- 487.36 KB
- 2022-04-22 11:19:45 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'原子物理学习题解答原子物理学习题解答刘富义编临沂师范学院物理系理论物理教研室
第一章原子的基本状况"61.1若卢瑟福散射用的粒子是放射性物质镭C放射的,其动能为7.6810电子伏特。散射物质是原子序数Z79的金箔。试问散射角150所对应的瞄准距离b多大?解:根据卢瑟福散射公式:2MvKcot4b4b020222ZeZe得到:2192150Zectg279(1.6010)ctg215b3.9710米126194K(48.8510)(7.681010)012式中KMv是粒子的功能。21.2已知散射角为的粒子与散射核的最短距离为212Ze1rm()2(1),试问上题粒子与散射的金原子核4Mvsin02之间的最短距离r多大?m解:将1.1题中各量代入r的表达式,得:m212Ze1r()(1)min24Mvsin021929479(1.6010)1910(1)6197.68101.6010sin75143.0210米1.3若用动能为1兆电子伏特的质子射向金箔。问质子与金箔。问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180。当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。根据上面的分析可得:2212ZeZeMvKp,故有:rmin24r4K0min0p192979(1.6010)139101.1410米619101.6010
由上式看出:r与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代min13替质子时,其与靶核的作用的最小距离仍为1.1410米。771.4钋放射的一种粒子的速度为1.59710米/秒,正面垂直入射于厚度为10米、43密度为1.93210公斤/米的金箔。试求所有散射在90的粒子占全部入射粒子数的百分比。已知金的原子量为197。解:散射角在d之间的粒子数dn与入射到箔上的总粒子数n的比是:dnNtdn其中单位体积中的金原子数:N/mN/AAu0Au"而散射角大于900的粒子数为:dndnnNtd2"dnNtd所以有:n22cosN0122Ze21802t()()d290A4Mu3Au0sin2cosdsin18021802等式右边的积分:Id21903903sinsin22故"2dnN0122Ze2t()()2nA4MuAu08.51068.5104007即速度为1.59710米/秒的粒子在金箔上散射,散射角大于90以上的粒子数大约是408.5100。1.5粒子散射实验的数据在散射角很小(15)时与理论值差得较远,时什么原因?答:粒子散射的理论值是在“一次散射“的假定下得出的。而粒子通过金属箔,经过
好多原子核的附近,实际上经过多次散射。至于实际观察到较小的角,那是多次小角散射合成的结果。既然都是小角散射,哪一个也不能忽略,一次散射的理论就不适用。所以,粒子散射的实验数据在散射角很小时与理论值差得较远。1.6已知粒子质量比电子质量大7300倍。试利用中性粒子碰撞来证明:粒子散射“受电子的影响是微不足道的”。"证明:设碰撞前、后粒子与电子的速度分别为:vv,",0,v。根据动量守恒定律,得:e""MvMvmve由此得:vv"mv"1v"……(1)eeM7300又根据能量守恒定律,得:121"21"2MvMvmve2222"2m"2……(2)vvveM将(1)式代入(2)式,得:2"2"2vv7300(vv)2"2"整理,得:v(73001)v(73001)27300vvcos073001"2上式可写为:7300(vv)0"vv0即粒子散射“受电子的影响是微不足道的”。221.7能量为3.5兆电子伏特的细粒子束射到单位面积上质量为1.0510公斤/米52的银箔上,粒子与银箔表面成60角。在离L=0.12米处放一窗口面积为6.010米的计数器。测得散射进此窗口的粒子是全部入射粒子的百万分之29。若已知银的原子量为107.9。试求银的核电荷数Z。"解:设靶厚度为t。非垂直入射时引起粒子在靶物质中通过的距离不再是靶物质的厚20º""度t,而是tt/sin60,如图1-1所示。因为散射到与d之间d立体60°角内的粒子数dn与总入射粒子数n的比为:dnt,Ntd(1)nt60º而d为:图1.1212ze2dd()()(2)240Mv4sin2
把(2)式代入(1)式,得:2dn12ze2dNt()()……(3)2n40Mv4sin22"0"0式中立体角元dds/L,tt/sin602t/3,20""1N为原子密度。Nt为单位面上的原子数,Nt/m(A/N),其中是单位AgAg0面积式上的质量;m是银原子的质量;A是银原子的原子量;N是阿佛加德罗常数。AgAg0将各量代入(3)式,得:2dn2N012ze2d()()2n3AAg40Mvsin42由此,得:Z=471.8设想铅(Z=82)原子的正电荷不是集中在很小的核上,而是均匀分布在半径约为10610米的球形原子内,如果有能量为10电子伏特的粒子射向这样一个“原子”,试通过0计算论证这样的粒子不可能被具有上述设想结构的原子产生散射角大于90的散射。这个结论与卢瑟福实验结果差的很远,这说明原子的汤姆逊模型是不能成立的(原子中电子的影响可以忽略)。解:设粒子和铅原子对心碰撞,则粒子到达原子边界而不进入原子内部时的能量有下式决定:122163Mv2Ze/4R3.7810焦耳2.3610电子伏特026由此可见,具有10电子伏特能量的粒子能够很容易的穿过铅原子球。粒子在到达原子表面和原子内部时,所受原子中正电荷的排斥力不同,它们分别为:2223F2Ze/4R和F2Zer/4R。可见,原子表面处粒子所受的斥力最大,越00靠近原子的中心粒子所受的斥力越小,而且瞄准距离越小,使粒子发生散射最强的垂直入射方向的分力越小。我们考虑粒子散射最强的情形。设粒子擦原子表面而过。此时受22力为F2Ze/4R。可以认为粒子只在原子大小的范围内受到原子中正电荷的作0用,即作用距离为原子的直径D。并且在作用范围D之内,力的方向始终与入射方向垂直,大小不变。这是一种受力最大的情形。12根据上述分析,力的作用时间为t=D/v,粒子的动能为MvK,因此,2v2K/M,所以,tD/vDM/2Kt0根据动量定理:FdtppMv00
tt2222而Fdt2Ze/4Rdt2Zet/4R000022所以有:2Zet/4RMv022由此可得:v2Zet/4RM0粒子所受的平行于入射方向的合力近似为0,入射方向上速度不变。据此,有:v22222tg2Zet/4RMv2ZeD/4RMv00v32.4103‘这时很小,因此tg2.410弧度,大约是8.2。这就是说,按题中假设,能量为1兆电子伏特的粒子被铅原子散射,不可能产生散射0角90的散射。但是在卢瑟福的原子有核模型的情况下,当粒子无限靠近原子核时,00会受到原子核的无限大的排斥力,所以可以产生90的散射,甚至会产生180的散射,这与实验相符合。因此,原子的汤姆逊模型是不成立的。
第二章原子的能级和辐射2.1试计算氢原子的第一玻尔轨道上电子绕核转动的频率、线速度和加速度。解:电子在第一玻尔轨道上即年n=1。根据量子化条件,hpmvrn2vnhh可得:频率222a2ma2ma111156.5810赫兹6速度:v2a1h/ma12.18810米/秒22222加速度:wv/rv/a19.04610米/秒2.2试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。2解:电离能为EEE,把氢原子的能级公式ERhc/n代入,得:i1n11EiRHhc(2)Rhc=13.60电子伏特。1Ei电离电势:V13.60伏特ie1133第一激发能:EiRHhc(22)Rhc13.6010.20电子伏特1244E1第一激发电势:V10.20伏特1e2.3用能量为12.5电子伏特的电子去激发基态氢原子,问受激发的氢原子向低能基跃迁时,会出现那些波长的光谱线?解:把氢原子有基态激发到你n=2,3,4……等能级上去所需要的能量是:11EhcR()其中hcR13.6电子伏特H22H1n1E13.6(1)10.2电子伏特1221E13.6(1)12.1电子伏特2231E13.6(1)12.8电子伏特324其中E和E小于12.5电子伏特,E大于12.5电子伏特。可见,具有12.5电子伏特能量的123
电子不足以把基态氢原子激发到n4的能级上去,所以只能出现n3的能级间的跃迁。跃迁时可能发出的光谱线的波长为:111R()5R/36H22H2316565A11113R()RH22H21241215A21118R()RH22H13931025A32.4试估算一次电离的氦离子H、二次电离的锂离子L的第一玻尔轨道半径、电离电ei势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。解:在估算时,不考虑原子核的运动所产生的影响,即把原子核视为不动,这样简单些。a)氢原子和类氢离子的轨道半径:22240hnnra,n1,2,32214mZeZ240h10其中a0.52917710米,是氢原子的玻尔第一轨道半径;1224meZ是核电荷数,对于H,Z1;对于H,Z2;对于Li,Z3;rHeZH1rLiZH1因此,玻尔第一轨道半径之比是,rHZHe2rHZLi3b)氢和类氢离子的能量公式:24222meZZEE,n1,2,322212(4)nhn0242me其中E12213.6电子伏特,是氢原子的基态能量。(4)h0电离能之比:20EZHeHe4,20EZHH20EZLiLi920EZHHc)第一激发能之比:
2222E2E1E12E12HeHe2142122EE11HHEE1212212233E2E1E12E12LiLi2192122EE11HHEE121221d)氢原子和类氢离子的广义巴耳末公式:11n11,2,3v~Z2R(){n2n2,n2(n11),(n12)12242me其中R是里德伯常数。23(4)h0氢原子赖曼系第一条谱线的波数为:H111vR()122H12相应地,对类氢离子有:He2111v2R()122He121Li2111v3R()122Li121因此,HeLi1111,HH49112.5试问二次电离的锂离子L从其第一激发态向基态跃迁时发出的光子,是否有可能i使处于基态的一次电离的氦粒子H的电子电离掉?e解:L由第一激发态向基态跃迁时发出的光子的能量为:iH的电离能量为:e
11v4hcR()4hcRHeHe2He1hvLi27RLi271m/MHehv16R161m/MHeHeLi由于MHeMLi,所以1m/MHe1m/MLi,hvhv从而有LiHe,所以能将He的电子电离掉。2.6氢与其同位素氘(质量数为2)混在同一放电管中,摄下两种原子的光谱线。试问其巴耳末系的第一条(H)光谱线之间的波长差有多大?已知氢的里德伯常数7171R1.096775810米,氘的里德伯常数R1.097074210米。HD111解:R(),36/5RH22HH23H111R(),36/5RD22DD23D3611()HD5RRHD1.79A2.7已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子结构的“正电子素”。试计算“正电子素”由第一激发态向基态跃迁发射光谱的波长为多少A?111133解:Ree(22)RmR12481m81米2430A3R3109737312.8试证明氢原子中的电子从n+1轨道跃迁到n轨道,发射光子的频率。当n>>1时n光子频率即为电子绕第n玻尔轨道转动的频率。证明:在氢原子中电子从n+1轨道跃迁到n轨道所发光子的波数为:~111vR[]n22nn(n1)c112n1频率为:vRc[]Rcn2222n(n1)n(n1)
2243当n>>1时,有(2n1)/n(n1)2n/n2/n,所以在n>>1时,氢原子中3电子从n+1轨道跃迁到n轨道所发光子的频率为:vn2Rc/n。设电子在第n轨道上的转动频率为f,则nvmvrP2Rcfn2232r2mr2mrn因此,在n>>1时,有vnfn由上可见,当n>>1时,请原子中电子跃迁所发出的光子的频率即等于电子绕第n玻尔轨道转动的频率。这说明,在n很大时,玻尔理论过渡到经典理论,这就是对应原理。2.9Li原子序数Z=3,其光谱的主线系可用下式表示:~RRv。已知锂原子电离成Li离子需要203.44电子伏特的22(10.5951)(n0.0401)功。问如把Li离子电离成Li离子,需要多少电子伏特的功?解:与氢光谱类似,碱金属光谱亦是单电子原子光谱。锂光谱的主线系是锂原子的价电子由高的p能级向基态跃迁而产生的。一次电离能对应于主线系的系限能量,所以Li离子电离成Li离子时,有RhcRhcRhcE5.35电子伏特122(10.5951)(10.5951)Li是类氢离子,可用氢原子的能量公式,因此LiLi时,电离能E为:32ZRhc2RE32ZRhc122.4电子伏特。1设LiLi的电离能为E。而LiLi需要的总能量是E=203.44电子伏特,所以有2EEEE75.7电子伏特2132.10具有磁矩的原子,在横向均匀磁场和横向非均匀磁场中运动时有什么不同?答:设原子的磁矩为,磁场沿Z方向,则原子磁矩在磁场方向的分量记为,于是ZBB具有磁矩的原子在磁场中所受的力为F,其中是磁场沿Z方向的梯度。ZZZB对均匀磁场,0,原子在磁场中不受力,原子磁矩绕磁场方向做拉摩进动,且对磁场Z
B的取向服从空间量子化规则。对于非均磁场,0原子在磁场中除做上述运动外,还Z受到力的作用,原子射束的路径要发生偏转。2.11史特恩-盖拉赫实验中,处于基态的窄银原子束通过不均匀横向磁场,磁场的梯度B3为10特斯拉/米,磁极纵向范围L=0.04米(见图2-2),从磁极到屏距离L=0.10米,12Z2原子的速度v510米/秒。在屏上两束分开的距离d0.002米。试确定原子磁矩在磁场方向上投影的大小(设磁场边缘的影响可忽略不计)。解:银原子在非均匀磁场中受到垂直于入射方向的磁场力作用。其轨道为抛物线;在"L区域粒子不受力作惯性运动。经磁场区域L后向外射出时粒子的速度为v,出射方向与21v入射方向间的夹角为。与速度间的关系为:tgv粒子经过磁场L出射时偏离入射方向的距离S为:11BL12S()……(1)Z2mZv将上式中用已知量表示出来变可以求出ZfBvat,a,tL/v1mmZZBL1vmZvBLLZ12S"Ltg22mZvddZBL1L2SS"222mZv把S代入(1)式中,得:2dZBL1L2ZBL1222mZv2mZvZBL1d整理,得:(L2L)2122mZv223由此得:0.9310焦耳/特Z2.12观察高真空玻璃管中由激发原子束所发光谱线的强度沿原子射线束的减弱情况,3可以测定各激发态的平均寿命。若已知原子束中原子速度v10米/秒,在沿粒子束方向上相距1.5毫米其共振光谱线强度减少到1/3.32。试计算这种原子在共振激发态的平均寿命。
解:设沿粒子束上某点A和距这点的距离S=1.5毫米的B点,共振谱线强度分别为I和I,并设粒子束在A点的时刻为零时刻,且此时处于激发态的粒子数为N,原子束0120经过t时间间隔从A到达B点,在B点处于激发态的粒子数为N。2光谱线的强度与处于激发态的原子数和单位时间内的跃迁几率成正比。设发射共振谱线IANN12122的跃迁几率为A,则有21IANN0212020IN12适当选取单位,使1/3.32,IN020并注意到NNeA21t,而tS/v,220N2A21t则有:e1/3.32N20由此求得:1vA(ln3.32ln1)ln3.3221ts31s1.510t3A21vln3.3210ln3.3261.2510秒
第三章量子力学初步3.1波长为1A的X光光子的动量和能量各为多少?解:根据德布罗意关系式,得:34h6.6310241动量为:p6.6310千克米秒1010能量为:Ehvhc/34810156.6310310/101.98610焦耳。3.2经过10000伏特电势差加速的电子束的德布罗意波长?用上述电压加速的质子束的德布罗意波长是多少?解:德布罗意波长与加速电压之间有如下关系:3119h/2meV对于电子:m9.1110公斤,e1.6010库仑把上述二量及h的值代入波长的表示式,可得:12.2512.25AA0.1225AV100002719对于质子,m1.6710公斤,e1.6010库仑,代入波长的表示式,得:6.626103432.86210A271921.67101.60101000012.253.3电子被加速后的速度很大,必须考虑相对论修正。因而原来A的电子德V布罗意波长与加速电压的关系式应改为:12.256(10.48910V)AV其中V是以伏特为单位的电子加速电压。试证明之。证明:德布罗意波长:h/p对高速粒子在考虑相对论效应时,其动能K与其动量p之间有如下关系:2222K2Kmcpc0而被电压V加速的电子的动能为:KeV
22(eV)p2meV20c22p2meV(eV)/c0因此有:h1h/p2meVeV0122mc02一般情况下,等式右边根式中eV/2mc一项的值都是很小的。所以,可以将上式的0根式作泰勒展开。只取前两项,得:heVh6(1)(10.48910V)22m0eV4m0c2m0eV12.25由于上式中h/2meVA,其中V以伏特为单位,代回原式得:0V12.256(10.48910V)AV由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。3.4试证明氢原子稳定轨道上正好能容纳下整数个电子的德布罗意波波长。上述结果不但适用于圆轨道,同样适用于椭圆轨道,试证明之。证明:轨道量子化条件是:pdqnh2对氢原子圆轨道来说,pr0,pmrmvr所以有:pd2mvrnhhS2rnn,n1,2,3mv所以,氢原子稳定轨道上正好能容纳下整数个电子的德布罗意波长。椭圆轨道的量子化条件是:pdnhpdrnhrr其中
2pmr,pmrr(pdrpd)nh,其中nnnrr2而(pdrpd)(mrdrmrd)rdr2d(mrdtmrdt)dtdt2mvdtmvdshdsdshrdsn因此,椭圆轨道也正好包含整数个德布罗意波波长。3.5带电粒子在威耳孙云室(一种径迹探测器)中的轨迹是一串小雾滴,雾滴德线度约为1微米。当观察能量为1000电子伏特的电子径迹时其动量与精典力学动量的相对偏差不小于多少?6解:由题知,电子动能K=1000电子伏特,x10米,动量相对偏差为p/p。hh根据测不准原理,有px,由此得:p22x经典力学的动量为:p2mKph53.0910p2x2mK电子横向动量的不准确量与经典力学动量之比如此之小,足见电子的径迹与直线不会有明显区别。3.6证明自由运动的粒子(势能V0)的能量可以有连续的值。证明:自由粒子的波函数为:i(prEt)Aeh……(1)2h2自由粒子的哈密顿量是:H……(2)2m自由粒子的能量的本征方程为:HE……(3)2ih(prEt)2[h]把(1)式和(2)式代入(3)式,得:AeE2m即:
2222ih2ddd(pxxpyypzzEt)A()ehE2222mdxdydz2pE2m2pE2m自由粒子的动量p可以取任意连续值,所以它的能量E也可以有任意的连续值。3.7粒子位于一维对称势场中,势场形式入图3-1,即0xL,V0{x0,xL,VV0(1)试推导粒子在EV情况下其总能量E满足的关系式。0(2)试利用上述关系式,以图解法证明,粒子的能量只能是一些不连续的值。解:为方便起见,将势场划分为Ⅰ‚Ⅱ‚Ⅲ三个区域。2d(x)2(1)定态振幅方程为(EV)022(x)(x)dxh式中是粒子的质量。2d222Ⅰ区:0其中(VE)220dxhx波函数处处为有限的解是:(x)Ae,A是一任意常数。12d222Ⅱ区:0其中E22dxh处处有限的解是:(x)Bsin(x),B,是任意常数。22d222Ⅲ区:0其中(VE)220dxhx处处有限的解是:(x)De,D是任意常数。31d11d21d3有上面可以得到:,ctg(x),,dxdxdx123有连续性条件,得:ctg{ctg(L)解得:
tg(L)2121因此得:Ln2tg(/)这就是总能量所满足的关系式。(2)有上式可得:nLtg()22Ltgn偶数,包括零{2Lctgn奇数2LL(L)ctg2亦即LL(L)tg2令Lu,Lv,则上面两方程变为:uvutg(1)2uvutg(2)22222另外,注意到u和v还必须满足关系:uv2VL/h(3)0所以方程(1)和(2)要分别与方程(3)联立求解。3.8有一粒子,其质量为m,在一个三维势箱中运动。势箱的长、宽、高分别为a、b、c在势箱外,势能V;在势箱内,V0。式计算出粒子可能具有的能量。解:势能分布情况,由题意知:V0,0xa;xV0,0yb;yV0,0zc;zV,x0和xaxV,y0和ybyV,z0和zcz在势箱内波函数(x,y,z)满足方程:
2222m[E(VVV)]02222xyz2x2y2zh解这类问题,通常是运用分离变量法将偏微分方程分成三个常微分方程。令(x,y,z)X(x)Y(y)Z(z)代入(1)式,并将两边同除以X(x)Y(y)Z(z),得:2221dX2m1dY2m1dZ2m2m(V)(V)(V)E22x22y22z2XdxhYdyhZdzhh方程左边分解成三个相互独立的部分,它们之和等于一个常数。因此,每一部分都应等于一个常数。由此,得到三个方程如下:21dX2m2mVE22x2xXdxhh21dY2m2mVE22y2yYdyhh21dZ2m2mVE22z2zZdzhh其中EEEE,E,E,E皆为常数。xyzxyz将上面三个方程中的第一个整数,得:2dX2m(EV)X0……(2)22xxdxh边界条件:X(0)X(l)0可见,方程(2)的形式及边界条件与一维箱完全相同,因此,其解为:2nxXsinxnaa22h2En,n1,2,3x2xx2a类似地,有
2nyYsinynbb22h2En,n1,2,3y2yy2b2nzZsinzncc22h2En,n1,2,3z2zz2c8nxnynzxyz(x,y,z)sinsinsinabcabc222n22hnxynzE()2222mabc可见,三维势箱中粒子的波函数相当于三个一维箱中粒子的波函数之积。而粒子的能量相当于三个一维箱中粒子的能量之和。对于方势箱,abc,波函数和能量为:8nxnynzxyz(x,y,z)sinsinsin3aaaa22h22222En,nnnn2xyz2ma第四章碱金属原子4.1已知Li原子光谱主线系最长波长6707A,辅线系系限波长3519A。求锂原子第一激发电势和电离电势。解:主线系最长波长是电子从第一激发态向基态跃迁产生的。辅线系系限波长是电子从无穷处向第一激发态跃迁产生的。设第一激发电势为V,电离电势为V,则有:1ceVh1hcV1.850伏特1ecceVhhhc11V()5.375伏特。e4.2Na原子的基态3S。已知其共振线波长为5893A,漫线系第一条的波长为8193A,基线系第一条的波长为18459A,主线系的系限波长为2413A。试求3S、3P、3D、4F各谱项的项值。
解:将上述波长依次记为,,,,pmaxdmaxfmaxp即5893A,8193A,18459A,2413Apmaxdmaxfmaxp容易看出:~161Tv4.14410米3SP1161T2.44710米3PPpmax161TT1.22710米3D3pdmax161TT0.68510米4F3Dfmax4.3K原子共振线波长7665A,主线系的系限波长为2858A。已知K原子的基态4S。试求4S、4P谱项的量子数修正项,值各为多少?sp~解:由题意知:7665A,2858A,Tv1/pmaxp4sPPR由T,得:4sR/T4S2k4S(4s)11设RR,则有s2.229,TK4PPPmax与上类似p4R/T1.7644P4.4Li原子的基态项2S。当把Li原子激发到3P态后,问当3P激发态向低能级跃迁时可能产生哪些谱线(不考虑精细结构)?答:由于原子实的极化和轨道贯穿的影响,使碱金属原子中n相同而l不同的能级有很大差别,即碱金属原子价电子的能量不仅与主量子数n有关,而且与角量子数l有关,可以记为EE(n,l)。理论计算和实验结果都表明l越小,能量越低于相应的氢原子的能量。当从3P激发态向低能级跃迁时,考虑到选择定则:l1,可能产生四条光谱,分别由以下能级跃迁产生:3P3S;3S2P;2P2S;3P2S。4.5为什么谱项S项的精细结构总是单层结构?试直接从碱金属光谱双线的规律和从电子自旋与轨道相互作用的物理概念两方面分别说明之。答:碱金属光谱线三个线系头四条谱线精细结构的规律性。第二辅线系每一条谱线的二成分的间隔相等,这必然是由于同一原因。第二辅线系是诸S能级到最低P能级的跃迁产生
的。最低P能级是这线系中诸线共同有关的,所以如果我们认为P能级是双层的,而S能级是单层的,就可以得到第二辅线系的每一条谱线都是双线,且波数差是相等的情况。主线系的每条谱线中二成分的波数差随着波数的增加逐渐减少,足见不是同一个来源。主线系是诸P能级跃迁到最低S能级所产生的。我们同样认定S能级是单层的,而推广所有P能级是双层的,且这双层结构的间隔随主量子数n的增加而逐渐减小。这样的推论完全符合碱金属原子光谱双线的规律性。因此,肯定S项是单层结构,与实验结果相符合。碱金属能级的精细结构是由于碱金属原子中电子的轨道磁矩与自旋磁矩相互作用产生附加能量的结果。S能级的轨道磁矩等于0,不产生附加能量,只有一个能量值,因而S能级是单层的。4.6计算氢原子赖曼系第一条的精细结构分裂的波长差。解:赖曼系的第一条谱线是n=2的能级跃迁到n=1的能级产生的。根据选择定则,跃迁22只能发生在2P1S之间。而S能级是单层的,所以,赖曼系的第一条谱线之精细结构是由P能级分裂产生的。氢原子能级的能量值由下式决定:224Rhc(Z)Rhca(ZS)13E()231nn4nj2其中(Z)(ZS)122cE(2P)E(1S)h3/21/21hc122E(2P)E(1S)3/21/222cE(2P)E(1S)h1/21/22hc222E(2P)E(1S)1/21/2因此,有:2122hc[E(2P)E(1S)]3/21/22222[E(2P)E(1S)][E(2P)E(1S)]3/21/21/21/22216aE(2P)Rhc3/26422165aE(2P)Rhc1/264224aE(1S)Rhc1/24将以上三个能量值代入的表达式,得:
24a641224811a4815aR64642644a22R(4811a)(4815a)1335.3910米5.3910A614.7Na原子光谱中得知其3D项的项值T1.227410米,试计算该谱项之精细3D结构裂距。6171解:已知T1.227410米,R1.097410米3DNa*RNan2.9901T3D**而Zn/n2*4RaZ1所以有:T3.655米3nl(l1)4.8原子在热平衡条件下处在各种不同能量激发态的原子的数目是按玻尔兹曼分布的,g(EE0)/KT即能量为E的激发态原子数目NN0e。其中N是能量为E的状态的g000原子数,g和g是相应能量状态的统计权重,K是玻尔兹曼常数。从高温铯原子气体光谱中0测出其共振光谱双线8943.5A,8521.1A的强度比I:I2:3。试估算此气体1212的温度。已知相应能级的统计权重g2,g4。12解:相应于,的能量分别为:12Ehc/;Ehc/1122所测得的光谱线的强度正比于该谱线所对应的激发态能级上的粒子数N,即INE1E2INg2111eKTINg3222E1E22geKT23g1由此求得T为:
EE21T2773K2g2Kln3g1第五章多电子原子5.1H原子的两个电子处在2p3d电子组态。问可能组成哪几种原子态?用原子态的符e号表示之。已知电子间是LS耦合。1解:因为l1,l2,ss,12122Sss或ss;1212Lll,ll1,,ll,121212S0,1;L3,2,1所以可以有如下12个组态:1L1,S0,P13L1,S1,P0,1,21L2,S0,D23L2,S1,D1,2,31L3,S0,F33L3,S1,F2,3,435.2已知H原子的两个电子被分别激发到2p和3d轨道,器所构成的原子态为D,e问这两电子的轨道角动量p与p之间的夹角,自旋角动量p与p之间的夹角分别为多l1l2s1s2少?3解:(1)已知原子态为D,电子组态为2p3dL2,S1,l1,l212
因此,hpl(l1)2l1112pl(l1)6l222PL(L1)6L222Ppp2ppcosLl1l2l1l2L2221cos(Ppp)/2ppLLl1l2l1l223"10646L(2)1ss1223pps(s1)hh122PS(S1)h2hS而222Ppp2ppcosSs1s2s1s2s2221cos(Ppp)/2ppsSs1s2s1s23"7032S5.3锌原子(Z=30)的最外层电子有两个,基态时的组态是4s4s。当其中有一个被激发,考虑两种情况:(1)那电子被激发到5s态;(2)它被激发到4p态。试求出LS耦合情况下这两种电子组态分别组成的原子状态。画出相应的能级图。从(1)和(2)情况形成的激发态向低能级跃迁分别发生几种光谱跃迁?1解:(1)组态为4s5s时ll0,ss,12122L0,S0,11S0时,JL0,单重态S03S1时;J1,三重态S1根据洪特定则可画出相应的能级图,有选择定则能够判断出能级间可以发生的5种跃迁:11335S4P,5S4P;011033335S4P;5S4P1112114P4S10所以有5条光谱线。(2)外层两个电子组态为4s4p时:1l0,l1,ss,12122
L1,S0,11S0时,JL1,单重态P13S1时;J2,1,0,三重态P2,1,011根据洪特定则可以画出能级图,根据选择定则可以看出,只能产生一种跃迁,4P4S,10因此只有一条光谱线。5.4试以两个价电子l2和l3为例说明,不论是LS耦合还是jj耦合都给出同样数12目的可能状态.证明:(1)LS耦合S0,1;L5,4,3,2,1,S0时;JL5个L值分别得出5个J值,即5个单重态.S1时;JL1,L,L1;代入一个L值便有一个三重态.5个L值共有5乘3等于15个原子态:33333P;D;F;G;H0,1,21,2,32,3,43,4,54,5,6因此,LS耦合时共有20个可能的状态.(2)jj耦合:5375jls或jls;j或;j或122222Jjj,jj,...jj121212将每个j、j合成J得:1257j和j,合成J6,5,4,3,2,1122237j和j,合成J5,4,3,2122255j和j,合成J5,4,3,2,1,0122235j和j,合成J4,3,2,1122257375535共20个状态:(,),(,);(,);(,)6,5,4,3,2,15,4,3,25,4,3,2,1,04,3,2,122222222所以,对于相同的组态无论是LS耦合还是jj耦合,都会给出同样数目的可能状态.5.5利用LS耦合、泡利原理和洪特定则来确定碳Z=6、氮Z=7的原子基态。解:碳原子的两个价电子的组态2p2p,属于同科电子.这两个电子可能有的m值是l
111,0,-1;可能有m值是,,两个电子的主量子数和角量子数相同,根据泡利原理,它们s22的其余两个量子数m和m至少要有一个不相同.它们的m和m的可能配合如下表所示.lsls为了决定合成的光谱项,最好从MLmli的最高数值开始,因为这就等于L出现的最高数值。现在,M得最高数值是2,因此可以得出一个D项。又因为这个M只与LL1M0相伴发生,因此这光谱项是D项。除了M2以外,M1,0,1,2也属于SLL这一光谱项,它们都是M0。这些谱项在表中以M的数字右上角的记号“。”表示。SL共有两项是M1,M0;有三项是M0,M0。在寻找光谱项的过程中,把它LSLS13们的哪一项选作D项的分项并不特别重要。类似地可以看出有九个组态属于P项,在表中以M的L碳原子mmmmmsiMSmliMLs1s2l1l2ii1/21/21011*1/21/21-110*1/21/20-11-1*1/2-1/2110201/2-1/2100101/2-1/21-10001/2-1/20101*1/2-1/200001/2-1/20-10-1*1/2-1/2-1100*1/2-1/2-100-101/2-1/2-1-10-20-1/2-1/210-11*-1/2-1/21-1-10*-1/2-1/20-1-1-1*氮原子mmmmmmmsiMSmliMLs1s2s3l1l2l3ii1/21/21/210-13/201/21/21/201-13/20*
1/21/21/2-1013/20-1/2-1/2-1/210-13/20*-1/2-1/2-1/201-13/20-1/2-1/2-1/2-1013/20*························1/21/2-1/21011/221/21/2-1/21001/211/21/2-1/210-11/20*1/21/2-1/2-1001/2-11/21/2-1/2-10-11/2-21/21/2-1/21-111/211/21/2-1/21-101/201/21/2-1/21-1-11/2-1························1数字右上角的记号“*”表示。剩下一个组态M0,M0,它们只能给出一个S项。LS131因此,碳原子的光谱项是D、P和S,而没有其它的项。33因为在碳原子中P项的S为最大,根据同科电子的洪特定则可知,碳原子的P项应最低。碳原子两个价电子皆在p次壳层,p次壳层的满额电子数是6,因此碳原子的能级是正3常次序,P是它的基态谱项。0氮原子的三个价电子的组态是2p2p2p,亦属同科电子。它们之间满足泡利原理的可能配合如下表所示。表中删节号表示还有其它一些配合,相当于此表下半部给出的m间以及m间发生交sl换。由于电子的全同性,那些配合并不改变原子的状态,即不产生新的项。224由表容易判断,氮原子只有D、P和S。根据同科电子的洪特定则,断定氮原子的4基态谱项应为S。3/25.6已知氦原子的一个电子被激发到2p轨道,而另一个电子还在1s轨道。试作出能级跃迁图来说明可能出现哪些光谱线跃迁?解:l0,l1,ss1/2;S0,1;L11212对于S0,JL1,单态1P1对于S1,J2,1,0,三重态3P2,1,0根据选择定则,可能出现5条谱线,它们分别由下列跃迁产生:21P1→11S0;21P1→21S023P0→23S1;23P1→23S1;23P2→23S13S13P03P13P21S03S11S0
1s2p1s2s1s1s5.7Ca原子的能级是单层和三重结构,三重结构中J的的能级高。其锐线系的三重线的频率vvv,其频率间隔为vvv,vvv。试求其频率间隔比值210110221v2。v1解:Ca原子处基态时两个价电子的组态为4s4s。Ca的锐线系是电子由激发的s能级13向4p能级跃迁产生的光谱线。与氦的情况类似,对4s4p组态可以形成P和P的原子12,1,033态,也就是说对L=1可以有4个能级。电子由诸激发S能级上跃迁到P能级上则产生2,1,0锐线系三重线。根据朗德间隔定则,在多重结构中能级的二相邻间隔vvv,vvv同有110221v12关的J值中较大的那一个成正比,因此,v2,v1,所以。12v215.8Pb原子基态的两个价电子都在6p轨道。若其中一个价电子被激发到7s轨道,而其价电子间相互作用属于jj耦合。问此时Pb原子可能有哪些状态?解:激发后铅原子的电子组态是6p7s。11l1,l0;s,s121222jls或ls311j或;j1222231j和j合成J2,1.122211j和j合成J1,01222因此,激发后Pb原子可能有四种状态:31311111(,),(,),(,),(,)。2110222222225.9根据LS耦合写出在下列情况下内量子数J的可能值
73(1)L3,S2,(2)L3,S,(3)L3,S22解:(1)因为JLS,LS1,.....,LS所以J5,4,3,2,1,共2S+1=5个值。1111111(2)类似地,J6,5,4,3,2,1,共有7个值。这里L>1时,则正比于Z。根据静电学的计算可知,26e每一对质子的静电斥力能是E,R是核半径。若二质子间的距离为R,它们之间的库5R
仑力为f,则有fRE,由此得:2E6ef2R5R216e采用SI制,则:f2276.48牛顿28.18公斤.45R0所以:原子核中二质子之间的库仑力为28.18公斤.7410.6算出Li(p,a)He的反应能.有关同位素的质量如32147下:H,1.007825;He,4.002603;Li,7.015999.123解:核反应方程式如下:7144LipHeHe31222Q[(mm)(mm)]c0123[(7.01599913.007825)(24.002603)]931.5MeV17.35MeV反应能是17.35MeV,大于零,是放能反应.10.7在第六题的核反应中,如果以1MeV的质子打击Li,问在垂直于质子束的方向观4测到的He能量有多大?2解:根据在核反应中的总质量和联系的总能量守恒,动量守恒,可知,反应所产生的两4个相同的He核应沿入射质子的方向对称飞开。如图所示。2根据动量守恒定律有:PPP123矢量P,P,P合成的三角形为一个等腰三角形,二底角皆为.123又因为mm,因而有EE2323已知反应能Q17.35MeV,由能量守恒定律得:QEEE其中E1MeV23111由此可得:EE(QE)9.175MeV2312反应所生成的粒子其能量为9.175MeV.4He核飞出方向与沿入射质子的方向之间的夹角为:2222PPP2PPcos312122由于P2ME
A2A12A1A2E1E2所以得:Q(1)E(1)Ecos21AAA333(质量之比改为质量数之比)A1,AA4代入上式得:1233Q2EEEEcos2112432EQE214cos0.0825EE128516"4由此可知,垂直于质子束的方向上观察到的He的能量近似就是9.175MeV。223510.8试计算1克U裂变时全部释放的能量约为等于多少煤在空气中燃烧所放出的热613能(煤的燃烧约等于3310焦耳/千克;1MeV1.610焦耳)。解:裂变过程是被打击的原子核先吸收中子形成复核,然后裂开。2351236UnUXY92092我们知道,在A=236附近,每个核子的平均结合能是7.6MeV;在A=118附近,每一个核子的平均结合能量是8.5MeV。所以一个裂为两个质量相等的原子核并达到稳定态时,总共放出的能量大约是:23628.5MeV2367.6MeV210MeV21311而1MeV1.610焦耳,所以:3.3610焦耳。2351克U中有N个原子;MN021N2.5610A10EN8.610焦耳3它相当的煤质量M2.610公斤2.6吨。10.9计算按照(10.8-1)式中前四式的核聚变过程用去1克氘所放出的能量约等于多少煤在空气中燃烧所放出的热能(煤的燃烧热同上题)。解:四个聚变反应式是:22完成此四个核反应共用六个H,放出能量43.2MeV,平均每粒H放出7.2MeV,单22位质量的H放出3.6MeV。1克氘包含N粒H,则
MN023N3.010A所以1克氘放出的能量约等于:2411EN7.2MeV2.210MeV3.510焦耳E3与它相当的煤:M10.610公斤10.6吨a210.10包围等离子体的磁通量密度B是2韦伯/米,算出被围等离子体的压强。22BB内外解:根据公式:P得:内220022BB内外P,式中P是等离子体的压强;B是磁通密度;是真空中的磁导率,内内022002B7外52等于410亨/米,设B小到可以忽略,则得到:P15.9210牛顿/米内内2042P15.7因1大气压10.1310牛顿/米,故大气压内第十一章基本粒子11.1算出原子核中两个质子间的重力吸引力和静电推斥力。可以看出重力吸引力远不足以抵抗静电推斥力。这说明原子核能够稳固地结合着,必有更强的吸引力对抗库仑力而有余。2e解:原子核中两个质子间的静电斥力势能近似为,R是原子核半径,e是电子电荷R2e绝对值。因此,两个质子间的排斥力近似地为F。注意到2R1013e4.8010CGSE,R10cm,则F23.50(公斤力)如果把R视作两质子间的距离,则它们间的重力吸引力f可估算如mmpp35下:fr2.8510(公斤力)2R
由上面的结果看出,重力吸引力远不能抵消库仑斥力。原子核能稳固地存在,质子间必有强大的吸引力。这种力就是核力。11.2在介子撞击质子的实验中,当介子的实验室能量为200MeV时,共振态的激发最大,求的质量。解:介子的动能T200MeV2介子的静能mc2730.511MeV140MeV2介子的总能量ETmc340MeV1222实验室系中介子的动量是PE(mc)310MeV/cc2质子的静能mc938MeVp共振粒子的总能量E等于介子总能量和质子静能之和:2EEmc1278MeVp碰撞前质子静止。根据动量守恒定律,粒子的动量P等于介子的动量P:PP.根据狭义相对论,粒子的质量m由下式决定:1222mE(cp)1240MeV/c2c与粒子的质量相联系的能量是1240MeV.11.3在下列各式中,按照守恒定律来判断,哪些反应属于强相互作用,哪些是弱相互作用,哪些是不能实现的,并说明理由。(1)pee(2)pe(3)evve(4)np(5)pp00(6)ppnK000(7)K.解:(1)左侧重子数是+1,右侧重子数是0,衰变前后重子数不相等。三种基本相互作用重子数都要守恒。因此,所列衰变实际上是不存在的。(2)左侧轻子数是0,右侧轻子数是+1,衰变前后轻子数不相等。这种衰变方式不能实现,因为三种基本相互作用都要求轻子数守恒。(3)两侧轻子数都是+1,守恒。但左侧电轻子数是0,右侧电轻子数是+2,电轻子数不守恒。这种衰变实际上也不能出现,因为三种基本相互作用要求两类轻子数分别守恒。(4)左侧奇异数是0,右侧奇异数是-2。奇异数不守恒,只可能是弱相互作用。这个作
用没有轻子参加。实际存在的这种类型的弱相互作用,要满足s1,而这里的s2。因此,这种过程实际上是不存在的。(5)光子的重子数和奇异数都是0。p的重子数是+1,p的重子数是奇异数是-1。p和p的奇异数都是0。p和p的同位旋相同。所列反应重子数和奇异数分别守恒,不可能是弱相互作用。质子p和反质子p,通常在强作用下湮灭后转变成若干个介子。这里所列的反应,可以在电磁相互作用下实现。(6)反应前奇异数是0,反应后是+2,奇异数不守恒。奇异粒子只在强相互作用过程中产生,并且要求奇异数守恒。因此,上列反应不可能实现。000(7)K.衰变后静能E548.2MeV后衰变前静能E497.8MeV前因此,从能量守恒考虑,这种衰变方式实际上并不存在。0011.4对重子p、n、、、、、,从它的有关量子数来考虑,试认出是那三个层子构成的。解:重子由三个层子按不同的组合构成,这三个层子是u、d、s。s层子是奇异层子。奇异重子中一定要有奇异层子s,非奇异重子中不能有s存在。三个层子的性质如下表所示。0按照简单的规则把三个层子结合起来就构成重子。例如,质子p和介子,它们的性质可列成下面的表。质子不是奇异粒子,它一定不包括s,除了同位旋I之外,将构成质子的每个层子的各种量子数分别相加,应该等于质子的相应量子数。这样,可以确认质子是由0两个u层子和一个d层子构成的。类似地可以断定由u、d、s构成。因此,题中给出的重子的层子成分可开列如下:0op(uud),n(udd),(uds),(uus),(uds),(dds),(sss)00和都是由u、d、s构成,但它们是u、d、s的不同组合.13层子是费米子,自旋是。实验给出的自旋是,奇异数是-3。因此,一定是三22个s层子构成。但是,三个s层子的自旋必须平行,这违背泡里原理。为了解决类似的矛盾,提出了层子有“颜色”自由度,每个层子皆有自己的“色荷”。中的三个s层子,尽管自旋平行,但因它们具有不同的“色荷”,泡里原理是容许的。把重子中的各个层子换成相应的反层子,则重子就成了相应的反重子。11.5认出下列介子的成分:0000‘,,,K,K,K,K,,解:介子有一个层子和一个反层子构成。把层子的量子数(同位旋除外)变号就得相应
的反层子的量子数。与上题类似,上述介子的层子成分可开列如下:00(ud),(du),k(us),K(ds),K(su),K(sd)00",,的结构较为复杂:01(uudd),201(uudd2ss),6"1(uuddss)3而且后两者的成分尚有混合。11.6试讨论下列三式:(1)neve(2)n(3)vpne讨论:(1)的质量比n与e的质量之和大的多。从能量角度考虑衰变似乎可以产生。但是,的奇异数s1,右侧奇异数是0,奇异数的改变S1。奇异粒子衰变成强子和轻子,要克服从QS,Q是奇异粒子和强子间的电荷改变。在这个衰变式中,Q1S因此是不能实现的过程。(2)奇异粒子只在强作用过程中协同产生,只在弱作用过程中衰变。奇异粒子的产生和衰变服从如下的选择定则:0,(对奇异粒子的强产生)S1,(对奇异粒子不产生和e的弱衰变)QS,(奇异粒子衰变为强子和轻子),Q是过程中奇异粒子与强子间的电荷改变.本例中,左侧奇异数是-2,右侧奇异数是0。奇异数改变S21。因此,这个过程实际不能实现。(3)电轻子数,左侧是+1,右侧是0,不相等。轻子数,左侧是0,右侧是-1,不相等。此反应违背轻子数守恒定律,用任何一种方式的基本相互作用都不能实现。'
您可能关注的文档
- 《单片机原理及接口技术》 梅丽凤 习题解答(课后答案).doc
- 《单片机原理及接口技术》(第二版)余锡存著 课后习题答案 二到七.doc
- 《单片机原理及接口技术》(第二版)余锡存著 课后习题答案.doc
- 《单片机原理及接口技术》第三版梅丽凤王艳秋编著的习题解答课后答案(1).doc
- 《南方新中考》中考数学复习习题集+限时训练(含答案)限时.doc
- 《卫生管理运筹学》习题与参考答案.doc
- 《卫生管理运筹学》习题与参考答案1 (1).doc
- 《原子物理》(褚圣麟)习题解答.pdf
- 《原子物理》高教版教材习题解答.doc
- 《口才艺术与社交礼仪》网课期末考试 试题及答案.doc
- 《古代汉语》强化训练和测试题库(含答案).doc
- 《可编程控制器应用(专科必修)》期末试题及答案.doc
- 《合同管理》习题集答案.doc
- 《员工薪酬福利管理(第2版)》习题答案.doc
- 《商品流通企业会计实务》课后习题答案.doc
- 《团队合作能力和创新团队建设》试题100分标准答案-.doc
- 《固体废物处理与处置》 (宁平 著) 课后习题答案 高等教育出版社.pdf
- 《固体废物处理与处置》-(宁平-著)--课后习题答案--高等教育出版社.docx
相关文档
- 施工规范CECS140-2002给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程
- 施工规范CECS141-2002给水排水工程埋地钢管管道结构设计规程
- 施工规范CECS142-2002给水排水工程埋地铸铁管管道结构设计规程
- 施工规范CECS143-2002给水排水工程埋地预制混凝土圆形管管道结构设计规程
- 施工规范CECS145-2002给水排水工程埋地矩形管管道结构设计规程
- 施工规范CECS190-2005给水排水工程埋地玻璃纤维增强塑料夹砂管管道结构设计规程
- cecs 140:2002 给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程(含条文说明)
- cecs 141:2002 给水排水工程埋地钢管管道结构设计规程 条文说明
- cecs 140:2002 给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程 条文说明
- cecs 142:2002 给水排水工程埋地铸铁管管道结构设计规程 条文说明