- 2.80 MB
- 2022-04-22 11:34:57 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'课后答案网:www.hackshp.cn课后答案网您最真诚的朋友www.hackshp.cn网团队竭诚为学生服务,免费提供各门课后答案,不用积分,甚至不用注册,旨在为广大学生提供自主学习的平台!课后答案网:www.hackshp.cn视频教程网:www.efanjy.comPPT课件网:www.ppthouse.com课后答案网www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn
课后答案网:www.hackshp.cnSolutionsManualforStatisticalInference,SecondEditionGeorgeCasellaRogerL.BergerUniversityofFloridaNorthCarolinaStateUniversityDamarisSantanaUniversityofFlorida课后答案网www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn
课后答案网:www.hackshp.cn0-2SolutionsManualforStatisticalInference“WhenIhearyougiveyourreasons,”Iremarked,“thethingalwaysappearstometobesoridiculouslysimplethatIcouldeasilydoitmyself,thoughateachsuccessiveinstanceofyourreasoningIambaffleduntilyouexplainyourprocess.”Dr.WatsontoSherlockHolmesAScandalinBohemia0.1DescriptionThissolutionsmanualcontainssolutionsforalloddnumberedproblemsplusalargenumberofsolutionsforevennumberedproblems.Ofthe624exercisesinStatisticalInference,SecondEdition,thismanualgivessolutionsfor484(78%)ofthem.Thereisanobtusepatternastowhichsolutionswereincludedinthismanual.Weassembledallofthesolutionsthatwehadfromthefirstedition,andfilledinsothatallodd-numberedproblemsweredone.Inthepassagefromthefirsttothesecondedition,problemswereshuffledwithnoattentionpaidtonumbering(hencenoattentionpaidtominimizetheneweffort),butratherwetriedtoputtheproblemsinlogicalorder.Amajorchangefromthefirsteditionistheuseofthecomputer,bothsymbolicallythroughMathematicatmandnumericallyusingR.Somesolutionsaregivenascodeineitheroftheselan-guages.MathematicatmcanbepurchasedfromWolframResearch,andRisafreedownloadfromhttp://www.r-project.org/.Hereisadetailedlistingofthesolutionsincluded.ChapterNumberofExercisesNumberofSolutionsMissing1555126,30,36,422403734,38,40350424,6,10,20,30,32,34,36465528,14,22,28,36,4048,50,52,56,58,60,62569462,4,12,14,26,28allevenproblemsfrom36−68643358,16,26,28,34,36,38,42766524,14,16,28,30,32,34,36,42,54,58,60,62,648585136,40,46,48,52,56,58958412,8,10,20,22,24,26,28,30课后答案网32,38,40,42,44,50,54,56104826allevenproblemsexcept4and321141354,20,22,24,26,401231www.hackshp.cn16allevenproblems0.2AcknowledgementManypeoplecontributedtotheassemblyofthissolutionsmanual.Weagainthankallofthosewhocontributedsolutionstothefirstedition–manyproblemshavecarriedoverintothesecondedition.Moreover,throughouttheyearsanumberofpeoplehavebeeninconstanttouchwithus,contributingtoboththepresentationsandsolutions.Weapologizeinadvanceforthoseweforgettomention,andweespeciallythankJayBeder,YongSungJoo,MichaelPerlman,RobStrawderman,andTomWehrly.Thankyouallforyourhelp.And,aswesaidthefirsttimearound,althoughwehavebenefitedgreatlyfromtheassistanceand若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn
课后答案网:www.hackshp.cnACKNOWLEDGEMENT0-3commentsofothersintheassemblyofthismanual,weareresponsibleforitsultimatecorrectness.Tothisend,wehavetriedourbestbut,asawisemanoncesaid,“Youpaysyourmoneyandyoutakesyourchances.”GeorgeCasellaRogerL.BergerDamarisSantanaDecember,2001课后答案网www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn
课后答案网:www.hackshp.cnChapter1ProbabilityTheory“Ifanylittleproblemcomesyourway,Ishallbehappy,ifIcan,togiveyouahintortwoastoitssolution.”SherlockHolmesTheAdventureoftheThreeStudents1.1a.Eachsamplepointdescribestheresultofthetoss(HorT)foreachofthefourtosses.So,forexampleTHTTdenotesTon1st,Hon2nd,Ton3rdandTon4th.Thereare24=16suchsamplepoints.b.Thenumberofdamagedleavesisanonnegativeinteger.SowemightuseS={0,1,2,...}.c.Wemightobservefractionsofanhour.SowemightuseS={t:t≥0},thatis,thehalfinfiniteinterval[0,∞).d.Supposeweweightheratsinounces.TheweightmustbegreaterthanzerosowemightuseS=(0,∞).Ifweknowno10-day-oldratweighsmorethan100oz.,wecoulduseS=(0,100].e.Ifnisthenumberofitemsintheshipment,thenS={0/n,1/n,...,1}.1.2Foreachoftheseequalities,youmustshowcontainmentinbothdirections.a.x∈AB⇔x∈Aandx/∈B⇔x∈Aandx/∈A∩B⇔x∈A(A∩B).Also,x∈Aandx/∈B⇔x∈Aandx∈Bc⇔x∈A∩Bc.b.Supposex∈B.Theneitherx∈Aorx∈Ac.Ifx∈A,thenx∈B∩A,and,hencex∈(B∩A)∪(B∩Ac).ThusB⊂(B∩A)∪(B∩Ac).Nowsupposex∈(B∩A)∪(B∩Ac).Theneitherx∈(B∩A)orx∈(B∩Ac).Ifx∈(B∩A),thenx∈B.Ifx∈(B∩Ac),thenx∈B.Thus(B∩A)∪(B∩Ac)⊂B.Sincethecontainmentgoesbothways,wehaveB=(B∩A)∪(B∩Ac).(Note,amorestraightforwardargumentforthispartsimplyusestheDistributiveLawtostatethat(课后答案网B∩A)∪(B∩Ac)=B∩(A∪Ac)=B∩S=B.)c.Similartoparta).d.Frompartb).A∪B=A∪[(B∩Awww.hackshp.cn)∪(B∩Ac)]=A∪(B∩A)∪A∪(B∩Ac)=A∪[A∪(B∩Ac)]=A∪(B∩Ac).1.3a.x∈A∪B⇔x∈Aorx∈B⇔x∈B∪Ax∈A∩B⇔x∈Aandx∈B⇔x∈B∩A.b.x∈A∪(B∪C)⇔x∈Aorx∈B∪C⇔x∈A∪Borx∈C⇔x∈(A∪B)∪C.(ItcansimilarlybeshownthatA∪(B∪C)=(A∪C)∪B.)x∈A∩(B∩C)⇔x∈Aandx∈Bandx∈C⇔x∈(A∩B)∩C.c.x∈(A∪B)c⇔x/∈Aorx/∈B⇔x∈Acandx∈Bc⇔x∈Ac∩Bcx∈(A∩B)c⇔x/∈A∩B⇔x/∈Aandx/∈B⇔x∈Acorx∈Bc⇔x∈Ac∪Bc.1.4a.“AorBorboth”isA∪B.FromTheorem1.2.9bwehaveP(A∪B)=P(A)+P(B)−P(A∩B).若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn
课后答案网:www.hackshp.cn1-2SolutionsManualforStatisticalInferenceb.“AorBbutnotboth”is(A∩Bc)∪(B∩Ac).ThuswehaveP((A∩Bc)∪(B∩Ac))=P(A∩Bc)+P(B∩Ac)(disjointunion)=[P(A)−P(A∩B)]+[P(B)−P(A∩B)](Theorem1.2.9a)=P(A)+P(B)−2P(A∩B).c.“AtleastoneofAorB”isA∪B.Sowegetthesameanswerasina).d.“AtmostoneofAorB”is(A∩B)c,andP((A∩B)c)=1−P(A∩B).1.5a.A∩B∩C={aU.S.birthresultsinidenticaltwinsthatarefemale}b.P(A∩B∩C)=1×1×190321.6p0=(1−u)(1−w),p1=u(1−w)+w(1−u),p2=uw,p0=p2⇒u+w=1p1=p2⇒uw=1/3.Thesetwoequationsimplyu(1−u)=1/3,whichhasnosolutionintherealnumbers.Thus,theprobabilityassignmentisnotlegitimate.1.7a.(21−πrifi=0hAiP(scoringipoints)=πr2(6−i)2−(5−i)2A52ifi=1,...,5.b.P(scoringipoints∩boardishit)P(scoringipoints|boardishit)=P(boardishit)πr2P(boardishit)=Aπr2(6−i)2−(5−i)2P(scoringipoints∩boardishit)=i=1,...,5.A52Therefore,(6−i)2−(5−i)2P(scoringipoints|boardishit)=i=1,...,5课后答案网52whichisexactlytheprobabilitydistributionofExample1.2.7.1.8a.P(scoringexactlyipoints)=P(insidecirclei)−P(insidecirclei+1).Circleihasradius(6−i)r/5,sowww.hackshp.cnπ(6−i)2r2π((6−(i+1)))2r2(6−i)2−(5−i)2P(sscoringexactlyipoints)=−=.52πr252πr252b.Expandingthesquaresinparta)wefindP(scoringexactlyipoints)=11−2i,whichis25decreasingini.c.LetP(i)=11−2i.Sincei≤5,P(i)≥0foralli.P(S)=P(hittingthedartboard)=1by25definition.Lastly,P(i∪j)=areaofiring+areaofjring=P(i)+P(j).1.9a.Supposex∈(∪A)c,bythedefinitionofcomplementx6∈∪A,thatisx6∈Aforallαααααα∈Γ.Thereforex∈Acforallα∈Γ.Thusx∈∩Acand,bythedefinitionofintersectionαααx∈Acforallα∈Γ.Bythedefinitionofcomplementx6∈Aforallα∈Γ.Thereforeααx6∈∪A.Thusx∈(∪A)c.αααα若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn
课后答案网:www.hackshp.cnSecondEdition1-3b.Supposex∈(∩A)c,bythedefinitionofcomplementx6∈(∩A).Thereforex6∈Aforαααααsomeα∈Γ.Thereforex∈Acforsomeα∈Γ.Thusx∈∪Acand,bythedefinitionofαααunion,x∈Acforsomeα∈Γ.Thereforex6∈Aforsomeα∈Γ.Thereforex6∈∩A.Thusααααx∈(∩A)c.αα1.10ForA1,...,An!c!c[nnn[n(i)A=Ac(ii)A=Aciiiii=1i=1i=1i=1Proofof(i):Ifx∈(∪A)c,thenx/∈∪A.Thatimpliesx/∈Aforanyi,sox∈Acforeveryiiiiiandx∈∩Ai.Proofof(ii):Ifx∈(∩A)c,thenx/∈∩A.Thatimpliesx∈Acforsomei,sox∈∪Ac.iiii1.11WemustverifyeachofthethreepropertiesinDefinition1.2.1.a.(1)Theemptyset∅∈{∅,S}.Thus∅∈B.(2)∅c=S∈BandSc=∅∈B.(3)∅∪S=S∈B.b.(1)Theemptyset∅isasubsetofanyset,inparticular,∅⊂S.Thus∅∈B.(2)IfA∈B,thenA⊂S.Bythedefinitionofcomplementation,AcisalsoasubsetofS,and,hence,Ac∈B.(3)IfA,A,...∈B,then,foreachi,A⊂S.Bythedefinitionofunion,∪A⊂S.12iiHence,∪Ai∈B.c.LetB1andB2bethetwosigmaalgebras.(1)∅∈B1and∅∈B2sinceB1andB2aresigmaalgebras.Thus∅∈B1∩B2.(2)IfA∈B1∩B2,thenA∈B1andA∈B2.SinceBandBarebothsigmaalgebraAc∈BandAc∈B.ThereforeAc∈B∩B.(3)If121212A1,A2,...∈B1∩B2,thenA1,A2,...∈B1andA1,A2,...∈B2.Therefore,sinceB1andB2arebothsigmaalgebra,∪∞A∈Band∪∞A∈B.Thus∪∞A∈B∩B.i=1i1i=1i2i=1i121.12Firstwrite!![∞[n[∞PAi=PAi∪Aii=1i=1i=n+1!![n[∞=PAi+PAi(Aisaredisjoint)i=1i=n+1!Xn[∞=P(Ai)+PAi(finiteadditivity)课后答案网i=1i=n+1S∞NowdefineBk=i=kAi.NotethatBk+1⊂BkandBk→φask→∞.(Otherwisethesumoftheprobabilitieswouldbeinfinite.)Thus∞!www.hackshp.cn∞!"n#∞[[XXPAi=limPAi=limP(Ai)+P(Bn+1)=P(Ai).n→∞n→∞i=1i=1i=1i=11.13IfAandBaredisjoint,P(A∪B)=P(A)+P(B)=1+3=13,whichisimpossible.More3412generally,ifAandBaredisjoint,thenA⊂BcandP(A)≤P(Bc).ButhereP(A)>P(Bc),soAandBcannotbedisjoint.1.14IfS={s1,...,sn},thenanysubsetofScanbeconstructedbyeitherincludingorexcludings,foreachi.Thusthereare2npossiblechoices.i1.15Proofbyinduction.Theprooffork=2isgivenafterTheorem1.2.14.Assumetruefork,thatis,theentirejobcanbedoneinn1×n2×···×nkways.Fork+1,thek+1thtaskcanbedoneinnk+1ways,andforeachoneofthesewayswecancompletethejobbyperforming若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn
课后答案网:www.hackshp.cn1-4SolutionsManualforStatisticalInferencetheremainingktasks.Thusforeachofthenk+1wehaven1×n2×···×nkwaysofcom-pletingthejobbytheinductionhypothesis.Thus,thenumberofwayswecandothejobis(1×(n1×n2×···×nk))+···+(1×(n1×n2×···×nk))=n1×n2×···×nk×nk+1.|{z}nk+1terms1.16a)263.b)263+262.c)264+263+262. n1.17Thereare=n(n−1)/2piecesonwhichthetwonumbersdonotmatch.(Choose2outof2nnumberswithoutreplacement.)Therearenpiecesonwhichthetwonumbersmatch.Sothetotalnumberofdifferentpiecesisn+n(n−1)/2=n(n+1)/2.(n)2n!(n−1)(n−1)!1.18Theprobabilityisnn=2nn−2.Therearemanywaystoobtainthis.Hereisone.Thedenominatorisnnbecausethisisthenumberofwaystoplacenballsinncells.Thenumeratoristhenumberofwaysofplacingtheballssuchthatexactlyonecellisempty.Therearenwaystospecifytheemptycell.Therearen−1waysofchoosingthecellwithtwoballs.Thereare nwaysofpickingthe2ballstogointothiscell.Andthereare(n−2)!waysofplacingthe2remainingn−2ballsintothen−2cells,oneballineachcell.Theproductoftheseisthe nnnumeratorn(n−1)(n−2)!=n!.22 61.19a.=15.4b.Thinkofthenvariablesasnbins.Differentiatingwithrespecttooneofthevariablesisequivalenttoputtingaballinthebin.Thustherearerunlabeledballstobeplacedinn n+r−1unlabeledbins,andtherearewaystodothis.r1.20Asamplepointspecifiesonwhichday(1through7)eachofthe12callshappens.Thusthereare712equallylikelysamplepoints.Thereareseveraldifferentwaysthatthecallsmightbeassignedsothatthereisatleastonecalleachday.Theremightbe6callsonedayand1calleachoftheotherdays.Denotethisby6111111.Thenumberofsamplepointswiththispattern 1212is76!.Thereare7waystospecifythedaywith6calls.Therearetospecifywhichof66the12callsareonthisday.Andthereare6!waysofassigningtheremaining6callstotheremaining6days.Wewillnowcountanotherpattern.Theremightbe4callsononeday,2callsoneachoftwodays,and1calloneachoftheremainingfourdays.Denotethisby4221111. 12686Thenumberofsamplepointswiththispatternis74!.(7waystopickdaywith4 4222 1268calls,topickthecallsforthatday,topicktwodayswithtwocalls,waystopick4 226twocallsforlowerednumberedday,waystopickthetwocallsforhighernumberedday,24!waystoorderremaining4calls.)Hereisalistofallthepossibilitiesandthecountsofthesamplepointsforeachone.课后答案网patternnumberofsamplepoints 12611111176!=4,656,960 6 1275211111765!=83,825,280 5 2 12686422111174!=523,908,000www.hackshp.cn 42 221284311111765!=139,708,800 4 3 71296332111154!=698,544,0002 3 3 2 126975322211173!=1,397,088,000 3 33 2 2 7121086422222112!=314,344,8005222223,162,075,840Theprobabilityisthetotalnumberofsamplepointsdividedby712,whichis3,162,075,840≈712.2285.(n)22r 1.21Theprobabilityis2r.Thereare2nwaysofchoosing2rshoesfromatotalof2nshoes.(2n)2r 2r2nThusthereareequallylikelysamplepoints.Thenumeratoristhenumberofsamplepoints2r nforwhichtherewillbenomatchingpair.Therearewaysofchoosing2rdifferentshoes2r若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn
课后答案网:www.hackshp.cnSecondEdition1-5styles.Therearetwowaysofchoosingwithinagivenshoestyle(leftshoeorrightshoe),which gives22rwaysofarrangingeachoneofthenarrays.Theproductofthisisthenumerator 2rn22r.2r(31)(29)(31)(30)···(31)336335···3161.22a)1515151515b)366365336.(366)(366)180301.23XnP(samenumberofheads)=P(1sttossesx,2ndtossesx)x=0n"xn−x#2nn2Xn111Xn==.x224xx=0x=01.24a.X∞P(Awins)=P(Awinsonithtoss)i=124X∞2i+1111111=+++···==2/3.222222i=024P∞2ipb.P(Awins)=p+(1−p)p+(1−p)p+···=i=0p(1−p)=1−(1−p)2.2c.dp=p>0.Thustheprobabilityisincreasinginp,andtheminimumdp1−(1−p)2[1−(1−p)2]2pisatzero.UsingL’Hˆopital’srulewefindlimp→01−(1−p)2=1/2.1.25EnumeratingthesamplespacegivesS0={(B,B),(B,G),(G,B),(G,G)},witheachoutcomeequallylikely.ThusP(atleastoneboy)=3/4andP(bothareboys)=1/4,thereforeP(bothareboys|atleastoneboy)=1/3.Anambiguitymayariseiforderisnotacknowledged,thespaceisS0={(B,B),(B,G),(G,G)},witheachoutcomeequallylikely.1.27a.Fornoddtheproofisstraightforward.Thereareanevennumberoftermsinthesum nn(0,1,···,n),andand,whichareequal,haveoppositesigns.Thus,allpairscancelkn−kandthesumiszero.Ifniseven,usethefollowingidentity,whichisthebasisofPascal’s triangle:For课后答案网k>0,n=n−1+n−1.Then,fornevenkkk−1XnnX−1knnknn(−1)www.hackshp.cn=+(−1)+k0knk=0k=1nX−1nnkn−1n−1=++(−1)+0nkk−1k=1nnn−1n−1=+−−=0.0n0n−1 nn−1b.Usethefactthatfork>0,k=ntowritekk−1XnXnnX−1nn−1n−1n−1k=n=n=n2.kk−1jk=1k=1j=0若侵犯了您的版权利益,敬请来信告知!www.hackshp.cn
课后答案网:www.hackshp.cn1-6SolutionsManualforStatisticalInferencePnk+1 nPnk+1 n−1Pn−1j n−1c.(−1)k=(−1)=n(−1)=0fromparta).k=1kk=1k−1j=0j1.28Theaverageofthetwointegralsis[(nlogn−n)+((n+1)log(n+1)−n)]/2=[nlogn+(n+1)log(n+1)]/2−n≈(n+1/2)logn−n.Letdn=logn!−[(n+1/2)logn−n],andwewanttoshowthatlimn→∞mdn=c,aconstant.Thiswouldcompletetheproblem,sincethedesiredlimitistheexponentialofthisone.Thisisaccomplishedinanindirectway,byworkingwithdifferences,whichavoidsdealingwiththefactorial.Notethat11dn−dn+1=n+log1+−1.2nDifferentiationwillshowthat((n+1))log((1+1))isincreasinginn,andhasminimum2nvalue(3/2)log2=1.04atn=1.Thusdn−dn+1>0.NextrecalltheTaylorexpansionoflog(1+x)=x−x2/2+x3/3−x4/4+···.Thefirstthreetermsprovideanupperboundonlog(1+x),astheremainingadjacentpairsarenegative.Hence1111110