- 923.95 KB
- 2022-04-22 11:30:05 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn课后答案网您最真诚的朋友www.hackshp.cn网团队竭诚为学生服务,免费提供各门课后答案,不用积分,甚至不用注册,旨在为广大学生提供自主学习的平台!课后答案网:www.hackshp.cn视频教程网:www.efanjy.comPPT课件网:www.ppthouse.com课后答案网www.hackshp.cn
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn第一章绪论1.设x>0,x的相对误差为δ,求lnx的误差。**e*x*−x解:近似值x的相对误差为δ=e==rx*x*1而lnx的误差为e(ln*x=)ln*lnx−x≈e*x*进而有ε(ln*)x≈δn2.设的相对误差为x2%,求x的相对误差。nxfx"()解:设fx()=x,则函数的条件数为C=||pfx()n−1n−1xnx⋅又∵fx"()=nx,∴C=||=npn又∵ε((*))xn≈C⋅ε(*)xrpr且ex(*)为2rn课后答案网∴ε((*))x≈0.02nr3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指***出它们是几位有效数字:x=1.1021,x=0.031,x=385.6,www.hackshp.cn123**x=56.430,x=×71.0.45*解:x=1.1021是五位有效数字;1*x=0.031是二位有效数字;2*x=385.6是四位有效数字;3*x=56.430是五位有效数字;4*x=×71.0.是二位有效数字。5********4.利用公式(2.3)求下列各近似值的误差限:(1)x+x+x,(2)xxx,(3)x/x.12412324****其中xxxx,,,均为第3题所给的数。1234解:
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn*1−4ε()x=×1012*1−3ε()x=×1022*1−1ε()x=×1032*1−3ε()x=×1042*1−1ε()x=×1052***(1)(εx+x+x)124***=ε()x+ε()x+ε()x1241−41−31−3=×10+×10+×10222−3=1.0510×***(2)(εxxx)123*********=xxε()x+xxε()x+xxε()x1232311321−11−41−3=1.10210.031×××10+0.031385.6×××10+1.1021385.6×××10课后答案网222≈0.215**(3)(εx/x)24****xε()x+xε()x2442www.hackshp.cn≈2*x41−31−30.031××10+56.430××1022=56.43056.430×−5=105计算球体积要使相对误差限为1,问度量半径R时允许的相对误差限是多少?43解:球体体积为V=πR3则何种函数的条件数为2RVi"Ri4πRC===3pV43πR3∴ε(*)V≈Ciε(*)R=3(*)εRrprr又∵ε(*)1V=r
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn1故度量半径R时允许的相对误差限为ε(*)R=×≈10.33r316.设Y=28,按递推公式Y=Y−783(n=1,2,…)0nn−1100计算到Y。若取783≈27.982(5位有效数字),试问计算Y将有多大误差?1001001解:∵Y=Y−783nn−11001∴Y=Y−783100991001Y=Y−78399981001Y=Y−7839897100……1Y=Y−783101001依次代入后,有Y=Y−100×7831000100即Y=Y−783,1000若取783≈27.982,课后答案网∴Y100=Y0−27.982*1−3∴ε(Y)=ε()Y+ε(27.982)=×10100021−3∴Y100的误差限为×10www.hackshp.cn。227.求方程x−56x+=10的两个根,使它至少具有4位有效数字(783=27.982)。2解:x−56x+=10,故方程的根应为x=28±7831,2故x=28+783≈2827.982+=55.9821∴x具有5位有效数字1111x=28−783=≈=≈0.017863228+7832827.982+55.982x具有5位有效数字2N+118.当N充分大时,怎样求dx?∫N1+x2
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnN+11解dx=arctan(N+1)arctan−N∫N1+x2设α=arctan(N+1),β=arctanN。则tanα=N+1,tanβ=N.N+11dx∫N1+x2=α−β=arctan(tan(α−β))tanα−tanβ=arctan1tan+αitanβN+−1N=arctan1(+N+1)N1=arctan2N+N+129.正方形的边长大约为了100cm,应怎样测量才能使其面积误差不超过1cm?2解:正方形的面积函数为Ax()=x∴ε(*)A=2*(*)Aiεx.课后答案网当x*100=时,若ε(*)1A≤,1−2则ε(*)x≤×10www.hackshp.cn22故测量中边长误差限不超过0.005cm时,才能使其面积误差不超过1cm1210.设S=gt,假定g是准确的,而对t的测量有±0.1秒的误差,证明当t增加时S的2绝对误差增加,而相对误差却减少。12解:∵S=gtt,>022∴ε(*)S=gtiε(*)t当t*增加时,S*的绝对误差增加ε(*)Sε(*)S=rS*2gtiε(*)t=1*2gt()2ε(*)t=2*t
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn当t*增加时,ε(*)t保持不变,则S*的相对误差减少。11.序列{y}满足递推关系y=10y−1(n=1,2,…),nnn−1若y=2≈1.41(三位有效数字),计算到y时误差有多大?这个计算过程稳定吗?010解:∵y=2≈1.4101−2∴ε(*)y=×1002又∵y=10y−1nn−1∴y=10y−110∴ε(*)10(*)y=εy10又∵y=10y−121∴ε(*)10(*)y=εy212∴ε(*)10(*)y=εy2课后答案网0......10∴ε(y*)10=ε(*)y100101−2www.hackshp.cn=10××10218=×10218计算到y时误差为×10,这个计算过程不稳定。102612.计算f=(21)−,取2≈1.4,利用下列等式计算,哪一个得到的结果最好?131,(322)−,,99702−。63(21)+(322)+6解:设y=(x−1),**1−1若x=2,x=1.4,则ε(x)=×10。21若通过计算y值,则6(21)+
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn*1*ε(y)=−−6×iε(x)*7(x+1)6**=yε(x)*7(x+1)**=2.53ε(yx)3若通过(322)−计算y值,则**2*ε(y)=−3×2×(32)−xiε(x)6**=yiε(x)*32−x**=30ε(yx)1若通过计算y值,则3(322)+*1*ε(y)=−−3×iε(x)*4(32)+x1**=6×yε(x)(32)+x*7课后答案网**=1.0345ε(yx)1通过计算后得到的结果最好。3www.hackshp.cn(322)+213.fx()=ln(x−x−1),求f(30)的值。若开平方用6位函数表,问求对数时误差有多22大?若改用另一等价公式。ln(x−x−1)=−ln(x+x−1)计算,求对数时误差有多大?解2∵fx()=ln(x−x−1),∴f(30)=ln(30−899)设u=899,y=f(30)*则u=29.9833*1−4∴ε(u)=×102故
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn*1*ε(y)≈−ε(u)*30−u1*=iε(u)0.0167−3≈3×10若改用等价公式22ln(x−x−1)课后答案网=−ln(x+x−1)则f(30)=−ln(30+899)此时,*1www.hackshp.cn*ε(y)=⏐−⏐ε(u)*30+u1*=⋅ε(u)59.9833−7≈8×10
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn第二章插值法1.当x=−1,1,2时,fx()=0,3,4−,求fx()的二次插值多项式。解:x=1,x=−1,x=2,012fx()=0,()fx=−3,()fx=4;012(xx−)(xx−)112lx()==−(x+1)(x−2)0(x−x)(x−x)20102(xx−)(xx−)102lx()==(x−1)(x−2)1(x−x)(x−x)61012(xx−)(xx−)101lx()==(x−1)(x+1)2(x−x)(x−x)32021则二次拉格朗日插值多项式为2Lx2()=∑ylxkk()k=0课后答案网=−3()4()lx+lx0214=−(x−1)(x−2)+(x−1)(x+1)235237www.hackshp.cn=x+x−6232.给出fx()=lnx的数值表X0.40.50.60.70.8lnx-0.916291-0.693147-0.510826-0.356675-0.223144用线性插值及二次插值计算ln0.54的近似值。解:由表格知,x=0.4,x=0.5,x=0.6,x=0.7,x=0.8;01234fx()=−0.916291,()fx=−0.69314701fx()=−0.510826,()fx=−0.35667523fx()=−0.2231444若采用线性插值法计算ln0.54即f(0.54),则0.5<0.54<0.6
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnxx−2lx()==−10(x−0.6)1x−x12xx−1lx()==−10(x−0.5)2x−x21Lx()=fxlx()()+fxlx()()11122=6.93147(x−0.6)5.10826(−x−0.5)∴L(0.54)=−0.6202186≈−0.6202191若采用二次插值法计算ln0.54时,(xx−)(xx−)12lx()==50(x−0.5)(x−0.6)0(x−x)(x−x)0102(xx−)(xx−)02lx()==−100(x−0.4)(x−0.6)1(x−x)(x−x)1012(xx−)(xx−)01lx()==50(x−0.4)(x−0.5)2(x−x)(x−x)2021Lx()=fxlx()()+fxlx()()+fxlx()()2001122=−500.916291(×x−0.5)(课后答案网x−0.6)69.3147(+x−0.4)(x−0.6)0.51082650(−×x−0.4)(x−0.5)∴L(0.54)=−0.61531984≈−0.61532023.给全cos,0x�≤x≤90�的函数表,步长www.hackshp.cnh=1′=(1/60),�若函数表具有5位有效数字,研究用线性插值求cosx近似值时的总误差界。解:求解cosx近似值时,误差可以分为两个部分,一方面,x是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数cosx的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。��当0≤x≤90时,令fx()=cosx1�1ππ取x=0,h=()=×=0606018010800令x=x+ihi,=0,1,...,5400i0π�则x==9054002当x∈[xx,时,线性插值多项式为]kk−1
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnxx−xx−k+1kLx()=fx()+fx()1kk+1x−xx−xkk+1k+1k插值余项为1Rx()=cosxLx−()=f′′()(ξxx−)(xx−)1kk+12又∵在建立函数表时,表中数据具有5位有效数字,且cosx∈[0,1,故计算中有误差传播]过程。*1−5∴ε(f())x=×10k2*xx−k+1*xx−k+1Rx()=ε(f())x+ε(f(x))2kk+1x−xx−xkk+1k+1k*xx−k+1xx−k+1≤ε(f())(x+)kx−xx−xkk+1k+1k*1=ε(f())(xx−+−xxx)kk+1kh*=ε(f())xk课后答案网∴总误差界为R=Rx()+Rx()121*=(cos)(−ξxx−)(xx−)+ε(f())xkk+1k2www.hackshp.cn1*≤×(xx−)(x−x)+ε(f())xkk+1k2112*≤×(h)+ε(f())xk22−81−5=1.0610×+×102−5=0.5010610×4.设为互异节点,求证:nkk(1)xlx()≡x(k=0,1,,);⋯n∑jjj=0nk(2)(x−xlx)()≡0(k=0,1,⋯,);n∑jjj=0证明k(1)令fx()=x
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnnk若插值节点为xjj,=0,1,⋯,n,则函数fx()的n次插值多项式为Lxn()=∑xlxjj()。j=0(n+1)f()ξ插值余项为Rx()=fx()−Lx()=ω()xnnn+1(n+1)!又∵k≤n,(n+1)∴f()ξ=0∴Rx()=0nnkk∴∑xlxjj()=x(k=0,1,⋯,);nj=0nk(2)∑(xj−xlx)j()j=0nnjiki−=∑∑(Cxkj(−x))()lxjj=0i=0nniki−i=∑Ck(−x)(∑xlxjj())i=0j=0课后答案网又∵0≤≤in由上题结论可知nki∑xlxjj()=xj=0www.hackshp.cnniki−i∴原式=∑Ck(−x)xi=0k=(xx−)=0∴得证。25设fx()∈Cab[,且]fa()=fb()=0,求证:12maxfx()≤(ba−)maxf′′().xaxb≤≤8axb≤≤解:令x=ax,=b,以此为插值节点,则线性插值多项式为01xx−xx−10Lx()=fx()+fx()101x−xxx−010xb−xa−==fa()+fb()ab−xa−
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn又∵fa()=fb()=0∴Lx()=011插值余项为Rx()=fx()−Lx()=f′′()(xxx−)(xx−)10121∴fx()=f′′()(xxx−)(xx−)012又∵(xx−)(xx−)012⎧1⎫≤⎨[(xx−0)(+x1−x)]⎬⎩2⎭12=(x−x)10412=(ba−)412∴maxfx()≤(ba−)maxf′′().xaxb≤≤8axb≤≤xx6.在−≤4x≤4上给出fx()=e的等距节点函数表,若用二次插值求e的近似值,要使−6截断误差不超过10,问使用函数表的步长h应取多少?解:若插值节点为xi−1,x课后答案网i和xi+1,则分段二次插值多项式的插值余项为1Rx()=f′′′()(ξxx−)(xx−)(xx−)2i−1ii+13!1www.hackshp.cn∴Rx()≤(xx−)(xx−)(xx−)maxf′′′()x2i−1ii+16−≤≤4x4设步长为h,即x=x−hx,=x+hi−1ii+1i1423343∴Rx()≤e⋅h=eh.263327−6若截断误差不超过10,则−6Rx()≤102343−6∴eh≤1027∴≤h0.0065.n447.若y=2,求∆y及δy.,nnn解:根据向前差分算子和中心差分算子的定义进行求解。ny=2n
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn44∆y=(E−1)ynn4⎛⎞4j4−j=(1)−⎜⎟Ey∑nj=0⎝⎠j44j⎛⎞=∑(1)−⎜⎟y4+−njj=0⎝⎠j4⎛⎞4j4−j=(1)−⎜⎟2⋅y∑nj=0⎝⎠j4=(21)−yn=ynn=211−4224δy=(E−E)ynn1−244=(E)(E−1)yn−24=E∆yn=yn−2n−2=28.如果fx()是m次多项式,记课后答案网∆fx()=fxh(+)−fx(),证明fx()的k阶差分km+1∆fx()(0≤k≤m)是mk−次多项式,并且∆fx()=0(l为正整数)。解:函数fx()的Taylorwww.hackshp.cn展式为121()mm1(m+1)m+1fxh(+)=fx()+fxh′()+f′′()xh+⋯+f()xh+f()ξh2m!(m+1)!其中ξ∈(,xxh+)又∵fx()是次数为m的多项式(m+1)∴f()ξ=0∴∆fx()=fxh(+)−fx()121()mm=fxh′()+f′′()xh+⋯+f()xh2m!∴∆fx()为m−1阶多项式2∆fx()=∆∆(fx())2∴∆fx()为m−2阶多项式
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnk依此过程递推,得∆fx()是mk−次多项式m∴∆fx()是常数∴当为正整数时,lm+1∆fx()=09.证明∆(fg)=f∆g+g∆fkkkkk+1k证明∆(fg)=fg−fgkkk+1k+1kk=fg−fg+fg−fgk+1k+1kk+1kk+1kk=g(f−f)+fg(−g)k+1k+1kkk+1k=g∆+ff∆gk+1kkk=f∆g+g∆fkkk+1k∴得证n−1n−110.证明f∆g=fg−fg−g∆f∑kknn00∑k+1kk=0k=0证明:由上题结论可知课后答案网f∆g=∆(fg)−g∆fkkkkk+1kn−1∴∑fk∆gkwww.hackshp.cnk=0n−1=∑((∆fgkk)−gk+1∆fk)k=0n−1n−1=∑∆(fgkk)−∑gk+1∆fkk=0k=0∵∆(fg)=fg−fgkkk+1k+1kkn−1∴∑∆(fgkk)k=0=(fg−fg)(+fg−fg)+⋯+(fg−fg)11002211nnn−1n−1=fg−fgnn00n−1n−1∴∑fk∆gk=fgnn−fg00−∑gk+1∆fkk=0k=0得证。n−1211.证明∆y=∆y−∆y∑jn0j=0
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnn−1n−12证明∆y=(∆y−∆y)∑j∑j+1jj=0j=0=∆−∆(yy)(+∆y−∆y)+⋯+∆(y−∆y)1021nn−1=∆y−∆yn0得证。n−1n12.若fx()=a+ax+⋯+ax+ax有个不同实根nxx,,⋯,x,01n−1n12nnxk⎧0,0≤k≤−n2;j证明:∑=⎨−1j=1fx′()j⎩n0,k=−n1证明:∵fx()有个不同实根xx,,⋯,x12nn−1n且fx()=a+ax+⋯+ax+ax01n−1n∴fx()=axx(−)(xx−)⋯(xx−)n12n令ω()x=(xx−)(xx−)⋯(xx−)n12nnxknxkjj则∑=∑课后答案网j=1fx′()jj=1anω′n()xj而ω′n()x=(xx−2)(xx−3)⋯(xx−n)(+xx−1)(xx−3)⋯(xx−n)+⋯+(xxwww.hackshp.cn−1)(xx−2)⋯(xx−n−1)∴ω′()x=(x−x)(x−x)⋯(x−x)(x−x)⋯(x−x)njj1j2jj−1jj+1jnk令gx()=x,nkxjgxx[1,,2⋯,xn=∑]j=1ωn′()xjnkxj则gxx[1,,2⋯,xn=∑]j=1ωn′()xjnkxj1又∴∑=gxx[1,,2⋯,xn]j=1fx′()jannkx⎧0,0≤k≤−n2;j∴∑=⎨−1j=1fx′()j⎩n0,k=−n1∴得证。
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn13.证明阶均差有下列性质:n(1)若Fx()=cfx(),则Fxx[,,⋯,x]=cfxx[,,⋯,x];01n01n(2)若Fx()=fx()+gx(),则Fxx[,,⋯,x=fxx],,⋯[,x+gxx,,⋯],x.[]01n01n01n证明:njfx()(1)∵fxx[1,,2⋯,xn=∑]j=0(xj−x0)⋯(xj−xj−1)(xj−xj+1)⋯(xj−xn)njFx()Fxx[1,,2⋯,xn=∑]j=0(xj−x0)⋯(xj−xj−1)(xj−xj+1)⋯(xj−xn)njcfx()=∑j=0(xj−x0)⋯(xj−xj−1)(xj−xj+1)⋯(xj−xn)njfx()=c(∑)j=0(xj−x0)⋯(xj−xj−1)(xj−xj+1)⋯(xj−xn)=cfxx[0,,1⋯,xn]∴得证。(2)∵Fx()=fx()+gx课后答案网()njFx()∴Fx[0,⋯,xn=∑]j=0(xwww.hackshp.cnj−x0)⋯(xj−xj−1)(xj−xj+1)⋯(xj−xn)njjfx()+gx()=∑j=0(xj−x0)⋯(xj−xj−1)(xj−xj+1)⋯(xj−xn)njfx()=∑)j=0(xj−x0)⋯(xj−xj−1)(xj−xj+1)⋯(xj−xn)njgx()+∑)j=0(xj−x0)⋯(xj−xj−1)(xj−xj+1)⋯(xj−xn)=fx[0,⋯,xn+gx]0,⋯[,xn]∴得证。7401701814.fx()=x+x+3x+1,求F⎡2,2,⋯,2⎤及F⎡2,2,⋯,2⎤。⎣⎦⎣⎦74解:∵fx()=x+x+3x+1i若x=2,i=0,1,⋯,8i
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn()nf()ξ则fxx[,,⋯,x=]01nn!(7)f()ξ7!∴fxx[0,,1⋯,x7=]==17!7!(8)f()ξfxx[0,,1⋯,x8=]=08!15.证明两点三次埃尔米特插值余项是(4)22Rx()=f()(ξxx−)(xx−)/4!,ξ∈(,xx)3kk+1kk+1解:若x∈[,xx],且插值多项式满足条件kk+1Hx()=fx(),Hx′()=fx′()3kk3kkHx()=fx(),Hx′()=fx′()3k+1k+13k+1k+1插值余项为Rx()=fx()−Hx()3由插值条件可知课后答案网Rx()k=Rx(k+1)=0且Rx′()=Rx′()=0kk+1∴Rx()可写成Rxwww.hackshp.cn()=gxxx()(−)(2xx−)2kk+1其中gx()是关于的待定函数,x现把看成x[,xx]上的一个固定点,作函数kk+122ϕ()t=ft()−Ht()−gxt()(−x)(t−x)3kk+1根据余项性质,有ϕ()x=0,(ϕx)=0kk+122ϕ()x=fx()−Hx()−gxxx()(−)(xx−)3kk+1=fx()−Hx()−Rx()3=022ϕ′()t=ft′()−Ht′()−gx()[2(t−x)(t−x)+2(t−x)(t−x)]3kk+1k+1k∴ϕ′()x=0k
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnϕ′(x)=0k+1由罗尔定理可知,存在ξ∈(,)xx和ξ∈(,xx),使kk+1ϕξ′()=0,()ϕξ′=012即ϕ′()x在[,xx]上有四个互异零点。kk+1根据罗尔定理,ϕ′′()t在ϕ′()t的两个零点间至少有一个零点,故ϕ′′()t在(,xx)内至少有三个互异零点,kk+1(4)依此类推,ϕ()t在(,xx)内至少有一个零点。kk+1记为ξ∈(,xx)使kk+1(4)(4)(4)ϕ()ξ=f()ξ−H()4!()ξ−gx=0课后答案网3(4)又∵H()t=03(4)f()ξ∴gx()=,ξ∈(,xx)kk+14!www.hackshp.cn其中依赖于ξx(4)f()ξ22∴Rx()=(xx−)(xx−)kk+14!分段三次埃尔米特插值时,若节点为xk(=0,1,⋯,)n,设步长为,即hkx=x+khk,=0,1,⋯,n在小区间[,xx]上k0kk+1(4)f()ξ22Rx()=(xx−)(xx−)kk+14!1(4)22∴Rx()=f()(ξxx−)(xx−)kk+14!
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn122(4)≤(xx−)(x−x)maxf()xkk+14!axb≤≤1xx−k+xk+1−x22(4)≤[()]maxf()x4!2axb≤≤114(4)=×hmaxf()x44!2axb≤≤4h(4)=maxf()x384axb≤≤16.求一个次数不高于4次的多项式P(x),使它满足P(0)=P′(0)=0,(1)P=P′(1)=0,(2)P=0解:利用埃米尔特插值可得到次数不高于4的多项式x=0,x=101y=0,y=101m=0,m=10111Hx()=yα()x+mβ()x3∑jj∑jjj=0j=0xx−0xx−12α()x=(12−)()0x−xx−x01课后答案网012=(12)(+xx−1)xx−1xx−02α()x=(12−)()1x−xx−x10102www.hackshp.cn=(32)−xx2β()x=xx(−1)02β()x=(x−1)x12232∴Hx()=(32)−xx+(x−1)x=−x+2x322设Px()=Hx()+Axx(−)(xx−)301其中,A为待定常数∵P(2)1=3222∴Px()=−x+2x+Axx(−1)1∴A=4122从而Px()=xx(−3)4217.设fx()1/(1=+x),在−≤5x≤5上取n=10,按等距节点求分段线性插值函数
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnIx(),计算各节点间中点处的Ix()与fx()值,并估计误差。hh解:若x=−5,x=5010则步长h=1,x=x+ihi,=0,1,⋯,10i01fx()=21+x在小区间[,xx]上,分段线性插值函数为ii+1xx−xx−i+1iIx()=fx()+fx()hii+1x−xx−xii+1i+1i11=(x−x)+(xx−)i+12i21+x1+xii+1各节点间中点处的Ix()与fx()的值为h当x=±4.5时,课后答案网fx()=0.0471,()Ixh=0.0486当x=±3.5时,fx()=0.0755,()Ixh=0.0794当x=±2.5时,www.hackshp.cnfx()=0.1379,()Ix=0.1500h当x=±1.5时,fx()=0.3077,()Ix=0.3500h当x=±0.5时,fx()=0.8000,()Ix=0.7500h误差2hmaxfx()−Ix()≤maxf′′()ξhxi≤≤xxi+18−≤≤5x51又∵fx()=21+x−2x∴fx′()=,22(1+x)26x−2f′′()x=23(1+x)324x−24xf′′′()x=24(1+x)
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn令f′′′()x=0得fx′′()的驻点为x=±1和x=01,231f′′(x)=,f′′()x=−21,2321∴maxfx()−Ix()≤h−≤≤5x54218.求fx()=x在[,]ab上分段线性插值函数Ix(),并估计误差。h解:在区间[,]ab上,x=ax,=bh,=x−xi,=0,1,⋯,n−1,0nii+1ih=maxhi0≤≤−in12∵fx()=x∴函数fx()在小区间[,xx]上分段线性插值函数为ii+1xx−xx−i+1iIx()=fx()+fx()hii+1x−xx−xii+课后答案网1i+1i122=[x(x−x)+x(xx−)]ii+1i+1ihi误差为www.hackshp.cn12maxfx()−Ix()≤maxf′′()ξihhixi≤≤xxi+18a≤≤ξb2∵fx()=x∴fx′()=2,xf′′()x=22h∴maxfx()−Ix()≤haxb≤≤4419.求fx()=x在[,]ab上分段埃尔米特插值,并估计误差。解:在[,]ab区间上,x=ax,=bh,=x−xi,=0,1,⋯,n−1,0nii+1i令h=maxhi0≤≤−in143∵fx()=x,fx′()=4x∴函数fx()在区间[,xx]上的分段埃尔米特插值函数为ii+1
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnxx−i+12xx−iIx()=()(12+)()fxhix−xx−xii+1i+1ixx−i2xx−i+1+()(12+)(fx)i+1x−xx−xi+1iii+1+xx−i+12−′()(xxfx)()iix−xii+1xx−i2+()(xx−)(fx′)i+1i+1x−xi+1i4xi2=(xx−)(h+2x−2)x3i+1iihi4xi+12+(xx−)(h−2x+2x)3iii+1hi34xi2+(xx−)(xx−)2i+1ihi34xi+12+(xx−)(xx−)2ii+1hi误差为fx()−Ix()课后答案网h1(4)22=f()(ξxx−i)(xx−i+1)4!1(4)hi4≤maxf()()ξwww.hackshp.cn24axb≤≤24又∵fx()=x(4)∴f()x=4!24=44hhi∴maxfx()−Ix()≤max≤haxb≤≤0≤≤−in1161620.给定数据表如下:Xj0.250.300.390.450.53Yj0.50000.54770.62450.67080.7280试求三次样条插值,并满足条件:(1)(0.25)1.0000,(0.53)S′=S′=0.6868;(2)S′′(0.25)=S′′(0.53)=0.解:
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnh=x−x=0.05010h=x−x=0.09121h=x−x=0.06232h=x−x=0.08343hhj−1j∵µ=,λ=jjh−hh−hj−1jj−1j533∴µ=,µ=,µ=,µ=112341457924λ=,λ=,λ=,λ=112301457fx()−fx()10fxx[0,1=]=0.9540x−x10fxx[1,2=]0.8533fxx[2,3=]0.7717fxx[3,4=]0.7150(1)()1.0000,()Sx′=Sx′=0.6868046d0=(fxx[1,课后答案网2−]f0′)=−5.5200h0fxx[1,2−]fxx0,[1]d=6=−4.31571h+h0www.hackshp.cn1fxx[2,3−]fxx1,[2]d=6=−3.26402h+h12fxx[3,4−]fxx2,[3]d=6=−2.43003h+h236d4=(f4′−fxx[3,4)=−]2.1150h3由此得矩阵形式的方程组为21M0−5.5200592M1−4.31571414322M2=−3.264055342M3−2.43007712M4−2.1150求解此方程组得
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnM=−2.0278,M=−1.464301M=−1.0313,M=−0.8070,M=−0.6539234∵三次样条表达式为33(x−x)(xx−)j+1jSx()=M+Mjj+16h6hjj22Mhx−xMhxx−jjj+1j+1jj+(y−)+(y−)(j=0,1,⋯,n−1)jj+16h6hjj∴将MMMMM,,,,代入得0123433⎧−6.7593(0.30−x)−4.8810(x−0.25)+10.0169(0.30−x)10.9662(+x−0.25)⎪⎪x∈[0.25,0.30]⎪33−2.7117(0.39−x)−1.9098(x−0.30)+6.1075(0.39−x)6.9544(+x−0.30)⎪⎪⎪x∈[0.30,0.39]Sx()=⎨33⎪−2.8647(0.45−x)−2.2422(x−0.39)+10.4186(0.45−x)10.9662(+x−0.39)⎪x∈[0.39,0.45]⎪⎪−1.6817(0.53−课后答案网x)3−1.3623(x−0.45)3+8.3958(0.53−x)9.1087(+x−0.45)⎪⎪⎩x∈[0.45,0.53](2)Sx′′()=0,Sx′′()=004d0=2f0′′=0,d1=−4.3157,www.hackshp.cnd2=−3.2640d=−2.4300,d=2f′′=0344λ=µ=004由此得矩阵开工的方程组为M=M=004⎛9⎞20⎜⎟14⎜⎟⎛M1⎞⎛−4.3157⎞⎜32⎟⎜⎟⎜⎟2M=−3.2640⎜55⎟⎜2⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝M⎠⎝−2.4300⎠33⎜⎜02⎟⎟⎝7⎠求解此方程组,得M=0,M=−1.880901M=−0.8616,M=−1.0304,M=0234又∵三次样条表达式为
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn33(x−x)(xx−)j+1jSx()=M+Mjj+16h6hjj22Mhx−xMhxx−jjj+1j+1jj+(y−)+(y−)jj+16h6hjj将MMMMM,,,,代入得012343⎧−6.2697(x−0.25)+10(0.3−x)10.9697(+x−0.25)⎪⎪x∈[0.25,0.30]⎪33−3.4831(0.39−x)−1.5956(x−0.3)+6.1138(0.39−x)6.9518(+x−0.30)⎪⎪⎪x∈[0.30,0.39]∴Sx()=⎨33⎪−2.3933(0.45−x)−2.8622(x−0.39)+10.4186(0.45−x)11.1903(+x−0.39)⎪x∈[0.39,0.45]⎪⎪−2.1467(0.53−x)3+8.3987(0.53−x)9.1(+x−0.45)⎪⎪⎩x∈[0.45,0.53]221.若fx()∈CabSx[,,()]课后答案网是三次样条函数,证明:b2b2(1)∫[f′′()xdx]−∫Sx′′()[dx]aab2b2=∫[f′′()x−Sx′′()]dx+2∫Sx′′()[f′′()x−Sx′′()]dxawww.hackshp.cna(2)若fx()=Sxi()(=0,1,⋯,)n,式中x为插值节点,且a=x0nm+m∴fx()在(0,)内单调递减nm+m当x∈(,1)时,fx′()09−x10−xfx′()10(=x+1)e+(x+1)(−e)9−x=(x+1)e(9−x)>0∴fx()在[0,1]内单调递减。
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnf=maxfx()=∞0≤≤x1=max{f(0),f(1)}102=e1f=fxdx()1∫0110−x=∫(x+1)edx01110−x9−x=−(x+1)e+∫10(x+1)edx0010=−5e1120−2x2f2=[(∫0x+1)edx]34=7(−)24e5。证明f−g≥f−g证明:f课后答案网=(f−g)+g≤f−g+g∴f−g≥fwww.hackshp.cn−g16。对fxgx(),()∈Cab[,],定义b(1)(,)fg=∫fxgxdx′()()′ab(2)(,)fg=∫fxgxdx′()()′+faga()()a问它们是否构成内积。解:(1)令fx()≡C(C为常数,且C≠0)则fx′()=0b而(,)ff=∫fxfxdx′()()′a这与当且仅当f≡0时,(,)0ff=矛盾1∴不能构成Cab[,]上的内积。
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnb(2)若(,)fg=∫fxgxdx′()()′+faga()(),则ab(,)gf=∫gxfxdx′()()′+gafa()()=(,),fg∀∈αKab(αfg,)=∫[αfxgxdxafaga()]′′()+()()ab=α[∫fxgxdx′()()′+faga()()]a=α(,)fg1∀∈hCab[,],则b(f+gh,)=∫[()fx+gxhxdx()]()′′+[()()]()fagahaabb=∫fxhxdx′()()′+faha()()+∫fxhxdx′()()′+gaha()()aa=(,)(,)fh+hgb22(,)ff=∫[()]fx′dx+f()a≥0a若(,)ff=0,则b22∫[()]fx′dx=0,且f()a=0a课后答案网∴fx′()≡0,()fa=0∴fx()≡0www.hackshp.cn即当且仅当f=0时,(,)0ff=.1故可以构成Cab[,]上的内积。**17。令Tx()=T(2x−1),x∈[0,1],试证{Tx()是在}[0,1]上带权ρ()x=的正交nnn2xx−****多项式,并求TxTxTxTx(),(),(),()。0123解:*若Tx()=T(2x−1),x∈[0,1],则nn1**TxTxPxdx()()()∫nm011=T(2x−1)T(2x−1)dx∫nm02xx−t+1令t=(2x−1),则t∈−[1,1],且x=,故2
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn1**TxTx()()()ρxdx∫nm011t+1=TtTt()()d()∫nm−1t+1t+122−()2211=TtTt()()dt∫−1nm21−t*1又∵切比雪夫多项式{Tx()在区间}[0,1]上带权ρ()x=正交,且k21−x⎧0,n≠m⎪1x⎪πTxTxd()()=⎨,n=m≠0∫−1nm122−t⎪⎪π,n=m=0⎩*1∴{Tx()是在}[0,1]上带权ρ()x=的正交多项式。n2xx−又∵Tx()1,=x∈−[1,1]0*课后答案网∴Tx()=T(2x−1)1,=x∈[0,1]00∵Tx()=xx,∈−[1,1]1*∴Tx()=T(2x−1)=2x−1,x∈[0,1]112www.hackshp.cn∵Tx()=2x−1,x∈−[1,1]2*∴Tx()=T(2x−1)222=2(2x−1)−12=8x−8x−1,x∈[0,1]3∵Tx()=4x−3,xx∈−[1,1]3*∴Tx()=T(2x−1)333=4(2x−1)−3(2x−1)32=32x−48x+18x−1,x∈[0,1]28。对权函数ρ()1x=−x,区间[1,1]−,试求首项系数为1的正交多项式ϕ(),xn=0,1,2,3.n解:2若ρ()1x=−x,则区间[1,1]−上内积为
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn1(,)fg=∫fxgx()()()ρxdx−1定义ϕ()1x=,则0ϕ()x=(x−αϕ)()x−βϕ()xn+1nnnn−1其中α=(xϕ(),xϕ())/(xϕ(),xϕ())xnnnnnβ=(ϕ(),xϕ())/(xϕ(),xϕ())xnnnn−1n−1∴α=(,1)/(1,1)x012∫x(1+xdx)=−112∫(1+xdx)−1=0∴ϕ()x=x1课后答案网2α=(,)/(,)xxxx1132∫x(1+xdx)=−1122∫x(1+xdx)www.hackshp.cn−1=0β=(,)/(1,1)xx1122∫x(1+xdx)−1=12∫(1+x)dx−116152==85322∴ϕ()x=x−25
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn32222222α=(x−xx,−)/(x−,x−)25555132222∫(x−xx)(−)(1+xdx)=−155122222∫(x−)(x−)(1+xdx)−155=02222β=(x−,x−)/(,)xx255122222∫(x−)(x−)(1+xdx)=−155122∫x(1+xdx)−113652517==1670153221739∴ϕ()x=x−x−x=x−x3570149。试证明由教材式(2.14)给出的第二类切比雪夫多项式族{ux()}是[0,1]上带权n2课后答案网ρ()x=1−x的正交多项式。证明:sin[(n+1)arccos]x若Ux()=n2www.hackshp.cn1−x令x=cosθ,可得12U()xUx()1−xdx∫−1mn1sin[(m+1)arccos]sin[(xn+1)arccos]x=∫dx−121−x0sin[(m+1)sin[(θn+1)]θ=∫dθπ21cos−θπ=∫sin[(m+1)sin[(θn+1)]θθd0当m=n时,π2∫sin[(m+1)θθd0π1cos[2(−m+1)]θ=∫dθ02π=2当m≠n时,
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnπ∫sin[(m+1)sin[(θn+1)]θθd0π1=∫sin[(m+1)θd{cos(n+1)}θ0n+1π1=∫cos(n+1)θd{sin[(m+1)]}θ0n+1πm+1=∫−cos(n+1)cos(θm+1)θθd0n+1πm+11=−∫cos[(m+1)]{θdsin[(n+1)]}θ0n+1n+1πm+1=−sin[(n+1)]θd{cos[(m+1)]}θ∫0(n+1)2πm+12=∫()sin[(n+1)]sin[(θm+1)]θθd0n+1=0课后答案网m+12π∴−[1()]∫sin[(n+1)]sin[(θm+1)]θθd=0n+10m+12又∵m≠n,故()≠1www.hackshp.cnn+1π∴∫sin[(n+1)]sin[(θm+1)]θθd=00得证。10。证明切比雪夫多项式Tx()满足微分方程n22(1−xTx)()′′−xTx′()+nTx()=0nnn证明:切比雪夫多项式为Tx()=cos(arccos),nxx≤1n从而有
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn−1Tx′()=−sin(arccos)nxnii()n21−xn=sin(arccos)nx21−x2nnTx′′()=sin(arccos)nx−cos(arccos)nxn32221−x(1−x)22∴−(1xTx)()′′−xTx′()+nTx()nnnnx2=sin(arccos)nx−ncos(arccos)nx21−xnx2−sin(arccos)nx+ncos(arccons)x21−x=0得证。11。假设fx()在[,]ab上连续,求fx()的零次最佳一致逼近多项式?解:∵fx()在闭区间[,]ab上连续∴存在xx,∈[,]ab,使12课后答案网fx()=min(),fx1axb≤≤fx()=max(),fx2axb≤≤www.hackshp.cn1取P=[()fx+fx()]122则x和x是[,]ab上的2个轮流为“正”、“负”的偏差点。12由切比雪夫定理知P为fx()的零次最佳一致逼近多项式。312。选取常数,使amaxx−ax达到极小,又问这个解是否唯一?0≤≤x1解:3令fx()=x−ax则fx()在[1,1]−上为奇函数3∴maxx−ax0≤≤x13=maxx−ax−≤≤1x1=f∞
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn又∵fx()的最高次项系数为1,且为3次多项式。1∴ω()x=Tx()与0的偏差最小。3332133ω()x=Tx()=x−x33443从而有a=4π13。求fx()=sinx在[0,]上的最佳一次逼近多项式,并估计误差。2解:π∵fx()=sin,xx∈[0,]2fx′()=cos,xf′′()x=−sinx≤0fb()−fa()2a==,1ba−π2cosx=,2π2∴x=arccos≈0.880692πfx()=0.771182课后答案网fa()+fx()fb()−faa()+x22a=−i02ba−2=0.10526于是得fx()的最佳一次逼近多项式为www.hackshp.cn2Px()=0.10526+x1π即2πsinx≈0.10526+x,0≤x≤π2误差限为sinxPx−()1∞=sin0−P(0)1=0.10526x14。求fx()=e[0,1在][0,1上的最佳一次逼近多项式。]解:x∵fx()=ex,∈[0,1]x∴fx′()=e,xf′′()x=e>0
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnfb()−fa()a==−e11ba−ex2=−e1x=ln(e−1)2fx()=ex2=−e12fa()+fx()fb()−faa()+x22a=−i02ba−21(+e−1)ln(e−1)=−(e−1)221=ln(e−1)2于是得fx()的最佳一次逼近多项式为e1Px()=+(e−1)[x−ln(e−1)]1221=(e−1)x+[e−(e−1)ln(e−1)]24315。求fx()=x+3x−1在区间[0,1]上的三次最佳一致逼近多项式。解:课后答案网43∵fx()=x+3x−1,x∈[0,1]1令t=2(x−),则www.hackshp.cnt∈−[1,1]211且x=t+22114113∴ft()=(t+)+3(t+)−122221432=(t+10t+2422tt−9)16432令gt()16()=ft,则gt()=t+10t+24t+22t−9*若gt()为区间[1,1]−上的最佳三次逼近多项式Pt()应满足3*max()gt−Pt()=min3−≤≤1t1*1142当gt()−Pt()=Tt()=(8t−8t+1)33428*时,多项式gt()−Pt()与零偏差最小,故3
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn*1()t=gt()−Tt()33423273=10t+25t+22t−81*进而,fx()的三次最佳一致逼近多项式为Pt(),则fx()的三次最佳一致逼近多项式316为*13273Pt()=[10(2x−1)+25(2x−1)+22(2x−1)−]31683521129=5x−x+x−441282416。fx()=x,在[−1,1上求关于]Φ=span{1,xx,的最佳平方逼近多项式。}解:∵fx()=xx,∈−[1,1]1若(,)fg=∫fxgxdx()()−124且ϕ=1,ϕ=x,ϕ=x,则012课后答案网22222ϕ=2,ϕ=,ϕ=,0212225911(,fϕ)1,(,)=fϕ=,(,fϕ)=,01www.hackshp.cn22322(,)1,(,ϕϕ=ϕϕ)=,(,ϕϕ)=,01021257则法方程组为⎛22⎞⎛⎞2⎜35⎟⎜⎟1⎜⎟⎛a0⎞⎜⎟⎜222⎟⎜⎟⎜⎟1a=⎜357⎟⎜1⎟⎜⎟2⎜⎟⎜⎟⎝a⎠⎜⎟22221⎜⎟⎜⎟⎜⎟⎝579⎠⎝⎠3解得⎧a=0.11718750⎪⎨a=1.6406251⎪⎩a=−0.8203125224故fx()关于Φ=span{1,xx,的最佳平方逼近多项式为}
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn*24Sx()=a+ax+ax01224=0.11718751.640625+x−0.8203125x17。求函数fx()在指定区间上对于Φ=span{1,x}的最佳逼近多项式:1x(1)()fx=,[1,3];(2)()fx=e,[0,1];x(3)()fx=cosπx,[0,1];(4)()fx=ln,[1,2];x解:1(1)∵fx()=,[1,3];x3若(,)fg=∫fxgxdx()()1且ϕ=1,ϕ=x,,则有012226ϕ=2,ϕ=,02123(,)ϕϕ=4,01(,fϕ0)=ln3,(,)课后答案网fϕ1=2,则法方程组为⎛24⎞⎜⎟⎛a0⎞⎛ln3⎞26⎜⎟=www.hackshp.cn⎜⎟⎜⎜4⎟⎟⎝a1⎠⎝2⎠⎝3⎠从而解得⎧a=1.14100⎨⎩a=−0.29581故fx()关于Φ=span{1,x}的最佳平方逼近多项式为*Sx()=a+ax01=1.14100.2958−xx(2)∵fx()=e,[0,1]1若(,)fg=∫fxgxdx()()0且ϕ=1,ϕ=x,,则有01
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn221ϕ=1,ϕ=,021231(ϕϕ,)=,012(,fϕ)=−e1,(,)1,fϕ=01则法方程组为⎛1⎞1⎜2⎟⎛a⎞⎛e−1⎞0⎜⎟⎜⎟⎜=⎟11a1⎜⎟⎝1⎠⎝⎠⎜⎟⎝23⎠从而解得⎧a=0.18780⎨⎩a=1.62441故fx()关于Φ=span{1,x}的最佳平方逼近多项式为*Sx()=a+ax01=0.18781.6244+x(3)∵fx()cos=课后答案网πxx,∈[0,1]1若(,)fg=∫fxgxdx()()0www.hackshp.cn且ϕ=1,ϕ=x,,则有01221ϕ=1,ϕ=,021231(,)ϕϕ=,0122(,fϕ)=0,(,)fϕ=−,012π则法方程组为⎛1⎞⎜1⎟⎛0⎞2⎛a0⎞=⎜⎟⎜⎟⎜⎟2⎜11⎟⎝a1⎠⎜⎜−2⎟⎟⎜⎟⎝π⎠⎝23⎠从而解得⎧a=1.21590⎨⎩a=−0.243171
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn故fx()关于Φ=span{1,x}的最佳平方逼近多项式为*Sx()=a+ax01=1.21590.24317−x(4)∵fx()=ln,xx∈[1,2]2若(,)fg=∫fxgxdx()()1且ϕ=1,ϕ=x,则有01227ϕ=1,ϕ=,021233(,)ϕϕ=,0123(,fϕ)=2ln21,(,)−fϕ=2ln2−,014则法方程组为⎛3⎞课后答案网1⎛2ln21−⎞⎜⎟⎛a⎞⎜2⎟⎜0⎟=⎜⎟337a⎜2ln2−⎟⎜⎟⎝1⎠⎜⎟⎝4⎠⎝23⎠www.hackshp.cn从而解得⎧a=−0.63710⎨⎩a=0.68221故fx()关于Φ=span{1,x}最佳平方逼近多项式为*Sx()=a+ax01=−0.63710.6822+xπ18。fx()=sinx,在[1,1]−上按勒让德多项式展开求三次最佳平方逼近多项式。2解:π∵fx()=sinxx,∈−[1,1]2按勒让德多项式{PxPxPxPx(),(),(),()}展开0123
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn1π2π−1((),fxPx())=sinxdx=cosx=00∫−12π211π8((),())fxPx=xsinxdx=1∫2−12π1321π((),fxPx())=(x−)sinxdx=02∫−122221533π48(π−10)((),())fxPx=(x−x)sinxdx=3∫4−1222π则*a=((),fxPx())/2=000*12a=3((),())/2fxPx=112π*a=5((),fxPx())/2=0222*168(π−10)a=7((),())/2fxPx=334π从而fx()的三次最佳平方逼近多项式为*****Sx()=aPx()+aPx()+aPx()+aPx()300112233212168(π−10)533=x+(x−x)24课后答案网ππ2222420(π−10)3120(212−π)=x+44ππ3≈1.5531913x−0.5622285www.hackshp.cnx19。观测物体的直线运动,得出以下数据:时间t(s)00.91.93.03.95.0距离s(m)010305080110求运动方程。解:被观测物体的运动距离与运动时间大体为线性函数关系,从而选择线性方程s=abt+令Φ=span{1,t}则22ϕ=6,ϕ=53.63,0212(,)14.7,ϕϕ=01(,)ϕs=280,(,)1078,ϕs=01则法方程组为⎛614.7⎞⎛⎞a⎛280⎞⎜⎟⎜⎟=⎜⎟⎝14.753.63⎠⎝⎠b⎝1078⎠
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn从而解得⎧a=−7.855048⎨⎩b=22.25376故物体运动方程为S=22.25376t−7.85504820。已知实验数据如下:1925313844xi19.032.349.073.397.8yj2用最小二乘法求形如s=+abx的经验公式,并计算均方误差。解:2若s=abx+,则2Φ=span{1,x}则22ϕ=5,ϕ=7277699,0212(,)ϕϕ=5327,01课后答案网(,fϕ)=271.4,(,)fϕ=369321.5,01则法方程组为⎛55327⎞⎛⎞a⎛271.4⎞⎜⎟⎜⎟=www.hackshp.cn⎜⎟⎝53277277699⎠⎝⎠b⎝369321.5⎠从而解得⎧a=0.9726046⎨⎩b=0.05003512故y=0.97260460.0500351+x4122均方误差为δ=[(()yx−y)]=0.1226∑jjj=021。在某佛堂反应中,由实验得分解物浓度与时间关系如下:时间t0510152025303540455055浓度01.272.162.863.443.874.154.374.514.584.624.64−4y(10)×用最小二乘法求y=ft()。
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn解:观察所给数据的特点,采用方程−by=aet,(,ab>0)两边同时取对数,则blny=lna−t⎧1⎫1取Φ=span⎨1,−⎬,S=ln,yx=−⎩t⎭t**则S=a+bx22ϕ=11,ϕ=0.062321,0212(,)ϕϕ=−0.603975,01(,)ϕf=−87.674095,(,)ϕf=5.032489,01则法方程组为*⎛11−0.603975⎞⎛a⎞⎛−87.674095⎞⎜⎟⎜⎟=⎜⎟−0.6039750.062321⎜*⎟5.032489⎝⎠⎝b⎠⎝⎠从而解得*课后答案网⎧⎪a=−7.5587812⎨*⎪⎩b=7.4961692因此a*www.hackshp.cna=e=5.2151048*b=b=7.49616927.4961692−∴=y5.2151048et22。给出一张记录{}f=(4,3,2,1,0,1,2,3),用FFT算法求{}c的离散谱。kk解:{}f=(4,3,2,1,0,1,2,3),k则k=0,1,⋯,7,N=804ω=ω=1,π−i154ω=ω=e,π−i262ω=ω=e=−i,3π−i374ω=ω=e,
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnk01234567x43210123k3A4442ω404−2ω1A84048220−222C16422+0422−0422−0422+j23x+6x23,用辗转相除法将R()x=化为连分式。222x+6x+6解23x+6xR()x=222x+6x+612x+18=−32x+6x+612=−3课后答案网394x+−23x+www.hackshp.cn2120.75=−3−x+4.5x+1.524。求fx()=sinx在x=0处的(3,3)阶帕德逼近R()x。33解:由fx()sin=x在x=0处的泰勒展开为357xxxsinx=−x+−+⋯3!5!7!得C=0,0C=1,1C=0,211C=−=−,33!6C=0,4
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn11C==,55!120C=0,6从而−Cb−Cb−Cb=C1322314−Cb−Cb−Cb=C2332415−Cb−Cb−Cb=C3342516即⎛1⎞10−⎜6⎟⎛0⎞⎜⎟⎛b3⎞⎜⎟⎜1⎟⎜⎟1−0−0b=⎜⎟⎜6⎟⎜2⎟⎜120⎟⎜⎟⎜⎟⎝b⎠⎜⎟1110⎜−0⎟⎝⎠⎜⎟⎝6120课后答案网⎠从而解得⎧b3=0⎪⎪1⎨b=2www.hackshp.cn⎪20⎪b=0⎩1k−1又∵a=Cb+Ck(=0,1,2,3)k∑jkj−kj=0则a=C=000a=Cb+C=01011a=Cb+Cb=0202117a=Cb+Cb+Cb+C=−3031221360故
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn23a+axax++ax0123R()x=33231+bxbx++bx12373x−x60=121+x20360x−7x=3603+xx25。求fx()=e在x=0处的(2,1)阶帕德逼近R()x。21解:x由fx()=e在x=0处的泰勒展开为23xxxe=++1x++⋯2!3!得C=1,0C=1,111C==,22!2课后答案网11C==,33!6从而www.hackshp.cn−Cb=C213即11−b=126解得1b=−13k−1又∵a=Cb+Ck(=0,1,2)k∑jkj−kj=0则a=C=1002a=Cb+C=101131a=Cb+C=21126
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn故2a+axax+012R()x=211+bx12121+x+x课后答案网36=11−x3264+x+x=www.hackshp.cn62−x
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn第四章数值积分与数值微分1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:h(1)fxdx()≈Af(−h)+Af(0)+Afh();∫−101−h2h(2)fxdx()≈Af(−h)+Af(0)+Afh();∫−2h−1011(3)fxdx()≈[(1)2()3()]/3;f−+fx+fx∫−112h2(4)∫fxdx()≈hf[(0)+fh()]/2+ahf[(0)′−fh′()];0解:求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。h(1)若(1)fxdx()≈Af(−h)+Af(0)+Afh()∫−101−h令fx()1=,则2h=A+A+A−101令fx()=x,则0=−Ah+Ah−11课后答案网2令fx()=x,则2322h=hA+hA−11www.hackshp.cn3从而解得⎧4A=h⎪03⎪⎪1⎨A=h13⎪⎪1⎪A=h−1⎩33令fx()=x,则hh3∫fxdx()=∫xdx=0−h−hAf(−h)+Af(0)+Afh()=0−101h故fxdx()=Af(−h)+Af(0)+Afh()成立。∫−101−h4令fx()=x,则
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnhh245∫−hfxdx()=∫−hxdx=h525Af(−h)+Af(0)+Afh()=h−1013故此时,hfxdx()≠Af(−h)+Af(0)+Afh()∫−101−hh故fxdx()≈Af(−h)+Af(0)+Afh()∫−101−h具有3次代数精度。2h(2)若fxdx()≈Af(−h)+Af(0)+Afh()∫−101−2h令fx()1=,则4h=A+A+A−101令fx()=x,则0=−Ah+Ah−11课后答案网2令fx()=x,则16322h=hA+hA−113www.hackshp.cn从而解得⎧4A=−h⎪03⎪⎪8⎨A=h13⎪⎪8⎪A=h−1⎩33令fx()=x,则2h2h3∫fxdx()=∫xdx=0−2h−2hAf(−h)+Af(0)+Afh()=0−1012h故fxdx()=Af(−h)+Af(0)+Afh()成立。∫−101−2h4令fx()=x,则
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn2h2h6445∫fxdx()=∫xdx=h−2h−2h5165Af(−h)+Af(0)+Afh()=h−1013故此时,2hfxdx()≠Af(−h)+Af(0)+Afh()∫−101−2h因此,2hfxdx()≈Af(−h)+Af(0)+Afh()∫−101−2h具有3次代数精度。1(3)若fxdx()≈[(1)2()3()]/3f−+fx+fx∫12−1令fx()1=,则1fxdx()=2[(1)2()3()]/3=f−+fx+fx∫12−1令fx()=x,则0=−+12x+3x122课后答案网令fx()=x,则212=+x2+3x212从而解得www.hackshp.cn⎧x=−0.2899⎧x=0.689911⎨或⎨⎩x=0.5266⎩x=0.1266223令fx()=x,则113∫fxdx()=∫xdx=0−1−1[(1)2()3()]/3f−+fx+fx≠0121故fxdx()=[(1)2()3()]/3f−+fx+fx不成立。∫12−1因此,原求积公式具有2次代数精度。h2(4)若∫fxdx()≈hf[(0)+fh()]/2+ahf[(0)′−fh′()]0令fx()1=,则h∫fxdx()=h,0
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn2hf[(0)+fh()]/2+ahf[(0)′−fh′()]=h令fx()=x,则hh12∫fxdx()=∫xdx=h002212hf[(0)+fh()]/2+ahf[(0)′−fh′()]=h22令fx()=x,则hh123∫fxdx()=∫xdx=h0032132hf[(0)+fh()]/2+ahf[(0)′−fh′()]=h−2ah2故有13132h=h−2ah321a=12课后答案网3令fx()=x,则hh134∫fxdx()=∫xdxwww.hackshp.cn=h00412141414hf[(0)+fh()]/2+hf[(0)′−fh′()]=h−h=h122444令fx()=x,则hh145∫0fxdx()=∫0xdx=h512151515hf[(0)+fh()]/2+hf[(0)′−fh′()]=h−h=h12236故此时,h12∫fxdx()≠hf[(0)+fh()]/2+hf[(0)′−fh′()],012h12因此,∫fxdx()≈hf[(0)+fh()]/2+hf[(0)′−fh′()]012具有3次代数精度。2.分别用梯形公式和辛普森公式计算下列积分:
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn1x(1)dxn,=8;∫04+x21−x21(1−e)(2)∫dxn,=10;0x9(3)∫xdxn,=4;1π62(4)∫4sin−ϕϕd,n=6;0解:1x(1)n=8,a=0,b=1,h=,()fx=284+x复化梯形公式为7hT=[()2fa+fx()+fb()]=0.111408∑k2k=1复化辛普森公式为77hS=[()4fa+fx()2+fx()+fb()]=0.111578∑1∑k6k+k=02k=111(1−e−x)2(2)n=10,a=0,课后答案网b=1,h=,()fx=10x复化梯形公式为9hT10=[()2fa+www.hackshp.cn∑fx()k+fb()]1.39148=2k=1复化辛普森公式为99hS=[()4fa+fx()2+fx()+fb()]1.45471=10∑1∑k6k=0k+2k=1(3)n=4,a=1,b=9,h=2,()fx=x,复化梯形公式为3hT4=[()2fa+∑fx()k+fb()]17.22774=2k=1复化辛普森公式为33hS4=[()4fa+∑fx(1)2+∑fx()k+fb()]17.32222=6k+k=02k=1ππ2(4)n=6,a=0,b=,h=,()fx=4sin−ϕ636复化梯形公式为
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn5hT6=[()2fa+∑fx()k+fb()]1.03562=2k=1复化辛普森公式为55hS=[()4fa+fx()2+fx()+fb()]1.03577=6∑1∑k6k+k=02k=13。直接验证柯特斯教材公式(2。4)具有5交代数精度。证明:柯特斯公式为bba−fxdx()=[7()32()12()32()7()]fx+fx+fx+fx+fx∫01234a90令fx()1=,则bba−∫fxdx()=a90ba−[7()32()12()32()7()]fx+fx+fx+fx+fx=−ba0123490令fx()=x,则课后答案网bb122∫fxdx()=∫xdx=(b−a)aa2ba−122[7()32()12()32()7()]fx+fx+fx+fx+fx=(b−a)0www.hackshp.cn12349022令fx()=x,则bb1233∫afxdx()=∫axdx=(b−a)3ba−133[7()32()12()32()7()]fx+fx+fx+fx+fx=(b−a)012349033令fx()=x,则bb1344∫fxdx()=∫xdx=(b−a)aa4ba−144[7()32()12()32()7()]fx+fx+fx+fx+fx=(b−a)012349044令fx()=x,则
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnbb1455∫afxdx()=∫axdx=(b−a)5ba−155[7()32()12()32()7()]fx+fx+fx+fx+fx=(b−a)012349055令fx()=x,则bb1566∫fxdx()=∫xdx=(b−a)aa6ba−166[7()32()12()32()7()]fx+fx+fx+fx+fx=(b−a)012349066令fx()=x,则hba−fxdx()≠[7()32()12()32()7()]fx+fx+fx+fx+fx∫01234090因此,该柯特斯公式具有5次代数精度。1−x4。用辛普森公式求积分∫edx并估计误差。0解:辛普森公式为ba−课后答案网ab+S=[()4(fa+f)+fb()]62此时,−xa=0,b=1,()fxwww.hackshp.cn=e,从而有11−2−1S=(14+e+e)=0.632336误差为baba−−4(4)Rf()=−()f()η1802110≤××e=0.00035,η∈(0,1)418025。推导下列三种矩形求积公式:bf′()η2∫fxdx()=(bafa−)()+(ba−);a2bf′()η2∫fxdx()=(bafb−)()−(ba−);a2bab+f′′()η3∫fxdx()=(baf−)()+(ba−);a224
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn证明:(1)∵fx()=fa()+f′()(ηxa−),η∈(,)ab两边同时在[,]ab上积分,得bb∫fxdx()=(bafa−)()+f′()η∫(xadx−)aa即bf′()η2∫fxdx()=(bafa−)()+(ba−)a2(2)∵fx()=fb()−f′()(ηbx−),η∈(,)ab两边同时在[,]ab上积分,得bb∫fxdx()=(bafa−)()−f′()η∫(bxdx−)aa即bf′()η2∫fxdx()=(bafb−)()−(ba−)a2ab+ab+ab+f′′()ηab+2(3)∵fx()=f()+f′()(x−)+(x−),η∈(,)ab2课后答案网2222两连边同时在[,]ab上积分,得bab+ab+bab+f′′()ηbab+2∫fxdx()=(baf−)()+f′()∫(x−)dx+∫(x−)dxa2www.hackshp.cn2a22a2即bab+f′′()η3∫fxdx()=(baf−)()+(ba−);a2241x6。若用复化梯形公式计算积分I=∫edx,问区间[0,1]应人多少等分才能使截断误差不超01−5过×10?若改用复化辛普森公式,要达到同样精度区间[0,1]应分多少等分?2解:采用复化梯形公式时,余项为ba−2Rf()=−hf′′(),ηη∈(,)abn121x又∵I=∫edx0xx故fx()=ef,′′()x=ea,=0,b=1.12e2∴Rf()=hf′′()η≤hn1212
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn1−5若Rf()≤×10,则n226−5h≤×10e当对区间[0,1]进行等分时,1h=,n故有e−5n≥×10=212.856因此,将区间213等分时可以满足误差要求采用复化辛普森公式时,余项为bah−4(4)Rf()=−()f(),ηη∈(,)abn1802x又∵fx()=e,(4)x∴f()x=e,14(4)e4∴Rf()=−h|f()|η≤hn28802880若Rfn()≤1×10−5,则课后答案网241440−5h≤×10ewww.hackshp.cn当对区间[0,1]进行等分时1n=h故有1144054n≥(×10)=3.71e因此,将区间8等分时可以满足误差要求。b7。如果f′′()x>0,证明用梯形公式计算积分I=∫fxdx()所得结果比准确值大,并说Ia明其几何意义。解:采用梯形公式计算积分时,余项为f′′()η3R=−(ba−),η∈[,]abT12又∵fx′′()0>且b>a∴R<0T
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn又∵R=−1TT∴0为下凸函数,梯形面积大于曲边梯形面积。−58。用龙贝格求积方法计算下列积分,使误差不超过10.21−x(1)∫edxπ02π(2)∫xsinxdx032(3)∫x1+xdx.0解:21−x(1)I=∫edxπ0k()k()k()k()kTTTT012300.771743310.7280699课后答案网0.713512120.71698280.71328700.713272030.71420020.71327260.71327170.7132717因此I=0.7137272π(2)I=∫xsinxdxwww.hackshp.cn0k()k()kTT010−63.451313×101−7−218.628283×10-4.446923×10因此I≈032(3)I=∫x1+xdx0k()k()k()k()k()k()kTTTTTT012345014.2302495111.171369910.1517434210.443796910.201272510.2045744310.266367210.207224010.207620710.2076691410.222270210.207571210.207594310.207593910.2075936510.211260710.207590910.207592210.207592210.207592210.2075922
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn因此I≈10.20759229。用n=2,3的高斯-勒让德公式计算积分3x∫esinxdx.1解:3xI=∫esinxdx.1∵x∈[1,3],令t=−x2,则t∈−[1,1]用n=2的高斯—勒让德公式计算积分I≈0.5555556[(0.7745967)×f−+f(0.7745967)]0.8888889+×f(0)≈10.9484用n=3的高斯—勒让德公式计算积分I≈0.3478548[(0.8611363)×f−+f(0.8611363)]+0.6521452[(0.3399810)×f−+f(0.3399810)]≈10.9501410地球卫星轨道是一个椭圆,椭圆周长的计算公式是πc22S=a∫21()sin−θθ课后答案网d,0a这是是椭圆的半径轴,ac是地球中心与轨道中心(椭圆中心)的距离,记h为近地点距离,H为远地点距离,R=6371(km)为地球半径,则www.hackshp.cna=(2R+H+h)/2,c=(H−h)/2.我国第一颗地球卫星近地点距离h=439(km),远地点距离H=2384(km)。试求卫星轨道的周长。解:∵R=6371,h=439,H=2384从而有。a=(2R+H+h)/2=7782.5c=(H−h)/2=972.5π2c22S=4a∫1()sin−θθd0ak()k()k()kTTT01201.56464011.5646461.56464821.5646461.5646461.564646
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnI≈1.564646S≈48708(km)即人造卫星轨道的周长为48708km11。证明等式35πππnsin=π−+−⋯24n3!n5!nπ试依据nsin()(n=3,6,12)的值,用外推算法求π的近似值。n解π若fn()=nsin,n1315又∵sinx=−xx+x−⋯3!5!∴此函数的泰勒展式为πfn()=nsinnπ1π31π5=n[−()+()−⋯]n3!n5!n35ππ=π−+−⋯3!n25!n4课后答案网()kT≈πnπ当n=3时,nsin=2.598076www.hackshp.cnnπ当n=6时,nsin=3nπ当n=12时,nsin=3.105829n由外推法可得n()n()n()nTTT01232.59807663.0000003.13397593.1058293.1411053.141580故π≈3.141583dy12。用下列方法计算积分∫,并比较结果。1y(1)龙贝格方法;(2)三点及五点高斯公式;
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn(3)将积分区间分为四等分,用复化两点高斯公式。解3dyI=∫1y(1)采用龙贝格方法可得k()k()k()k()k()kTTTTT0123401.33333311.1666671.09925921.1166671.1000001.09925931.1032111.0987261.0986411.09861341.0997681.0986201.0986131.0986131.098613故有I≈1.098613(2)采用高斯公式时3dyI=∫1y此时y∈[1,3],令x=y−z,则x∈−[1,1],课后答案网11I=∫dx,−1x+2www.hackshp.cn1fx()=,x+2利用三点高斯公式,则I=0.5555556[(0.7745967)×f−+f(0.7745967)]0.8888889+×f(0)≈1.098039利用五点高斯公式,则I≈0.2369239[(0.9061798)×f−+f(0.9061798)]+0.4786287[(0.5384693)×f−+f(0.5384693)]0.5688889+×f(0)≈1.098609(3)采用复化两点高斯公式将区间[1,3]四等分,得I=I+I+I+I12341.5dy2dy2.5dy3dy=∫1+∫1.5+∫2+∫2.5yyyy
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnx+5作变换y=,则411I=dx,1∫−1x+51fx()=,x+5I≈f(0.5773503)−+f(0.5773503)≈0.40540541x+7作变换y=,则411I=dx,2∫−1x+71fx()=,x+7I≈f(0.5773503)−+f(0.5773503)≈0.28767122x+9作变换y=,则411I=dx,3∫−1x+91fx()=,x+9课后答案网I≈f(0.5773503)−+f(0.5773503)≈0.22314053x+11作变换y=,则4www.hackshp.cn11I=dx,4∫−1x+111fx()=,x+11I≈f(0.5773503)−+f(0.5773503)≈0.18232044因此,有I≈1.098538113.用三点公式和积分公式求fx()=在x=1.0,1.1,和1.2处的导数值,并估计误差。2(1+x)fx()的值由下表给出:x1.01.11.2F(x)0.25000.22680.2066解:1fx()=2(1+x)
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn由带余项的三点求导公式可知21hfx′()=[3()4()−fx+fx−fx()]+f′′′()ξ00122h321hfx′()=[−fx()+fx()]−f′′′()ξ1022h621hfx′()=[()4()3()]fx−fx+fx+f′′′()ξ20122h3又∵fx()=0.2500,()fx=0.2268,()fx=0.2066,0121∴fx′()≈[3()4()−fx+fx−fx()]=0.24700122h1fx′()≈[−fx()+fx()]=−0.2171022h1fx′()=[()4()3()]fx−fx+fx=−0.18720122h1又∵fx()=2(1+x)−24∴f′′′()x=5(1+课后答案网x)又∵x∈[1.0,1.2]∴f′′′()ξ≤0.75www.hackshp.cn故误差分别为2h−3Rx()=f′′′()ξ≤2.510×032h−3Rx()=f′′′()ξ≤1.2510×162h−3Rx()=f′′′()ξ≤2.510×23利用数值积分求导,设ϕ()x=fx′()xk+1fx()=fx()+ϕ()xdxk+1k∫xk由梯形求积公式得xk+1hϕ()xdx=[()ϕx+ϕ(x)]∫kk+1xk2
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn从而有hfx()=fx()+[()ϕx+ϕ(x)]k+1kkk+12故2ϕ()x+ϕ()x=[()fx−fx()]0110h2ϕ()x+ϕ()x=[()fx−fx()]1221hxk+1又∵fx()=fx()+ϕ()xdxk+1k−1∫xk−1xk+1且ϕ()xdx=h[(ϕx)+ϕ(x)]∫k−1k+1xk−1从而有课后答案网fx()=fx()+h[(ϕx)+ϕ(x)]k+1k−1k−1k+11故ϕ()x+ϕ()x=[()fx−fx()]0220www.hackshp.cnh即⎧ϕ()x+ϕ()x=−0.46401⎪⎨ϕ()x+ϕ()x=−0.40412⎪⎩ϕ()x+ϕ()x=−0.43402解方程组可得⎧ϕ()x=−0.2470⎪⎨ϕ()x=−0.2171⎪⎩ϕ()x=−0.1872
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn第5章数值分析课后习题全解第5章:解线性方程组的直接方法1.证明:由消元公式及A的对称性得(2)aaj12i1a=a−aa=−a=a,,ij=2,3,..........,nijija111jj1a111iji故A2对称2.证明:(1)因A对称正定,故aii=(Aei,ei)0,>i=1,2,......,nT其中e=(0,…,0,1,0,...,0)为第i个单位向量.i(2)由A的对称性及消元公式得⎡u11u12⋯u1n⎤d1⎡d1⎤⎢⎥⎢⎥⎢u22⋯u2n⎥d2⎢d2⎥(2)ai1a=a-a=ijij1j⎢⋱⋮⎥⋮⎢⋮⎥a11⎢⎥⎢⎥⎣课后答案网unn⎦dn⎣dn⎦aj1(2)aji-a1i=aji,I,j=2,…,nawww.hackshp.cn11故A也对称.2T⎡aa⎤111T又=LAAL⎢⎥110A⎣2⎦⎡1⎤⎢⎥a⎢−211⎥⎢a⎥11其中L1=⎢⎥..⎢⎥⎢a⎥n1⎢−...1⎥⎣a11⎦显然L非其异,从而对任意的x≠0,有1TTTTLX≠0,(x,LALX)=(Lx,ALX)>0(由A的正定性)11111T故LAL正定.11
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnT⎡a110⎤又LAL=,而a>0,故A正定.11⎢⎥1120A⎣2⎦3.证明由矩阵乘法简单运算即得证.4.解设有分解⎡42⎤⎡α1⎤⎡1β1⎤⎢⎥⎢⎥⎢⎥⎢3−21⎥⎢3α21⎥⎢1β2⎥=⎢253⎥⎢2α33⎥⎢1β3⎥⎢⎥⎢⎥⎢⎥⎣−16⎦⎣−1α4⎦⎣1⎦由公式⎧b=ac=αβ11,111⎪⎨b=αβ+α,i=2,3,⋯,niii−1i⎪c=αβ,i=2,3,⋯.n−1⎩iii其中b,a,c分别是系数矩阵的主对角线元素及下边和上边的次对角线元iii素.故有⎧1α=4,β=⎪11课后答案网2⎪⎪72α=−,β=−22⎪27⎨397⎪α=,β=www.hackshp.cn33⎪713⎪85⎪α=4⎩13从而有⎡4⎤⎡1⎤1⎢7⎥⎢2⎥⎡42⎤⎢3−⎥⎢⎥⎢⎥⎢2⎥⎢2⎥3−211−⎢⎥=⎢39⎥⎢7⎥⎢253⎥⎢2⎥⎢⎥⎢⎥⎢7⎥⎢17⎥⎣−16⎦⎢85⎥⎢13⎥⎢−1⎥⎢⎥⎣13⎦⎣1⎦6323−y5故==,=1=yy124277−2102−y205+y23y==,y==134391385713
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn2075231故x=1,x=−x=1,x=+x=1,x=−x=14342312131377225.解(1)设U为上三角阵⎡u11u12⋯u1n⎤⎡x1⎤⎡d1⎤⎢⎥⎢⎥⎢⎥u⋯uxd⎢222n⎥⎢2⎥=⎢2⎥⎢⋱⋮⎥⎢⋮⎥⎢⋮⎥⎢⎥⎢⎥⎢⎥uxd⎣nn⎦⎣n⎦⎣n⎦dn因ux=d,故x=.nnnnnunn⎡1000001⎤⎢⎥010−3n因⎢⋮⎥uxiii+∑uxijj=di,故⎢0−217⎥ji=+1⎢⎥⎢⎣1−101⎦nd−uxi∑ijiji=+1x=,i=n-1,n-2,⋯,1iuii当U为下三角阵时课后答案网⎡u11⎤⎡⎤x1⎡d1⎤⎢⎥⎢⎥⎢⎥uuxd⎢2122⎥⎢⎥2=⎢2⎥⎢⋮⋮⋱⎥⎢⎥⋮⎢⋮⎥⎢⎥⎢⎥⎢⎥www.hackshp.cn⎣un1un2⋯unn⎦⎣⎦xn⎣dn⎦i−1d−uxi∑ijjd1j=1得,x=,x=,i=2,3,…,n.11uu11ii(2)除法次数为n,乘法次数为1+2+…+(n-1)=n(n-1)/2故总的乘法次数为n+n(n-1)/2=n(n+1)/2.−1(3)设U为上三角阵,U=S,侧S也是上三角阵.由⎡u11u12⋯u1n⎤⎡s11s12⋯s1n⎤⎡1⎤⎢⎥⎢⎥⎢⎥u⋯ss⋯s1⎢222n⎥⎢222n⎥=⎢⎥⎢⋱⋮⎥⎢⋱⋮⎥⎢⋱⎥⎢⎥⎢⎥⎢⎥⎣unn⎦⎣snn⎦⎣1⎦1得s=,i=1,2,…,niiuii
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnj∑usikkjki=+1s=-,j=i+1,i+2,…,n;i=n-1,n-2,…,1ijuii当U为下三角阵时,由⎡d11⎤⎡s11⎤⎡1⎤⎢⎥⎢⎥⎢⎥ddss1⎢2122⎥⎢2122⎥=⎢⎥⎢⋮⋮⋱⎥⎢⋮⋮⋱⎥⎢⋱⎥⎢⎥⎢⎥⎢⎥⎣dn1dn2⋯dnn⎦⎣sn1sn2⋯snn⎦⎣1⎦1得s=,i=1,2,…,niiuiii−1∑usikkjk=1s=−,i=2,3,…,n;j=1,2,…,i-1ijuiiT6.证明(1)因A是对称正定阵,故存在唯一的分解A=LL,其中L是具有正对角元素的下三角阵.从而−1T−1T−1−1−1T−1A=(LL)=(L)L=(L)LT−1T−1T−1−1T−1−1(A课后答案网)=⎡⎣(L)L⎤⎦=(L)L=A−1故A是对称矩阵.−1−1又L非奇异www.hackshp.cn,故对任意的x≠0,有Lx≠0,故T−1T−1T−1−1T−1xAX=xL()Lx=(Lx)(Lx)>0−1−1故A是对称正定矩阵,即A也对称正定.(2)由A对称正盯,故A的所有顺序主子式均不为零,从而A有唯一的Doolittle分解A=LU.又⎡u12u1n⎤1⋯⎢⎥⎡u11⎤⎢u11u11⎥⎢⎥u⎢u⎥U=⎢22⎥1⋯2n=DU⎢⎥0⎢⋱⎥⎢u22⎥⎢⎥⎣unn⎦⎢⋱⋮⎥⎢⎥⎣1⎦其中D为对三角阵,U为单位上三角阵,于是0A=UL=DLU0
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnTTT又A=A=UDLO由分解的唯一性即得TU=LOT从而有A=DLL又由A的对称正定性知Did=D>0,d=>0(i=2,3,…,n)11iDi−1⎡d1⎤⎢⎥d故D=⎢2⎥=⎢⋱⎥⎢⎥d⎣n⎦⎡d⎤⎡d⎤11⎢⎥⎢⎥11⎢d2⎥⎢d2⎥=D2D2⎢⎥⎢⎥⋱⋱⎢⎥⎢⎥⎢课后答案网d⎥⎢d⎥⎣n⎦⎣n⎦1111TD22T22TT故A=LDL=Lwww.hackshp.cnDL=(LD)(LD)=LL1其中L=LD2为三角元为正的下三角矩阵.⎡21−3−11000⎤⎢⎥310701007.解[A|I]=⎢⋮⎥->⎢−124−20010⎥⎢⎥⎢⎣10−150001⎦⎡10−150001⎤⎢⎥013−8010−3⎢⋮⎥->⎢02330011⎥⎢⎥⎢⎣01−1−11100−2⎦⎡10−150001⎤⎢⎥013−8010−3⎢⋮⎥->⎢00−3190−217⎥⎢⎥⎢⎣00−4−31−101⎦
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn⎡4214⎤100−0−−⎢⎥3333⎢⋮⎥⎢010110−114⎥⋮⎢19217⎥->⎢001−⋮0−−⎥⎢3333⎥⋮⎢855425⎥⎢000−1−−⎥⎣3333⎦4102316⎤−−⎥85178517⎥⎡1000⋮3364113⎥⎢−0100⋮85178517⎥⎢⎥->⎢0010⋮191538−−−⎥⎢⎣0001⋮85178517⎥⎥3145−−⎥85178517⎦⎡4102316⎤−−⎢⎥85178517⎢⎥⎢3364113⎥−−1⎢85178517⎥A=⎢课后答案网⎥=19538⎢−−−⎥⎢85178517⎥⎢⎥3145⎢−−⎥⎣85www.hackshp.cn178517⎦⎡0.04705890.5882353−0.2705882−0.9411765⎤⎢⎥0.3882353−0.35294120.48235290.7647059⎢⎥⎢−0.22352940.2941176−0.0352941−0.4705882⎥⎢⎥⎣−0.0352941−0.05882350.04705890.2941176⎦8.解设有分解⎡2−1⎤⎢⎥−12−1⎢⎥⎢−12−1⎥=⎢⎥−12−1⎢⎥⎢⎣−12⎥⎦⎡α1⎤⎡β1⎤⎢⎥⎢⎥−1α1β⎢2⎥⎢2⎥⎢−1α⎥⎢1β⎥33⎢⎥⎢⎥−1α1β⎢4⎥⎢4⎥⎢−1α⎥⎢1β⎥⎣5⎦⎣5⎦
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn由公式⎧b=αc=αβ11,111⎪⎨b=αβ+α,(i=2,3,4,5)iii−1i⎪⎩c=αβ,(i=2,3,4)iii其中b,a,c分别是系数矩阵的主角线元素及其下边和上边的次对角线元iii素,则有3456α=2,α=,α=,α=,α=1234523451234β=−,β=−,β=−,β=−12342345由⎡2⎤⎢⎥3⎢−1⎥⎡y1⎤⎡⎤1⎢2⎥⎢⎥⎢⎥⎢4⎥⎢y2⎥⎢⎥0⎢−1⎥3⎢y⎥=⎢⎥0⎢⎥⎢3⎥⎢⎥⎢5⎥y0⎢4⎥⎢⎥⎢课后答案网−1⎥4⎢y⎥⎢⎥0⎢⎥⎣5⎦⎣⎦⎢6⎥⎢⎣−15⎥⎦11111得y1=,y2=www.hackshp.cn,y3=,y4=,y5=23456由⎡⎤1⎢⎥⎡1⎤21−⎢⎥⎢2⎥⎡⎤x⎢⎥1⎢⎥1⎢2⎥⎢⎥x⎢⎥31−⎢⎥2⎢⎥⎢3⎥1⎢⎥⎢⎥x3=⎢⎥3⎢⎥⎢⎥4⎢1−⎥⎢⎥x⎢⎥⎢4⎥41⎢⎥⎢⎥⎣⎦x⎢⎥⎢⎥455⎢1−⎥⎣5⎦⎢⎥1⎢⎥⎣⎦611125得x=,x=,x=,x=,x=54321632369.解设
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn⎡2−11⎤⎡1⎤⎡d1⎤⎡1l21l31⎤⎢⎥⎢⎥⎢⎥⎢⎥−123=l1d1l⎢⎥⎢21⎥⎢2⎥⎢32⎥⎢⎣131⎥⎦⎢⎣ll1⎥⎢⎦⎣d⎥⎢⎦⎣1⎥⎦31323由矩阵乘法得11d=2,l=−,l=121312257d=−,l=−2322527d=35由⎡⎤⎢1⎥⎢⎥⎡y1⎤⎡⎤4⎢1⎥⎢⎥⎢⎥−1y=5⎢2⎥⎢2⎥⎢⎥⎢⎥⎢y⎥⎢⎥⎣⎦617⎣3⎦⎢−1⎥⎣25⎦69得y=4,y=7,y=123课后答案网5由⎡⎤⎡11⎤1−⎡⎤⎢2⎥⎢22⎥⎢⎥⎡x⎤⎢4⎥⎢⎥15⎢7⎥⎢⎥⎢⎥⎢−www.hackshp.cn⎥1−x=7⎢⎥⎢2⎥⎢⎥⎢2⎥5⎢⎥⎢⎥⎢⎣x3⎥⎦⎢69⎥27⎢1⎥⎢⎥⎢⎥⎣5⎦⎣5⎦⎢⎣⎥⎦⎡11⎤⎡⎤⎡⎤1−⎡⎤⎢22⎥⎢2⎥⎢2⎥⎢⎥⎡x⎤⎢4⎥1⎢⎥⎢⎥⎢7⎥⎢⎥5⎢⎥14得⎢1−⎥⎢x⎥=⎢−⎥⎢7⎥=−⎢⎥25⎢2⎥⎢5⎥⎢⎥⎢⎣x3⎥⎦⎢⎥⎢69⎥⎢⎥⎢1⎥27⎢⎥23⎢⎥⎣5⎦⎢⎥⎣⎢⎦⎥⎣5⎦⎣9⎦23710故x==2.5555556,x==0.7777778,x==1.111111132199910.解A中∆=0,故不能分解。但det(A)=-10≠0,故若将A中第一行2与第三行交换,则可以分解,且分解唯一。B中,∆=∆=0,但它仍可以分解为23
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn⎡1⎤⎡111⎤⎢⎥⎢⎥B=2100−1⎢⎥⎢⎥⎢⎣3l1⎥⎢⎦⎣00l−2⎥⎦3232其中l为一任意常数,且U奇异,故分解且分解不唯一,32对C,∆≠0,i=1,2,3,故C可分解且分解唯一。i⎡1⎤⎡126⎤⎢⎥⎢⎥C=2113⎢⎥⎢⎥⎢⎣631⎥⎢⎦⎣1⎥⎦11.解nA=maxa=1.1∞∑ij1≤≤inj=1nA1=max∑aij=0.81≤≤jni=1n122A=(a)=0.71=0.8426150课后答案网F∑ijij,=1T⎡0.60.10.60.5⎤⎡⎤⎡0.370.33⎤AA=⎢⎥⎢⎥=⎢⎥www.hackshp.cn⎣0.50.3⎦⎣0.10.3⎦⎣0.330.34⎦Tλ(AA)=0.6853407maxT故A=λ(AA)=0.82785312max12.证明(1)有定义知nx∞=maxxi≤∑xi=1≤≤ini=1n∞x≤∑maxx=∑x=nx1i∞i=1i=1∞1≤≤in故x≤x≤nx∞1∞(2)由范数定义,有2TA=λ(AA)≤2maxTTTTλ(AA)+λ(AA)+⋯+λ(AA)=trAA()=12n
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnnnn222∑ai1+∑ai2+⋯+∑ain=i=1i=1i=1nn22∑∑aij=AFj=1i=12TA=λ(AA)≥2max1TTT⎡λ(AA)+λ(AA)+⋯+λ(AA)⎤=⎣12n⎦n12AFn1故A≤A≤AF2Fn13.证明(1)因P非奇异,故对任意的x≠0,有P≠0,故X=P≥0,Xpx当且仅当x=0时,有x=P=0成立。px1(2对任意课后答案网α∈R,有αx=P=αP=αXpaxxp(3)x+y=P=P+P≤pwww.hackshp.cn(xy+)xyP+P=x+yxyppn故x是R上的一种向量范数。p14.证明(1)因A正定对称,故当x=0时,x=0,而当x≠0时,xAA1=(xAxT)2>0。(2)对任意实数c,有TAcx=()cxAcx()=cxAx=cxAAT(3)因A正定,故有分解A=LL,则111x=(xAxT)2=(xLLxTT)2=((LxT)(TLxT))2=LxTA2故对任意向量x和y,总有TTTx+y=Lx(+y)=LxLy+≤A22
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnTTLx+Ly=x+y22AA1综上所知,x=(xAxT)2是一种向量范数。A15.证明因为AxsA=maxsx≠0xs""由向量范数的等价性知,存在常数CC,>0,使对任意x,有12""CAx≤Ax≤CAx1st2s""Cx≤x≤Cx1st2s""CxAxCAx故1s≤t≤2s""CxxCx2st1s""CC12令=C,=C,则有"1"2CC21AxAxAxstsC≤≤C12xxx课后答案网stsAxAxAxCmaxs≤maxt≤Cmaxs12x≠0xx≠0xx≠0xwww.hackshp.cnsts即CA≤A≤CA1st2s−1Axy−1∞−1∞A=maxAx=ymax=∞x≠0xx≠0Ay∞∞22−1216.证明AA=CondA[()]2212maxy≠0Ay∞y∞1Ay∞故=minA−1y≠0y∞∞17.证明设λ≠0,则⎧23λλ,≥⎪⎪3A=⎨∞2⎪2,λ≤⎪⎩3
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn1⎡1−λ⎤−1又A=⎢⎥λ⎣−12λ⎦2λ+1−1A=∞λ故⎧26λ+3,λ≥⎪-1⎪3Cond(A)=AA=⎨∞∞∞12⎪2(2+),λ≤⎪⎩λ322从而当λ=时,即λ=±时,Cond(A)有最小值,且∞33minCond(A)=7∞⎡−9899⎤-1−118.解A=⎢⎥,A=199,A=199∞∞⎣9998⎦−1CondA()=AA=39601课后答案网2∞∞T⎡1980119602⎤AA=⎢⎥⎣1960219405⎦www.hackshp.cn−1故CondA()=AA=222Tλ(AA)max=39205.9745Tλ(AA)minTT−1T19.证明因A正交,故AA=AA=IA,=A,从而有TA=ρ(AA)=ρ()I=12−1TTA=A=ρ(AA)=ρ()I=122−1故CondA()=AA=1222−1−1−120.证明CondAB()=(AB)AB≤ABAB=−1−1AABB=CondACondB()()TTTTTT21.证明(1)(AA)=A(A)=AA
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cnT故AA为对称矩阵。又A非奇异,故对任意向量x≠0,有Ax≠0,从而有TTTxAAx=(Ax)(Ax)>0T即AA为对称正定矩阵。TT−1T(2)CondAA()=(AA)AA=2课后答案网22T−1TT−1TTTλ[((AA))(AA)λ[(AA)(AA)]=maxmaxT−12T2λ[((AA))]λ[(AA)]=www.hackshp.cnmaxmax2T−12Tλ(AA)λ(AA)=maxmaxT−12T2[λ(AA)][λ(AA)]=maxmax22−12AA=[CondA()]222
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn第六章课后习题解答1.解:(a)因系数矩阵按行严格对角占优,故雅可比法与高斯-塞德尔均收敛。(b)雅可比法的迭代格式为ìï(k+1)2()k1()k12ïx=-x-x-ï123ï555ïïïï(k+1)1k1()kíx=x-x+5213ïï42ïïïx(k+1)=-1x()k+3x()k+3ïïï35110210î(0T取x=(1,1,1),迭代到17次达到精度要求课后答案网(17)Tx=-(4.0000186,2.9999915,2.0000012)高斯-塞德尔法的迭代格式为www.hackshp.cnìï(k+1)2()k1()k12ïx=-x-x-ï123ï555ïïïï(k+1)1(k+1)1()kíx=x-x+5213ïï42ïïïx(k+1)=-1x(k+1)+3x(k+1)+3ïïïî35110210(0)T取x=(1,1,1),迭代到次达到精度要求8(8)Tx=-(4.0000186,2.9999915,2.0000012)
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn2:解(a)雅可比法的迭代矩阵ç0-0.4-0.4÷çç÷÷B=D-(1L+U)=ççç-.0.40-0.8÷÷÷J÷ç÷ççç-0.4-0.80÷÷÷2|lI-B|=(l-0.8)(l+0.8l-0.32)J(B)=1.0928203>1,故雅可比迭代法不收敛lJ高斯-塞德尔法迭代矩阵æç0-0.4-0.4ö÷çç÷÷B=(D-L)-1U=çç00.16-0.64÷÷Sç÷÷çç÷÷èçç00.0320.672÷÷ø(B)?||B||0.8<1lSS课后答案网¥故高斯-塞德尔迭代法收敛。(b)雅可比法的迭代矩阵www.hackshp.cnç0-22÷çç÷÷B=D-(1L+U)=çç-10-1÷÷Jç÷÷çç÷÷çç-2-20÷÷3|lI-B|=l,(B)=0〈1JlJ故雅可比迭代法收敛。高斯-塞德尔法的迭代矩阵ç0-22÷çç÷÷B=(D-L)-1U=çç02-3÷÷Sç÷÷çç÷÷çç002÷÷2|lI-B|=l(l-2),(B)=2〉1SlS故高斯-塞德尔法不收敛。
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn3:证明(k)必要条件:由limA=A,知lima=a,从而有||A-A||0(K ).kijijKkk故对任意的x,有||Ax-Ax||||A-A||||x||.0(k)kk即Ax®Ax,limAx=Ax.KKkn充分条件:对任意的xR,有AxAx(k),取=x(0,...0,1,0,...0)Kii(i=1,2,...,)n(k)()k()kTAx=(a,a,...,a)Axk( )ki1i2inii课后答案网TAx=(,aa,...,a)i1i2ini()k故a?aj(1,2,...,;ni=1,2,...)njijiwww.hackshp.cn即A?A,limAA.kkk4.解:不一定,因其谱半l()径B不一定小1于。J对习题2(),aA对称,又V=1〉V0,=0.84〉V0,=|A|0.296=〉01235.解答见例6-4
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn6.解:SOR迭代格式为ìï(k+1)()k12()k2()k1()kïx=x+w(--x-x-x)ï11123ï555ïïïï(k+1)()k1(k+1)()k1()kíx=x+w(5+x-x-x)22123ïï42ïïïx(k+1)=x()k+w(3-1x(k+1)+3x(k+1)-x)ïïïî3310511023()k课后答案网0T取初始值x=(1,1,1),计算如表.K()k()k()kxxx231www.hackshp.cn00001-2.60000003.56500001.80055002-4.02749903.14006522.02282243-4.05728142.99084812.01012194-4.00425542.99357252.00004275-3.99811932.99976121.99960136--3.99965423.00023341.99996097-4.00004243.00003142.00001228-4.00001772.99999372.0000027(8)(7)-4因||x-x||=0.000377<10,故取¥
课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn由〈,||1|1m-wAl()|1<得200,det()A=(1-a)(12)2+a>0ççça1÷÷÷故A是正定的.又雅可比法迭代矩阵ç0-a-a÷çç÷÷B=-çça0-a÷÷Jç÷÷ç÷çç-a-a0÷÷÷çlaa÷ç÷÷ç÷det(lI-B)=ççala÷÷=l3-3la2+2a3=(l-a)(2l+2)aJç÷ç÷÷ç÷ççaal÷11故l(B)|2|,=a故当-