• 2.40 MB
  • 2022-04-22 11:34:20 发布

五轴联动加工技术与双轴转台结构设计

  • 41页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'五轴联动加工技术与双轴转台结构设计五轴联动数控机床是一种科技含量高、精密度高专门用于加工复杂曲的机床,这种机床系统对一个国家的航空、航天、军事、科研、精密器械、高精医疗设备等等行业,有着举足轻重的影响力,堪称“制造业之灵魂”。五轴联动技术是我国走向强国的关键技术,尤其是把我国从制造大国转变成制造强国的基石,因为制造业包括的范围很广领域较多,所以针对不同的工件则需要具有不同特点的设备,其中五轴联动机床的布局方案较多,各有各的优缺点。1.1五轴联动机床发展五轴联动机床,满足空间曲面及任意轮廓的加工,一次装夹完成大量的加工工序,保证精度要求。特别航空领域加工工艺的要求,对五轴联动机床提出多轴联动的同时,还要求机床主轴有较高的转速,因而在五轴联动机床上还应用了诸如高速主轴、高速控制系统、先进刀具技术等,首先是采用直线电机驱动技术。经过十几年的发展,直线电机技术已经非常成熟。其次是采用双驱动技术。对于较宽工作台或龙门架型式,如果采用中间驱动,实际无法保证驱动力在中心,容易造成倾斜,使得动态性能较差。使用双驱动,能使动态性能非常完美。1.2五轴联动机床的种类及特点五轴联动机床有立式、卧式和摇篮式、NC工作台、C工作台+NC分度头、C工作台十90OB轴C工作台+45oB轴、C工作台+A轴、轴NC主轴等类型。如(图1)图11.2.1立式五轴加工中心这类加工中心是工作台回转轴。设置在床身上的工作台可以环38 图2立式双轴回转工作台绕X轴回转,定义为A轴,A轴一般工作范围30度至-120度。工作台的中间还设有一个回转台,在图示的位置上环绕Z轴回转,定义为C轴,C轴都是360度回转。这样通过A轴与C轴的组合,固定在工作台上的工件除了底面之外,其余的五个面都可以由立式主轴进行加工。A轴和C轴最小分度值一般为0.001度,这样又可以把工件细分成任意角度,加工出倾斜面、倾斜孔等。A轴和C轴如与XYZ三直线轴实现联动,就可加工出复杂的空间曲面,当然这需要高档的数控系统、伺服系统以及软件的支持。这种设置方式的优点是主轴的结构比较简单,主轴刚性非常好,制造成本比较低。但一般工作台不能设计太大,承重也较小,特别是当A轴回转大于等于90度时,工件切削时会对工作台带来很大的承载力矩。另一种是依靠立式主轴头的回转。主轴前端是一个回转头,能自行环绕Z轴360度,成为C轴,回转头上还带可环绕X轴旋转的A轴,一般可达±90度以上,实现上述同样的功能。这种设置方式的优点是主轴加工非常灵活,工作台也可以设计的非常大,客机庞大的机身、巨大的发动机壳都可以在这类加工中心上加工。这种设计还有一大优点:我们在使用球面铣刀加工曲面时,当刀具中心线垂直于加工面时,由于球面铣刀的顶点线速度为零,顶点切出的工件表面质量会很差,采用主轴回转的设计,38 图3主轴回转的立式五轴加工中心令主轴相对工件转过一个角度,使球面铣刀避开顶点切削,保证有一定的线速度,可提高表面加工质量。这种结构非常受模具高精度曲面加工的欢迎,这是工作台回转式加工中心难以做到的。为了达到回转的高精度,高档的回转轴还配置了圆光栅尺反馈,分度精度都在几秒以内,当然这类主轴的回转结构比较复杂,制造成本也较高。立式加工中心的主轴重力向下,轴承高速空运转的径向受力是均等的,回转特性很好,因此可提高转速,一般高速可达1,2000r/min以上,实用的最高转速已达到4,0000转。主轴系统都配有循环冷却装置,循环冷却油带走高速回转产生的热量,通过制冷器降到合适的温度,再流回主轴系统。X、Y、Z三直线轴也可采用直线光栅尺反馈,双向定位精度在微米级以内。由于快速进给达到40~60m/min以上,X、Y、Z轴的滚珠丝杠大多采用中心式冷却,同主轴系统一样,由经过制冷的循环油流过滚珠丝杠的中心,带走热量。1.2.2卧式五轴加工中心此类加工中心的回转轴也有两种方式,一种是卧式主轴摆动作为一个回转轴,再加上工作台的一个回转轴,实现五轴联动加工。这种设置方式简便灵活,如需要主轴立、卧转换,工作台只需分度定位,即可简单地配置为立、卧转换的三轴加工中心。由主轴立、卧转换配合工作台分度,对工件实现五面体加工,制造成本降低,又非常实用。也可对工作台设置数控轴,最小分度值0.001度,但不作联动,成为立、卧转换的四轴加工中心,适应不同加工要求,价格非常具有竞争力。4卧式双轴回转工作台另一种为传统的工作台回转轴(图),设置在床身上的工作台A轴一般工作范围20度至-100度。工作台的中间也设有一个回转台B轴,B轴可双向360度回转。这种卧式五轴加工中心的联动特性比第一种方式好,常用于加工大型叶轮的复杂曲面。回转轴也可配置圆光栅尺反馈,分度精度达到几秒,当然这种回转轴结构比较复杂,价格也昂贵。38 目前卧式加工中心工作台可以做到大于1.25m2,对第一种五轴设置方式没有什么影响。但是第二种五轴设置方式比较困难,因为1.25m2的工作台做A轴的回转,还要与工作台中间的B轴回转台联动确实勉为其难。卧式加工中心的主轴转速一般在10,000rpm以上,由于卧式设置的主轴在径向有自重力,轴承高速空运转时径向受力不均等,加上还要采用较大的BT50刀柄,一般最高可达20,000rpm。卧式加工中心快速进给达到30~60m/min以上,主轴电机功率22-40KW以上,刀库容量按需要可从40把增加到160把,加工能力远远超过一般立式加工中心,是重型机械加工的首选。加工中心大多可设计成双工作台交换,当一个工作台在加工区内运行,另一工作台则在加工区外更换工件,为下一个工件的加工做准备,工作台交换的时间视工作台大小,从几秒到几十秒即可完成。最新设计的加工中心考虑到结构上要适合组成模块式制造单元(FMC)和柔性生产线(FMS),模块式制造单元一般至少有两台加工中心和四个交换工作台组成,加工中心全部并排放置,交换工作台在机床前一字形排开,交换工作台多的可以排成两行、甚至双层设计。两边各有一个工位作为上下工件的位置,其余工位上的交换工作台安装着工件等待加工,有一辆小车会按照系统指令,把装着工件的交换工作台送进加工中心,或从加工中心上取出完成加工的交换工作台,送到下一个工位或直接送到下料工位,完成整个加工操作。柔性生产线除了小车、交换工作台之外,还有统一的刀具库,一般会有几百把刀具,在系统中存入刀具的身份编码信息,再通过刀具输送系统送进加工中心,并把用完的刀具取回,柔性生产线往往还需要一台FMS的控制器来指挥运行。1.3直驱技术的发展采用直驱技术制造回转功能部件目前已经成为国际机床产业的发展趋势,直驱功能部件包括直驱式转台、摆角铣头等。3_!C,W7v"E直驱技术即采用大推力力矩电机或直线电机替代原有的包括齿轮传动、蜗轮蜗杆传动、滚珠丝杠传动,即用电气传动替代机械传动。直驱技术具有精度高(精度直接取决于控制技术和传感技术)、速度快(直线电机可达100m/min,力矩电机可达500rpm)、无磨损(没有机械磨损)、无间隙(没有机械物理间隙)、受力状态优良(区域出力,没有点接触和线接触受力环节)等优势。(f1X8z1x7k"_8L3b采用直驱技术设计的回转功能部件,机械结构简单、精度高、速度快,是三轴数控机床向高档5轴数控机床产业升级的关键功能部件。"^"l8W5w"N7g4y1G"g6B#o3x6{*})A$^在直驱技术日益成熟的条件下,国际主流机床厂商迅速推出采用直驱技术的机床产品,而且其应用水平的提升呈加速趋势。目前,处于世界机床产销量前几位的DMG、MAZAK、森精机等公司均开始大量改用直驱功能部件。DMG在其主流万能车床产品体系CTXgamma系列车削中心中采用力矩电机驱动的单摆角铣头。MAZAK也开发出应用于龙门加工中心的直驱双摆角铣头。森精机在NT系列复合加工机床上采用力矩电机驱动的摆角铣头;在NMV系列加工中心采用力矩电机作为转台驱动。FANUC公司的纳米级的ROBONANO系列加工中心直线运动和回转运动均采用直驱技术,该系列加工中心尚不对日本以外的国家销售。德国F.Zimmerman公司不仅提供机床和直驱摆角铣头产品,还拥有3旋转座标摆角铣头的专利。同时国际上还产生了一批专业从事直驱功能部件的制造商,如德国的CYTEC和KSL为机床厂配套直驱转台和摆角铣头产品。38 图5力矩电动机直接驱动的摆头图6采用力矩电动机的双轴转台(e"d-U:s%B&i;h#p:I"我国直驱技术的发展与国际水平有很大差距。自2005年起国内就开展了以力矩电机为核心驱动元件的转台的技术研究和产品开发,但大多尚停留在产品样机阶段。在力矩电机相关技术领域,国内与国外也存在较大差距。国际上90年代初开始应用,现在进入普及阶段。国内90年代中期才开始研究,而成功的应用还比较少。包括凯奇电气、华中数控都展出过样机,均未形成批量产品。哈尔滨工业大学、沈阳工业大学都在力矩电机设计和应用方面开展了许多研究工作,也为社会小批量提供了一些力矩电机产品,大多配置德国科比的驱动器。2009年北京CIMT上,烟台环球展出了应用西门子力矩电机的转台样机。目前,仅有大连光洋科技工程有限公司可以提供系列化力矩电机及其配套驱动产品。大连光洋自2005年开始进行可行性技术分析和市场,经过1年的论证,于2006年正式启动直驱关键功能部件(摆角铣头、回转工作台)开发项目,采取了与哈尔滨工业大学合作开发模式。哈尔滨工业大学在电机理论及设计技术处于国内领先地位,具有较好的技术基础。光洋公司于2007年8月完成力矩电机的设计和制造,2007年10月完成了基于该电机的单轴精密转台样机设计和制造,同时完成了高分辨率(6700万线/转)、高精度(±3.6角秒)的总线式力矩电机伺服驱动器样机。近年来,光洋公司与沈阳工业大学联合设计新一代力矩电机及其伺服驱动装置系列化产品。光洋公司在仔细研究国外几种典型直驱功能部件产品的基础上,结合自身特点及优势,已经完成了直驱双摆铣头、单摆铣头、单轴转台、双轴转台的结构设计。目前光洋公司完成了系列化直驱功能部件样机制造,部分型号产品进入批量化制造阶段。1.4双轴回转工作台双轴回转工作台是五轴联动的基础,它能够实现回转轴和摆动轴的两坐标定位。在三轴联动的数控铣床上增加了双轴回转工作台,并通过数控改造使之成为五轴数控铣床,是扩展机床使用功能的简捷方式。1.4.1双轴回转工作台的特点装有双轴回转工作台不仅可使刀具相对于工件的位置任意可控,而且刀具轴线相对于工件的方向也在一定范围内任意可控,由此使的五轴联动机床加工具有以下特点:A.可避免刀具干涉,加工普通三坐标机床难以加工的复杂零件,加工适应性广。B.对于直纹面类零件,可采用侧铣方式一刀成型,加工质量好、效率高。C.对一般立体型面特别是较为平坦的大型表面,可用大直径端铣刀端面逼近表面进行加工,走刀次数少,残余高度小,可大大提高加工效率与表面质量。D.对工件上的多个空间表面可一次装夹进行多面、多工序加工,加工效率高并有利于提高各表面的相互位置精度。E.五轴加工时,刀具相对于工件表面可处于最有效的切削状态。例如使用球头刀时可避免球头底部切削,利于提高加工效率。同时,由于切削状态可保持不变,刀具受力情况一致,变形一致,可使整个零件表面上的误差分布比较均匀,这对于保证某些高速回转零件的平衡性能具有重要作用。F.在某些加工场合,如空间受到限制的通道加工或组合曲面的过渡区域加工,可采用较大尺寸的刀具避开干涉,刀具刚性好,有利于提高加工效率与精度。现在,大家普遍认为,五轴联动数控机床系统是解决叶轮、叶片、船用螺旋桨、重型发电机转子、汽轮机转子、大型柴油机曲轴等加工的唯一手段。所以,每当人们在设计、研制复杂曲面遇到无法解决的难题时,往往转向求助于五轴数控系统。38 图71.4.2双轴回转工作台的功用数控机床加工某些零件时,除需要有沿X、Y、Z三个坐标轴的直线进给运动之外,还需要有绕X、Y、Z三个坐标轴的圆周进给运动,分别称为A、B、C轴。安装双回转轴工作台的五轴联动机床也称五坐标机床,它是在三个平动轴(沿X、Y、Z轴的直线运动)的基础上增加了两个转动轴(能实现绕X轴、Z轴旋转运动,即A轴和C轴),双轴回转工作台实现了A轴和C轴的转动。设置在床身上的工作台可以环绕X轴回转,定义为A轴,A轴一般工作范围有限,并非360度。工作台的中间还设有一个回转台,环绕Z轴回转,定义为C轴,C轴都是360度回转。这样五轴联动机床实现五轴联动的关键就在于双回转轴工作台。1.4.3双轴转台的组成以CRT/400/HV型双轴转台为例,它是由力矩电机、箱体、中心轴、轴承、转盘、左支轴、旋转编码器、基座、轴承座、支座轴等组成。两个旋转编码器分别位于与工作台固接的轴端和支撑座的尾端,能将旋转后的位置准确的反馈回系统。图8CRT/400/HV型双轴转台38 2.电机选择2.1电动机选择(倒数第三页里有东东)2.1.1选择电动机类型2.1.2选择电动机容量电动机所需工作功率为:;工作机所需功率为:;传动装置的总效率为:;传动滚筒滚动轴承效率闭式齿轮传动效率联轴器效率代入数值得:所需电动机功率为:略大于即可。选用同步转速1460r/min;4级;型号Y160M-4.功率为11kW2.1.3确定电动机转速取滚筒直径38 1.分配传动比(1)总传动比(2)分配动装置各级传动比取两级圆柱齿轮减速器高速级传动比则低速级的传动比2.1.4电机端盖组装CAD截图图2.1.4电机端盖2.2运动和动力参数计算2.2.1电动机轴38 2.2.2高速轴2.2.3中间轴2.2.4低速轴2.2.5滚筒轴38 38 3.齿轮计算3.1选定齿轮类型、精度等级、材料及齿数1>按传动方案,选用斜齿圆柱齿轮传动。2>绞车为一般工作机器,速度不高,故选用7级精度(GB10095-88)。3>材料选择。由表10-1选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质)硬度为240HBS,二者材料硬度差为40HBS。4>选小齿轮齿数,大齿轮齿数。取5初选螺旋角。初选螺旋角3.2按齿面接触强度设计由《机械设计》设计计算公式(10-21)进行试算,即3.2.1确定公式内的各计算数值(1)试选载荷系数1。(2)由《机械设计》第八版图10-30选取区域系数。(3)由《机械设计》第八版图10-26查得,,则。(4)计算小齿轮传递的转矩。(5)由《机械设计》第八版表10-7选取齿宽系数(6)由《机械设计》第八版表10-6查得材料的弹性影响系数(7)由《机械设计》第八版图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限;大齿轮的接触疲劳强度极限。13计算应力循环次数。(9)由《机械设计》第八版图(10-19)取接触疲劳寿命系数;。38 (10)计算接触疲劳许用应力。取失效概率为1%,安全系数S=1,由《机械设计》第八版式(10-12)得(11)许用接触应力3.2.2计算(1)试算小齿轮分度圆直径===49.56mm(2)计算圆周速度(3)计算齿宽及模数==2mmh=2.252.252=4.5mm49.56/4.5=11.01(4)计算纵向重合度0.318124tan=20.73(5)计算载荷系数K。已知使用系数根据v=7.6m/s,7级精度,由《机械设计》第八版图10-8查得动载系数由《机械设计》第八版表10-4查得的值与齿轮的相同,故由《机械设计》第八版图10-13查得由《机械设计》第八版表10-3查得.故载荷系数11.111.41.42=2.2(6)按实际的载荷系数校正所算得分度圆直径,由式(10-10a)得38 (7)计算模数3.3按齿根弯曲强度设计由式(10-17)3.3.1确定计算参数(1)计算载荷系数。=2.09(2)根据纵向重合度,从《机械设计》第八版图10-28查得螺旋角影响系数(3)计算当量齿数。(4)查齿形系数。由表10-5查得(5)查取应力校正系数。由《机械设计》第八版表10-5查得(6)由《机械设计》第八版图10-24c查得小齿轮的弯曲疲劳强度极限;大齿轮的弯曲强度极限;(7)由《机械设计》第八版图10-18取弯曲疲劳寿命系数,;(8)计算弯曲疲劳许用应力。取弯曲疲劳安全系数S=1.4,由《机械设计》第八版式(10-12)得38 (9)计算大、小齿轮的并加以比较。=由此可知大齿轮的数值大。3.3.2设计计算对比计算结果,由齿面接触疲劳强度计算的法面模数大于由齿面齿根弯曲疲劳强度计算的法面模数,取2,已可满足弯曲强度。但为了同时满足接触疲劳强度,需按接触疲劳强度得的分度圆直径100.677mm来计算应有的齿数。于是由取,则取3.4几何尺寸计算3.4.1计算中心距a=将中以距圆整为141mm.38 3.4.2按圆整后的中心距修正螺旋角因值改变不多,故参数、、等不必修正。3.4.3计算大、小齿轮的分度圆直径3.4.4计算齿轮宽度圆整后取.低速级取m=3;由取圆整后取38 表1高速级齿轮:名  称代号计算公式   小齿轮大齿轮模数m22压力角2020分度圆直径d=227=54=2109=218齿顶高齿根高齿全高h齿顶圆直径表2低速级齿轮:名  称代号计算公式   小齿轮大齿轮模数m33压力角2020分度圆直径d=327=54=2109=218齿顶高齿根高齿全高h齿顶圆直径38 4. 轴的设计4.1低速轴4.1.1求输出轴上的功率转速和转矩若取每级齿轮的传动的效率,则4.1.2求作用在齿轮上的力因已知低速级大齿轮的分度圆直径为圆周力,径向力及轴向力的4.1.3初步确定轴的最小直径先按式初步估算轴的最小直径.选取轴的材料为45钢,调质处理.根据《机械设计》第八版表15-3,取,于是得输出轴的最小直径显然是安装联轴器处轴的直径.为了使所选的轴直径与联轴器的孔径相适应,故需同时选取联轴器型号.联轴器的计算转矩,查表考虑到转矩变化很小,故取,则:按照计算转矩应小于联轴器公称转矩的条件,查标准GB/T38 5014-2003或手册,选用LX4型弹性柱销联轴器,其公称转矩为2500000.半联轴器的孔径,故取,半联轴器长度L=112mm,半联轴器与轴配合的毂孔长度.4.1.4轴的结构设计(1)拟定轴上零件的装配方案图4-1(2)根据轴向定位的要求确定轴的各段直径和长度1)根据联轴器为了满足半联轴器的轴向定位要示求,1-2轴段右端需制出一轴肩,故取2-3段的直径;左端用轴端挡圈,按轴端直径取挡圈直径D=65mm.半联轴器与轴配合的毂孔长度,为了保证轴端挡圈只压在半联轴器上而不压在轴的端面上,故1-2段的长度应比略短一些,现取.2)初步选择滚动轴承.因轴承同时受有径向力和轴向力的作用,故选用单列圆锥滚子轴承.参照工作要求并根据,由轴承产品目录中初步选取0基本游子隙组、标准精度级的单列圆锥滚子轴承30313。其尺寸为dDT=65mm140mm36mm,故;而。3)取安装齿轮处的轴段4-5段的直径;齿轮的右端与左轴承之间采用套筒定位。已知齿轮轮毂的宽度为90mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取。齿轮的左端采用轴肩定位,轴肩高度,故取h=6mm,则轴环处的直径。轴环宽度,取。38 4)轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定)。根据轴承端盖的装拆及便于对轴承加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离l=30mm,故取低速轴的相关参数:表4-1功率转速转矩1-2段轴长84mm1-2段直径50mm2-3段轴长40.57mm2-3段直径62mm3-4段轴长49.5mm3-4段直径65mm4-5段轴长85mm4-5段直径70mm5-6段轴长60.5mm5-6段直径82mm6-7段轴长54.5mm6-7段直径65mm(3)轴上零件的周向定位齿轮、半联轴器与轴的周向定位均采用平键连接。按查表查得平键截面b*h=20mm12mm,键槽用键槽铣刀加工,长为L=63mm,同时为了保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为;同样,半联轴器与轴的连接,选用平键为14mm9mm70mm,半联轴器与轴的配合为。滚动轴承与轴的周向定位是由过渡配合来保证的,此处选轴的直径公差为m6。4.2中间轴4.2.1求输出轴上的功率转速和转矩38 4.2.2求作用在齿轮上的力(1)因已知低速级小齿轮的分度圆直径为:(2)因已知高速级大齿轮的分度圆直径为:4.2.3初步确定轴的最小直径先按式初步估算轴的最小直径.选取轴的材料为45钢,调质处理.根据表15-3,取,于是得:轴的最小直径显然是安装轴承处轴的直径。38 图4-24.2.4初步选择滚动轴承.(1)因轴承同时受有径向力和轴向力的作用,故选用单列圆锥滚子轴承,参照工作要求并根据,由轴承产品目录中初步选取0基本游子隙组、标准精度级的单列圆锥滚子轴承。其尺寸为dD*T=35mm72mm18.25mm,故,;(2)取安装低速级小齿轮处的轴段2-3段的直径;齿轮的左端与左轴承之间采用套筒定位。已知齿轮轮毂的宽度为95mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取。齿轮的右端采用轴肩定位,轴肩高度,故取h=6mm,则轴环处的直径。轴环宽度,取。(3)取安装高速级大齿轮的轴段4-5段的直径齿轮的右端与右端轴承之间采用套筒定位。已知齿轮轮毂的宽度为56mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取。4.2.5轴上零件的周向定位齿轮、半联轴器与轴的周向定位均采用平键连接。按查表查得平键截面b*h=22mm14mm。键槽用键槽铣刀加工,长为63mm,同时为了保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为;同样,半联轴器与轴的连接,选用平键为14mm9mm70mm,半联轴器与轴的配合为。滚动轴承与轴的周向定位是由过渡配合来保证的,此处选轴的直径公差为m6。中间轴的参数:表4-2功率10.10kw转速362.2r/min转矩263.61-2段轴长29.3mm38 1-2段直径25mm2-3段轴长90mm2-3段直径45mm3-4段轴长12mm3-4段直径57mm4-5段轴长51mm4-5段直径45mm4.3高速轴4.3.1求输出轴上的功率转速和转矩若取每级齿轮的传动的效率,则4.3.2求作用在齿轮上的力因已知低速级大齿轮的分度圆直径为4.3.3初步确定轴的最小直径先按式初步估算轴的最小直径.选取轴的材料为45钢,调质处理.根据表15-3,取,于是得:38 输出轴的最小直径显然是安装联轴器处轴的直径.为了使所选的轴直径与联轴器的孔径相适应,故需同时选取联轴器型号.联轴器的计算转矩,查表,考虑到转矩变化很小,故取,则:按照计算转矩应小于联轴器公称转矩的条件,查标准GB/T5014-2003或手册,选用LX2型弹性柱销联轴器,其公称转矩为560000.半联轴器的孔径,故取,半联轴器长度L=82mm,半联轴器与轴配合的毂孔长度.4.4轴的结构设计4.4.1拟定轴上零件的装配方案图4-34.4.2根据轴向定位的要求确定轴的各段直径和长度1)为了满足半联轴器的轴向定位要示求,1-2轴段右端需制出一轴肩,故取2-3段的直径;左端用轴端挡圈,按轴端直径取挡圈直径D=45mm.半联轴器与轴配合的毂孔长度,为了保证轴端挡圈只压在半联轴器上而不压在轴的端面上,故段的长度应比略短一些,现取.2)初步选择滚动轴承.因轴承同时受有径向力和轴向力的作用,故选用单列圆锥滚子轴承.参照工作要求并根据,由轴承产品目录中初步选取0基本游子隙组、标准精度级的单列圆锥滚子轴承。其尺寸为d*D*T=45mm*85mm*20.75mm,故;而,mm。3)取安装齿轮处的轴段4-5段,做成齿轮轴;已知齿轮轴轮毂的宽度为61mm,齿轮轴的直径为62.29mm。4)轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定)。根据轴承端盖的装拆及便于对轴承加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离l=30mm,故取。5)轴上零件的周向定位38 齿轮、半联轴器与轴的周向定位均采用平键连接。按查表查得平键截面b*h=14mm*9mm,键槽用键槽铣刀加工,长为L=45mm,同时为了保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为;同样,半联轴器与轴的连接,选用平键为14mm9mm70mm,半联轴器与轴的配合为。滚动轴承与轴的周向定位是由过渡配合来保证的,此处选轴的直径公差为m6。高速轴的参数:表4-3功率10.41kw转速1460r/min转矩1-2段轴长80mm1-2段直径30mm2-3段轴长45.81mm2-3段直径42mm3-4段轴长45mm3-4段直径31.75mm4-5段轴长99.5mm4-5段直径48.86mm5-6段轴长61mm5-6段直径62.29mm6-7段轴长26.75mm6-7段直径45mm38 5.齿轮的参数化建模5.1齿轮的建模(1)在上工具箱中单击按钮,打开“新建”对话框,在“类型”列表框中选择“零件”选项,在“子类型”列表框中选择“实体”选项,在“名称”文本框中输入“dachilun_gear”,如图5-1所示。图5-1“新建”对话框2>取消选中“使用默认模板”复选项。单击“确定”按钮,打开“新文件选项”对话框,选中其中“mmns_part_solid”选项,如图5-2所示,最后单击”确定“按钮,进入三维实体建模环境。图5-2“新文件选项”对话框(2)设置齿轮参数1>在主菜单中依次选择“工具”“关系”选项,系统将自动弹出“关系”对话框。2>在对话框中单击38 按钮,然后将齿轮的各参数依次添加到参数列表框中,具体内容如图5-4所示,完成齿轮参数添加后,单击“确定”按钮,关闭对话框。图5-3输入齿轮参数(3)绘制齿轮基本圆在右工具箱单击,弹出“草绘”对话框。选择FRONT基准平面作为草绘平面,绘制如图5-4所示的任意尺寸的四个圆。(4)设置齿轮关系式,确定其尺寸参数1>按照如图5-5所示,在“关系”对话框中分别添加确定齿轮的分度圆直径、基圆直径、齿根圆直径、齿顶圆直径的关系式。2>双击草绘基本圆的直径尺寸,将它的尺寸分别修改为、、、修改的结果如图5-6所示。图5-4草绘同心圆图5-5“关系”对话框38 图5-6修改同心圆尺寸图5-7“曲线:从方程”对话框(5)创建齿轮齿廓线1>在右工具箱中单击按钮打开“菜单管理器”菜单,在该菜单中依次选择“曲线选项”“从方程”“完成”选项,打开“曲线:从方程”对话框,如图5-7所示。2>在模型树窗口中选择坐标系,然后再从“设置坐标类型”菜单中选择“笛卡尔”选项,如图5-8所示,打开记事本窗口。3>在记事本文件中添加渐开线方程式,如图5-9所示。然后在记事本窗中选取“文件”“保存”选项保存设置。图5-8“菜单管理器”对话框图5-9添加渐开线方程4>选择图5-11中的曲线1、曲线2作为放置参照,创建过两曲线交点的基准点PNTO。参照设置如图5-10所示。38 曲线1曲线2图5-11基准点参照曲线的选择图5-10“基准点”对话框5>如图5-12所示,单击“确定”按钮,选取基准平面TOP和RIGHT作为放置参照,创建过两平面交线的基准轴A_1,如图6-13所示。图5-12“基准轴”对话框图5-13基准轴A_138 6>如图5-13所示,单击“确定”按钮,创建经过基准点PNTO和基准轴A_1的基准平面DTM1,如图5-14所示。55-15基准平面对话框5-15基准平面DTM17>如图5-16所示,单击“确定”按钮,创建经过基准轴A_1,并由基准平面DTM1转过“-90/z”的基准平面DTM2,如图5-17所示。38 图5-16“基准平面”对话框图5-17基准平面DTM28>镜像渐开线。使用基准平面DTM2作为镜像平面基准曲线,结果如图5-18所示。图5-18镜像齿廓曲线(6)创建齿根圆实体特征1>在右工具箱中单击按钮打开设计图标版。选择基准平面FRONT作为草绘平面,接收系统默认选项放置草绘平面。2>在右工具箱中单击按钮打开“类型”对话框,选择其中的“环”单选按钮,然后在工作区中选择图5-19中的曲线1作为草绘剖面。再图标中输入拉伸深度为“b”38 ,完成齿根圆实体的创建,创建后的结果如图5-20所示。图5-19草绘的图形5-20拉伸的结果(7)创建一条齿廓曲线1>在右工具箱中单击按钮,系统弹出“草绘”对话框,选取基准平面FRONT作为草绘平面后进入二维草绘平面。2>在右工具箱单击按钮打开“类型”对话框,选择“单个”单选按钮,使用和并结合绘图工具绘制如图5-21所示的二维图形。38 图5-21草绘曲线图5-22显示倒角半径3>打开“关系”对话框,如图5-22所示,圆角半径尺寸显示为“sd0”,在对话框中输入如图5-23所示的关系式。38 图5-23“关系“对话框(8)复制齿廓曲线1>在主菜单中依次选择“编辑”“特征操作”选项,打开“菜单管理器”菜单,选择其中的“复制”选项,选取“移动”复制方法,选取上一步刚创建的齿廓曲线作为复制对象。图5-24依次选取的菜单2>选取“平移”方式,并选取基准平面FRONT作为平移参照,设置平移距离为“B”,将曲线平移到齿坯的另一侧。图5-25输入旋转角度3>继续在“移动特征”菜单中选取“旋转”方式,并选取轴A_1作为旋转复制参照,设置旋转角度为“asin(2*b*tan(beta/d))”,再将前一步平移复制的齿廓曲线旋转相应角度。最后生成如图5-26所示的另一端齿廓曲线。38 图5-26创建另一端齿廓曲线(9)创建投影曲线1>在工具栏内单击按钮,系统弹出“草绘”对话框。选取“RIGUT”面作为草绘平面,选取“TOP”面作为参照平面,参照方向为“右”,单击“草绘”按钮进入草绘环境。2>绘制如图5-27所示的二维草图,在工具栏内单击按钮完成草绘的绘制。图5-27绘制二维草图3>主菜单中依次选择“编辑”“投影”选项,选取拉伸的齿根圆曲面为投影表面,投影结果如下图5-28所示。38 图5-28投影结果(10)创建第一个轮齿特征1>在主菜单上依次单击“插入”“扫描混合”命令,系统弹出“扫描混合”操控面板,如图5-29所示。2>在“扫描混合”操控面板内单击“参照”按钮,系统弹出“参照”上滑面板,如图6-30所示。图5-29“扫描混合”操作面板图5-30“参照”上滑面板3>在“参照”上滑面板的“剖面控制”下拉列表框内选择“垂直于轨迹”选项,在“水平/垂直控制”下拉列表框内选择“垂直于曲面”选项,如图5-30示。4>在绘图区单击选取分度圆上的投影线作为扫描混合的扫引线,如图5-31示。38 扫描引线图5-31选取扫描引线5>在“扫描混合”操作面板中单击“剖面”按钮,系统弹出“剖面”上滑面板,在上方下拉列表框中选择“所选截面”选项,如图5-32所示。图5-32“剖面”上滑面板图5-33选取截面6>在绘图区单击选取“扫描混合”截面,如图5-33所示。7>在“扫描混合”操控面板内单击按钮完成第一个齿的创建,完成后的特征如图5-34所示。38 图5-34完成后的轮齿特征图5-35“选择性粘贴“对话框(11)阵列轮齿1>单击上一步创建的轮齿特征,在主工具栏中单击按钮,然后单击按钮,随即弹出“选择性粘贴”对话框,如图5-35所示。在该对话框中勾选“对副本应用移动/旋转变换”,然后单击“确定”按钮。图5-36旋转角度设置图5-37复制生成的第二个轮齿2>单击复制特征工具栏中的“变换”,在“设置”下拉菜单中选取“旋转”选项,“方向参照”选取轴A_1,可在模型数中选取,也可以直接单击选择。输入旋转角度“360/z”,如图6-36所示。最后单击按钮,完成轮齿的复制,生成如图6-37所示的第2个轮齿。3>在模型树中单击刚刚创建的第二个轮齿特征,在工具栏内单击按钮,或者依次在主菜单中单击“编辑”“阵列”命令,系统弹出“阵列”操控面板,如图6-38所示。图5-38“阵列”操控面板38 图5-39完成后的轮齿图5-40齿轮的最终结构4>在“阵列”操控面板内选择“轴”阵列,在绘图区单击选取齿根园的中心轴作为阵列参照,输入阵列数为“88”偏移角度为“360/z”。在“阵列”操控面板内单击按钮,完成阵列特征的创建,如图5-39所示。5>最后“拉伸”、“阵列”轮齿的结构,如图5-40所示3838 致谢本论文是在ee老师的悉心指导下完成的。e老师渊博的专业知识,严谨的治学态度,精益求精的工作作风,诲人不倦的高尚师德,严以律己、宽以待人的崇高风范,朴实无华、平易近人的人格魅力对我影响深远。不仅使我树立了远大的学术目标、掌握了基本的研究方法,,还使我明白了许多待人接物与为人处世的道理。本论文从选题到完成,每一步都是在导师的指导下完成的,倾注了导师大量的心血。在此,谨向e老师表示崇高的敬意和衷心的感谢!本论文的顺利完成,离不开各位老师、同学和朋友的关心和帮助。感谢CAD培训中心老师的指导和帮助。后文是被我人为屏蔽掉了,想要原版吗?小伙伴,在第2章电机选择中CAD图里找我联系方式吧 参考文献[1]王定.矿用小绞车[M].北京:煤炭工业出版社,1981.[2]程居山.矿山机械[M].徐州:中国矿业大学出版社,2005.8.[3]王洪欣,李木,刘秉忠.机械设计工程学[M].徐州;中国矿业大学出版社,2001.[4]唐大放,冯晓宁,杨现卿.机械设计工程学[M].徐州;中国矿业大学出版社,2001.[5]成大先.机械设计手则[M].北京;化学工业出版社,2002.[6寿楠椿,弹性薄板夸曲[M].北京;高等出版社.1987.[7]刘鸿文.材料力学[M].北京;高等出版社.2004.[8]夏荣海,赫玉深.矿井提升设备[M].徐州:中国矿业大学出版社,1987.[9]国家发展和改革委员会.调度绞车[M].北京:机械工业出版社,2007.[10]编委会,新编机械设计知识百科-常用技术资料、计算方法、标准数据速查手册[M].北京工业出版社,2000.[11]李洁,最新国内外起重机械使用技术性能及安全管理规章制度实务全书[M].北京:机械工业出版社,2001.[12]编委会,煤矿机械设备选型、安装、检修维护技术守则[M].北京:机械工业出版社,2003.[13]李洁,煤矿机械设备设计方法、机械制图、制造加工与故障排除实用手册[M].北京:机械工业出版社,2005.[14]于文景、李富群,现代化煤矿机械设备安装调试、运行监测、故障诊断、维护保养与标准规范全书[M].北京:机械工业出版社,2003.[15]编委会,煤矿机械设备选型安装检修维护技术手册[M].北京:机械工业出版社,2001.[16]罗名佑.行星齿轮传动[M].北京:高等教育出版社,1984.[17]吴宗泽,罗圣国.机械设计课程设计手册[M].第五版.北京:高等教育出版社,2006.[18]孙恒,陈作模,葛文杰.机械原理[M].第七版.北京:高等教育出版社,2006.[19]濮良贵,纪明刚.机械设计[M]第八版.北京:高等教育出版社,2006.[20]付丰礼,唐孝稿.异步电动机设计手册[M].第二版.北京:机械工业出版社,2007.[21]日本机械学会.齿轮强度设计资料[M].北京:机械工业出版社,1984.[22]刘鸿文.材料力学[M].4版.北京:高等教育出版社,2004.[23]曹惟庆,徐曾萌.机构设计[M].北京:机械工业出版社,1995.[24]李发海,陈汤佑.电机学[M].第二版.北京:高等教育出版社,2000.[25]张勇.电机拖动与控制[M].北京:机械工业出版社,2003.[26]马从谦.渐开线行星齿轮传动设计[M].北京:机械工业出版社,1993. [27]齿轮手册编委会.齿轮手册[M].北京:机械工业出版社,1990.[28]佟纯厚.近代交流调速[M].第二版.北京:冶金工业出版社,1995.[29]刘竞成.交流调速系统[M].上海交通大学出版社,1984.[30]韩安荣.通用变频器及应用[M].第二版.北京:机械工业出版社,2000.[31]杨兴瑶.电动机调速的原理及系统[M].第二版.北京:水利电力出版社,1979.[32]B.H.鲁坚科.行星与谐波传动结构图册[M].北京:机械工业出版社,1986.[33]HuI1C.Chapterl,Rapidprototypingandmanufacturing:fundamentalsofstereolithography(J).SMEDearbornMI,l992,l.23.[34]KarrerP,Corbels,AnderCJ,etal.Containingfillingagents:applicationtostereophotolithography.JPolymSciPolymChemEd,1992,30:2715.'