• 516.45 KB
  • 2022-04-22 11:29:59 发布

数值方法简明教程 (聂玉峰 王振海 著) 高等教育出版社 课后答案

  • 21页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'课后答案网您最真诚的朋友www.hackshp.cn网团队竭诚为学生服务,免费提供各门课后答案,不用积分,甚至不用注册,旨在为广大学生提供自主学习的平台!课后答案网:www.hackshp.cn视频教程网:www.efanjy.comPPT课件网:www.ppthouse.com课后答案网www.hackshp.cn 第一章***1x=1.7;x=1.73;x=1.732。1232.***有效数字ixε(x)ε(x)iiri的位数*1×100−3-31x.01397×10或0.1667×10四位12*1×10−5−2-22x.01051×10或0.1250×10三位22*1×10−1−3-33x.03497×10或0.5000×10四位32*1×10−2−3-34x.01691×10或0.2500×10四位42*1×10−5−6-55x.08548×10或0.1000×10六位52(说明:khdaw.com第二种答案根据“若x*有n位有效数字,则*1−(n−)1e(x)≤×10”而得到相对误差限,但相对误差r2a1限偏大)***−33.(1)e(x+x+x)≤0.00050,(计算得.049934×10,根据题意表示后为0.00050,即r123−3−3−3−3***5.0×10+5.0×10+5.0×105.1×10−3e(x+x+x)≤≈≈.049934×10)r123***x+x+x−.3004123******−3(2)e(xxx)≤0.50517;(e(xxx)≤5.0+.0005×10+.00001644474≈.050517)r123r123****−4(3)e(x/x)≤0.50002.(e(x/x)≤5.0+.01973×10≈.050002)r24r244.设6有n位有效数字,由6≈2.4494……,知6的第一位有效数字a=2。课后答案网1*1−(n−)11−(n−)11−3令ε(x)=×10=×10≤×10r2a2×221可求得满足上述不等式的最小正整数n=4,即至少取四位有效数字,故可满足精度要求。可取6≈2.449。***n*5.x(x>0)的相对误差约是www.hackshp.cnx的相对误差的1/2倍;(x)的相对误差约是x的相对误差的n倍。1***1***1****bsince(a)asince(b)abcosce(c)****222e(a)e(b)e(c)6.根据e(S)≤++=++r111************abtgcabsincabsincabsinc222*π***−1*−1****注意当0c>0,即(tgc)<(c)。则有e(S)0,f′′(x)=e>0;且取x∈]1,5.0[,f(x)f′′(x)>0。故牛顿迭代格式对任意x∈]1,5.0[收敛。但由于题中取0.4作为初值,此0000时f)4.0(f′′)4.0(<0,即取0.4作为初值不能断定迭代的收敛性,因此此题不应采用牛顿迭代。但事实上,取0.4作为初值,尽管不满足充分条件,但迭代仍旧收敛。计算结果见下:kxkxk−xk−100.410.4434(0.443412083)20.4429(0.442854495)30.4429(0.442854401)0.94×10−7−3<10满足要求的近似根为0.443。khdaw.com3若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com 2x−7313.(1)x=10(2)x=(lgx+2/)7(3)x=x+1或x=+1x2x−71(ϕ′(x)=2lg10⋅10<1,ϕ′(x)=(ln10)2<1,x≈10−7x≈10−7x≈7.3xx≈7.31111x2ϕ′(x)=⋅<1及ϕ′(x)=⋅<1)x≈3.133(x+)12x≈3.121+1x≈3.1xx≈3.13232f(xk)xk+2xk+xk−12xk+2xk+14.牛顿迭代公式为:x=x−=x−=k=,1,0L列表计算k+1kk22f′(x)3x+4x+13x+4x+1kkkkkkxkxk−xk−100.4khdaw.com10.47013(0.47012987)0.0720.46559(0.465591205)0.00530.46557(0.465571232)0.00002根的近似值为0.4656。5.设α是方程f(x)=0在隔根区间[a,b]内的根,如果满足(1)对于x∈[a,b],f′′(x)连续且f′(x)≠0,f′′(x)≠0;(2)取x∈a,[b],使f(x)f′′(x)>0。则由Newton迭代公式产生的数列收敛于根α。000(或另一个定理)33x−a2x+a1⎛a⎞6.(1)牛顿迭代格式为x=x−k=k=⎜2x+⎟k+1k3x23x23⎜kx2⎟kk⎝k⎠(2)收敛性论证(这里指非局部收敛性):只讨论题中a>0的情形(a<0的情形类似),此时自然取x>0。0课后答案网a+b+c3利用算术平均数与几何平均数之间的关系≥abc(等号当且仅当a=b=c时成立),得到:3(a)若x=3a(a>0),则0332a1x0+x0+a1333x=x+=()=(a⋅a⋅a)=a,x=Lx=a,即迭代收敛;1303x2x2332n+1000www.hackshp.cn(a)3(b)若x>a(a>0),则032方法1设f(x)=x−a,由f′(x)=3x,f′′(x)=6x,得到x>0时,f′(x),f′′(x)连续且不变号;33且当a>0时,对∀x>a>0,有f(x)f′′(x)>0。故对∀x>a)迭代法收敛。00002a233方法2对∀x>a,0<ϕ′(x)=1(−)<,所以对∀x>a,ϕ(x)单调增加。33x33133由ϕ(a)=2(a+a)=a,知a≤ϕ(x)<+∞。323a3323即对x∈(a,+∞),ϕ(x)∈(a,+∞),且有0<ϕ′(x)<。故对∀x>a)迭代法收敛。033332a1(x0+x0+a)13333方法3设x>a,有x=x+=>xxa=a,0102220033xx3x0003332a1(xk+xk+a)13333一般地,对x>a>0,有x=x+=>xxa=a;kk+1k22khdaw.com2kk33xx3xkkk4若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com xk+12a2a又因=+<+=1,即x1单调递减,从而3k+1kkx33x33akk2a2a3序列{}x(n=,2,1L)有极限A。由limx=lim(x+),得A=A+,即A=a。kk+1k22k→∞n→∞33xk33A3故对∀x>a迭代法收敛。03(c)若0(xxa)=a;且论证当x>a(a>0)时迭代格式的收1022200133xx3x0003敛与论证当x>a时的收敛性相同。0综上所述,迭代格式对∀x>0收敛。0khdaw.com课后答案网www.hackshp.cn第三章khdaw.com5若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com ⎛3−147⎞r×1+r⎛3−.100000.400000.700000⎞12⎜⎟3⎜⎟1.⎜−12−2−1⎟→⎜0.166667−.066667.133333⎟2⎜2−3−20⎟r1×(−3)+r3⎜0−.233333−.466667−.466667⎟⎝⎠⎝⎠⎛3−.100000.400000.700000⎞r×.166667+r⎛3−.100000.400000.700000⎞r↔r2323⎜⎟.233333⎜⎟→⎜0−.233333−.466667−.466667⎟→⎜0−.233333−.466667−.466667⎟⎜⎟⎜⎟⎝0.166667−.066667.133333⎠⎝00−.400002−.200002⎠−.200002回代求解得x≈≈.050000,3−.400002x≈(−.466667+.466667×.050000)(−.233333)≈1,21x≈7(−4×5.0+)13≈.200000(解析解为:x=,2x=,1x=)11232⎛⎞⎛⎞⎜⎟⎜⎟⎛3−147⎞r×1+r⎜3−147⎟⎜3−147⎟132r↔r⎜⎟5242371414或⎜khdaw.com−12−2−1⎟→⎜0−⎟→⎜0−−−⎟r×(−2)+r⎜333⎟⎜333⎟⎜2−3−20⎟133⎝⎠⎜71414⎟⎜524⎟⎜0−−−−⎟⎜0−⎟⎝333⎠⎝333⎠⎛⎞⎜⎟53−147r2×+r3⎜⎟7⎜71414⎟→0−−−,⎜333⎟⎜126⎟⎜00−−⎟⎝33⎠211414171回代求解得x==,x=(−+×)(−)=1,x=7(−4×+)13=2。3214233232课后答案网⎡11⎤⎡11−11⎤⎡210010⎤1×r1⎢1000⎥⎢⎥r2↔r1⎢⎥222⎢⎥2.⎢2101⎥→⎢11−1100⎥→11−1100⎢⎥⎢⎣1−101⎥⎦⎢⎣1−10001⎥⎦⎢1−10001⎥www.hackshp.cn⎢⎣⎥⎦⎡11⎤⎡11⎤⎡11⎤100010001000⎢⎥⎢⎥⎢⎥2222222(−)r3r2−r1⎢11⎥r2−r3⎢31⎥3⎢12⎥→⎢0−11−0⎥→⎢0−00−1⎥→⎢0100−⎥r3−r1⎢22⎥⎢22⎥⎢33⎥⎢31⎥⎢11⎥⎢11⎥0−00−10−11−00−11−0⎢⎣22⎥⎦⎢⎣22⎥⎦⎢⎣22⎥⎦⎡11⎤⎡11⎤⎡11⎤100010000⎢⎥⎢⎥⎢⎥1333333r1−2r2⎢⎥(−)1×r⎢⎥⎢⎥12312−112→⎢0100−⎥→⎢0100−⎥A=⎢0−⎥r−−1r⎢33⎥⎢33⎥⎢33⎥322⎢21⎥⎢21⎥⎢21⎥00−11−001−1−−1−⎢⎣33⎥⎦⎢⎣33⎥⎦⎢⎣33⎥⎦⎡011⎤−11⎢⎥或A=01−23⎢⎥⎢⎣−32−1⎥⎦khdaw.com6若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com ⎛⎞⎜⎟⎛12314⎞⎜12314⎟⎜⎟23.⎜25218⎟→⎜5−2×22−2×318−2×14⎟⎜⎟⎜1⎟⎝31520⎠⎜31−3×2⎟⎜5−3×3−(−)5×(−)420−3×14−(−)5×(−10)⎟⎝11⎠⎛12314⎞⎡100⎤⎡123⎤⎡14⎤⎡1⎤⎜⎟⎢⎥⎢⎥⎢⎥⎢⎥=⎜21−4−10⎟故L=⎢210⎥,U=⎢01−4⎥,y=⎢−10⎥,x=⎢2⎥⎜⎝3−5−24−72⎟⎠⎢⎣3−51⎥⎦⎢⎣00−24⎥⎦⎢⎣−72⎥⎦⎢⎣3⎥⎦⎡521⎤⎢⎥4.(1)因为方程组的系数矩阵A=−142按行严格对角占优,所以求解此方程组的Jacobi迭代⎢⎥khdaw.com⎢⎣2−310⎥⎦法与对应的Gauss-Seidel迭代法对任意初始向量均收敛。(2)雅可比迭代法的计算格式为⎧()k+11()()k()kx=−12−2x−x⎪1523⎧x(k+1)=−4.0x(k)(−2.0xk)−4.2⎪123⎪()k+11()()k()k⎪()k+1()k()k⎨x2=20+x1−2x3k=,1,0L或⎨x2=.025x1−5.0x3+5k=,1,0L4⎪⎪()k+1()k()k⎪()k+11()()k()k⎩x3=−2.0x1+3.0x2++3.0x=3−2x+3x312⎪⎩10()0T当x=()−9.1,9.2,9.3时,用雅可比迭代法求解之计算过程列表如下可算得x(k)x(k)x(k)(k)(k−)1n123maxxi−xi1≤i≤30−3.9课后答案网2.91.91−3.9403.0751.9500.1752−4.0203.0402.01050.083−4.01812.989752.0160.050254−3.99912.9874752.0005450.0195−3.9950992.99995251.99606250.01247756−3.99919353.0031941.999005550.0040945<10−2www.hackshp.cn******方程组的近似解为:x=−3.999;x=3.003;x=1.999;或x=−4.00;x=3.00;x=2.00。123123(3)塞德尔迭代法的迭代格式为⎧()k+11()()k()kx=−12−2x−x⎪1523⎧x(k+1)=−4.0x(k)(−2.0xk)−4.2⎪123⎪()k+11()k+1()k⎪()k+1()k+1()k⎨x2=()20+x1−2x3k=,1,0L或⎨x2=.025x1−5.0x3+5k=,1,0L4⎪⎪()k+1()k+1()k+1⎪()k+11()k+1()k+1⎩x3=−2.0x1+3.0x2++3.0x=()3−2x+3x312⎪⎩10()0T取初始向量当x=()−9.1,9.2,9.3时,用塞德尔迭代法求解之计算过程列表如下x(k)x(k)x(k)(k)(k−)1k123maxxi−xi1≤i≤30−3.92.91.91−3.9403.0652.0075khdaw.com0.1652−4.02752.9893752.00231250.08757若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com 3−3.99621252.9997906251.9991796880.03128754−3.9997521883.0004721092.000092070.003539687<10−2***方程组的近似解为:x=−4.000;x=3.000;x=2.000。123⎛12−2⎞⎛0−22⎞⎜⎟⎜⎟−15.A=⎜111⎟,Jacobi迭代法的迭代矩阵为BJ=E−DA=⎜−10−1⎟⎜⎟⎜⎟⎝221⎠⎝−2−20⎠λ2−23由λI−B=1λ1=λ,得B的特征值为λ=λ=λ=0。JJ12322λ谱半径ρ()B=0<1,所以Jacobi迭代法对任意初始向量都收敛JGauss-Seidel迭代法的选代矩阵为−1⎛1⎞⎛2−2⎞⎛1⎞⎛2−2⎞⎛0−22⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟Bkhdaw.com=−()D+L−1U=111=−111=02−3s⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝221⎠⎝⎠⎝−21⎠⎝⎠⎝002⎠λ2−22由λI−B=λ−23=λ(λ−)2,得B的特征值为λ=,0λ=λ=2。SS123λ−2谱半径ρ()B=2>1,所以Gauss-Seidel迭代法不是对任意初始向量都收敛.s⎡4−10⎤⎡x1⎤⎡1⎤⎡4−10⎤⎢⎥⎢⎥⎢⎥⎢⎥6.(1)方程组−14−1x=4的系数矩阵A=−14−1按行严格对角占优。⎢⎥⎢2⎥⎢⎥⎢⎥⎢0−14⎥⎢x⎥⎢−3⎥⎢0−14⎥⎣课后答案网⎦⎣3⎦⎣⎦⎣⎦所以当0<ω≤1时,求解此方程组的SOR迭代法对任意初始向量均收敛。或系数矩阵A的各阶顺序主子式大于零(∆=,4∆=15,∆=56),故当0<ω<2时,求解此方程组123的SOR迭代法对任意初始向量均收敛。⎧()k+1()kω()()k()kx=x+1−4x+x⎪11124www.hackshp.cn⎪⎪()k+1()kω()k+1()k()k(2)SOR法的计算格式为⎨x2=x2+()4+x1−4x2+x3⎪4⎪()k+1()kω()()k+1()kx=x+−3+x−4x⎪3323⎩4()k+1()k()k()k(k+1)(k)(k)⎧x=x+2.0()1−4x+x⎧x=2.0(1+x+x)1112112⎪⎪()k+1()k()()k+1()k()k()k+1()()k+1()k()k即⎨x2=x2+2.04+x1−4x2+x3或⎨x2=2.04+x1+x2+x3⎪()k+1()k()()k+1()k⎪()k+1()()k+1()kx=x+2.0−3+x−4xx=2.0−3+x+x⎩3323⎩323()0T取初始向量当x=()0,5.0,0时,用SOR迭代法求解之计算过程列表如下(k)(k)(k)kx1x2x3000.5010.300000.96000−0.4080020.452001.00080−0.4814430.490561.001984khdaw.com−0.495891240.49850881.00092032−0.4989941768若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com 50.4998858241.000362394−0.499726356***方程组的近似解为:x=0.4999;x=1.0004;x=−0.4997。123⎧()k+11()k3()kb1x=−x−x+⎪123aaa⎛a13⎞⎛x1⎞⎛b1⎞⎪⎜⎟⎜⎟⎜⎟⎪()k+11()k2()kb27.方程组为⎜1a2⎟⎜x2⎟=⎜b2⎟,Jacobi迭代格式为⎨x2=−x1−x3+⎜32⎟⎜⎟⎜⎟⎪aaa−axb⎝⎠⎝3⎠⎝3⎠⎪32b()k+1()k()k3x=x−x+⎪312⎩aaa⎛13⎞⎜0−−⎟⎜aa⎟⎜12⎟Jacobi迭代法的迭代矩阵为B=−0−J⎜aa⎟⎜32⎟⎜−0⎟khdaw.com⎝aa⎠13λaaaλ13121122由λI−B=λ=1aλ2=[]aλ(aλ−)4−(aλ+)6+2(3+3aλ)J33aaaa32−32aλ−λaa133aλ22⎡24⎤⎡2i⎤⎡2i⎤=[aλ−4aλ−aλ+9aλ]=[aλ+]4=λλ+=λλ+λ−,a3a3⎢a2⎥⎢a⎥⎢a⎥⎣⎦⎣⎦⎣⎦2i2i2i2i2i2得B的特征值为λ=,0λ=,λ=−(或λ=,0λ=,λ=−),谱半径ρ()B==。J123123Jaaaaaa2令谱半径ρ()B=<1,得参数a满足a>2时,Jacobi迭代法对任意初始向量都收敛。J课后答案网awww.hackshp.cn第四章1.取x=100、x=121用线性插值时,115≈10.7143;01取x=100、x=121、x=144用二次插值时,115≈10.7228。0122.选取插值节点为:x=1.4、x=1.5、x=1.6,f.1(54)≈1.9447。012khdaw.com9若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com pf(x)j3.当p≤n时,注意j=,1,0L,p,f(xj)=0,利用f[x0,x1,Lxp]=∑,有j=0ω′p+1(xj)f[x,x,L,x]=,0p≤n01ppf(x)j当p=n+1时,注意j=,1,0L,p,f(xj)=0,利用利用f[x0,x1,Lxp]=∑,有j=0ω′p+1(xj)n+1f(x)f(x)(x−x)(x−x)L(x−x)f[x,x,Lx]=∑j=n+1=n+10n+11n+1n01n+1j=0ωn′+2(xj)ωn′+2(xn+1)[(x−x0)(x−x1)L(x−xn)(x−xn+1])′x=xn+1(x−x)(x−x)L(x−x)n+10n+11n+1n==1(x−x)(x−x)L(x−x)n+10n+11n+1n(p)(n+)1f(ξ)f(ξ)或由f[x,x,L,x]=,当p=n+1时f[x,x,L,x]==101p01n+1p!(n+1)!⎧0p≤n故f[x0,x1,L,xp]=⎨khdaw.com⎩1p=n+14.列差商表如下xy=f(x)一阶差商二阶差商三阶差商iii1−7635−1134805361413232L(x)=N(x)=(x−13x+69x−92)=2.0x−6.2x+138.x−184.3355.列差商表如下y=f(x)x一阶差商二阶差商三阶差商四阶差商iii−10−2课后答案网0.200000000−5−10.0121212120.333333333−0.00127164511−0.0145833330.0000719750.1000000000.0007436671120.0025210080.142857142183利用题中数表,运用反插值求www.hackshp.cnf(x)=0的根时,所用的插值公式为:N(x)=−2+(2.0y+10)+0.012121212(y+10)(y+)5−0.001271645(y+10)(y+5)(y−)14+0.000071975(y+10)(y+5)(y−1)(y−)11*令y=0,用反插值法得f(x)=0在[−]1,1之间根的近似值α=0.709229(或0.7092)。(i)f′′′(ξi)6.由R2(x)=(x−xi)(x−xi+1)(x−xi+1),xi≤x≤xi+1,则本题中!32)0(f′′′(ξ)R(x)=[x−(x−h)][x−x][x−(x+h)],x−h≤x≤x+h200000!3)0(f′′′(ξ)3设x=x+sh(−1≤s≤)1,则R(x)=(s+)1s(s−)1h,−1≤s≤102!33Mh)0(3故R(x)≤max(s+)1s(s−)1,其中M=maxf′′′(x)=maxcosx=1。236−1≤s≤1x0−h≤x≤x0+hx0−h≤x≤x0+h2又设g(s)=(s+)1s(s−)1则g′(s)=3s−1,得驻点s=±/13,且g(s)=29/3。3Mh23)0(3故R2(x)≤。khdaw.com6910若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com )0(33−33−1令R(x)≤Mh≤10,可解得h≤×10≈.02498049533≈.02498。2312736)0(f′′′(ξ)或对x−h≤x≤x+h,由R(x)=(x−x)(x−x)(x−x),得002−101!3)0(11x0+x1x0+x11h2R(x)≤⋅2hmax(x−x)(x−x)=⋅2h(−x)(−x)=⋅2h⋅()201016x0≤x≤x1622621h2−33−1令⋅2h⋅()≤10,得h≤12×10≈.02289428485≈.02289627.(1)法1:设H(x)=N(x)+(a+bx)(x−x)(x−x),31013−2其中N(x)=f(x)+f[x,x](x−x)=2+(x−)1=x+1,100102−1即H(x)=x+1+(a+bx)(x−2)(x−)132由H′(x)=1+b(x−3x+)2+(a+bx)(2x−)3,且khdaw.com3H′)1(=1+(a+b)×(−)1=1,H′)2(=1+(a+2b)×2(×2−)3=−1,33得a=2,b=−2。所求多项式为232H(x)=x+1+1(2−x)(x−2)(x−)1=x+1−(2x−2x+1)(x−)2=−2x+8x−9x+53法2:用带有重节点的差商表xy=f(x)一阶差商二阶差商三阶差商iii1211201−223−2−123H(x)=f(x)+f[x,x](x−x)+f[x,x,x](x−x)(x−x)+f[x,x,x,x](x−x)(x−x)(x−x)30000001000011001=2+(1x−)1+0×(x课后答案网−1)(x−)1+(−)2×(x−1)(x−1)(x−)2=−2x3+8x2−9x+5推导插值余项表达式:22设R(x)=f(x)−H(x)=k(x)(x−x)(x−x)330122做g(t)=f(t)−H(t)−k(x)(t−x)(t−x),x,x为g(t)的二重零点,x为g(t)的单重零点。30101)4(g′(t)至少有4个零点;gwww.hackshp.cn′′(t)至少有3个零点;g′′′t)(至少有2个零点;gt)(至少有1个零点ξ。)4(得f(ξ)=!4k(x),)4(f(ξ)22故R(x)=f(x)−H(x)=(x−)1(x−)2,ξ∈)2,1(33!4(2)法1:设H(x)=N(x)+a(x−x)(x−x)(x−x),根据下列差商表32012xy=f(x)一阶差商二阶差商iii1222438312得到N(x)=2+(2x−)1+(3x−1)(x−)2,2即H(x)=2+(2x−)1+(3x−1)(x−)2+a(x−1)(x−2)(x−)33由H′)2(=2+3×2(−)1+a×2(−1)(2−)3=3,得a=2。3khdaw.com所求多项式为H(x)=2+(2x−)1+(3x−1)(x−)2+(2x−1)(x−2)(x−)3311若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com 32=2+(2x−)1+(x−1)(x−2)(2x−)3=2x−9x+15x−6法2:用带有重节点的差商表xy=f(x)一阶差商二阶差商三阶差商iii122241322458312H(x)=f(x)+f[x,x](x−x)+f[x,x,x](x−x)(x−x)+f[x,x,x,x](x−x)(x−x)(x−x)30010011010111011=2+(2x−)1+(x−1)(x−)2+2×(x−1)(x−2)(x−)232=2+(2x−)1+(x−1)(x−2)(2x−)3=2x−9x+15x−62推导插值余项表达式:设R(x)=f(x)−H(x)=k(x)(x−x)(x−x)(x−x)330122做g(t)=f(t)−H(t)−k(x)(t−x)(t−x)(t−x),x为g(t)的二重零点,x,x,x为g(t)的单重3012102零点。)4(g′(t)至少有4个零点;g′′(t)至少有3个零点;g′′′(t)至少有2个零点;gt)(至少有1个零点ξ。khdaw.com)4()4(f(ξ)2得f(ξ)=!4k(x),故R(x)=f(x)−H(x)=(x−1)(x−)2(x−)3,ξ∈)3,1(33!4课后答案网www.hackshp.cn第五章⎛303⎞⎛x1⎞⎛x1⎞⎛73⎞1.正规方程组为⎜⎜⎟⎟⎜⎜⎟⎟⎜⎜⎟⎟=⎜⎜⎟⎟⎝349⎠⎝x2⎠⎝x2⎠⎝29⎠3490217矛盾方程组的解x=≈.23888,x=≈.04456121461487khdaw.com12若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com ⎛55327⎞⎛a⎞⎛2714.⎞2.正规方程组为⎜⎜⎟⎟⎜⎜⎟⎟=⎜⎜⎟⎟⎝53277277699⎠⎝b⎠⎝3693215.⎠⎛53277277699⎞⎛a⎞⎛3693215.⎞若选主元求解,即求解⎜⎜⎟⎟⎜⎜⎟⎟=⎜⎜⎟⎟⎝55327⎠⎝b⎠⎝2714.⎠⎛53277277699⎞⎛a⎞⎛3693215.⎞⎜5⎟⎜⎟=⎜5⎟⎜05327−×7277699⎟⎜⎝b⎟⎠⎜2714.−×3693215.⎟⎝5327⎠⎝5327⎠⎛53277277699⎞⎛a⎞⎛3693215.⎞⎜⎜⎟⎟⎜⎜⎟⎟=⎜⎜⎟⎟,b≈.0050035124,a≈.0972578654⎝0−1503.954571⎠⎝b⎠⎝−75.25055378⎠⎛55327⎞⎛a⎞⎛2714.⎞若不选主元求解,即求解⎜⎜⎟⎟⎜⎜⎟⎟=⎜⎜⎟⎟⎝53277277699⎠⎝b⎠⎝3693215.⎠⎛55327⎞⎛a⎞⎛2714.⎞⎜5327⎟⎜⎟=⎜5327⎟⎜07277699−×5327⎟⎜⎝b⎟⎠⎜3693215.−×2714.⎟⎝khdaw.com5⎠⎝5⎠⎛55327⎞⎛a⎞⎛2714.⎞⎜⎜⎟⎟⎜⎜⎟⎟=⎜⎜⎟⎟,b≈.0050035124,a≈.0972578654⎝016023132.⎠⎝b⎠⎝80171.94⎠22故a≈.09726,b≈.00500,形如Y=a+bx的多项式为:Y=.09726+.00500x;22误差的平方和δ=∑(Yi−yi)=0.0239938。⎛7−5.3⎞⎛lnI0⎞⎛.19890⎞3.取对数lnI=lnI−at,相应的正规方程组为⎜⎟⎜⎟=⎜⎟0⎜−5.3.203⎟⎜a⎟⎜−.01858⎟⎝⎠⎝⎠⎝⎠−.28882tlnI=.172825,a≈.28882I≈.56308I=.56308e00⎛4课后答案网.31781⎞⎛a⎞⎛144.⎞4.正规方程组为⎜⎜⎟⎟⎜⎜⎟⎟=⎜⎜⎟⎟⎝.31781.36092⎠⎝b⎠⎝12.9607⎠a≈.24864,b≈.14016(或b≈.14017),形如Y=a+lnx的多项式为y=.24864+.14016lnx22误差的平方和δ=∑www.hackshp.cn(Yi−yi)=0.009849481。第六章1.用中心差分表示的一阶三点数值微分公式21[]h)3(1[]f′(x)=−f(x)+f(x)−f(ξ)≈−f(x)+f(x)1022022h62h用中心差分表示的二阶三点数值微分公式khdaw.com13若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com 21[]h)4(1[]f′′(x)=f(x)−2f(x)+f(x)−f(ξ)≈f(x)−2f(x)+f(x)1201222012h12h(1)取h=0.1,三点公式取x=,9.1x=,0.2x=1.2,得01211f′)0.2(≈[f)1.2(−f9.1()]=22.2288,f′′)0.2(≈[f)9.1(−2f)0.2(+f1.2()]=29.593222×1.01.0(2)取h=0.2,三点公式取x=,8.1x=,0.2x=2.2,得01211f′)0.2(≈[f)2.2(−f8.1()]=22.4142,f′′)0.2(≈[f)8.1(−2f)0.2(+f2.2()]=29.704322×2.02.0xxxxx注:由f(x)=xe,f′(x)=e+xe,f′(x)=2e+xe,得精确解为f′)0.2(=22.167168,f′′)0.2(=29.556224。可见取h=0.1的计算结果好于取h=0.2的计算结果。11x012.运用梯形公式:∫edx≈[e+e]=.18591409L≈.185914021ξ31误差:khdaw.comR[f]=−e1(−)0≤e=.02265235L≈.0226521212111x021运用辛浦生公式:∫edx≈[e+4e+e]=.17188612L≈.171886061ξ1误差:R[f]=−e≤e=.000094385L≈.00009288028803.(1)将f(x)在a处展开,两边在[a,b]上积分。由于x−a在[a,b]上不变号,故有η∈[a,b],使得bbbb∫af(x)dx=∫af(a)dx+∫af′(ξ)(x−a)dx=(b−a)f(a)+f′(η)∫a(x−a)dxb12从而有∫f(x)dx=(b−a)f(a)+f′(η)(b−a),η∈[a,b]a2图形:用以f(a)为高、b课后答案网−a为宽的矩形面积代替曲边梯形面积。(2)将f(x)在b处展开,两边在[a,b]上积分。由于x−b在[a,b]上不变号,故有η∈[a,b],使得bbbb∫af(x)dx=∫af(b)dx+∫af′(ξ)(x−b)dx=(b−a)f(b)+f′(η)∫a(x−b)dxb12从而有∫f(x)dx=(b−a)f(b)−f′(η)(b−a),η∈[a,b]awww.hackshp.cn2图形:用以f(b)为高、b−a为宽的矩形面积代替曲边梯形面积。(3)将f(x)在a+b处展开,得2a+ba+ba+b1a+b2f(x)=f()+f′()(x−)+f′′(ξ)(x−),ξ∈[a,b]22222两边在[a,b]上积分,得ba+ba+bba+b1ba+b2∫af(x)dx=(b−a)f()+f′()∫a(x−)dx+∫af′′(ξ)(x−)dx22222a+b1ba+b2a+b13=(b−a)f()+f′′(η)∫(x−)dx=(b−a)f()+f′′(η)(b−a,)η∈[a,b]22a2224图形:用以f((a+b)/2)为高、b−a为宽的矩形面积代替曲边梯形面积。24.(1)求积公式中含有三个待定参数A-1、A0、A1,故令求积公式对f(x)=1、x、x准确成立,则得khdaw.com14若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com A−1+A0+A1=2h−h(A−1−A1)=0解得A-1=A1=h/3,A0=4h/3。322hh(A+A)=−113显然所求的求积公式(事实上为辛浦生公式)至少具有两次代数精确度。又有h3h3h3∫xdx=(−h)+h−h33h4h4h4∫xdx≠(−h)+h−h33hh4hh故∫−f(x)dx≈f(−h)+f)0(+f(h)具有三次代数精确度。h333(2)求积公式中含有一个待定参数α,当f(x)=1、x时,有hh∫dx≡1[+]1+002khdaw.comhh2∫xdx≡0[+h]+αh1[−]102hh2222故令求积公式对f(x)=x成立,即∫xdx=0[+h]+αh2[×0−2h],解得α=1/12。022h3h3h2∫xdx=0[+h]+0[−3h]0212显然2h4h4h3∫xdx≠0[+h]+0[−4h]02122hhh故∫f(x)dx≈[f)0(+f(h)]+[f′)0(−f′(h)]具有三次代数精确度。02125.函数值表格课后答案网x17/68/69/610/611/62f(x)00.154150.287680.405470.510830.606140.69315T6=1/2×1/6[0+2×(0.15415+0.28768+0.40547+0.51083+0.60614)+0.69315]www.hackshp.cn≈0.38514(或0.38515)S3=1/6×1/3[0+4×(0.15415+0.40547+0.60614)+2×(0.28768+0.51083)+0.69315]≈0.38629222解析值∫1lnxdx=xlnx1+∫1dx=2ln2−1=.0386294361L16.设f(x)=lnx,当x∈]2,1[,f′(x)=>0,f)1(=0,故f(x)=lnx为单调增的非负函数,因此x25.122.02027325L=2(−)5.1ln5.1=∫5.1lnxdx<∫1lnxdx+∫5.1lnxdx=∫1lnxdx<2(−)1ln2=.0693147L21−4即lnxdx=.0aaaaL(a≠)0。因此,为使结果具有4位有效数字,ε=×10。∫12341124(b−a))4()4(6由余项公式ESN(f)=−4f(η),1≤η≤2及f(x)=−4,则有2880Nx444(b−a))4((b−a))4(2(−)166E(f)=−f(η)≤maxf(η)≤max=SN444442880N2880Na≤x≤b2880khdaw.comN1≤x≤2x2880N15若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com 61−4令ESN(f)≤4≤×10,得N≥2.54。取N=3,即至少要取2N+1=7个节点处的函数值。2880N27.按照事后误差估计公式n−111h141nI≈T2n+(T2n−Tn),T2n=Tn+∑f(x1,)I≈S2n+(S2n−Sn),Sn=T2n−Tn322k=0k+21533计算列表如下:11TkTk−Tk−1Sk−1Sk−1−Sk−2k等分2k232221522010.92073549120.939793280.94614588-5240.944513520.001573410.946086930.00000393<10-3380.945690860.00039245<100.946083310.00000024因此,由梯形公式得khdaw.comI≈T=0.94569086,精确到10−3;由辛浦生公式得到I≈S=0.94608693,精确到10−5。82−6若取I≈S4=0.94608331,则精确到10。小数后保留三位的计算结果均为I≈0.946。小数后保留四位时,由梯形公式得I≈T8=0.9460,由辛浦生公式得到I≈S2=0.9461。ππ=2′2+′2θ=2+2θθ=8.令x=2cosθ,y=sinθ,则椭圆的周长为l4∫0xθyθd4∫013sind4I。ππ2π由于<∫21+3sinθdθ<2×=π,因此I有1位整数。故要求结果有四位有效数字,则需l=4I202π11−41−322的截断误差4R[f]≤×10,即计算I的截断误差R[f]≤×10(f(θ)=∫1+3sinθdθ)。2课后答案网80下表给出用龙贝格方法计算积分的过程。k等分2kT2kS2k−1C2k−2R2k−3R2k−3−R2k−4012.356194122.4199212.441163242.4221032.4228302.421608382.4221122.4221152.4220672.422074www.hackshp.cn4162.4221122.4221122.4221122.4221130.000039<0.125×10−3故积分I≈2.422113,椭圆周长的近似值为l=4I≈9.688452≈9.688。第七章221.将f(x,y)=x+x−y代入欧拉计算公式,得y=y+h(x+x−y)=hx1(+x)+1(−h)yn+1nnkhdaw.comnnnnn计算结果为:16若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com xnyn|y(xn)−yn|−21.0.0000000000.0516258196×10−12.0.0011000000.0102692469×10−13.0.0033900000.0152817793×10h2.将f(x,y)=−2y−4x代入梯形公式,得y=y+(−2y−4x−2y−4x),即n+1nnnn+1n+121y=9.0(y−4x−4x)n+1nnn+11.1)0(⎧y=y+h(−2y−4x)n+1nnn⎪将f(x,y)=−2y−4x代入欧拉预估-校正公式,得⎨h,即)0(⎪yn+1=yn+(−2yn−4xn−2yn+1−4xn+1)⎩2)0(⎧⎪yn+1=2(4.0yn−xn)⎨)0(⎪⎩y=9.0y−4.0x−1.0y−2.0xkhdaw.comn+1nnn+1n+1计算结果如下:xn梯形法yn|yn−y(xn|)欧拉预-校法yn|yn−y(xn|)−3)0(−20.1.1618181818.548934878×10.1620000000(y=6.1).126924692×1010.2.1269421488−3)0(−2.898558403×10.1272400000(y2=.1256).207995396×10−2)0(−20.3.0947708490.110314620×10.0951368000(y=.093792).255636391×1023.将f(x,y)=−y−x−2代入二阶Heun公式(7.31),得⎧hy=y+(K+3K)⎪n+1n124⎪⎨K1=f(xn,yn)=−yn−xn−2⎪2222⎪K=f(x+h,y+hK)=−(y+hK)−(x+h)−22nn1n1n⎩课后答案网3333将f(x,y)=−y−x−2代入四阶经典R-K公式,得⎧h⎪yn+1=yn+(K1+2K2+2K3+K4)⎪6⎪K=f(x,y)=−y−x−21nnnn⎪www.hackshp.cn⎪⎛1h⎞hh⎨K2=f⎜xn+h,yn+K1⎟=−(yn+K1)−(xn+)−2⎪⎝22⎠22⎪⎛1h⎞hh⎪K3=f⎜xn+h,yn+K2⎟=−(yn+K2)−(xn+)−2⎪⎝22⎠22⎪K=f()x+h,y+hK=−(y+hK)−(x+h)−2⎩4nn3n3n计算结果如下:x二阶Heun方法的y|y−y(x|)四阶R-K方法的y|y−y(x|)nnnnnnn−3−60.1.0710.325163928×10.0709675000.163928081×10−3−60.2.0438050.588493844×10.0437461803.296656536×10−3−60.3.0182435250.798808637×10.0181636844.402638920×10khdaw.com17若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com ⎧h⎪yn+1=yn+(K1+2K2+2K3+K4)⎪6⎪K=f(x,y)=−y+x+11nnnn⎪⎪⎛1h⎞hh4.初值计算的四阶经典R-K公式为⎨K2=f⎜xn+h,yn+K1⎟=−(yn+K1)+(xn+)+1⎪⎝22⎠22⎪⎛1h⎞hh⎪K3=f⎜xn+h,yn+K2⎟=−(yn+K2)+(xn+)+1⎪⎝22⎠22⎪K=f()x+h,y+hK=−(y+hK)+(x+h)+1⎩4nn3n3n将f(x,y)=−y+x+1代入四阶显式阿达姆斯公式,得hy=y+()55f−59f+37f−9fn+1nnn−1n−2n−324计算结果如下:x四阶R-K方法的解y四阶显式Adams方法的解y|y−y(x|)nnnnnkhdaw.com−70.1.1004837500.819640404×10−60.2.1018730901.148328268×10−60.3.1040878422.201319460×10−50.4.1070323099.305293597×10−50.5.1106535643.498343648×10⎧yn+1=yn+k2⎪⎪k=hf(x,y)5.设y=y(x),则公式⎨1nn中nn⎪11k=hf(x+h,y+k)⎪⎩2n2n21⎡⎛h∂fk∂f⎞k=h⎢f(x,y)+⎜+1⎟2nn⎢⎣⎜⎝课后答案网2∂x(xn,yn)2∂y(xn,yn)⎟⎠1⎛h∂2fhk∂2fk∂2f⎞⎤+⎜()2+21+(1)2⎟+O(h3)⎥⎜22⎟22∂x22∂x∂y2∂y⎥⎝(xn,yn)(xn,yn)(xn,yn)⎠⎦www.hackshp.cnh2⎛∂f∂f⎞故y=y+k=y+hf(x,y)+⎜+f⎟n+1n2nnn2⎜∂x∂y⎟⎝(xn,yn)(xn,yn)⎠h⎛∂2f∂2f∂2f⎞+()3⎜+2f+f2⎟+O(h4)⎜22⎟2∂x∂x∂y∂y⎝(xn,yn)(xn,yn)(xn,yn)⎠d注意y′′(x)=f(x,y)=f(x,y(x))+f(x,y(x))f(x,y(x))nxnnnnynndxx=xnh2h⎛∂2f∂2f∂2f⎞则y=y+yh′(x)+y′′(x)++()3⎜+2f+f2⎟+O(h4)n+1nnn⎜22⎟!22∂x∂x∂y∂y⎝(xn,yn)(xn,yn)(xn,yn)⎠22hh4由y(x)的Taylor展式y(x)=y(x)+yh′(x)+y′′(x)+y′′(x)+O(h),得n+1n+1nnnn!2!333R=y(x)−y=O(h)(O(h)的系数不为零)n+1n+1n+1所以,题中的公式是二阶方法。khdaw.com18若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com xn+2xn+2xn+2xn+26.由y′(x)dx=f(x,y(x))dx,得y(x)=y(x)+p(x)dx+R(x)dx。∫x∫xn+2n+1∫x2∫xn+1n+1n+1n+1对f(x,y(x))在xn+2,xn+1,xn处进行Lagrange插值,得插值多项式P2(x):(x−x)(x−x)(x−x)(x−x)n+1n+2nn+2p(x)=f(x,y(x))+f(x,y(x))2nnn+1n+1(x−x)(x−x)(x−x)(x−x)nn+1nn+2n+1nn+1n+2(x−x)(x−x)nn+1+f(x,y(x))n+2n+2(x−x)(x−x)n+2nn+2n+1令x=x+th,则x−x=(t−)1h,x−x=(t−)2h。nn+1n+2332h2hy(x)≈y(x)+(t−1)(t−)2dt[f(x,y(x)]+(tt−)2dt[f(x,y(x)]n+2n+1∫12nn∫12n+1n+12h−h32h+(tt−)1dt[f(x,y(x)]∫2n+2n+212h21221⎡2222⎤1321∫1(t−1)(t−)2dt=∫1(t−)2d(t−)1=⎢⎣(t−2)(t−)11−∫1(t−)1dt⎥⎦=−(t−)11=−khdaw.com223×2621221⎡2222⎤1⎡132⎤1⎡1⎤2∫1(tt−)2dt=∫1(t−)2dt=⎢⎣(t−)2t1−∫1tdt⎥⎦=⎢1−t1⎥=⎢1−8(−)1⎥=−222⎣3⎦2⎣3⎦321221⎡2222⎤1⎡132⎤1⎡1⎤5∫1(tt−)1dt=∫1(t−)1dt=⎢⎣(t−)1t1−∫1tdt⎥⎦=⎢4−t1⎥=⎢4−8(−)1⎥=222⎣3⎦2⎣3⎦63335h2h5h故y(x)≈y(x)−⋅f(x,y(x)−⋅f(x,y(x)+⋅f(x,y(x)n+2n+12nn2n+1n+12n+2n+262h3−h62h令y≈y(x)y≈y(x)y≈y(x),即可得到n+2n+2n+1n+1nnhy=y+[]5f+8f−fn+2n+1n+2n+1n12)3(3xn+2xn+2f(ξ)h2)3(余项为R=R(x)dx=(x−x)(x−x)(x−x)dx=f(ξ()tt−1)(t−)2dtn+2∫x∫xnn+1n+2∫1n+1n+1!363课后答案网h2)3(=f(η)∫(tt−1)(t−)2dt(t∈2,1[],(tt−1)(t−)2≤0)617.y=α(y+y)+h(βf(x,y)+βf(x,y))的余项为n+2n+1n0n+1n+11nnR=y(x)−α[y(x)+y(x)]−h[βy′(x)+βy′(x)]n+2n+2n+1n0n+11n将y(xn+2),y(xn)在点xn+www.hackshp.cn1展开(在其他点展开也可):23hh4R=y(x)+yh′(x)+y′′(x)+y′′′(x)+O(h)n+2n+1n+1n+1n+1!2!323hh4−α[y(x)+y(x)−yh′(x)+y′′(x)−y′′′(x)+O(h)]n+1n+1n+1n+1n+1!2!32h3−hβy′(x)−βh[y′(x)−yh′′(x)+y′′′(x)+O(h)]0n+11n+1n+1n+1!22h即R=1(−2α)y(x)+1(+α−β−β)yh′(x)+1(−α+2β)y′′(x)n+2n+101n+11n+121αβ134+(+−)hy′′′(x)+O(h)n+1662⎧1−2α=0⎧α=12⎪⎪334要求该方法为二阶方法,则必须⎨1+α−β0−β1=0,即⎨β0=74,Rn+2=hy′′′(xn)+O(h)。⎪⎪81−α+2β=0β=−14⎩1⎩1khdaw.com19若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com 第八章⎛51−2⎞⎜⎟T1.A=⎜101⎟,取u0=(1,1,1),其计算结果列表如下:⎜⎟⎝61−3⎠(u)u=Auλ(k)=k1(k)(k−)1kkk−11λ1−λ1(u)k−11T0(1,1,1)T1(4,2,4)4.0000T2(14,8,14)3.5000T3(50,28,50)3.571428571T4(178,100,178)3.560000000T5(634,356,634)3.5617977536(2258,1268,2258)T3.5615141960.000283557<10−3)6(Tλ≈.35615,相应近似特征向量为c=(2258,1268,2258)。1TTT或c=(1,0.561558901,1),c=(1.780757098,1,1.780757098),c=(564.5,317,564.5)。khdaw.com课后答案网www.hackshp.cnkhdaw.com20若侵犯了您的版权利益,敬请来信通知我们!℡www.khdaw.com'

您可能关注的文档