- 1.12 MB
- 2022-04-22 11:33:36 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'《高等流体力学》复习题一、基本概念1.什么是流体,什么是流体质点?答:在任何微小剪切应力作用下,都会发生连续不断变形的物质称为流体。宏观无限小,微观无限大,由大量流体分子组成,能够反映流体运动状态的集合称为流体质点。2.什么事连续介质模型?在流体力学中为什么要建立连续介质这一理论模型?答:认为流体内的每一点都被确定的流体质点所占据,其中并无间隙,于是流体的任一参数(密度、压力、速度等)都可表示为空间坐标和时间的连续函数,而且是连续可微函数,这就是流体连续介质假说,即流体连续介质模型。建立“连续介质”模型,是对流体物质结构的简化,使在分析流体问题得到两大方便:第一、可以不考虑流体复杂的微观粒子运动,只考虑在外力作用下的微观运动;第二、能用数学分析的连续函数工具。3.给出流体压缩性系数和膨胀性系数的定义及表达式。答:压缩性系数:单位体积的相对减小所需的压强增值。膨胀性系数:在一定压强下,单位温度升高所引起的液体体积的相对增加值。4.什么是理想流体,正压流体,不可压缩流体?答:当流体物质的粘度较小,同时其内部运动的相对速度也不大,所产生的粘性应力比起其它类型的力来说可以忽略不计时,可把流体近似地看为是无粘性的,这样无粘性的流体称为理想流体。内部任一点的压力只是密度的函数的流体,称为正压流体。流体的体积或密度的相对变化量很小时,一般可以看成是不可压缩的,这种流体就被称为不可压缩流体。5.什么是定常场;均匀场;并用数学形式表达。答:如果一个场不随时间的变化而变化,则这个场就被称为定常场。其数学表达式为:如果一个场不随空间的变化而变化,即场中不显含空间坐标变量,则这个场就被称为均匀场。其数学表达式为:6.分别用数学表达式给出拉格朗日法和欧拉法的流体加速度表达式。答:拉格朗日法:(点)欧拉法:(场)
7:理想流体运动时有无切应力?粘性流体静止时有无切应力?静止时无切应力是否无年限?为什么?答:理想流体运动时无切应力;粘性流体静止时无切应力。但是,静止时无切应力,而有粘性,因为粘性是流体的固有特性。8流体有势运动指的是什么?什么是速度势函数?无旋运动与有势运动有何关系?[答]:如果流体运动是无旋的,则称此流体运动为有势运动。对于无旋流动来说,其速度场总可以由某个速度标量函数(场)的速度梯度来表示,即,则这个标量函数(场)称为速度场的速度势函数。无旋运动与有势运动的关系:势流运动与无旋运动是等价的,即有势运动是无旋的,无旋运动的速度场等同于某个势函数的梯度场。9:什么是流函数?存在流函数的流体具有哪些条件(性质)?答:1:由平面不可压缩流体的连续性知:即=0,即+=0,我们设法找出这样一个可微的标量函数(x,y,t),使得=,Uy=-.这时我们称标量函数(x,y,t)为不可压缩流动(Uy)的流函数。2:流函数的性质:①流函数加减一个常数C,所描述的流动相同②流函数的等值线=c是流线,即是说其切线与其流动方向一致,事实上,在=c上有ddx+dy=-Uydx+Uxdy=0于是有=,可见,等值线的切线方向与速度方向一致,即为流线③在平面上,任意2点M和M0间任意连线上的速度通量仅与流函数在这2点值的差有关,即Q=Uydx+Uxdy)=dx+dy)==④:在单连通域上的不可压缩流体过其上任意封闭曲线L上的通量为零,并且相应的流函数在其上单值;过任意2点间连线上的速度通量与这2点的连线的路径无关;而在多连通域上,过任意封闭曲线的速度通量则科恩那个不为零,流函数也可能是多值的。10:半面流动中用复变位势描述的流体具有哪些条件(性质)?答:复位势W(z)相差一个常数C,所描述的平面流动不变。复位势W(z)的等值线族W(z)=C为等势线族=c和等流线族=c。它们在复平面上组成相互正交的曲线网。共轭附属度=在复平面上的沿Zo到Z这2点间任意曲线上的复积分为Γ+iQ的实部为Z0到Z这2点间曲线上的速度环量,虚部为Z0到Z这两点间曲线上的速度通量或流量。在单连通域上复位势w(z)是单值的,在复连通域上w(z)可能多值。对于不可压缩流体的平面无旋运动,其势函数和流函数都应该满足Laplace方程,即=0,=0.11:什么是第一粘性系数和第二粘性系数?在什么条件下可以不考虑第二粘性系数?Stokes假设的基本事实依据是什么?[答]:第一粘性系数μ:反映了剪切变形对应力张量的贡献,因此称为剪切变形粘性系数;第二粘性系数μ’:反映了体变形对应力张量的贡献,因而称为体变形粘性系数。
对于不可压缩流体,可不考虑第二粘性系数。Stokes假设的基本事实依据:平均法向正应力就是压力函数的负值,即体变形粘性系数。12作用在流体微团上的力分为哪两种?表面应力τij的两个下标分别表示?τij的正负如何规定?答:作用在流体微团上的力分为体力和面力。τij两下标:第一个字母表示应力所在面的外法线方向,第二个字母表示应力分量的方向。τij正负:应力分量在作用面法线方向的分量称为正应力。13从分子运动学观点看流体与固体比较有什么不同?答:⑴若物质分子的平均动能远小于其结合能,即:1/2mv2<<ΔE,这时物质分子间所形成的对偶结构十分稳定,分子间的运动被严格地限定在很小的范围内,物质的分子只能在自己的平衡位置周围运动。这时物质表现为固态。⑵若物质分子的平均动能远大于其结合能,即:1/2mv2>>ΔE,物质分子间几乎不能形成任何对偶结构,这时候,物质表现为气态。⑶若物质分子的平均动能与其结合能大致相等,即:1/2mv2≈ΔE,其分子间的对偶结构不断的遭到破坏,又不断地形成新的对偶结构。这时,物质分子间不能形成固定的稳定的对偶结构,而表现出没有固定明确形状的也液态。14试述流体运动的Helmhottz速度分解定律并给出其表达式。答:流体微团一点的速度可分解为平均速度分量与转动运动分量和变形运动分量之和,这称为流体微团的Helmhottz速度分解定律。表达式:15流体微团有哪些运动形式?它们的数学表达式是什么?答:。⑴平均运动:⑵转动运动:;⑶变形运动:16什么是随体导数(加速度)、局部导数(加速度)及位变导数(加速度)?答:随机导数:流体质点在其运动过程中的加速度所对应的微商。局部导数:流体位置不变时的加速度所对应的微商。位变导数:质点位移所造成的加速度所对应的微商。17什么是流体的速度梯度张量?试述其对称和反对称张量的物理意义。答:⑴对流体微团M,其中处的速度为,那么处的速度可以表示为或者即,这里,为二阶张量,它是速度的梯度,因此,称之为速度梯度张量。⑵速度梯度张量可以分解为对称和反对称部分,即反对称张量的物理意义:A表征流体微团旋转运动,所对应的矢量为流体微团的角速度矢量。
A===εijkωk对称张量的物理意义:S表征了流体微团的变形运动,其中,对角线上的元素(ε1ε2ε3)表示了流体微团在3个坐标轴上的体变形分量,而三角元素(θ1,θ2,θ3)表示了流体单元微团在3个坐标平面上的角变形分量的一半。S==18.某平面上的应力与应力张量有什么关系?的物理含义是什么?[答]:教材P71应力与应力张量的关系:,即:空间某点处任意平面上的应力等于这点处的应力张量与该平面法向单位矢量的左向内积。l的物理意义:应力张量的对称性,使得在以为法线的平面上的应力在方向上的投影等于(=)在以为法线的平面上的应力在方向上的投影。19.什么是广义的牛顿流体和非牛顿流体?[答]:教材P86-87牛顿内摩擦定律:流体微团的运动变形的的大小与其上所受的应力存在线性关系。遵从或近似遵从牛顿内摩擦定律的一类流体称为牛顿流体
。不遵从牛顿内摩擦定律的流体称为非牛顿流体。广义牛顿内摩擦定律:偏应力张量的各分量与速度梯度张量的各分量间存在线性关系。遵从或近似遵从广义牛顿内摩擦定律的一类流体称为广义牛顿流体。20.粘性流动和理想流动的壁面边界条件有何不同?[答]:粘性流动壁面边界条件Vn=0,Vτ≠0 理想流动壁面边界条件Vn=0,Vτ=021.在理想有势的流动假设条件下,绕流物体产生的升力主要受那些因素的影响,有何规律?[答]:教材P141影响升力的主要因素:环量Γ,来流速度V∞,密度ρ。Ry=ρV∞Γ升力的大小准确地与环量Γ成正比,与来流速度V∞及密度ρ成正比,其方向为在来流速度方向上按逆环量方向旋转900。22.什么是层流运动、湍流运动、雷诺数和临界雷诺数?[答]:层流流动是平稳有规律的流动状态,流体介质各部分之间分层流动,互不掺混,流体内部的微团具有连续而平滑的迹线,流场中各种有关物理量(参数)的变化较为缓慢,表现出明显的连续性和平稳性。湍流流动是极不规则的流动形态,流体介质各部分之间,各层之间有着剧烈的掺混,其流体内部微团的运动迹线很不规则,杂乱无章,表征流体运动状态的各种物理量也表现出不同程度的跃变和随机性。雷诺数:流体运动中,惯性力与粘性力的无量纲比值下临界雷诺数:从湍流状态到层流状态的转折点;上临界雷诺数:从层流状态到湍流状态的转折点。23.圆管中定常不可压层流和湍流运动的速度分布规律是什么?[答]:层流:(1)定常流动的速度沿径向的分布规律,由式(1)可以看出,流动截面上的速度分布是一抛物回转面。湍流:光滑圆管中的速度分布:粗糙圆管中的速度分布与光滑圆管中的速度分布相同,只是改变方程的常数。
24.流动相似的条件是什么?简述定理的内容。答:教材P178-179如果2个不稳定流动系统的均时性准数Ho相等,则其速度场随时间的变化率是相似的。如果2个不稳定流动系统的傅鲁德准数Fr相等,则对应的流体质点的压力势能和动能相似,相应的重力和惯性力也存在相似关系。如果2个流动系统的欧拉维数Eu相等,则相应的压力场相似,相应的惯性力场也存在相似关系。如果2个流动系统的雷诺维数Re相等,则相应的速度场(或速度分布)是相似的。定理:描述其物理过程的各物理量之间的关系可表示为相应的相似准数之间的函数关系:。此关系式称为准则关系式或准则方程式。25.流体的阻力可分为哪几种?管路中因阻力引起的损失通常分为哪几种?影响管路损失系数的主要因素有哪些?答:粘性时产生阻力的根本原因,依据阻力产生的不同机理,可分为:摩擦阻力和压差阻力。管路中的阻力通常分为:沿程阻力(即摩擦阻力)和局部阻力。影响管路损失系数的主要因素有流体的粘度、流速、管道的内径以及管壁粗糙度等。26.怎样判断流动是否有旋,涡度与速度环量有何关系,流动是否有旋与流体质点的运动轨迹有关吗?答:(1)看流体微团的旋转角速度是否等于零,旋转角速度不等于零的流动为有旋流动,旋转角速度等于零的流动为无旋流动。(2)涡通量又称涡旋强度,由斯托克斯定理,在涡量场中,沿任意封闭周线的速度环量等于通过该周线所张曲面的涡通量。(3)有旋流动和无旋流动仅由流体微团本身是否旋转来确定,与它的运动轨迹无关。27.试说明粘性流体流动的三个基本特征,它们与理想流体运动相比有何不同?
答:教材P170-174三个特征:(1)粘性运动的有旋性:粘性流体运动时,有旋是绝对的,粘性流体的无旋运动是不存在的。(2)运动过程中有能量的损耗性:在粘性流动中永远伴随着机械能的损耗。这部分能量转换成热能形式传递给流体介质及相邻的固壁,使其温度升高而耗散。(3)粘性涡旋运动的扩散性:在粘性流体中,涡旋强的地方要向涡旋弱的地方传送涡量,直至涡量相等为止。与理想流体运动不同点:(1)粘性流体运动时,有旋是绝对的,几乎不存在粘性流体的无旋运动。而对于理想流体,当体力有势、流体正压时,理想流体的运动将遵从涡旋保持定律,即如果有旋将永远有旋,涡管保持为涡管,涡线保持为涡线。理想流体的运动如果无旋则将永远无旋。(2)在粘性流动中,永远伴随着机械能的损耗。而理想流体运动时,则没有机械能的损耗。(3)对于理想正压流体,当外力有势时,沿任意一封闭物质线上的速度环量以及过任意物质面上的涡通量在运动过程中保持不变;而在粘性流动中,涡旋强的地方要向涡旋弱的地方传送涡量,直至涡量相等为止。28.螺旋流、偶极子流和绕圆柱体有环流动分别是由哪些基本势流叠加而成?答:螺旋流是由汇流和势涡叠加而成的;偶极子流是由源流和汇流叠加而成的;绕圆柱体有环流动是有均匀等速流、偶极子流和纯环流叠加而成的。29.试说明层流边界层和湍流边界层的速度分布特征。答:层流边界层:层流边界层内的速度分布呈线性分布规律;湍流边界层:分为层流底层和湍流核心区。层流底层内的速度分布呈线性分布,湍流核心区速度分布呈对数分布规律。30.试述平板湍流边界层的结构及其速度分布特征。答:平板湍流边界层分为粘性底层和湍流核心区。粘性底层内的速度分布是呈线性分布的,湍流核心区的速度分布是呈对数分布规律。31.边界层理论的基本思想是什么?平板不可呀定常层流边界层的厚度主要受哪些因素的影响?大雷诺数流动可分成2个区域:一个是壁面附近很薄的流体层区域称为边界层;边界层内流体粘性作用即为重要不可忽略;另一个是边界层以外的区域,称为外流区,该区域内的流动可看成是理想流体的流动。影响因素:将流体速度从u=0到u=0.99uo的流体层厚度为边界层厚度。
,r流体运动粘度,uo来流速度,沿流动方向x板长。32边界层分离的概念和原因是什么?分离点处的流动特征是什么?当流体绕弯曲壁面流动时,边界层内伴随产生的压差会使边界层从某一位置开始脱离物体表面,在壁面附近出现回流,这种现象叫做边界层分离现象或脱离现象。原因:1.流体具有粘性2.在物面上的压力分不存在逆压区在分离点处物面外流体质点速度为0,33.以圆柱绕流为例,简述卡门涡街现象,并对涡街引发圆柱振动作简要说明。中等雷诺数下的绕流Re=当80~901时的气流称为超声速气流,此时速度随断面的增大而加快,随断面的减小而减慢;当UC时,微弱压力扰动只能传播到马赫锥面的内侧,此扰动不能传播到扰动源上游,也不能传播到马赫锥的外部。39.什么是压气机的喘振现象,喘振和旋转失速有何关系?答:压气机喘振是指气流沿压气机轴线方向发生的低频率、高振幅的气流振荡现象。 通道中逆压梯度下叶片吸力面发生失速,特别是叶片尖部的失速是导致压气机喘振的主要因素;40.什么是激波,激波在什么条件下才会出现,激波通常分为哪三种?答:激波---气体、液体和固体介质中应力(或压强)、密度和温度在波阵面上发生突跃变化的压缩波,又称冲击波。条件:激波发生在超声速气流的压缩过程中。正激波---波面与波的运动方向或气流方向垂直的激波称为正激波;斜激波---面与波的运动方向或气流方向倾斜的激波称为斜激波;离体激波---那种不依附于物体的激波称为离体激波,或者脱体激波。二、推到及证明1.根据质量守恒定律推导连续方程。证明:在体元素中,若流体介质的密度为,那么其质量就为=
,于是有限体积分中的质量m为。根据质量守恒定律的物理含义:体积分中的质量m在其运动过程中保持不变,即:又因为【注:就是将积分号与微分号互换】且【注:记住就可以了】代入上式得:或者写成所以当被积函数为零可直接得到微分形式的连续性方程:或2.根据动量定律推导出微分形式的动量方程证明:封闭曲面S所围成的体积中流体的动量积分为:该物质体上所受的外力为质量力和面力:由动量定理可得:某物质体的动量变化等于该物体所受外力之和。所以:对左边进行处理因为=0,所以上式第二项为0.所以:=再由奥高公式【面积分转为体积分】:
所以微分形式的动量方程为3.试推导理想流体平面二维运动的欧拉微分方程。dypdxpx方向的合力:y方向的合力:质量力:和由牛顿第二定律:x方向+=即:同理y方向:4.从N-S方程出发,试推导Bernouli公式,其中表示流线。证明:由N-S方程:【背吧】
又因为=【背吧】所以在理想流体下,=0,上式变为:上式如果满足:外部质量力有势:;流体正压:;定常流动:;则可继续化为:设s为流场的某条流线,为该流线的切向单位矢量。以对方程两边做数量积,因为//,所以=0。所以=在重力作用下,G=gz,不可压缩流体=常数,Bernouli积分变为:5.试利用N-S方程证明不可压平面层流的流函数Y(x,y)满足:其中:[证明]:粘性不可压缩流体涡旋运动方程:
考虑流函数旋度计算式两边取负号6.进行圆管中流体摩擦试验时,发现圆管中沿轴向的压降是流速、密度、粘性系数、管长、管内径及管壁粗糙度的函数,而且与成正比。试用因次分析方法证明,其中为无因次系数。[证明]:由题意可假设存在关系(1)相应各量的量纲(因次)为:式(1)对应量纲的协调条件为:于是,对于M量纲,有:T量纲,有:L量纲,有:将:带入(1)式,得:此题得证。
7.从不可压流动的N-S方程出发,推导出平板定常不可压二维层流的Prantl边界层方程N-S方程:根据边界层流动特点,对方程各项数量级的大小进行详细分析,可化简N-S方程选择来流速度u0作为速度比较基准,x可作为长度比较基准,并取u0和x的数量级为1,用符号o(1)表示,因为δ/x<<1所以δ的数量级o(δ)<<o(1)定义u0~o(1),x~o(1);因为0<y<δ,0<u<u0所以y和u的数量级为:y~o(δ),u~o(1)由此可得u各阶导数的数量级为~o(1)~o(1)~o()~o()由连续方程~o(1)而y~o(δ)所以v~o(δ)所以v各阶导数的数量级~o(1)~o()~o(δ)~o(δ)将其代入x方向动量方程o(1)+o(1)o(1)+o(δ)o()=-+[o(1)+o()]因为边界层粘性作用强,粘性项[o()]不能忽略而且与方程左边比较可知[o()]的数量级为o(1)因为o()﹥﹥o(1)意味着运动粘度数量级为~o(δ2)再代入y向动量方程o(δ)+o(1)o(δ)+o(δ)o(1)=-+o(δ2)[o(δ)+o()]该方程中各项的数量级都小于或等于o(δ),所以=0
意味着1.相对于各项数量级均为o(1)的x轴方向运动方程而言,y方向运动方程并不重要2.因为=0,所以=3.既然边界层内p与y无关,因而p可取为边界层处边界处的压力,再由外边界处的伯努利方程可得所以普朗特边界层方程边界条件:y=0,u=0,v=0y=∞,u=u0三、计算题1.已知,求在点M(2,-1,1)处沿向量方向的方导数。方向导数:;;==2.设流场的速度分布为:。求(1)当地加速度的表达式;(2)t=0时在点(1,1)处流体质点的加速度。(1)局部加速度:=(2)质点的加速度:
3.在柱坐标系下,,,,求流线族。[解]:柱坐标系下的流线方程为:所以,即,,因此,有:即:所以,有:即,所以,流线族为:4.在直角坐标系下,,求流线族和迹线族。解:由速度场知其是二维流场,那么二维流线方程为:即:这里将t视为常数,于是有:即:亦即:
于是流线族方程为:由二维的迹线方程得:解得迹线族方程为:5.如图所示,一充满水的圆柱形容器,直径d=1.2m,绕垂直轴等角速旋转,在顶盖=0.43m处安装一开口测压管,管中水位h=0.5m.。问此时容器的转速为多少时,顶盖上所受静水总压力为零。dr0zhPao解:
6.有一个二维流动,假定流体是不可压缩流体,其速度分量为试问:1)流动是否满足连续性方程;2)流动是否无旋?[解]:1)由题意得:,将上述结果带入二维不可压流动的连续性方程,得到:--=0故该流动满足连续性方程。2)由题意得:该流体流动的旋度为:由题意知:该流体流动为二维流动,故Z方向上分量为0,将,带入上式,得:,故该流体流动为无旋。7.试分析复位势的基本流动;[解]:当m为正实数时,复位势描述的流动由两个强度均为m,位置分别在(-1,0)和(1,0)的点源及一个强度为m,位置在(0,0)的点汇组成。
8.已知流体通过漏斗时旋转的速度分布可用柱坐标表示为:(a为漏斗半径) 求:涡量,说明在什么区域是有旋的,什么区域是无旋的?(w是常数) [解]:计算涡量柱坐标9.带有自由面的粘性不可压缩流体在倾斜平板上由于重力的作用而发生运动。设:平板无限大,与水平面的倾角为,流体的深度为h,作定常层流运动。求:速度分布、平均流速及作用在平板上的摩擦力。[解]:不可压缩,定常
平均流速作用在平板上的摩擦力10.如图所示的管流是定常不可压缩流动,它的进口断面是1和2,出口断面是3,各断面参数如图所示,流体密度为,求管子对流体的总的作用力。(忽略质量力)。yx11.题由题意知流体全部打在平板上,所以,流体的速度均垂直于平板,设为,打在平板上的流体面积为,来流面积为
12.题由问题可知: 速度的方向处处与轴平行,即:; 流动是平面的,即: 流动是定常的,即: 于是问题可简化为: 边界条件:, 积分得: 应用边界条件可得;
于是本问题的解为:(本题中假设平板左右两端压力分别为)13、如图,水平放置的两块平行无穷平板间有厚度为、,粘性系数分别为、的不相混的不可压缩流体作平行于平板的定常的层流运动。试求:速度沿厚度方向的分布以及两层流体在界面上的切应力(设沿流动方向上的压力梯度为常数,即)。[解]:定常、层流、水平流动控制方程:XYOa层流动b层流动边界条件:14、如图所示,均匀来流以速度u0流过无限薄平板,在平板上形成了层流边界层,假设边界层内任意断面上的速度分布ux
与y得函数关系为三次多项式,试计算边界层厚度δ(x)的近似解析式。(提示:该平板层流边界层积分形式的动量方程为=,其中为平板壁面切应力)解:设ux=a+by+cy2+dy3边界条件:y=0,ux=0;y=δ,ux=u0由此,得a=0,b=,c=,d=故,-----------(*)将(*)代入上式,得:故15拉格朗日变数()给出的流体运动规律为,,(1)求以欧拉变数描述的速度场:(2)问流动是否为定常:(3)求加速度。
解:(1)(2)流动不是定常(3)因此16,设流场由均匀流和点源迭加而成,速度为U的均匀流自左向右沿正x轴方向流动,源强伟Q的点源布置在原点。试确定(1)流场中驻点的位置;(2)通过驻点的流线方程。解:均匀流:速度场,流函数点源:速度场,流函数复合流动速度势:复合流动流函数:
令在处有驻点。将带入。故过驻点的流线方程为:17:一无限长的平板沿y=0放置,一强度为m的点源位于平板上部,距平板距离为h。试求:(1)写出平版以上区域内的复位势(2)利用伯努利方程求平版以上表面的压力分布(3)求流体对平板的总压力。设平板下部压强等于流体的滞止压强解:(1)利用平面定理,有在x轴上,y=0,z=x,于是复位势只有实部,实轴上ψ=0,为一条流线。(2)复速度为=在平板上表面,y=0,z=x,于是沿平板表面上的表面速度分布为
得v=0应用伯努利方程,有得上式说明在平板上表面原点处压强为滞止压强,与无穷远处未受扰动压强相等,离开原点向平板左右两侧移动,由于有速度存在,压强减小。(3)求平板的总压力,==18.有一半径为a=2m的圆柱体被速度为=5m/s的均匀流绕过。如果发现绕过圆柱体时只在圆柱表面上有一驻点(0,-2m)。试问绕过圆柱时是否有环量存在?若有,试求此环量。解:由题意可以画出上图,圆周上驻点位置由公式:得=125.6m2/s
19.给定流场速度为,,z=0.式中c为常数,作一个围绕轴的任意封闭曲线。试用斯托克斯定理求封闭围线的速度环量,并说明此环量与所取封闭围线的形状无关。解:斯托克斯定理因为流动为无旋流动,所以与形状无关zyu2+=20设有一定常流动为求:速度梯度张量,变形速度张量,应力张量,偏应力张量以及作用在球面上的合力。(设流体介质的动力粘性系数为μ,压力函数为p)解:速度梯度张量应力张量变形速度张量
偏应力张量球面上的合力研究生考试题'
您可能关注的文档
- 高等教育出版社-天津大学-无机化学-课后习题参考答案.doc
- 高等教育出版社《复变函数》与《积分变换》第四版课后习题参考答案.pdf
- 高等教育出版社《金融市场学(第三版)》课后习题答案.doc
- 高等教育学20套题答案.doc
- 高等数学参考答案.doc
- 高等数学复习题及答案.doc
- 高等数学定积分应用习题答案.doc
- 高等数学科学出版社下册课后答案第十章曲线积分与曲面积分习题简答.doc
- 高等数学课后习题答案--第七章.pdf
- 高等职业教育“十一五”规划教材《统计学》第四章课后习题及答案.docx
- 高级会计学课后习题答案.doc
- 高级英语修订版第一册重排版课后练习答案.doc
- 高级英语第一册习题答案.doc
- 高考回归课本资料—— 人教版高中化学选修三《物质结构与性质》课本“问题交流”“课后习题”参考答案.doc
- 高考回归课本资料—— 人教版高中化学选修五《有机化学基础》课本“问题交流”“课后习题”参考答案.doc
- 高考文言文练习及答案.doc
- 高考现代文《云和梯田》阅读练习及答案.doc
- 高职高专《有机化学》课后习题答案 第二章.doc
相关文档
- 施工规范CECS140-2002给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程
- 施工规范CECS141-2002给水排水工程埋地钢管管道结构设计规程
- 施工规范CECS142-2002给水排水工程埋地铸铁管管道结构设计规程
- 施工规范CECS143-2002给水排水工程埋地预制混凝土圆形管管道结构设计规程
- 施工规范CECS145-2002给水排水工程埋地矩形管管道结构设计规程
- 施工规范CECS190-2005给水排水工程埋地玻璃纤维增强塑料夹砂管管道结构设计规程
- cecs 140:2002 给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程(含条文说明)
- cecs 141:2002 给水排水工程埋地钢管管道结构设计规程 条文说明
- cecs 140:2002 给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程 条文说明
- cecs 142:2002 给水排水工程埋地铸铁管管道结构设计规程 条文说明