13Rν(T)Rν(0)π31Problem8.31LetSirepresentthestatethatthedifferencebetweenthetotalnumberofaccumulatedzerosand课后答案网thetotalnumberofaccumulatedonesisi,withi=−2,...,2.Thestatetransitiondiagramofthecorrespondingcodeisdepictedinthenextfigure.1www.hackshp.cn111
S2
S1
S0
S−1
S−20000Thestatetransitionmatrixis0100010100D=010100010100010Settingdet(D−λI)=0,weobtainλ5−4λ3+3λ=0.Therootsofthecharacteristicequationare√λ=0,±1,±3Thus,√C=log2λmax=log23=.7925233
Problem8.32Thestatetransitionmatrixofthe(0,1)runlength-limitedcodeis11D=10TheeigenvaluesofDaretherootsofdet(D−λI)=−λ(1−λ)−1=λ2−λ−1Therootsofthecharacteristicequationare√1±5λ1,2=2Thus,thecapacityofthe(0,1)runlength-limitedcodeis√1±5C(0,1)=log2()=0.69422Thecapacityofa(1,∞)codeisfoundfromTable8.3tobe0.6942.Asitisobserved,thetwocodeshaveexactlythesamecapacity.Thisresultistobeexpectedsincethe(0,1)runlength-limitedcodeandthe(1,∞)codeproducethesamesetofcodesequencesoflengthn,N(n),witharenamingofthebitsfrom0to1andviseversa.Forexample,the(0,1)runlength-limitedcodewitharenamingofthebits,canbedescribedasthecodewithnominimumnumberof1’sbetween0’sinasequence,andatmostone1betweentwo0’s.Intermsof0’s,thisissimplythecodewithnorestrictionsonthenumberofadjacent0’sandnoconsecutive1’s,thatisthe(1,∞)code.Problem8.33LetS0representthestatethattherunningpolarityiszero,andS1thestatethatthereexistssomepolarity(dccomponent).ThefollowingfiguredepictsthetransitionstatediagramoftheAMIcode课后答案网1/s(t)0/0S0S10/0www.hackshp.cn1/−s(t)Thestatetransitionmatrixis11D=11TheeigenvaluesofthematrixDcanbefoundfromdet(D−λI)=0=⇒(1−λ)2−1=0orλ(2−λ)=0Thelargestrealeigenvalueisλmax=2,sothatC=log2λmax=1234
Problem8.34Let{bk}beabinarysequence,takingthevalues1,0dependingontheexistenceofpolarizationatthetransmittedsequenceuptothetimeinstantk.FortheAMIcode,bkisexpressedasbk=ak⊕bk−1=ak⊕ak−1⊕ak−2⊕...where⊕denotesmodulotwoaddition.Thus,theAMIcodecanbedescribedastheRDScode,withRDS(=bk)denotingthebinarydigitalsummodulo2oftheinputbits.Problem8.35Definingtheefficiencyaskefficiency=nlog23weobtainCodeEfficiency1B1T0.6333B2T0.9494B3T0.8446B4T0.949Problem8.36a)ThecharacteristicpolynomialofDis1−λ12det(D−λI)=det=λ−λ−11−λTheeigenvaluesofDaretherootsofthecharacteristicpolynomial,thatis课后答案网√1±5λ1,2=2√Thus,thelargesteigenvalueofDisλ=1+5andthereforemax2www.hackshp.cn√1+5C=log2=0.69422b)Thecharacteristicpolynomialisdet(D−λI)=(1−λ)2withrootsλ1,2=1.Hence,C=log21=0.Thestatediagramofthiscodeisdepictedinthenextfigure.10S0S11c)Asitisobservedthesecondcodehaszerocapacity.Thisresultistobeexpectedsincewiththesecondcodewecanhaveatmostn+1differentsequencesoflengthn,sothat11C=limlog2N(n)=limlog2(n+1)=0n→∞nn→∞n235
Then+1possiblesequencesare0...01...1(nsequences)34563456kn−kandthesequence11...1,whichoccursifwestartfromstateS1.Problem8.37a)Thetwosymbols,dotanddash,canberepresentedas10and1110respectively,where1denoteslineclosureand0anopenline.Hence,theconstraintsofthecodeare•A0isalwaysfollowedby1.•Onlysequenceshavingoneorthreerepetitionsof1,areallowed.Thenextfiguredepictsthestatediagramofthecode,wherethestateS0denotesthereceptionofadotoradash,andstateSidenotesthereceptionofiadjacent1’s.11S1S2S3001S0b)Thestatetransitionmatrixis01001010D=00011000c)ThecharacteristicequationofthematrixDisdet(课后答案网D−λI)=0=⇒λ4−λ2−1=0Therootsofthecharacteristicequationare√1√11+521−52λ1,2=±λ3,4=±www.hackshp.cn22Thus,thecapacityofthecodeis√11+52C=log2λmax=log2λ1=log2=0.34712Problem8.38ThestatediagramofFig.P-8-38describesarunlengthconstrainedcode,thatforbidsanysequencecontainingarunofmorethanthreeadjacentsymbolsofthesamekind.Thestatetransitionmatrixis000100100100010100D=001010001001001000236
ThecorrespondingtrellisisshowninthenextfigureHistory111!!!11!!!1!!!...0""!""!""!00"""000"""Problem8.39Thestatetransitionmatrixofthe(2,7)runlength-limitedcodeisthe8×8matrix01000000001000001001000010001000D=10000100100000101000000110000000Problem8.40ThefrequencyresponseoftheRCfilteris1j2πRCf1C(f)==R+11+j2πRCfj2πRCfTheamplitudeandthephasespectrumofthefilterare1课后答案网12|C(f)|=,Θc(f)=arctan(−2πRCf)1+4π2(RC)2f2Theenvelopedelayis1dΘc(f)1−2πRCRCTc(f)=−=−=2πdfwww.hackshp.cn2π1+4π2(RC)2f21+4π2(RC)2f2wherewehaveusedtheformulad1duarctanu=dx1+u2dxProblem8.411)TheenvelopedelayoftheRCfilteris(seeProblem8.40)RCTc(f)=1+4π2(RC)2f2AplotofT(f)withRC=10−6isshowninthenextfigure237
x10-7109.9999.9989.9979.9969.995Tc(f)9.9949.9939.9929.9919.990500100015002000250030003500400045005000Frequency(f)2)ThefollowingfigureisaplotoftheamplitudecharacteristicsoftheRCfilter,|C(f)|.Thevaluesoftheverticalaxisindicatethat|C(f)|canbeconsideredconstantforfrequenciesupto2000Hz.Sincethesameistruefortheenvelopedelay,weconcludethatalowpasssignalofbandwidth∆f=1KHzwillnotbedistortedifitpassestheRCfilter.1|C(f)|0.9990500100015002000250030003500400045005000课后答案网Frequency(f)Problem8.42LetGT(f)andGR(f)bethefrequencyresponseofthetransmittingandreceivingfilter.Then,theconditionforzeroISIimplieswww.hackshp.cnT0≤|f|≤14TG(f)C(f)G(f)=X(f)=T[1+cos(2πT(|f|−1)]1≤|f|≤3TRrc2T4T4T0|f|>34TSincetheadditivenoiseiswhite,theoptimumtransmittingandreceivingfiltercharacteristicsaregivenby(seeExample8.6.1)11|Xrc(f)|2|Xrc(f)|2|GT(f)|=1,|GR(f)|=1|C(f)|2|C(f)|2Thus,1T211+0.3cos2πfT0≤|f|≤4T1|G(f)|=|G(f)|=T(1+cos(2πT(|f|−1)2TRT1≤|f|≤32(1+0.3cos2πfT)4T4T0otherwise238
Problem8.43A4-PAMmodulationcanaccommodatek=2bitspertransmittedsymbol.Thus,thesymbolintervaldurationisk1T==sec96004800Since,thechannel’sbandwidthisW=2400=1,inordertoachievethemaximumrateof2Ttransmission,R=1,thespectrumofthesignalpulseshouldbemax2TfX(f)=TΠ2WThen,themagnitudefrequencyresponseoftheoptimumtransmittingandreceivingfilteris(seeSection8.6.1andExample8.6.1)1214f24ff1+,|f|<2400|GT(f)|=|GR(f)|=1+Π=240024002W0otherwiseProblem8.441)Theequivalentdiscrete-timeimpulseresponseofthechannelis1h(t)=hnδ(t−nT)=0.3δ(t+T)+0.9δ(t)+0.3δ(t−T)n=−1Ifby{cn}wedenotethecoefficientsoftheFIRequalizer,thentheequalizedsignalis1qm=cnhm−nn=−1whichinmatrixnotationiswrittenas课后答案网0.90.30.c−100.30.90.3c0=10.0.30.9c10Thecoefficientsofthezero-forceequalizercanbefoundbysolvingthepreviousmatrixequation.Thus,www.hackshp.cnc−1−0.4762c0=1.4286c1−0.47622)Thevaluesofqmform=±2,±3aregivenby1q2=cnh2−n=c1h1=−0.1429n=−11q−2=cnh−2−n=c−1h−1=−0.1429n=−11q3=cnh3−n=0n=−11q−3=cnh−3−n=0n=−1239
Problem8.451)Theoutputofthezero-forceequalizeris1qm=cnxmnn=−1Withq0=1andqm=0form=0,weobtainthesystem1.00.1−0.5c−10−0.21.00.1c0=10.05−0.21.0c10Solvingtheprevioussystemintermsoftheequalizer’scoefficients,weobtainc−10.000c0=0.980c10.1962)Theoutputoftheequalizeris0m≤−4c−1x−2=0m=−3c−1x−1+c0x−2=−0.49m=−20m=−1qm=1m=00m=1c0x2+x1c1=0.0098m=2c1x2=0.0098m=30m≥4Hence,theresidualISIsequenceis课后答案网residualISI={...,0,−0.49,0,0,0,0.0098,0.0098,0,...}anditsspanis6symbols.www.hackshp.cnProblem8.46TheMSEperformanceindexatthetimeinstantkisNJ(ck)=Eck,nyk−n−ak62n=−NIfwedefinethegradientvectorgkasϑJ(ck)gk=2ϑckthenitslthelementisNϑJ(ck)1gk,l==E2ck,nyk−n−akyk−l2ϑck,l2n=−N=E[−ekyk−l]=−E[ekyk−l]240
Thus,thevectorgkis−E[ekyk+N]g=..k.=−E[ekyk]−E[ekyk−N]whereykisthevectoryk=[yk+N···yk−N]T.Sincegˆk=−ekyk,itsexpectedvalueisE[gˆk]=E[−ekyk]=−E[ekyk]=gkProblem8.471)If{cn}denotethecoefficientsofthezero-forceequalizerand{qm}isthesequenceoftheequal-izer’soutputsamples,then1qm=cnxm−nn=−1where{xk}isthenoisefreeresponseofthematchedfilterdemodulatorsampledatt=kT.Withq−1=0,q0=q1=Eb,weobtainthesystemEb0.9Eb0.1Ebc−100.9EbEb0.9Ebc0=Eb0.1Eb0.9EbEbc1EbThesolutiontothesystemisc−1c0c1=0.2137−0.38461.32482)Thesetofnoisevariables{νk}attheoutputofthesamplerisaGaussiandistributedsequencewithzero-meanandautocorrelationfunctionN0x|k|≤2R(k)=2kν课后答案网0otherwiseThus,theautocorrelationfunctionofthenoiseattheoutputoftheequalizerisRn(k)=Rν(k)c(k)c(−k)wherec(k)denotesthediscretetimeimpulseresponseoftheequalizer.Therefore,theautocorrela-www.hackshp.cntionsequenceofthenoiseattheoutputoftheequalizeris0.9402k=01.3577k=±1N0Eb−0.0546k=±2Rn(k)=20.1956k=±30.0283k=±40otherwiseTofindanestimateoftheerrorprobabilityforthesequencedetector,weignoretheresidualinterferenceduetothefinitelengthoftheequalizer,andweonlyconsiderpathsoflengthtwo.Thus,ifwestartatstatea0=1andthetransmittedsymbolsare(a1,a2)=(1,1)anerrorismadebythesequencedetectorifthepath(−1,1)ismoreprobable,giventhereceivedvaluesofr1andr2.Themetricforthepath(a1,a2)=(1,1)is−1r1−2Ebµ2(1,1)=[r1−2Ebr2−2Eb]Cr2−2Eb241
whereN0Eb0.94021.3577C=21.35770.9402Similarly,themetricofthepath(a1,a2)=(−1,1)is−1r1µ2(−1,1)=[r1r2]Cr2Hence,theprobabilityoferrorisP2=P(µ2(−1,1)<µ2(1,1))anduponsubstitutionofr1=2Eb+n1,r2=2Eb+n2,weobtainP2=P(n1+n2<−2Eb)Sincen1andn2arezero-meanGaussianvariables,theirsumisalsozero-meanGaussianwithvarianceN0EbN0Ebσ2=(2×0.9402+2×1.3577)=4.595822andtherefore18EbP2=Q4.5958N0ThebiterrorprobabilityisP2.2Problem8.48Theoptimumtapcoefficientsofthezero-forceequalizercanbefoundbysolvingthesystem1.00.30.0c−100.21.00.3c0=1课后答案网0.00.21.0c10Hence,c−1−0.3409c0=1.1364www.hackshp.cnc1−0.2273b)Theoutputoftheequalizeris0m≤−3c−1x−1=−0.1023m=−20m=−1qm=1m=00m=1c1x1=−0.0455m=20m≥3Hence,theresidualISIsequenceisresidualISI={...,0,−0.1023,0,0,0,−0.0455,0,...}242
Problem8.491)IfweassumethatthesignalpulsehasdurationT,thentheoutputofthematchedfilteratthetimeinstantt=TisTy(T)=r(τ)s(τ)dτ0T=(s(τ)+αs(τ−T)+n(τ))s(τ)dτ0TT=s2(τ)dτ+n(τ)s(τ)dτ00=Es+nwhereEsistheenergyofthesignalpulseandnisazero-meanGaussianrandomvariablewithvarianceσ2=N0Es.Similarly,theoutputofthematchedfilteratt=2Tisn2TTy(2T)=αs2(τ)dτ+n(τ)s(τ)dτ00=αEs+n2)Ifthetransmittedsequenceis∞x(t)=ans(t−nT)n=−∞withantakingthevalues1,−1withequalprobability,thentheoutputofthedemodulatoratthetimeinstantt=kTisyk=akEs+αak−1Es+nkThetermαak−1EsexpressestheISIduetothesignalreflection.IfasymbolbysymboldetectorisemployedandtheISIisignored,thentheprobabilityoferroris课后答案网11P(e)=P(error|an=1,an−1=1)+P(error|an=1,an−1=−1)2211=P((1+α)Es+nk<0)+P((1−α)Es+nk<0)221112(1+www.hackshp.cnα)2Es12(1−α)2Es=Q+Q2N02N03)TofindtheerrorrateperformanceoftheDFE,weassumethattheestimationoftheparameterαiscorrectandthattheprobabilityoferrorateachtimeinstantisthesame.Sincethetransmittedsymbolsareequiprobable,weobtainP(e)=P(erroratk|ak=1)=P(erroratk−1)P(erroratk|ak=1,erroratk−1)+P(noerroratk−1)P(erroratk|ak=1,noerroratk−1)=P(e)P(erroratk|ak=1,erroratk−1)+(1−P(e))P(erroratk|ak=1,noerroratk−1)=P(e)p+(1−P(e))q243
wherep=P(erroratk|ak=1,erroratk−1)1=P(erroratk|ak=1,ak−1=1,erroratk−1)21+P(erroratk|ak=1,ak−1=−1,erroratk−1)211=P((1+2α)Es+nk<0)+P((1−2α)Es+nk<0)221112(1+2α)2Es12(1−2α)2Es=Q+Q2N02N0andq=P(erroratk|ak=1,noerroratk−1)12Es=P(Es+nk<0)=QN0SolvingforP(e),weobtain%Q2EsqN0P(e)==%%%1−p+q12(1+2α)2Es12(1−2α)2Es2Es1−Q−Q+Q2N02N0N0Asketchofthedetectorstructureisshowninthenextfigure.InputrkThreshold++Outputˆakdevice−Estimate×Delayα课后答案网Problem8.50AdiscretetimetransversalfilterequivalenttothecascadeofthetransmittingfiltergT(t),thechannelc(t),thematchedfilteratthereceiverwww.hackshp.cngR(t)andthesampler,hastapgaincoefficients{ym},where0.9m=0ym=0.3m=±10otherwiseThenoiseνk,attheoutputofthesampler,isazero-meanGaussiansequencewithautocorrelationfunctionE[νν]=σ2y,|k−l|≤1klk−lIftheZ-transformofthesequence{ym},Y(z),assumesthefactorizationY(z)=F(z)F∗(z−1)thenthefilter1/F∗(z−1)canfollowthesamplertowhitethenoisesequenceνk.Inthiscasetheoutputofthewhiteningfilter,andinputtotheMSEequalizer,isthesequenceun=akfn−k+nkk244
wherenkiszeromeanGaussianwithvarianceσ2.TheoptimumcoefficientsoftheMSEequalizer,ck,satisfy(see(8.6.35))1cnRu(n−k)=Rua(k),k=0,±1n=−1where1R(n−k)=E[uu]=ff+σ2δul−kl−nmm+n−kn,km=0yn−k+σ2δn,k,|n−k|≤1=0otherwisef−k,−1≤k≤0Rua(k)=E[anun−k]=0otherwiseWithY(z)=0.3z+0.9+0.3z−1=(f+fz−1)(f+fz)0101weobtaintheparametersf0andf1as√√±0.7854±0.1146f0=√,f1=√±0.1146±0.7854Theparametersf0andf1shouldhavethesamesignsincef0f1=0.3.However,thesignitselfdoesnotplayanyroleifthedataaredifferentiallyencoded.Tohaveastableinversesystem1/F∗(z−1),weselectf0andf1insuchawaythatthezeroofthesystemF∗(z−1)=f0+f1zisinsidetheunit√√circle.Thus,wechoosef0=0.1146andf1=0.7854andtherefore,thedesiredsystemfortheequalizer’scoefficientsis√0.9+0.10.30.0c−1√0.78540.30.9+0.10.3c0=0.11460.00课后答案网.30.9+0.1c10Solvingthissystem,weobtainc−1=0.8596,c0=0.0886,c1=−0.0266www.hackshp.cnProblem8.511)Thespectrumofthebandlimitedequalizedpulseis1∞n−jπnfn=−∞x()eW|f|≤WX(f)=2W2W0otherwise12+2cosπf|f|≤W=2WW0otherwise11+1cosπf|f|≤W=WW0otherwisewhereW=12Tb245
2)Thefollowingtableliststhepossibletransmittedsequencesoflength3andthecorrespondingoutputofthedetector.-1-1-1-4-1-11-2-11-10-11121-1-1-21-11011-121114Asitisobservedthereare5possibleoutputlevelsb,withprobabilityp(b=0)=1,mm4p(b=±2)=1andp(b=±4)=1.m4m83)ThetransmittingfilterGT(f),thereceivingfilterGR(f)andtheequalizerGE(f)satisfytheconditionGT(f)GR(f)GE(f)=X(f)ThepowerspectraldensityofthenoiseattheoutputoftheequalizerisS(f)=S(f)|G(f)G(f)|2=σ2|G(f)G(f)|2νnREREWithπT50−πT50|f|GT(f)=GR(f)=P(f)=e2thevarianceoftheoutputnoiseis∞∞X(f)2σ2=σ2|G(f)G(f)|2df=σ2dfνRE−∞−∞GT(f)W|1+cosπf|224W=σdf−Wπ2T2W2e−2πT50|f|50课后答案网8σ2Wπf2=1+cose2πT50fdfπ2T502W20WThevalueofthepreviousintegralcanbefoundusingtheformulaeaxcosnbxdxwww.hackshp.cn1an−12axn−2=(acosbx+nbsinbx)excosbx+n(n−1)becosbxdxa2+n2b2Thus,weobtain22πT+π128σ2πT50W150W2T50σ=×e−1+νπ2T2W22πT4π2T2+4π2505050W24πT50−e2πT50W+14π2T2+π250W2Tofindtheprobabilityoferrorusingasymbolbysymboldetector,wefollowthesameprocedureasinSection8.4.3.Theresultsarethesamewiththatobtainedfroma3-pointPAMconstellation(0,±2)usedwithaduobinarysignalwithoutputlevelshavingtheprobabilitymassfunctiongiveninpartb).Anupperboundofthesymbolprobabilityoferroris246
P(e)1|bm=0)P(bm=0)+2P(|ym−2|>1|bm=2)P(bm=2)+2P(ym+4>1|bm=−4)P(bm=−4)=P(|ym|>1|bm=0)[P(bm=0)+2P(bm=2)+P(bm=−4)]7=P(|ym|>1|bm=0)8But2∞22P(|y|>1|b=0)=√e−x/2σνdxmm2πσν1Therefore,141P(e)=Q8σνProblem8.52Sincethepartialresponsesignalhasmemorylengthequalto2,thecorrespondingtrellishas4stateswhichwelabelas(an−1,an).Thefollowingfigureshowsthreeframesofthetrellis.Thelabelsofthebranchesindicatetheoutputofthepartialresponsesystem.Asitisobservedthefreedistancebetweenmergingpathsis3,whereastheEuclideandistanceisequaltod=22+42+22=24E(an−1,an)(-1,-1)-4-4-4-2(-1,1)-2
#$0(1,-1)
#
#$(1,1)Problem8.53课后答案网a)Thealternativeexpressionfors(t)canberewrittenass(t)=ReaQ(t−nT)nnj2πfwww.hackshp.cncnT=Reaneg(t−nT)[cos2πfc(t−nT)+jsin2πfc(t−nT)]n=Reang(t−nT)[cos2πfcnT+jsin2πfcnT][cos2πfc(t−nT)+jsin2πfc(t−nT)]n=Reang(t−nT)[cos2πfcnTcos2πfc(t−nT)−sin2πfcnTsin2πfc(t−nT)n+jsin2πfcnTcos2πfc(t−nT)+jcos2πfcnTsin2πfc(t−nT)]=Reang(t−nT)[cos2πfct+jsin2πfct]n=Reag(t−nT)ej2πfctnn=s(t)soindeedthealternativeexpressionfors(t)isavalidone.247
b)j2πfnTeq(t)q(t)e-j2πfnTanra"nr++aa"ni-+niq^(t)q^(t)ModulatorDemodulator(withphaserotator)(withphasederotator)Problem8.54a)Theimpulseresponseofthepulsehavingasquare-rootraisedcosinecharacteristic,isanevenfunction,i.e.,xSQ(t)=xSQ(−t),i.e.,thepulseg(t)isanevenfunction.Weknowthattheproductofanevenfunctiontimesanevenfunctionisanevenfunction,whiletheproductofanevenfunctiontimesanoddfunctionisanoddfunction.Henceq(t)isevenwhileˆq(t)isoddandtheirproductq(t)ˆq(t)hasoddsymmetry.Therefore,∞(1+β)/2Tq(t)ˆq(t)dt=q(t)ˆq(t)dt=0−∞−(1+β)/2Tb)Wenoticethatwhenfc=k/T,wherekisaninteger,thentherotator/derotatorofacarrierlessQAMsystem(describedinProblem8.53)givesatrivialrotationofanintegernumberoffullcircles(2πkn),andthecarrierlessQAM/PSKisequivalenttoCAP.Problem8.55课后答案网TheanalogsignalisN−11j2πkt/Tx(t)=√Xke,0≤tσ2SinceC>0,weobtain1σ2σ2log2≤1−h()=⇒≤D2D22(1−h())andtherefore,theminimumvalueofthedistortionattainableattheoutputofthechannelisσ2Dmin=22(1−h())2)ThecapacityoftheadditiveGaussianchannelis1PC=log21+22σnHence,1σ2σ2σ22log2D≤C=⇒22C≤D=⇒P≤D1+σ2nTheminimumattainabledistortionisσ2Dmin=1+Pσ2课后答案网n3)Herethesourcesamplesaredependentandthereforeonesampleprovidesinformationabouttheothersamples.Thismeansthatwecanachievebetterresultscomparedtothememorylesscaseatagivenrate.Inotherwordsthedistortionatagivenrateforasourcewithmemoryislessthanthedistortionforacomparablesourcewithmemory.DifferentialcodingmethodsdiscussedinChapter4aresuitableforsuchsources.www.hackshp.cnProblem9.14ThecapacityofthechannelofthechannelisgivenbyC=maxI(X;Y)=max[H(Y)−H(Y|X)]p(x)p(x)LettheprobabilityoftheinputsC,BandAbep,qand1−p−qrespectively.FromthesymmetryofthenodesB,Cweexpectthattheoptimumdistributionp(x)willsatisfyp(B)=p(C)=p.TheentropyH(Y|X)isgivenbyH(Y|X)=p(x)H(Y|X=x)=(1−2p)H(Y|X=A)+2pH(Y|X=B)=0+2ph(0.5)=2pTheprobabilitymassfunctionoftheoutputisp(Y=1)=p(x)p(Y=1|X=x)=(1−2p)+p=1−pp(Y=2)=p(x)p(Y=2|X=x)=0.5p+0.5p=p257
Therefore,C=max[H(Y)−H(Y|X)]=max(h(p)−2p)ppTofindtheoptimumvalueofpthatmaximizesI(X;Y),wesetthederivativeofCwithrespecttopequaltozero.Thus,ϑC1−1=0=−log2(p)−p+log2(1−p)−(1−p)−2ϑppln(2)(1−p)ln(2)=log2(1−p)−log2(p)−2andtherefore1−p1−p1log2=2=⇒=4=⇒p=pp5Thecapacityofthechannelis12C=h()−=0.7219−0.4=0.3219bits/transmission55Problem9.15Thecapacityofthe“product”channelisgivenbyC=maxI(X1X2;Y1Y2)p(x1,x2)However,I(X1X2;Y1Y2)=H(Y1Y2)−H(Y1Y2|X1X2)=H(Y1Y2)−H(Y1|X1)−H(Y2|X2)≤H(Y1)+H(Y2)−H(Y1|X1)−H(Y2|X2)=I(X1;Y1)+I(X2;Y2)andtherefore,C=maxI(课后答案网X1X2;Y1Y2)≤max[I(X1;Y1)+I(X2;Y2)]p(x1,x2)p(x1,x2)≤maxI(X1;Y1)+maxI(X2;Y2)p(x1)p(x2)=C1+C2Theupperboundisachievablebychoosingtheinputjointprobabilitydensitywww.hackshp.cnp(x1,x2),insuchawaythatp(x1,x2)=˜p(x1)˜p(x2)where˜p(x1),˜p(x2)aretheinputdistributionsthatachievethecapacityofthefirstandsecondchannelrespectively.Problem9.161)LetX=X1+X2,Y=Y1+Y2andp(y1|x1)ifx∈X1p(y|x)=p(y2|x2)ifx∈X2theconditionalprobabilitydensityfunctionofYandX.WedefineanewrandomvariableMtakingthevalues1,2dependingontheindexiofX.NotethatMisafunctionofXorY.This258
isbecauseX1∩X2=∅andtherefore,knowingXweknowthechannelusedfortransmission.ThecapacityofthesumchannelisC=maxI(X;Y)=max[H(Y)−H(Y|X)]=max[H(Y)−H(Y|X,M)]p(x)p(x)p(x)=max[H(Y)−p(M=1)H(Y|X,M=1)−p(M=2)H(Y|X,M=2)]p(x)=max[H(Y)−λH(Y1|X1)−(1−λ)H(Y2|X2)]p(x)whereλ=p(M=1).Also,H(Y)=H(Y,M)=H(M)+H(Y|M)=H(λ)+λH(Y1)+(1−λ)H(Y2)SubstitutingH(Y)inthepreviousexpressionforthechannelcapacity,weobtainC=maxI(X;Y)p(x)=max[H(λ)+λH(Y1)+(1−λ)H(Y2)−λH(Y1|X1)−(1−λ)H(Y2|X2)]p(x)=max[H(λ)+λI(X1;Y1)+(1−λ)I(X2;Y2)]p(x)Sincep(x)isfunctionofλ,p(x1)andp(x2),themaximizationoverp(x)canbesubstitutedbyajointmaximizationoverλ,p(x1)andp(x2).Furthermore,sinceλand1−λarenonnegative,weletp(x1)tomaximizeI(X1;Y1)andp(x2)tomaximizeI(X2;Y2).Thus,C=max[H(λ)+λC1+(1−λ)C2]λTofindthevalueofλthatmaximizesC,wesetthederivativeofCwithrespecttoλequaltozero.Hence,dC2C1dλ=0=−log2(λ)+log2(1−λ)+C1−C2=⇒λ=2C1+2C2Substitutingthisvalueofλintheexpressionfor课后答案网C,weobtain2C12C12C1C=H2C1+2C2+2C1+2C2C1+1−2C1+2C2C22C12C12C12C1=−2C1+2C2logwww.hackshp.cn22C1+2C2−1−2C1+2C2log22C1+2C22C12C1+2C1+2C2C1+1−2C1+2C2C22C12C2=log(2C1+2C2)+log(2C1+2C2)2C1+2C222C1+2C22=log(2C1+2C2)2HenceC=log(2C1+2C2)=⇒2C=2C1+2C222)2C=20+20=2=⇒C=1Thus,thecapacityofthesumchannelisnonzeroalthoughthecomponentchannelshavezerocapacity.Inthiscasetheinformationistransmittedthroughtheprocessofselectingachannel.259
3)Thechannelcanbeconsideredasthesumoftwochannels.ThefirstchannelhascapacityC1=log21=0andthesecondchannelisBSCwithcapacityC2=1−h(0.5)=0.ThusC=log(2C1+2C2)=log(2)=122Problem9.171)TheentropyofthesourceisH(X)=h(0.3)=0.8813andthecapacityofthechannelC=1−h(0.1)=1−0.469=0.531Ifthesourceisdirectlyconnectedtothechannel,thentheprobabilityoferroratthedestinationisP(error)=p(X=0)p(Y=1|X=0)+p(X=1)p(Y=0|X=1)=0.3×0.1+0.7×0.1=0.12)SinceH(X)>C,somedistortionattheoutputofthechannelisinevitable.TofindtheminimumdistortionwesetR(D)=C.ForaBernoullitypeofsourceh(p)−h(D)0≤D≤min(p,1−p)R(D)=0otherwiseandtherefore,R(D)=h(p)−h(D)=h(0.3)−h(D).IfweletR(D)=C=0.531,weobtainh(D)=0.3503=⇒D=min(0.07,0.93)=0.07TheprobabilityoferrorisP(error)≤D=0.073)Forreliabletransmissionwemusthave课后答案网H(X)=C=1−h().Hence,withH(X)=0.8813weobtain0.8813=1−h()=⇒<0.016or>0.984Problem9.181)Therate-distortionfunctionoftheGaussiansourceforwww.hackshp.cnD≤σ2is1σ2R(D)=log22DHence,withσ2=4andD=1,weobtain1R(D)=log24=1bits/sample=8000bits/sec2ThecapacityofthechannelisPC=Wlog21+N0WInordertoaccommodatetherateR=8000bps,thechannelcapacityshouldsatisfyR(D)≤C=⇒R(D)≤4000log2(1+SNR)Therefore,log2(1+SNR)≥2=⇒SNRmin=3260
2)Theerrorprobabilityforeachbitis12Ebpb=QN0andtherefore,thecapacityoftheBSCchannelis12EbC=1−h(pb)=1−hQbits/transmissionN012Eb=2×4000×1−hQbits/secN0Inthiscase,theconditionR(D)≤Cresultsin12EbEb1≤1−h(pb)=⇒Q=0orSNR=→∞N0N0Problem9.191)Themaximumdistortioninthecompressionofthesourceis∞10D=σ2=S(f)df=2df=40maxx−∞−102)Therate-distortionfunctionofthesourceis1logσ20≤D≤σ21log400≤D≤40R(D)=22D=22D0otherwise0otherwise3)WithD=10,weobtain课后答案网1401R=log2=log24=12102Thus,therequiredrateisR=1bitpersampleor,sincethesourcecanbesampledatarateof20samplespersecond,therateisR=20bitspersecond.4)Thecapacity-costfunctioniswww.hackshp.cn1PC(P)=log21+2Nwhere,∞4N=Sn(f)df=df=8−∞−4Hence,1PPC(P)=log2(1+)bits/transmission=4log2(1+)bits/sec288Therequiredpowersuchthatthesourcecanbetransmittedviathechannelwithadistortionnotexceeding10,isdeterminedbyR(10)≤C(P).Hence,P20≤4log2(1+)=⇒P=8×31=2488261
Problem9.20ThedifferentialentropyoftheLaplaciannoiseis(seeProblem6.36)h(Z)=1+lnλwhereλisthemeanoftheLaplaciandistribution,thatis∞∞1−zE[Z]=zp(z)dz=zeλdz=λ00λThevarianceofthenoiseis∞22221−z2222N=E[(Z−λ)]=E[Z]−λ=zeλdz−λ=2λ−λ=λ0λInthenextfigureweplotthelowerandupperboundofthecapacityofthechannelasafunctionofλ2andforP=1.AsitisobservedtheboundsaretightforhighSNR,smallN,buttheybecomelooseasthepowerofthenoiseincreases.3.532.5UpperBound21.51LowerBound0.5课后答案网0-20-15-10-50510NdBProblem9.21www.hackshp.cnBothchannelscanbeviewedasbinarysymmetricchannelswithcrossoverprobabilitytheproba-bilityofdecodingabiterroneously.Since,%Q2Ebantipodalsignalingp=%N0bQEborthogonalsignalingN0thecapacityofthechannelis%1−hQ2EbantipodalsignalingC=%N01−hQEborthogonalsignalingN0InthenextfigureweplotthecapacityofthechannelasafunctionofEbforthetwosignalingN0schemes.262
10.90.8AntipodalSignalling0.70.60.5CapacityC0.40.3OrthogonalSignalling0.20.10-10-8-6-4-20246810SNRdBProblem9.22ThecodewordsofthelinearcodeofExample9.5.1arec1=[00000]c2=[10100]c3=[01111]c4=[11011]Sincethecodeislineartheminimumdistanceofthecodeisequaltotheminimumweightofthecodewords.Thus,dmin=wmin=2Thereisonlyonecodewordwithweightequalto2andthisisc2.Problem9.23TheparitycheckmatrixofthecodeinExample9.5.3is课后答案网11100H=0101001001Thecodewordsofthecodearewww.hackshp.cnc1=[00000]c2=[10100]c3=[01111]c4=[11011]AnyofthepreviouscodewordswhenpostmultipliedbyHtproducesanall-zerovectoroflength3.ForexamplecHt=[1⊕100]=[000]2cHt=[1⊕11⊕11⊕1]=[000]4263
Problem9.24Thefollowingtablelistsallthecodewordsofthe(7,4)Hammingcodealongwiththeirweight.SincetheHammingcodesarelineardmin=wmin.Asitisobservedfromthetabletheminimumweightis3andthereforedmin=3.No.CodewordsWeight1000000002100011033010001134001010135000111146110010147101001148100100139011011041001011003110011010312111000031311010104141011100415011100141611111117Problem9.25TheparitycheckmatrixHofthe(15,11)Hammingcodeconsistsofallbinarysequencesoflength4,excepttheallzerosequence.ThesystematicformofthematrixHis111000111011000t100110110110100H=[P|I4]=010101101110010课后答案网001011011110001Thecorrespondinggeneratormatrixis1110011010www.hackshp.cn1010011011010101G=[I11|P]=1001111110111010110111011111111Problem9.26LetCbean(n,k)linearblockcodewithparitycheckmatrixH.WecanexpresstheparitycheckmatrixintheformH=[h1h2···hn]wherehiisann−kdimensionalcolumnvector.Letc=[c1···cn]beacodewordofthecodeCwithlnonzeroelementswhichwedenoteasci1,ci2,...,cil.Clearlyci1=ci2=...=cil=1and264
sincecisacodewordcHt=0=ch+ch+···+ch1122nn=ci1hi1+ci2hi2+···+cilhil=hi1+hi2+···+hil=0ThisprovesthatlcolumnvectorsofthematrixHarelineardependent.Sinceforalinearcodetheminimumvalueofliswminandwmin=dmin,weconcludethatthereexistdminlineardependentcolumnvectorsofthematrixH.NowweassumethattheminimumnumberofcolumnvectorsofthematrixHthatarelineardependentisdminandwewillprovethattheminimumweightofthecodeisdmin.Lethi1,hi2,...,hdminbeasetoflineardependentcolumnvectors.Ifweformavectorcwithnon-zerocomponentsatpositionsi1,i2,...,idmin,thencHt=ch+···+c=0i1i1idminwhichimpliesthatcisacodewordwithweightdmin.Therefore,theminimumdistanceofacodeisequaltotheminimumnumberofcolumnsofitsparitycheckmatrixthatarelineardependent.ForaHammingcodethecolumnsofthematrixHarenon-zeroanddistinct.Thus,notwocolumnshi,hjaddtozeroandsinceHconsistsofallthen−ktuplesasitscolumns,thesumhi+hj=hmshouldalsobeacolumnofH.Then,hi+hj+hm=0andthereforetheminimumdistanceoftheHammingcodeis3.Problem9.27Thegeneratormatrixofthe(n,1)repetitioncodeisa1×nmatrix,consistedofthenon-zerocodeword.Thus,G=1|1···1Thisgeneratormatrixisalreadyinsystematicform,sothattheparitycheckmatrixisgivenby课后答案网110···01010H=............www.hackshp.cn100···1Problem9.281)TheparitycheckmatrixHeoftheextendedcodeisan(n+1−k)×(n+1)matrix.Thecodewordsoftheextendedcodehavetheformce,i=[ci|x]wherexis0iftheweightofciisevenand1iftheweightofciisodd.Sincece,iHte=[ci|x]Hte=0andciHt=0,thefirstn−kcolumnsofHtecanbeselectedasthecolumnsofHtwithazeroaddedinthelastrow.Inthiswaythechoiceofxisimmaterial.ThelastcolumnofHteisselectedinsuchawaythattheeven-parityconditionissatisfiedforeverycodewordce,i.Notethatifce,ihasevenweight,thenc+c+···+c=0=⇒c[11···1]t=0e,i1e,i2e,in+1e,i265
foreveryi.ThereforethelastcolumnofHteistheall-onevectorandtheparitycheckmatrixoftheextendedcodehastheformt1101101101111101000tH=Ht=1001=1010100ee010101100100011111111100012)Theoriginalcodehasminimumdistanceequalto3.Butforthosecodewordswithweightequaltotheminimumdistance,a1isappendedattheendofthecodewordstoproduceevenparity.Thus,theminimumweightoftheextendedcodeis4andsincetheextendedcodeislinear,theminimumdistanceisde,min=we,min=4.3)Thecodinggainoftheextendedcodeis3Gcoding=de,minRc=4×=1.71437Problem9.29Ifnocodingisemployed,wehave112EbPpb=Q=QN0RN0whereP10−6==5课后答案网RN0104×2×10−11Thus,√p=Q[5]=1.2682×10−2bandtherefore,theerrorprobabilityfor11bitsisP=1−(1−p)11≈0.1310errorin11bitswww.hackshp.cnbIfcodingisemployed,thensincetheminimumdistanceofthe(15,11)Hammingcodeis3,11dminEs3Espe≤(M−1)Q=10QN0N0whereEsEbP11=Rc=Rc=×5=3.6667N0N0RN015Thus√p≤10Q3×3.6667≈4.560×10−3eAsitisobservedtheprobabilityoferrordecreasesbyafactorof28.Ifharddecisionisemployed,thendminp≤(M−1)dminpi(1−p)dmin−ieibbdmin+1i=2266
%whereM=10,d=3andp=QRP=2.777×10−2.Hence,minbcRN0p=10×(3×p2(1−p)+p3)=0.0227ebbbInthiscasecodinghasdecreasedtheerrorprobabilitybyafactorof6.Problem9.30Thefollowingtableshowsthestandardarrayforthe(7,4)Hammingcode.e1e2e3e4e5e6e71000000010000000100000001000000010000000100000001c100000001000000010000000100000001000000010000000100000001c210001100000110110011010101101001110100001010001001000111c301000111100011000001101100110101011010011101000010100010c400101011010101011010100001010011101001000100101110010100c500011111001111010111100111110000111000101100011010001110c611001010100101100010111101011101101110000111001111100100c710100110010011111001110000111011011101011110100011010010c810010010001001110100110110011000001100110110010111001000c901101101110110001011001001100111110011001001101000110111c1001011001101100000110001111000100100010100001011100101101c1100110101011010011101000010100010010001111000110000011011c1211100000110000101000011000001111000111010011100101110001c1311010100101010100101011110101100010110111011010001101011c1410111000011100111110010011001010100101100010111101011101c1501110011111001001100101010010110001011110101110110111000c1611111110111111101111111011111110111111101111111011111110Asitisobservedthereceivedvectory=[1110100]isinthe7thcolumnofthetableundertheerrorvectore5.Thus,thereceivedvectorwillbedecodedasc=y+e5=[1110000]=c12Problem9.31Thegeneratorpolynomialofdegree课后答案网m=n−kshoulddividethepolynomialp6+1.Sincethepolynomialp6+1assumesthefactorizationp6+1=(p+1)3(p+1)3=(p+1)(p+1)(p2+p+1)(p2+p+1)weobservethatm=n−kcantakeanyvaluefrom1to5.Thus,k=n−mcanbeanynumberin[1,5].Thefollowingtableliststhepossiblevaluesofwww.hackshp.cnkandthecorrespondinggeneratorpolynomial(s).kg(p)1p5+p4+p3+p2+p+12p4+p2+1orp4+p3+p+13p3+14p2+1orp2+p+15p+1Problem9.32Togeneratea(7,3)cycliccodeweneedageneratorpolynomialofdegree7−3=4.Since(seeExample9.6.2))p7+1=(p+1)(p3+p2+1)(p3+p+1)=(p4+p2+p+1)(p3+p+1)=(p3+p2+1)(p4+p3+p2+1)267
eitheroneofthepolynomialsp4+p2+p+1,p4+p3+p2+1canbeusedasageneratorpolynomial.Withg(p)=p4+p2+p+1allthecodewordpolynomialsc(p)canbewrittenasc(p)=X(p)g(p)=X(p)(p4+p2+p+1)whereX(p)isthemessagepolynomial.ThefollowingtableshowstheinputbinarysequencesusedtorepresentX(p)andthecorrespondingcodewords.InputX(p)c(p)=X(p)g(p)Codeword0000000000000011p4+p2+p+10010111010pp5+p3+p2+p0101110100p2p6+p4+p3+p21011100011p+1p5+p4+p3+10111001101p2+1p6+p3+p+11001011110p2+pp6+p5+p4+p1110010111p2+p+1p6+p5+p2+11100101Sincethecycliccodeislinearandtheminimumweightiswmin=4,weconcludethattheminimumdistanceofthe(7,3)codeis4.Problem9.33UsingTable9.1wefindthatthecoefficientsofthegeneratorpolynomialofthe(15,11)codearegiveninoctalformas23.Since,thebinaryexpansionof23is010011,weconcludethatthegeneratorpolynomialisg(p)=p4+p+1Theencoderforthe(15,11)cycliccodeisdepictedinthenextfigure.c(p)X(p)+课后答案网+Problem9.34TheithrowofthematrixGhastheformgi=[0···010www.hackshp.cn···0pi,1pi,2···pi,n−k],1≤i≤kwherepi,1,pi,2,...,pi,n−karefoundbysolvingtheequationpn−i+ppn−k−1+ppn−k−2+···+p=pn−imodg(p)i,1i,2i,n−kThus,withg(p)=p4+p+1weobtainp14modp4+p+1=(p4)3p2modp4+p+1=(p+1)3p2modp4+p+1=(p3+p2+p+1)p2modp4+p+1=p5+p4+p3+p2modp4+p+1=(p+1)p+p+1+p3+p2modp4+p+1=p3+1p13modp4+p+1=(p3+p2+p+1)pmodp4+p+1=p4+p3+p2+pmodp4+p+1=p3+p2+1268
p12modp4+p+1=p3+p2+p+1p11modp4+p+1=(p4)2p3modp4+p+1=(p+1)2p3modp4+p+1=(p2+1)p3modp4+p+1=p5+p3modp4+p+1=(p+1)p+p3modp4+p+1=p3+p2+pp10modp4+p+1=(p2+1)p2modp4+p+1=p4+p2modp4+p+1=p2+p1p9modp4+p+1=(p2+1)pmodp4+p+1=p3+pp8modp4+p+1=p2+1modp4+p+1=p2+1p7modp4+p+1=(p+1)p3modp4+p+1=p3+p+1p6modp4+p+1=(p+1)p2modp4+p+1=p3+p2p5modp4+p+1=(p+1)pmodp4+p+1=p2+pp4modp4+p+1=p+1modp4+p+1=p+1Thegeneratorandtheparitycheckmatrixofthecodearegivenby11001111011011111111010111G=1101010101110110111001011010011111101011001000011110101100100H=00111101011001011101011001课后答案网0001Problem9.351)Letg(p)=p8+p6+p4+p2+1bethegeneratorpolynomialofan(n,k)cycliccode.Then,n−k=8andtherateofthecodeiswww.hackshp.cnk8R==1−nnTherateRisminimumwhen8ismaximumsubjecttotheconstraintthatRispositive.Thus,nthefirstchoiceofnisn=9.However,thegeneratorpolynomialg(p)doesnotdividep9+1andtherefore,itcannotgeneratea(9,1)cycliccode.Thenextcandidatevalueofnis10.Inthiscasep10+1=g(p)(p2+1)andtherefore,n=10isavalidchoice.TherateofthecodeisR=k=2=1.n1052)Inthenexttablewelistthefourcodewordsofthe(10,2)cycliccodegeneratedbyg(p).InputX(p)Codeword0000000000000011010101010110p101010101011p+11111111111269
Asitisobservedfromthetable,theminimumweightofthecodeis5andsincethecodeislineardmin=wmin=5.3)Thecodinggainofthe(10,2)cycliccodeinpart1)is2Gcoding=dminR=5×=110Problem9.361)Foreverynpn+1=(p+1)(pn−1+pn−2+···+p+1)whereadditionsaremodulo2.Sincep+1dividespn+1itcangeneratea(n,k)cycliccode,wherek=n−1.2)Theithrowofthegeneratormatrixhastheformgi=[0···010···0pi,1]wherepi,1,i=1,...,n−1,canbefoundbysolvingtheequationspn−i+p=pn−imodp+1,1≤i≤n−1i,1Sincepn−imodp+1=1foreveryi,thegeneratorandtheparitycheckmatrixaregivenby1···0|1........G=....,H=[11···1|1]0···1|13)Avectorc=[c1,c2,...,cn]isacodewordofthe(n,n−1)cycliccodeifitsatisfiestheconditioncHt=0.But,1课后答案网t1cH=0=c.=c1+c2+···cn..1Thus,thevectorcbelongstothecodeifithasanevenweight.Therefore,thecycliccodegeneratedbythepolynomialp+1isasimpleparitycheckcode.www.hackshp.cnProblem9.371)UsingtheresultsofProblem9.31,wefindthattheshortestpossiblegeneratorpolynomialofdegree4isg(p)=p4+p2+1TheithrowofthegeneratormatrixGhastheformgi=0···010···0pi,1···pi,4wherepi,1,...,pi,4areobtainedfromtherelationp6−i+pp3+pp2pp+p=p6−i(modp4+p2+1)i,1i,2i,3i,4Hence,p5modp4+p2+1=(p2+1)pmodp4+p2+1=p3+pp4modp4+p2+1=p2+1modp4+p2+1=p2+1270
andtherefore,101010G=010101Thecodewordsofthecodearec1=[000000]c2=[101010]c3=[010101]c4=[111111]2)Theminimumdistanceofthelinear(6,2)cycliccodeisdmin=wmin=3.Therefore,thecodecancorrectdmin−1ec==1error23)Anupperboundoftheblockerrorprobabilityisgivenby1dminEspe=(M−1)QN0WithM=2,dmin=3andEsEbP21N=RcN=RcRN=6×2×6×104×2×10−6=1.3889000weobtain√p=Q3×1.3889=2.063×10−2eProblem9.38Theblockgeneratedbytheinterleavingisa5课后答案网×23blockcontaining115binarysymbols.SincetheGolaycodecancorrectdmin−17−1ec===322bitspercodeword,theresultingblockcancorrectasingleburstoferrorsofdurationlessorequalto5×3=15bits.www.hackshp.cnProblem9.391-Cmaxisnotingeneralcyclic,becausethereisnoguaranteethatitislinear.Forexampleletn=3andletC1={000,111}andC2={000,011,101,110},thenCmax=C1∪C2={000,111,011,101,110},whichisobviouslynonlinear(forexample111⊕110=001∈Cmax)andthereforecannotbecyclic.2-Cminiscyclic,thereasonisthatC1andC2arebothlinearthereforeanytwoelementsofCminarebothinC1andC2andthereforetheirlinearcombinationisalsoinC1andC2andthereforeinCmin.TheintersectionsatisfiesthecyclicpropertybecauseifcbelongstoCminitbelongstoC1andC2andthereforeallcyclicshiftsofitbelongtoC1andC2andthereforetoCmin.AllcodewordpolynomialscorrespondingtotheelementsofCminaremultiplesofg1(p)andg2(p)andthereforemultipleofLCM{g1(p),g2(p)},whichinturndividespn+1.Foranyc∈Cmin,wehavew(c)≥d1andw(c)≥d2,thereforetheminimumdistanceofCminisgreaterthanorequaltomax{d1,d2}.271
Problem9.401)Sinceforeachtimeslot[mT,(m+1)T]wehaveφ1(t)=±φ2(t),thesignalsaredependentandthusonlyonedimensionisneededtorepresentthemintheinterval[mT,(m+1)T].Inthiscasethedimensionalityofthesignalspaceisupperboundedbythenumberofthedifferenttimeslotsusedtotransmitthemessagesignals.2)Ifφ1(t)=αφ2(t),thenthedimensionalityofthesignalspaceovereachtimeslotisatmost2.Sincetherearenslotsoverwhichwetransmitthemessagesignals,thedimensionalityofthesignalspaceisupperboundedby2n.3)Letthedecodingrulebethatthefirstcodewordisdecodedwhenrisreceivedifp(r|x1)>p(r|x2)Thesetofrthatdecodeintox1isR1={r:p(r|x1)>p(r|x2)}Thecharacteristicfunctionofthissetχ1(r)isbydefinitionequalto0ifr∈R1andequalto1ifr∈R1.Thecharacteristicfunctioncanbeboundedas1p(r|x2)21−χ1(r)≤p(r|x1)Thisinequalityistrueifχ(r)=1becausetherightsideisnonnegative.Itisalsotrueifχ(r)=0becauseinthiscasep(r|x2)>p(r|x1)andtherefore,1p(r|x2)p(r|x2)21≤=⇒1≤p(r|x1)p(r|x1)Giventhatthefirstcodewordissent,thentheprobabilityoferroris课后答案网P(error|x1)=···p(r|x1)drRN−R1=···p(r|x1)[1−χ1(r)]drRN1p(r|x2)2≤···p(r|x1)drwww.hackshp.cnRNp(r|x1)%=···p(r|x1)p(r|x2)drRN4)Theresultfollowsimmediatelyifweusetheunionboundontheprobabilityoferror.Thus,assumingthatxmwastransmitted,thentakingthesignalsxm,m=m,oneatatimeandignoringthepresenceoftherest,wecanwrite%P(error|xm)≤···p(r|xm)p(r|xm)drRN1≤m≤Mm=m5)Letr=xm+nwithnanN-dimensionalzero-meanGaussianrandomvariablewithvarianceperdimensionequaltoσ2=N0.Then,2p(r|xm)=p(n)andp(r|xm)=p(n+xm−xm)272
andtherefore,%···p(r|xm)p(r|xm)drRN|n|2|n+xm−x|21−1−m=···e2N0e2N0dnNNRN(πN0)4(πN0)4|xm−x|22|n|2+|xm−x|2/2+2n·(xm−x)−m1−mm=e4N0···e2N0dnNRN(πN)20xm−x|xm−x|2|n+m|2−m1−2=e4N0···eN0dnNRN(πN)202|xm−x|−m=e4N0Usingtheunionboundinpart4,weobtain2−|xm−xm|P(error|xm(t)sent)≤e4N01≤m≤Mm=mProblem9.411)Theencoderforthe(3,1)convolutionalcodeisdepictedinthenextfigure.k=1+.n=3+2)Thestatetransitiondiagramforthiscodeisdepictedinthenextfigure.0/000课后答案网#..000/0111/1110/00101101/100www.hackshp.cn1/1100/01011.&.1/1013)Inthenextfigurewedrawtwoframesofthetrellisassociatedwiththecode.Solidlinesindicateaninputequalto0,whereasdottedlinescorrespondtoaninputequalto1..000.00...111...011........01100..............001............10110........010....11................101273
4)Thediagramusedtofindthetransferfunctionisshowninthenextfigure.XdD2NJDJ32DNJDJDJ"XaXcXbXaDNJUsingtheflowgraphresults,weobtainthesystem3Xc=DNJXa+DNJXbXb=DJXc+DJXdX=D2NJX+D2NJXdcd2Xa=DJXbEliminatingXb,XcandXdresultsin63XaDNJT(D,N,J)==222Xa1−DNJ−DNJTofindthefreedistanceofthecodewesetN=J=1inthetransferfunction,sothatD6T(D)=T(D,N,J)|==D6+2D8+4D10+···1N=J=121−2DHence,dfree=65)Sincethereisnoselfloopcorrespondingtoaninputequalto1suchthattheoutputistheallzerosequence,thecodeisnotcatastrophic.Problem9.42Thenumberofbranchesleavingeachstatecorrespondtothenumberpossibledifferentinputstotheencoder.Sincetheencoderateachstatetakes课后答案网kbinarysymbolsatitsinput,thenumberofbranchesleavingeachstateofthetrellisis2k.ThenumberofbranchesenteringeachstateisthenumberofpossiblekLcontentsoftheencodershiftregisterthathavetheirfirstk(L−1)bitscorrespondingtothatparticularstate(notethatthedestinationstateforabranchisdeterminedbythecontentsofthefirstk(L−1)bitsoftheshiftregister).Thismeansthatthenumberofbranchesisequaltothenumberofpossibledifferentcontentsofthelastkbitsoftheencoder,i.e.,2k.www.hackshp.cnProblem9.431)Thestatediagramofthecodeisdepictedinthenextfigure0/000#..000/0111/1110/10101101/1000/1101/01011.&.1/001274
2)ThediagramusedtofindthetransferfunctionofthecodeisdepictedinthenextfigureDNJDNJD2J322DNJDJDJ"XaXcXbXaDNJUsingtheflowgraphrelationswewrite3Xc=DNJXa+DNJXbX=D2JX+D2JXbcdXd=DNJXc+DNJXd2Xa=DJXbEliminatingXb,XcandXd,weobtain73XaDNJT(D,N,J)==32Xa1−DNJ−DNJThus,D7T(D)=T(D,N,J)|==D7+D8+D9+···1N=J=131−D−D3)Theminimumfreedistanceofthecodeisdfree=74)Thefollowingfigureshows7framesofthetrellisdiagramusedbytheViterbidecoder.Itisassumedthattheinputsequenceispaddedbytozeros,sothattheactuallengthoftheinformationsequenceis5.ThenumbersonthenodesindicatetheHammingdistanceofthesurvivorpaths.ThedeletedbrancheshavebeenmarkedwithanX.Inthecaseofatiewedeletedthelowerbranch.Thesurvivorpathattheendofthedecodingisdenotedbyathickline.课后答案网1101101101110101011002443467......X..X....X.......2..2..5.XX.66X.....................X......X........1www.hackshp.cn..3X....3....4....5......X...X.X............3....4....5....4........X........X........X.Theinformationsequenceis11000andthecorrespondingcodeword111010110011000...5)Anuppertothebiterrorprobabilityofthecodeisgivenby1ϑT2(D,N)p¯b≤√kϑNN=1,D=4p(1−p)ButϑT2(D,N)ϑD7ND7==ϑNϑN1−(D+D3)N(1−DN−D3N)2andsincek=1,p=10−5,weobtainD7p¯≤≈4.0993×10−16b(1−D−D3)2√D=4p(1−p)275
Problem9.441)Thestatediagramofthecodeisdepictedinthenextfigure0/000#..000/0111/1010/11101101/1100/1001/01011.&.1/0012)ThediagramusedtofindthetransferfunctionofthecodeisdepictedinthenextfigureDNJDNJDJ232DNJDJDJ"XaXcXbXaD2NJUsingtheflowgraphrelationswewrite22Xc=DNJXa+DNJXbX=DJX+D3JXbdcXd=DNJXd+DNJXc2课后答案网Xa=DJXbEliminatingXb,XcandXd,weobtain62473824XaDNJ+DNJ−DNJT(D,N,J)==42352623Xa1−DNJ−DNJ−DNJ+DNJThus,www.hackshp.cnD6+D7−D8678T1(D)=T(D,N,J)|N=J=1=1−D−D4−D5+D6=D+2D+D+···3)Theminimumfreedistanceofthecodeisdfree=6.Thepath,whichisatadistancedfreefromtheallzeropath,isdepictedwithadoublelineinthenextfigure..000..00......101......011.....01............110........................111...............10......................100010................11................................001276
4)Thefollowingfigureshows6framesofthetrellisdiagramusedbytheViterbialgorithmtodecodethesequence{111,111,111,111,111,111}.ThenumbersonthenodesindicatetheHammingdistanceofthesurvivorpathsfromthereceivedsequence.ThebranchesthataredroppedbytheViterbialgorithmhavebeenmarkedwithanX.Inthecaseofatieoftwomergingpaths,wedeletethelowerpath.Thedecodedsequenceis{101,111,011,101,111,011}whichcorrespondstotheinformationsequence{x1,x2,x3,x4}={1,0,0,1}followedbytwozeros.11111111111111111136253400......X..XX....X.101..101...1.0114.2301101......X.............%.%.(X...((111..1111..4%(....2(....3X10...%..X..X.....(..(.....3(X....5(....411(........(........X.Problem9.45ThecodeofProblem9.41isa(3,1)convolutionalcodewithL=3.Thelengthofthereceivedsequenceyis15.Thismeansthat5symbolshavebeentransmitted,andsinceweassumethattheinformationsequencehasbeenpaddedbytwo0’s,theactuallengthoftheinformationsequenceis3.Thefollowingfiguredepicts5framesofthetrellisusedbytheViterbidecoder.Thenumbersonthenodesdenotethemetric(Hammingdistance)ofthesurvivorpaths.Inthecaseofatieoftwomergingpathsatanode,wehavepurgedthelowerpath.1012001301111103111600......X.000.000.)000++000...+XX.111.1111.0115+701........+!!*.).X...%.%.((..1..4%X....4001..001%..X(10....(课后答案网110....4...6(11........X.(.101Thedecodedsequenceis{111,001,011,000,000}andcorrespondstotheinformationsequence{1,0,0}followedbytwozeros.www.hackshp.cnProblem9.461)Theencoderforthe(3,1)convolutionalcodeisdepictedinthenextfigure.+k=1+n=3+2)Thestatetransitiondiagramforthiscodeisshownbelow277
0/000#..000/0111/1110/10101101/1001/0100/11011.&.1/0013)Inthenextfigurewedrawtwoframesofthetrellisassociatedwiththecode.Solidlinesindicateaninputequalto0,whereasdottedlinescorrespondtoaninputequalto1..000.00...111...011........01100..............101............10010........110....11................0014)Thediagramusedtofindthetransferfunctionisshowninthenextfigure.XdDNJD2J322DNJDJDJ"Xa课后答案网XcXbXaDNJUsingtheflowgraphresults,weobtainthesystem3Xc=DNJXa+DNJXbwww.hackshp.cnX=D2JX+D2JXbcdXd=DNJXc+DNJXd2Xa=DJXbEliminatingXb,XcandXdresultsin73XaDNJT(D,N,J)==32Xa1−DNJ−DNJTofindthefreedistanceofthecodewesetN=J=1inthetransferfunction,sothatD7T(D)=T(D,N,J)|==D7+D8+D9+···1N=J=131−D−DHence,dfree=75)Sincethereisnoselfloopcorrespondingtoaninputequalto1suchthattheoutputistheallzerosequence,thecodeisnotcatastrophic.278
Problem9.47UsingthediagramofFigure9.28,weseethatthereareonlytwowaystogofromstateXatostateXawithatotalnumberofones(sumoftheexponentsofD)equalto6.Thecorrespondingtransitionsare:D2DDD2Path1:Xa→Xc→Xd→Xb→XaD2DDD2Path2:Xa→Xc→Xb→Xc→Xb→XaThesetwopathscorrespondtothecodewordsc1=0,0,1,0,1,0,1,1,0,0,0,0,...c2=0,0,0,1,0,0,0,1,1,1,0,0,...Problem9.481)Thestatetransitiondiagramandtheflowdiagramusedtofindthetransferfunctionforthiscodearedepictedinthenextfigure.0/00#..000/101/010/01DNJ0110Xd1/11NJD2J0/111/0011DNJDJDJ.&.XaXc"XbXa1/10D2NJThus,课后答案网2Xc=DNJXa+DNJXbX=DJX+D2JXbcdXd=NJXc+DNJXdwww.hackshp.cnXa=DJXbandbyeliminatingXb,XcandXd,weobtain33XaDNJT(D,N,J)==32Xa1−DNJ−DNJTofindthetransferfunctionofthecodeintheformT(D,N),wesetJ=1inT(D,N,J).Hence,D3NT(D,N)=1−DN−D3N2)TofindthefreedistanceofthecodewesetN=1inthetransferfunctionT(D,N),sothatD3T(D)=T(D,N)|==D3+D4+D5+2D6+···1N=131−D−DHence,dfree=3279
3)Anupperboundonthebiterrorprobability,whenharddecisiondecodingisused,isgivenby1ϑT(D,N)P¯b≤√kϑNN=1,D=4p(1−p)SinceϑT(D,N)ϑD3ND3==ϑNN=1ϑN1−(D+D3)NN=1(1−(D+D3))2withk=1,p=10−6weobtainD3P¯≤=8.0321×10−9b(1−(D+D3))2√D=4p(1−p)Problem9.491)Letthedecodingrulebethatthefirstcodewordisdecodedwhenyiisreceivedifp(yi|x1)>p(yi|x2)Thesetofyithatdecodeintox1isY1={yi:p(yi|x1)>p(yi|x2)}Thecharacteristicfunctionofthissetχ1(yi)isbydefinitionequalto0ifyi∈Y1andequalto1ifyi∈Y1.Thecharacteristicfunctioncanbeboundedas(seeProblem9.40)1p(yi|x2)21−χ1(yi)≤p(yi|x1)Giventhatthefirstcodewordissent,thentheprobabilityoferrorisP(error|x1)=p(yi|x1)=p(yi|x1)[1−χ1(yi)]yi∈Y−Y1yi∈Y1%课后答案网p(yi|x2)2≤p(yi|x1)=p(yi|x1)p(yi|x2)p(yi|x1)yi∈Yyi∈Y2n%=p(yi|x1)p(yi|x2)i=1www.hackshp.cnwhereYdenotesthesetofallpossiblesequencesyi.Since,eachelementofthevectoryicantaketwovalues,thecardinalityofthesetYis2n.2)Usingtheresultsofthepreviouspartwehave112n%2np(yi|x1)p(yi|x2)P(error)≤p(yi|x1)p(yi|x2)=p(yi)p(yi)p(yi)i=1i=1112n2n%p(x1|yi)p(x2|yi)=p(yi)=2p(yi)p(x1|yi)p(x2|yi)p(x1)p(x2)i=1i=1However,giventhevectoryi,theprobabilityoferrordependsonlyonthosevaluesthatx1andx2aredifferent.Inotherwords,ifx1,k=x2,k,thennomatterwhatvalueisthekthelementofyi,itwillnotproduceanerror.Thus,ifbydwedenotetheHammingdistancebetweenx1andx2,thenp(x|y)p(x|y)=pd(1−p)d1i2i280
andsincep(y)=1,weobtaini2ndddP(error)=P(d)=2p2(1−p)2=[4p(1−p)]2Problem9.501)∞21−vQ(x)=√e2dv2πx√∞v=2t1−t2=√edtπ√x2∞12−t2=edt2π√x21x=erfc√222)Theaveragebiterrorprobabilitycanbeboundedas(see(9.7.16))11∞E1∞&P¯≤af(d)Q2Rdb=af(d)Q2RdγbdcdcbkN0kd=dfreed=dfree1∞&=adf(d)erfc(Rcdγb)2kd=dfree∞%1=ad+dfreef(d+dfree)erfc(Rc(d+dfree)γb)2kd=11&∞≤erfc(Rdγ)af(d+d)e−Rcdγbcfreebd+dfreefree2kd=1But,课后答案网∞∞T(D,N)=aDdNf(d)=aDd+dfreeNf(d+dfree)dd+dfreed=dfreed=1andtherefore,∞ϑT(D,N)www.hackshp.cnd+dfree=ad+dfreeDf(d+dfree)ϑNN=1d=1∞=DdfreeaDdf(d+d)d+dfreefreed=1SettingD=e−Rcγbinthepreviousandsubstitutingintheexpressionfortheaveragebiterrorprobability,weobtain1&RϑT(D,N)P¯≤erfc(Rdγ)ecdfreeγbbcfreeb2kϑNN=1,D=e−RcγbProblem9.51Thepartitionofthe8-PAMconstellationinfoursubsetsisdepictedinthefigurebelow.281
-7-5-3-1135701-7-315-5-1370-,101-,-,-71-35-17-532)Thenextfigureshowsoneframeofthetrellisusedtodecodethereceivedsequence.Eachbranchconsistsoftwotransitionswhichcorrespondtoelementsinthesamecosetinthefinalpartitionlevel.-7,1-5,3-5,3
#-7,1$-3,5
#-1,7$-1,7-3,5TheoperationoftheViterbialgorithmforthedecodingofthesequence{−.2,1.1,6,4,−3,−4.8,3.3}isshownschematicallyinthenextfigure.Ithasbeenassumedthatwestartattheallzerostateandthatasequenceofzerosterminatestheinputbitstreaminordertocleartheencoder.ThenumbersatthenodesindicatetheminimumEuclideandistance,andthebrancheshavebeenmarkedwiththedecodedtransmittedsymbol.ThepathsthathavebeenpurgedaremarkedwithanX.-.2课后答案网1.164-3-4.83.31.441.4526.457.0515.4511.0914.38111XXXX333X3-5-510.245.0510.45X15.05-511.05355X1X-325.45www.hackshp.cn6.05511.4511.05-17XX-114.29XX14.656.057.057.05X5-3Transmittedsequence:1353-5-33282
Chapter10Problem10.11)Thewavelengthλis3×1083λ=m=m10910Hence,theDopplerfrequencyshiftisu100Km/hr100×103×10fD=±=±3=±Hz=±92.5926Hzλm3×360010Theplussignholdswhenthevehicletravelstowardsthetransmitterwhereastheminussignholdswhenthevehiclemovesawayfromthetransmitter.2)ThemaximumdifferenceintheDopplerfrequencyshift,whenthevehicletravelsatspeed100km/hrandf=1GHz,is∆fDmax=2fD=185.1852HzThisshouldbethebandwidthoftheDopplerfrequencytrackingloop.3)ThemaximumDopplerfrequencyshiftisobtainwhenf=1GHz+1MHzandthevehiclemovestowardsthetransmitter.Inthiscase3×108λmin=m=0.2997m109+106andtherefore100×103fDmax==92.6853Hz0.2997×3600Thus,theDopplerfrequencyspreadis课后答案网Bd=2fDmax=185.3706Hz.Problem10.21)SinceTm=1second,thecoherencebandwidth1Bcb==0.5Hzwww.hackshp.cn2TmandwithBd=0.01Hz,thecoherencetimeis1Tct==100/2=50seconds2Bd(2)SincethechannelbandwidthWbcb,thechannelisfrequencyselective.(3)SincethesignaldurationTTct,thechannelisslowlyfading.283
(4)TheratioW/Bcb=10.Hence,inprincipleuptotenthorderdiversityisavailablebysubdividingthechannelbandwidthinto10subchannels,eachofwidth0.5Hz.IfweemploybinaryPSKwithsymboldurationT=10seconds,thenthechannelbandwidthcanbesubdividedinto25subchannels,eachofbandwidth2=0.2Hz.Wemaychoosetohave5thorderfrequencydiversityTandforeachtransmission,thus,have5paralleltransmissions.Thus,wewouldhaveadatarateof5bitspersignalinterval,i.e.,abitrateof1/2bps.Byreducingtheorderofdiversity,wemayincreasethedatarate,forexample,withnodiversity,thedataratebecomes2.5bps.(5)Toanswerthequestionwemayusetheapproximaterelationfortheerrorprobabilitygivenby(10.1.37),orwemayusetheresultsinthegraphshowninFigure10.1.10.Forexample,forbinaryPSKwithD=4,theSNRperbitrequiredtoachieveanerrorprobabilityof10−6is18dB.ThisthetotalSNRperbitforthefourchannels(withmaximalrationcombining).Hence,theSNRperbitperchannelisreducedto12dB(afactoroffoursmaller).Problem10.3TheRayleighdistributionisαe−α2/2σα2,α>0σ2p(α)=α0,otherwiseHence,theprobabilityoferrorforthebinaryFSKandDPSKwithnoncoherentdetectionaveragedoverallpossiblevaluesofαis2∞1−cαEbα22P=eN0e−α/2σαdα2202σα1∞−α2cEb+1N02σ2=αeαdα2σ20αBut,∞2n+1−ax2n!xedx=,(a>0)02an+1sothatwithn=0weobtain课后答案网1∞−α2cEb+111N02σ2P2=αeαdα=2σα202σα22cEb+1N02σα211==Eb2σα22[cρ¯+1]2c+1bwww.hackshp.cnN0Eb2σα21where¯ρb=N0.Withc=1(DPSK)andc=2(FSK)wehave1,DPSKP=2(1+¯ρb)21,FSK2+¯ρb284
Problem10.4(a)cos2πf1t×MatchedFilter1()2+×MatchedFilter1()2r(t)sin2πf1t1cos2πf2t×MatchedFilter2()2++×MatchedFilter2()2sin2πf2tsampleatt=kTcos2πf1tDetectoroutput×MatchedFilter1()2selectthelarger+×MatchedFilter1()2r(t)sin2πf1t+2cos2πf2t课后答案网×MatchedFilter2()2+×MatchedFilter2www.hackshp.cn()2sin2πf2t(b)TheprobabilityoferrorforbinaryFSKwithsquare-lawcombiningforD=2isgiveninFigure10.1.10.TheprobabilityoferrorforD=1isalsogiveninFigure10.1.10.NotethatanincreaseinSNRbyafactorof10reducestheerrorprobabilitybyafactorof10whenD=1andbyafactorof100whenD=2.Problem10.5√(a)risaGaussianrandomvariable.IfEbisthetransmittedsignalpoint,then&E(r)=E(r1)+E(r2)=(1+k)Eb≡mrandthevarianceisσ2=σ2+k2σ2r12285
Theprobabilitydensityfunctionofris2(r−mr)1−2f(r)=√e2σr2πσrandtheprobabilityoferroris0P2=f(r)dr−∞−mr21σr−x=√e2dx2π−∞1m2=Qrσ2rwherem2r(1+k)2Eb=σr2σ12+k2σ22Thevalueofkthatmaximizesthisratioisobtainedbydifferentiatingthisexpressionandsolvingforthevalueofkthatforcesthederivativetozero.Thus,weobtainσ2k=1σ22Notethatifσ1>σ2,thenk>1andr2isgivengreaterweightthanr1.Ontheotherhand,ifσ2>σ1,thenk<1andr1isgivengreaterweightthanr2.Whenσ1=σ2,k=1.Inthiscasem22Ebr=σ2σ2r1(b)Whenσ2=3σ2,k=1,and213212mr(1+3)Eb4Eb==σr2σ2+1(3σ2)3σ2课后答案网1911Ontheotherhand,ifkissettounitywehavem2r4EbEb==www.hackshp.cnσr2σ12+3σ12σ12Therefore,theoptimumweightingprovidesagainof410log=1.25dB3Problem10.61)Theprobabilityoferrorforafixedvalueofais12a2EPe(a)=QN0sincethegivenatakestwopossiblevalues,namelya=0anda=2withprobabilities0.1and0.9,respectively,theaverageprobabilityoferroris110.18E8EPe=+Q=0.05+Q2N0N0286
(2)AsE→∞,P→0.05N0e(3)Theprobabilityoferrorforfixedvaluesofa1anda2is12(a21+a22)EPe(a1,a2)=QN0Inthiscasewehavefourpossiblevaluesforthepair(a1,a2),namely,(0,0),(0,2),(2,0),and(2,2),withcorrespondingprobabilities).01,0.09,0.09and0.81.Hence,theaverageprobabilityoferroris110.018E16EPe=+0.18Q+0.81Q2N0N0(4)AsE→∞,P→0.005,whichisafactorof10smallerthanin(2).N0eProblem10.7Weassumethattheinputbits0,1aremappedtothesymbols-1and1respectively.TheterminalphaseofanMSKsignalattimeinstantnisgivenbykπθ(n;a)=ak+θ02k=0whereθ0istheinitialphaseandakis±1dependingontheinputbitatthetimeinstantk.Thefollowingtableshowsθ(n;a)fortwodifferentvaluesofθ0(0,π),andthefourinputpairsofdata:{00,01,10,11}.θ0b0b1a0a1θ(n;a)000-1-1−π001-1100101-1001111ππ00-1-10课后答案网π01-11ππ101-1ππ11112πProblem10.81)Theenvelopeofthesignaliswww.hackshp.cn%|s(t)|=|sc(t)|2+|ss(t)|212Eb2πt2Eb2πt=cos+sinTb2TbTb2Tb12Eb=TbThus,thesignalhasconstantamplitude.287
2)Thesignals(t)hastheformofthefour-phasePSKsignalwithπtgT(t)=cos,0≤t≤2Tb2TbHence,itisanMSKsignal.Ablockdiagramofthemodulatorforsynthesizingthesignalisgiveninthenextfigure.a2n××SerialSerial/77s(t)Parallelcos(πt)cos(2πft)+2TbcdataanDemux−π−π22××a2n+13)Asketchofthedemodulatorisshowninthenextfigure.t=2Tb2Tb××(·)dtThreshold0r(t)77πtParalleltocos(2πfct))cos()Serial2Tb−π−π22t=2Tb××2Tb(·)dtThreshold0Problem10.9Sincep=2,misodd(m=1)and课后答案网M=2,thereareNs=2pM=8phasestates,whichwedenoteasSn=(θn,an−1).The2p=4phasestatescorrespondingtoθnare*8www.hackshp.cnπ3πΘs=0,,π,22andtherefore,the8statesSnare*8ππ3π3π(0,1),(0,−1),,1,,−1,(π,1),(π,−1),,1,,−12222Havingatourdisposalthestate(θn,an−1)andthetransmittedsymbolan,wecanfindthenewphasestateasanπ(θn,an−1)−→(θn+an−1,an)=(θn+1,an)2Thefollowingfigureshowsoneframeofthephase-trellisofthepartialresponseCPMsignal.288
(θn,an−1)(θn+1,an)(0,1)..(0,1)...(0,−1)......(0,−1).........π,1)..........(π,1)(2...........2.........π..........(π(2,−1)..........2,−1)................(π,1).........(π,1)...................(π,−1)..........(π,−1).......3π........3π(,1).......(,1)2.....2.......3π..3π(,−1)...(,−1)22ThefollowingisasketchofthestatediagramofthepartialresponseCPMsignal.(π,1)(π,1)111(3π,1)2321""411"1-1-1"/(0,1)11(0,−1)-1-1-11-120-1π/(3π,−1)(,−1)22课后答案网(π,−1)Problem10.101)ForafullresponseCPFSKsignal,Lisequalto1.Ifh=2,thensincemiseven,therearep3terminalphasestates.Ifh=3,thenumberofstatesisN=2p.4s2)WithL=3andh=2,thenumberofstatesiswww.hackshp.cnN=p22=12.WhenL=3andh=3,the3s4numberofstatesisNs=2p22=32.Problem10.11(a)ThecodinggainisH1Rcdmin=×10=5(7dB)2(b)TheprocessinggainisW/R,whereW=107HzandR=2000bps.Hence,W107==5×103(37dB)R2×103289
(c)Thejammingmargingivenby(10.3.43)isPJ=W+(CG)−EbPsdBRdBdBJ0dB=37+7−10=34dBProblem10.12TheprobabilityoferrorforDSspreadspectrumwithbinaryPSKmaybeexpressedas12W/RbP2=QPJ/PSwhereW/RistheprocessinggainandPJ/PSisthejammingmargin.Ifthejammerisabroadband,WGNjammer,thenPJ=WJ0PS=Eb/Tb=EbRbTherefore,12EbP2=QJ0whichisidenticaltotheperformanceobtainedwithanon-spreadsignal.Problem10.13Weassumethattheinterferenceischaracterizedasazero-meanAWGNprocesswithpowerspectraldensityJ0.Toachieveanerrorprobabilityof10−5,therequiredEb/J0=10.Then,byusingtherelationin(10.3.40)and(10.3.44),wehaveW/R=W/R=EbPN/PSNu−1J0W/R=Eb(N−1)J0u课后答案网W=REb(N−1)J0uwhereR=104bps,Nu=30andEb/J0=10.Therefore,www.hackshp.cnW=2.9×106HzTheminimumchiprateis1/Tc=W=2.9×106chips/sec.Problem10.14Toachieveanerrorprobabilityof10−6,werequireEb=10.5dBJ0dBThen,thenumberofusersoftheCDMAsystemisN=W/Rb+1uEb/J0=1000+1=89users11.3IftheprocessinggainisreducedtoW/Rb=500,then500Nu=+1=45users11.3290
Problem10.15(a)Wearegivenasystemwhere(PJ/PS)dB=20dB,R=1000bpsand(Eb/J0)dB=10dB.Hence,usingtherelationin(10.3.40)weobtainW=PJ+Eb=30dBRdBPSdBJ0dBW=1000RW=1000R=106Hz(b)Thedutycycleofapulsejammerforworst-casejammingis∗0.70.7α===0.07Eb/J010Thecorrespondingprobabilityoferrorforthisworst-casejammingis0.0820.082−3P2===8.2×10Eb/J010Problem10.16Theradiosignalpropagatesatthespeedoflight,c=3×108m/sec.Thedifferenceinpropagationdelayforadistanceof300metersis300Td==1µsec3×108TheminimumbandwidthofaDSspreadspectrumsignalrequiredtoresolvethepropagationpathsisW=1MHz.Hence,theminimumchiprateis10课后答案网6chipspersecond.Problem10.17(a)WehaveNu=15userstransmittingatarateof10,000bpseach,inabandwidthofW=1MHz.Theb/J0iswww.hackshp.cnEW/R106/104100===J0Nu−11414=7.14(8.54dB)(b)Theprocessinggainis100.(c)WithNu=30andEb/J0=7.14,theprocessinggainshouldbeincreasedtoW/R=(7.14)(29)=207Hence,thebandwidthmustbeincreasedtoW=2.07MHz.291
Problem10.18(a)Thelengthoftheshift-registersequenceisL=2m−1=215−1=32767bitsForbinaryFSKmodulation,theminimumfrequencyseparationis2/T,where1/Tisthesymbol(bit)rate.Thehoprateis100hops/sec.SincetheshiftregisterhasN=32767statesandeachstateutilizesabandwidthof2/T=200Hz,thenthetotalbandwidthfortheFHsignalis6.5534MHz.(b)TheprocessinggainisW/R.Wehave,W6.5534×1064==6.5534×10bpsR100(c)IfthenoiseisAWGwithpowerspectraldensityN0,theprobabilityoferrorexpressionis11EbW/RP2=Q=QN0PN/PSProblem10.19(a)Ifthehoppingrateis2hops/bitandthebitrateis100bits/sec,then,thehoprateis200hops/sec.Theminimumfrequencyseparationfororthogonality2/T=400Hz.SincethereareN=32767statesoftheshiftregisterandforeachstateweselectoneoftwofrequenciesseparatedby400Hz,thehoppingbandwidthis13.1068MHz.(b)TheprocessinggainisW/R,课后答案网whereW=13.1068MHzandR=100bps.HenceW=0.131068MHzR(c)TheprobabilityoferrorinthepresenceofAWGNisgivenby(10.3.61)withN=2chipsperhop.www.hackshp.cnProblem10.20a)ThetotalSNRforthreehopsis20∼13dB.ThereforetheSNRperhopis20/3.Theprobabilityofachiperrorwithnoncoherentdetectionis1−Ecp=e2N02whereEc/N0=20/3.TheprobabilityofabiterrorisP=1−(1−p)2b=1−(1−2p+p2)=2p−p2−Ec1−Ec=e2N0−eN02=0.0013292
b)Inthecaseofonehopperbit,theSNRperbitis20,Hence,1−EcPb=e2N021−10=e2=2.27×10−5Thereforethereisalossinperformanceofafactor57AWGNduetosplittingthetotalsignalenergyintothreechipsand,then,usingharddecisiondecoding.Problem10.21(a)Wearegivenahoppingbandwidthof2GHzandabitrateof10kbs.Hence,W2×1095==2×10(53dB)R104(b)Thebandwidthoftheworstpartial-bandjammerisα∗W,whereα∗=2/(E/J)=0.2b0Henceα∗W=0.4GHz(c)Theprobabilityoferrorwithworst-casepartial-bandjammingise−1e−1P2=(Eb/J0)=10=3.68×10−2Problem10.22课后答案网TheprocessinggainisgivenasW=500(27dB)RbThe(Eb/J0)requiredtoobtainanerrorprobabilityof10−5forbinaryPSKis9.5dB.Hence,thejammingmarginiswww.hackshp.cnPJ=W−EbPSdBRbdBJ0dB=27−9.5=17.5dBProblem10.23Ifthejammerisapulsejammerwithadutycycleα=0.01,theprobabilityoferrorforbinaryPSKisgivenas12W/RbP2=αQPJ/PSForP2=10−5,andα=0.01,wehave12W/Rb−3Q=10PJ/PS293
Then,W/Rb500==5PJ/PSPJ/PSandPJ=100(20dB)PSProblem10.24∞c(t)=cnp(t−nTc)n=−∞Thepowerspectraldensityofc(t)isgivenby12Sc(f)=Sc(f)|P(f)|Tcwhere|P(f)|2=(AT)2sinc2(fT),T=1µseccccandSc(f)isthepowerspectraldensityofthesequence{cn}.Sincetheautocorrelationofthesequence{cn}isperiodicwithperiodLandisgivenasL,m=0,±L,±2L,...Rc(m)=−1,otherwisethen,Rc(m)canberepresentedinadiscreteFourierseriesasL−11j2πmk/LRc(m)=rC(k)e,m=0,1,...,L−1Lk=0where{rc(k)}aretheFourierseriescoefficients,whicharegivenas课后答案网L−1r(k)=R(m)e−j2πkm/L,k=0,1,...,L−1ccm=0andrc(k+nL)=rc(k)forn=0,±1,±2,....Thelattercanbeevaluatedtoyieldwww.hackshp.cnL−1−j2πkm/Lrc(k)=L+1−m=0e1,k=0,±L,±2L,...=L+1,otherwiseThepowerspectraldensityofthesequence{cn}maybeexpressedintermsof{rc(k)}.Thesecoefficientsrepresentthepowerinthespectralcomponentsatthefrequenciesf=k/L.Therefore,wehave∞1kSc(f)=rc(k)δf−LLTck=−∞Finally,wehave∞21kkSc(f)=rc(k)Pδf−LTcLTcLTck=−∞294
Problem10.25Withoutlossofgenerality,letusassumethatL1