• 470.62 KB
  • 2022-04-22 11:26:24 发布

一元函数微积分 (魏贵民 胡灿 著) 高等教育出版社 课后答案《一元函数微积分》习题解答3-1到3-6

  • 23页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'课后答案网您最真诚的朋友www.hackshp.cn网团队竭诚为学生服务,免费提供各门课后答案,不用积分,甚至不用注册,旨在为广大学生提供自主学习的平台!课后答案网:www.hackshp.cn视频教程网:www.efanjy.comPPT课件网:www.ppthouse.com 课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!3-13-3-11习题解答1、答:不能。因为函数f(x)在区间[a,b]上的值可能取正和负。正确的解释应为在x轴上方的曲边梯形的面积之和与在x轴下方的曲边梯形的面积之和的差。nb2、解:W=limF(ξ)∆x=F(x)dx。y=2x∑ii∫aλ→0i=1113、解:(1)∫2xdx=右图三角形面积=×1×2=1;01x021π2(2)∫1−xdx=右图四分之一单位圆的面积=;04π(3)∫−sinxdx=下图中两个曲边梯形的面积差额π=A−A=012ππ(4)2cosxdx=上面右图中的两个曲边梯形的面积的和=A+A=22cosxdx∫−π12∫021dx课后答案网n14、解:(1)∫02=lim∑2∆xi,ξi∈[xi−1,xi,]∆xi=xi−xi−1,i=,2,1⋯,n1+xλ→0i=11+ξi0=x,0t∈,0().2⎛1⎞d⎜⎟dx⎝x⎠1(32)原式=∫=−∫=arccos+C;注:本题用了“倒代换”的解法.12xx21−⎛1⎞课后答案网21−⎜⎟x⎝x⎠2(33)令x=tant则dx=sectdt,所以,2sectdtx原式=∫3=∫coswww.hackshp.cntdt=sint+C=2+C;sect1+x(34)令x=3sect,则dx=3secttantdt,所以3tant223原式=∫3secttantdt=3∫tantdt=3(tant−t)+C=x−9−3arccos+C;3sectxt(35)令2x=t,则dx=tdt,所以,原式=∫dt=t−ln1+t+C=2x−ln(1+2x)+C;1+t(36)令x=sint则dx=costdt所以7 课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!costdtdtdtt原式=∫=∫dt−∫=t−∫t=t−tan+C1+cost1+cost222cos;2x=arcsinx−+C21+1−xxsinx1−cosx1−cosx注:tan===±21+cosxsinx1+cosx2d(x+3x−10)22、解:(1)原式==lnx+3x−10+C;∫2x+3x−104x(x+)1−8⎛2834⎞原式=∫dx=∫⎜x+x+1+−−⎟dx(2)x(x−1)(x+)1⎝xx−1x+1⎠32xx=++x+8lnx−3lnx−1−4lnx+1+C32132(x−)1−⎛1x−2⎞22原式=⎜−⎟dx=lnx+1−dx∫2∫2⎝x+1x−x+1⎠x−x+1123dx(3)=lnx+1−ln(x−x+)1+∫222⎛1⎞3⎜x−⎟+⎝2⎠4122x−1=lnx+1−ln(x−x+)1+3arctan+C23(4)因为课后答案网x−2/12−2/3=++(x+1)(x+2)(x+)3x+1x+2x+3(A+B+C=5,0A+4B+3C=6,1A+3B+2C=)041dxdx3dx1(x+)2所以,原式=−∫www.hackshp.cn+2∫−∫=ln3+C2x+1x+22x+32(x+1)(x+)32x+1ABC(5)令=++,得A+C=,1B+2C=,0−A−B+C=1,所22(x+)1(x−)1x+1(x+)1x−11dxdx1dx112以,原式=−+=+lnx−1+C∫∫2∫2x+1(x+)12x−1x+121ABx+C(6)令=+,得A=,1A+B=,0C=0⇒A=,1B=−,1C=0,所以22x(x+)1xx+122dxxdx1d(x+)11x原式=−=lnx−=ln+C∫∫2∫22xx+12x+12x+18 课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!1Ax+BCD1(7)令=++,得A=B=D=−,C=1,所以222(x+1)(x+x)x+1xx+12dx1(x+)1dx1dx原式=−−∫∫2∫x2x+12x+1211d(x+)11dx=lnx−lnx+1−−∫2∫224x+121+x1121=lnx−lnx+1−ln(1+x)−arctanx+C2422121x+−x+114242(8)因为==+,所以,42222x+1(x+2x+1)(x−2x+)1x+2x+1x−2x+112122(x+)2+2(x−)2−222222原式=∫2dx−∫24x+2x+14x−2x+1⎡22⎤2d(x+2x+)1d(x−2x+)11⎛dxdx⎞=8⎢∫2−∫2⎥+⎜∫2+∫2⎟⎣x+2x+1x−2x+1⎦4⎝x+2x+1x−2x+1⎠⎡⎛2⎞⎛2⎞⎤⎢d⎜x+⎟d⎜x−⎟⎥2x2+2x+11⎢⎜⎝2⎟⎠⎜⎝2⎟⎠⎥=ln2+⎢∫22+∫22⎥8x−2x+14⎢⎛2⎞⎛2⎞⎛2⎞⎛2⎞⎥⎢⎜x+⎟+⎜⎟⎜x−⎟+⎜⎟⎥⎜⎝2⎟⎠⎜⎝2⎟⎠⎜⎝2⎟⎠⎜⎝2⎟⎠⎣⎦2x2+2x+课后答案网122=ln+arctan(2x+)1+arctan(2x−)1+C8244x−2x+111111111(9)因为==⋅−⋅−⋅,所以,422x−1(xwww.hackshp.cn−1)(x+1)(x+)14x−14x+12x+11x−11原式=ln−arctanx+C4x+12cosxdx1sinx+cosx+cosx−sinx1(10)原式=∫=∫dx=(x+lnsinx+cosx)+Csinx+cosx2sinx+cosx2注:可使用“万能替换”公式求解。2x2dt1−t2t(11)用“万能替换”,令t=tan,则dx=,cosx=,sinx=22221+t1+t1+t12dtx所以原式=⋅dt==ln1+t+C=ln1+tan+C∫22∫2t1−t1+t1+t21++221+t1+t9 课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!332(12)令t=x+1⇒x=t−,1dx=3tdt,所以,23tdt⎛dt⎞⎛12⎞原式=∫=3⎜∫(t−)1dt+∫⎟=3⎜t−t+lnt+1+C⎟1+t⎝1+t⎠⎝2⎠23333=(x+)1−3x+1+3ln1+x+1+C23(13)原式=[(x)2−x+]1dx=1x2−2x2+x+C∫232(14)令t=x+1⇒x=t−,1dx=2tdt,所以,2t−1[(t+)1−2][(t+)1−]1(t+)1−(3t+)1−2原式=∫2tdt=2∫dt=2∫dtt+1t+1t+1−1=[2∫(t+)1dt−3∫dt+2∫(t+)1dt]=(t+)1−6t+4lnt+1+C2=(x+1+)1−6x+1+4ln(1+x+)1+C=x−4x+1+4ln(1+x+)1+C1443(15)令t=x⇒x=t,dx=4tdt,所以,324tdttdt⎛12⎞44原式==4=4⎜t−t+ln1+t⎟+C=2x−4x+4ln(1+x)+C∫2∫t+tt+1⎝2⎠(16)参看1题的(7)题。1dxx+11−2tdt(17)因为dx=,令t=⇒x=,dx=,所以∫∫222x(x+)1x+1xt−1(t−)1x课后答案网xx+1+1−2dt⎛11⎞t+1x原式=∫2=−∫⎜−⎟dt=ln+C1=ln+C1t−1⎝t−1t+1⎠t−1x+1−1www.hackshp.cnx1=ln2x+1+2x(x+)1+C=lnx++x(x+)1+C12dx22(18)因为原式=∫,令x+1=tant⇒dx=sectdt,(x+)1+1=sect,所以2x(x+)1+110 课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!dxsectdtdtdt原式=∫2=∫=∫=∫πx(x+)1+1tant−1sint−cost2sin(t−)4⎛π⎞d⎜t−⎟1⎝4⎠1⎛π⎞⎛π⎞=∫=lncsc⎜t−⎟−cot⎜t−⎟+C2⎛π⎞2⎝4⎠⎝4⎠sin⎜t−⎟⎝4⎠12cost+sint=ln−+C2sint−costsint−cost1[2]=lnx−ln(2+x+4+4x+2x)+C211d(11+5x)1−211−2513、解:(1)原式==−(11+5x)=−(16−)1=5∫−2(11+5x)310−210512(2)原式=0d(x+)10π⎛π⎞π=arctan(x+)1=−⎜−⎟=∫−21+(x+)12−2442⎝⎠t=x22tdt2t+1−122(3)原式=∫=2∫dt=([2t−ln1+t)]=21(+ln)11+t11+t13πsec2xdxπd(tanx)t=tanx11d(2t)111(4)原式=∫4=∫4=∫=arctan(2t)=arctan20sec2x+tan2x01+2tan2x201+(2t)2202ππ1+cos2u1⎛1⎞21⎛π3⎞(5)原式=2du=⎜u+sin2u⎟=⎜−⎟∫π⎜⎟22⎝2⎠π2346⎝⎠课后答案网61u=1−x02124⎛1315⎞4(6)原式=∫1(−u)u(−2udu)=2∫(u−u)du=2⎜u−u⎟=10⎝35⎠150y2u=22⎛y⎞2原式=42www.hackshp.cn1−⎜⎟dy8221−u2du∫0⎝2⎠=∫0(7)注:用了171页的例13的结论。2⎛u21⎞2=82⎜1−u+arcsinu⎟=(π+)22⎝22⎠0x=asintππ原式2a2sin2tacostacostdt=a42sin2tcos2tdt=∫0∫0(8)π24π44sin2ta1−cos4tπa=a∫2dt=∫2dt=0440216x=sintπcos2tπππππ(9)原式2dt=2(csc2t−1dt=()−cott−t)2=−+1+=1−=∫π2∫ππsint244444x=tantπsec2tdtπcostdtπ2(10)原式3=3=−(sint)−13=2−=∫π2∫π2πtantsectsint344411 课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!t=x32tdt32π(11)原式=2arctant==∫0t1(+t2)0312ad3(a2−x2)2a22(12)原式=−∫=−3a−x=(3−)1a203a2−x20221t2t11−t−−(13)原式=−∫e2d(−)=−e2=1−e202022ed1(+lnx)e(14)原式=∫=21+lnx=(23−)111+lnx1ππ⎛1⎞212(15)原式=∫2(cos3x+cosx)dx=⎜sin3x+sinx⎟=1−=0⎝3⎠330πππ3244(16)原式=2∫2cosxsinxdx=−2∫2cosdx(cosx)=−(cosx)2=00330πππ原式=2∫cosxdx=2∫2cosxdx+2∫π(−cosx)dx00(17)2ππ=2sinx2−2sinxπ=2202xx1e+1−ex12(18)原式=∫课后答案网xdx=[x−ln(1+e)]0=1+ln01+e1+eπ431π3π4、解:(1)原式=0;(2)原式=2∫24cosθdθ=8=注:用了183页例11的www.hackshp.cn0422211322232π结论。(3)原式=2∫(arcsinx)d(arcsinx)=(arcsinx)=;(4)原式=0。0303242a1au=x1a21a2322225证明:∫0xf(x)dx=∫0xf(x)d(x)=∫0uf(u)du=∫0xf(x)dx(a>)0。222bx=−t−bbb6、证明:∫−bf(x)dx=∫bf(−t)(−dt)=∫−bf(−t)dt=∫−bf(−x)dx。at=a−x0aa7、证明:∫0f(x)dx=∫af(a−t)d(a−t)=∫0f(a−t)dt=∫0f(a−x)dx12 课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!1⎛1⎞1t=d⎜⎟1−dt111dxx1⎝t⎠t2dtdx8、证明:12=−t=t=x(x>)0∫x1+x2=∫1∫11∫11+t2∫11+x2t1+⎛⎞1+⎜⎟2⎝t⎠t11dxdx注:本题改为=a(a>)0可能更好一些。∫a1+x2∫11+x21t=1−x011mnmnmnnm9、证明:∫0x1(−x)dx=∫11(−t)td1(−t)=∫01(−t)tdt=∫0x1(−x)dx。πππ10、证明:sinnxdx=2sinnxdx+sinnxdx(1)∫0∫0∫π2πx=π−t0ππ又sinnxdxsinn(π−t)d(π−t)=2sinntdt=2sinnxdx(2)∫π=∫π∫0∫022ππ(2)代入(1)得sinnxdx=22sinnxdx。∫0∫0a+l11、证明一:令F(a)=∫f(x)dx,a−l则F′(a)=f(a+l)−f(a−l)=f(a+l)−f(a−l+2l)=f(a+l)−f(a+l)=0所以F(a)=常数,即F(a)与a无关。a+l02la+l证明二:∫a−lf(x)dx课后答案网=∫a−lf(x)dx+∫0f(x)dx+∫2lf(x)dx(1)a+lx=2l+ta−l0又∫2lf(x)dx=∫0f2(l+t)dt=−∫a−lf(t)dt(2)a+l2la+l(2)代入(1)得∫a−lf(x)dx=∫0f(x)dx,即∫a−lf(x)dx的值与a无关。www.hackshp.cnx12、证明:(2)令G(x)=∫f(t)dt,则0−xu=−txxxG(−x)=∫0f(t)dt=∫0f(−u)d(−u)=−∫0f(u)du=−∫0f(t)dt=−G(x)x所以G(x)=∫f(t)dt是奇函数;0(1)同样可证。3—5习题解答111⎛1⎞1、解:(1)原式=∫xd(sinmx)=(xsinmx−∫sinmxdx)=⎜xsinmx+cosmx+C⎟mmm⎝m⎠1−2t1−2t−2t1⎛−2t1−2t⎞(2)原式=−∫td(e)=−(te−∫edt)=−⎜te+e⎟+C222⎝2⎠13 课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!2tdt1d1(−t)原式=tarcsint−∫td(arcsint)=tarcsint−∫=tarcsint+∫(3)1−t221−t22=tarcsint+1−t+C2121⎡2x⎤1⎡212⎤(4)原式=∫ln(x−)1d(x)=⎢xln(x−)1−∫dx⎥=⎢xln(x−)1−x−x−ln(x−)1⎥+C22⎣x−1⎦2⎣2⎦3313133xlnx12xlnx13(5)原式=∫lnxd(x)=(xlnx−∫xd(lnx))=−∫xdx=−x+C3333393313x原式=arctanxd(x)=(xarctanx−dx)∫∫231+x(6)231⎛311+x−12⎞xarctanx1212=⎜xarctanx−d(x)⎟=−x+ln(1+x)+C⎜∫2⎟3⎝21+x⎠366212原式=∫x(secx−)1dx=∫xd(tanx)−∫xdx=xtanx−x−∫tanxdx2(7)2x=xtanx−+lncosx+C2222原式=∫xd(sinx)=xsinx−2∫xsinxdx=xsinx+2∫xd(cosx)(8)22=xsinx+2xcosx−2∫cosxdx=xsinx+2xcosx−2sinx+C2[2]22原式=x(lnx)−∫xd(lnx)=x(lnx)−2∫lnxdx=x(lnx)−2xlnx+2∫dx(9)2=x(lnx)−2xlnx+2x+C课后答案网−1lnx1lnxdx原式=∫lnxd[(1−x)]=−∫d(lnx)=−∫1−x1−x1−xx1(−x)(10)lnx1−x=+ln+C1−xxwww.hackshp.cn212(x−)1cos2x12原式=−∫(x−)1d(cos2x)=−+∫cos2xd(x−)1222cos2x21cos2x2x1(11)=−(x−)1+∫xd(sin2x)=−(x−)1+sin2x−∫sin2xdx2222212111⎛23⎞x=−(x−)1cos2x+xsin2x+cos2x+C=−⎜x−⎟cos2x+sin2x+C2242⎝2⎠211x1原式=∫xsin2xdx=−∫xd(cos2x)=−cos2x+∫cos2xdx2444(12)x1=−cos2x+sin2x+C4814 课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!222−1(lnx)lnx(lnx)2lnxdx原式=−(lnx)d(x)=−+2dx=−−+2∫∫2∫2xxxxx(13)2(lnx)2lnx212=−−−+C=−(lnx+2lnx+)2+Cxxxx(14)−2xx1x−2x1−2xx1−2xx因为∫esindx=−∫sind(e)=−esin+∫ed(sin)2222222−2x1−2xx1−2xxex1x−2x=−esin+∫ecosdx=−sin−∫cosd(e)22422282−2x−2xexex1−2x⎛x⎞=−sin−cos+∫ed⎜cos⎟22828⎝2⎠−2xe⎛x1x⎞1−2xx=−⎜sin+cos⎟−∫esindx⇒2⎝242⎠162−2x−2xx8e⎛x1x⎞所以∫esindx=−⎜(sin+cos⎟+C217⎝242⎠(15)ax1ax1ax1ax因为∫esinnxdx=∫sinnxd(e)=esinxn−∫ed(sinnx)aaaax1axnaxenax=esinnx−ecosnxdx=sinnx−cosnxd(e)∫2∫aaaaaxaxenenax()=sinnx−cosnx+edcosnx22∫aaaax2e⎛n⎞nax=课后答案网⎜sinnx−cosnx⎟−2∫esinnxdx⇒a⎝a⎠aaxaxae⎛n⎞所以esinnxdx=⎜(sinnx−cosnx⎟+C∫22a+n⎝a⎠t=2x−1tttt2x−1(16)原式=∫etdtwww.hackshp.cn=te−∫edt=(t−)1e+C=(2x−1−)1e+C221+cos2xx1x1原式=∫xdx=+∫xcos2xdx=+∫xd(sin2x)24244(17)x1x1=(x+sin2x)−∫sin2xdx=(x+sin2x)+cos2x+C444821原式=x(arcsinx)−∫2xarcsinx⋅dx2(18)1−x222=x(arcsinx)+2∫arcsinxd(1−x)=x(arcsinx)+21−xarcsinx−2x+C1(19)原式=2∫ln(x+)1d(x+)1=2x+1ln(x+)1−2∫dx=2x+1[ln(x+)1−]2+Cx+115 课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!322222222222222∫xx+adx=∫(x+a−a)x+adx=∫(x+a)dx−a∫x+adx(20)3222222222=x(x+a)−3∫xa+xdx−a∫a+xdx312221222原式=x(a+x)−a∫a+xdx…………(1)442令x=atant,dx=asectdt,222332得∫a+xdx=a∫sectdt,∫sectdt=∫sectdtantdt=secttant−∫tantsectdt3=secttant−∫sectdt+∫sectdt223xa+x122所以sectdt=+ln(x+a+x)+c∫22a2224222a+2x22a22代入(1)式得:∫xa+xdx=xa+x−ln(x+a+x)+c88x(21)原式=xarctanx−∫xd(arctanx)=xarctanx−∫dx1+xd(x)=xarctanx+∫2−∫d(x)+C=(x+)1arctanx−x+C1+(x)212e1ee12e122、解:(1)原式=课后答案网xlnx−∫xdx=−x=(e+)121212414(2)ππππcosx3ππ⎛13⎞13原式=−3xd(cotx)=−xcotx3+3dx=−++ln(sinx)3=⎜−⎟π+ln∫ππ∫πsinx94π⎜49⎟224www.hackshp.cn444⎝⎠(3)3π21−cos2x1π21π2π12π1π原式=∫0xdx=∫0xdx−∫0xcos2xdx=−xsin2x0+∫0xsin2xdx22264233π1π1πππ=−xcos2x+∫cos2xdx=−640406411−1ln(1+x)11原式=∫ln(1+x)d[(2−x)]=−∫dx02−x02(−x)(1+x)(4)011⎛11⎞111ln2=ln2+∫⎜−⎟dx=ln2+(lnx−2−lnx+1)=30x−2x+13003⎝⎠(5)16 课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!222π2dx2π22π222原式=(xarctanx−)1−∫1xd(arctanx−)1=−∫12=−ln(x+x−)11=−ln(2+)313x−133(6)πππππ22x2x222xπ2x22x因为∫ecosxdx=esinx−2∫esinxdx=e+2ecosx2−4∫ecosxdx⇒000001π原式=(e−)25eeeee∫1sin(lnx)dx=xsin(lnx)1−∫1cos(lnx)dx=esin1−xcos(lnx)1−∫1sin(lnx)dx⇒(7)e1∫sin(lnx)dx=(e⋅sin1−e⋅cos1+)1124t=x222xttt222(8)∫0edx=∫02tedt=[2te0−∫0edt]=4e−2e+2=(2e+)1e1e1e⎛1⎞(9)lnxdx=−lnxdx+lnxdx=−[xlnx−x]−1+[xlnx−x]=2⎜1−⎟.∫e−1∫e−1∫1e1e⎝⎠3、解:(1)原式=x+1−1dxdx11∫3dx=−∫2+∫3=−+2+C1(−x)1(−x)1(−x)1−x21(−x)6u=x61x616+u−61⎡d6(+u)d6(+u)⎤原式=∫63d(x)=∫3du=⎢∫2−6∫3⎥66(+x)66(+u)6⎣6(+u)6(+u)⎦(2)1111=−+C=−+C26266(2+u)6(6+u)6(2+x)6(6+x)(3)原式=d(x+sin课后答案网x)=lnx+sinx+C∫x+sinx(4)原式=lnlnxd(lnx)=lnx⋅lnlnx−dx=lnx⋅lnlnx−lnx+C∫∫xx=asintacostdt1dt1122原式==sectd(tant)=(tant+)1d(tant)=∫554∫44∫4∫acoswww.hackshp.cntacostaa(5)⎛⎞⎜3⎟1313xx=4(tant+3tant)+C=4⎜+3⎟+C3a3aa2−x2⎜(a2−x2)2⎟⎝⎠x=tantsec2tdtcos3tdt1−sin2t11原式==d(sint)=−++C=∫4∫4∫43tant⋅sectsintsint3sintsint(6)2231+x1(+x)=−+C3x3x(7)u=x222原式=∫xsinxdx=∫2usinudu=−2ucosu+4∫ucosudu=−2ucosu+4usinu−4∫sinudu2=−2ucosu+4usinu+4cosu+C=2cosx⋅2(−x)+4xsinx+C17 课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!(8)原式2222x1+x−12=xln(1+x)−dx=xln(1+x)−2dx=xln(1+x)−2x+2arctanx+C∫2∫21+x1+x(9)原式1⎛1⎞x1dx1⎛x⎞=−xd⎜⎟=−+=−⎜+cotx⎟+C∫22∫222⎝sinx⎠2sinx2sinx2⎝sinx⎠x⎛x⎞(10)原式2cosd⎜⎟22dx⎝2⎠xx=∫xxdx=∫x=2∫x=2lncsc−cot+C2222sincossinsin2222(11)4x4=tanu21d(x)1secudu121usin2u原式==cosudu=1(+cos2u)du=++C∫82=∫4∫∫41(+x)4secu488164usinucosu141x1=++C=arctan(x)++C88881+x81+x8414x=arctan(x)++C881(8+x)(12)84x4=u21xd(x)1udu1⎡3u+2⎤u1⎡41⎤原式===du−du=−−du∫84∫2⎢∫∫2⎥∫⎢⎥4x+3x+24u+3u+24⎣u+3u+2⎦44⎣u+2u+1⎦444u1xx+1=−ln(u+)2+ln(u+)1+C=+ln+C4444x+2(13)课后答案网1⎡11⎤1⎛11⎞111+x1=−dx=⎜+⎟dx−arctanx=ln−arctanx+C∫⎢22⎥∫2⎣1−x1+x⎦4⎝1−x1+x⎠241−x24xxxcosxcos11(14)原式=www.hackshp.cn2dx=12d⎛x⎞=−xd∫∫⎜⎟8∫x3x3x43x⎝2⎠sin28sincossin222212x2x12x1x=−(xcsc−∫cscdx)=−xcsc−cot+c82282426x=t25xt⋅6t6dtt(15)原式=∫632dt=∫=6ln+C=ln66+Ct(t+t)t1(+t)1+t(x+)122sinx2sinx(16)原式=∫ed(sinx)=e+C18 课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!222dx原式=xln(x+1+x)−∫x⋅2ln(x+1+x)⋅21+x2222(17)=xln(x+1+x)−2∫ln(x+1+x)d(1+x)2222=xln(x+1+x)−21+xln(x+1+x)+2∫dx2222=xln(x+1+x)−21+xln(x+1+x)+2x+C⎛x⎞xlnxx1xlnxdx原式=∫lnxd⎜⎟=−∫dx=−∫(18)⎜⎝1+x2⎟⎠1+x21+x2x1+x21+x2xlnx2=−ln(x+1+x)+C21+xarcsinx=u1u2112原式ucosudu=(u+ucos2u)du=+usin2u+cos2u+C=∫∫124482(19)=u+1usinucosu+11(−2sin2u)+C14281212121=(arcsinx)+x1−xarcsinx−x+C(C=C+)14248(20)arccosx=ttcos3t12⎛3⎞原式=∫(−sint)dt=−∫t1(−sint)d(sint)=−∫td⎜sint−sint⎟sint⎝3⎠⎡⎛13⎞13⎤=−⎢t⎜sint−sint⎟−∫sintdt+∫sintdt⎥⎣⎝3⎠3⎦⎛13⎞1(2)=−t⎜sint−sint⎟−cost+∫1−costd(cost)⎝3⎠3⎛12⎞113=−tsint⎜1−sint⎟−cost+cost−cost+C⎝课后答案网3⎠39⎛12⎞213=−tsint⎜1−sint⎟−cost−cost+C⎝3⎠39222+x213=−1−xarccosx−x−x+C339(21)www.hackshp.cnsinx+cosx1⎛2dx⎞tanx1d(tanx)tanxlntanx原式=dx=⎜secxdx+⎟=+=++C∫2∫∫∫2sinxcosx2⎝sinxcosx⎠22tanx22(22)8623secxsecx(tanx+)1⎛231⎞原式=∫dx=∫4d(tanx)=∫4d(tanx)=∫⎜tanx+3+2+4⎟d(tanx)tan4xtanxtanx⎝tanxtanx⎠3242tanx31(tanx−1)(tanx+10tanx+)1=+3tanx−−+C=+C333tanx3tanx3tanxd2(+cosx)dxdx(23)原式=∫+2∫=ln(2+cosx)+2∫(1)2+cosx2+cosx2+cosx又19 课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!x2dud⎛⎜u⎞⎟u=tan⎜⎟dx21+u2du2⎝3⎠2u2⎛1x⎞=2==arctan+C=arctan⎜tan⎟+C∫=∫2∫2∫2⎜⎟12+cosx1−u3+u3⎛u⎞333⎝32⎠2+21+⎜⎜⎟⎟1+u⎝3⎠将上式代入(1)式得4⎛1x⎞原式=ln(2+cosx)+arctan⎜⎜tan⎟⎟+C3⎝32⎠(24)12cosxsinx+1−111dx=∫dx=∫(sinx+cosx)dx−∫2sinx+cosx22sinx+cosx⎛π⎞d⎜x+⎟11⎝4⎠11⎛π⎞⎛π⎞=(sinx−cosx)−∫=(sinx−cosx)−lncsc⎜x+⎟−cot⎜x+⎟+C222⎛π⎞222⎝4⎠⎝4⎠sin⎜x+⎟⎝4⎠习题3-63-3-66b+∞dx+∞dxbdx⎛1⎞11、解:(1)由187页例1知收敛,且=lim=lim⎜−⎟=;∫1x4∫1x4b→+∞∫1x4b→+∞⎝3x3⎠31(2)由187页例1知+∞dx发散;∫1x(3)因为bb+∞b课后答案网⎛xe−λx1b⎞⎛e−λx⎞1xe−λxdx=limxe−λxdx=lim⎜−+e−λxdx⎟=lim⎜−⎟=∫0b→+∞∫0b→+∞⎜λλ∫0⎟b→+∞⎜λ2⎟λ2⎝0⎠⎝0⎠+∞1−λx所以xedx收敛且收敛于;∫0λ2(4)因为www.hackshp.cnb+∞dxbdx22x+12⎛ππ⎞2π=lim=limarctan=⎜−⎟=∫01+x+x2b→+∞∫0312b→+∞333⎝26⎠33⎛⎞0+⎜x+⎟4⎝2⎠+∞dx2π所以收敛且收敛于。∫01+x+x2332、解:(1)2dx1dx2dx1dx2−ηdx∫0=∫0+∫1=lim+∫+lim0+∫1x2(−x)x2(−x)x2(−x)ε→0εx2(−x)η→x2(−x)1dx2−ηdx=lim0+∫2+lim0+∫12ε→εη→1−(x−)11−(x−)112−η=limarcsin(x−)1+limarcsin(x−)1=πε→0=εη→0+120 课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!2dx所以∫dx收敛且收敛于π;0x2(−x)22x2x−1+1⎡⎛23⎞⎤8(2)因为dx=limdx=lim⎢⎜(x−)1+2x−1⎟⎥=,所∫1x−1ε→0+∫1+εx−1ε→0+33⎣⎝⎠⎦1+ε2x8以∫dx收敛且收敛于;1x−13ππdx0dxdx(3)因为2=π+2,∫−π1−cosx∫−1−cosx∫01−cosx22⎛x⎞d⎜⎟ππππdxdx⎝2⎠x2又∫2=lim∫2=lim∫2dx=−limcot=−∞,所以01−cosxε→0+ε1−cosxε→0+εxε→0+2sin2ε2πdx2发散;∫−π1−cosx2(4)因为1x1−εxt=1−xε1−t212∫0dx=lim0+∫0dx=lim+∫(−2t)dt=2εlim+∫ε1−tdt1−xε→1−xε→01t→0πt=sinuππ⎛1⎞22lim2cos2udu=lim21(+cos2u)du=lim⎜u+sin2u⎟=ε→0课后答案网+∫arcsinεε→0+∫arcsinεε→0+⎝2⎠arcsinεπ=21xπ2所以∫dx收敛且收敛于;注:也可作三角变换如令x=sint.01−xwww.hackshp.cn23、解(1)b+∞dx+∞dx1b⎛11⎞1x+2ln4dx==−lim⎜−⎟dx=−limln=∫2x2+x−2∫2(x+2)(x−)13b→+∞∫2⎝x+2x−1⎠3b→+∞x−1322ln2,所以原反常积分收敛,且收敛于;3+∞dx2dx+∞dx(2)因为∫=∫+∫,121222xx−1xx−1xx−121 课后答案网:www.hackshp.cn若侵犯了您的版权利益,敬请来信告知!⎛1⎞−d⎜⎟22dx2dx2⎝x⎠1π又=lim=lim=limarccos=∫12ε→0+∫1+ε2ε→0+∫1+ε2ε→0+x3xx−1xx−1⎛1⎞1+ε1−⎜⎟⎝x⎠b+∞dxbdx1πππ∫=lim∫=limarccos=−=,所以原反常积分收敛且2xx2−1b→+∞2xx2−1b→+∞x2236π收敛于;2b−ax+∞−axb−ax⎛e⎞1(3)因为∫0edx=blim→+∞∫0edx=blim→+∞⎜⎜⎟⎟=,所以原反常积分收敛且收敛于⎝−a⎠a0/1a;+∞dx1dx2dx+∞dx(4)因为=++,又由190页的例5知∫01(−x)2∫01(−x)2∫11(−x)2∫21(−x)21dxt=1−x1dt发散,故原反常积分发散。∫01(−x)2=∫0t2+∞bbb4、解:I=xne−xdx=limxne−xdx=lim⎛−xne−x+nxn−1e−xdx⎞⎟=nI,又n∫0b→+∞∫0b→+∞⎜⎝0∫0⎠n−1+∞−xI=edx=1,所以,I=n!0∫n0+∞0+∞−x5、证明:由定义知g(课后答案网x)是一个非负函数,又∫−∞g(x)dx=∫−∞0⋅dx+∫0edx=0+1=1,+∞0+∞−x所以gx)(是一个概率密度函数;而µ=∫−∞xg(x)dx=∫−∞0⋅xdx+∫0xedx=1(由第4题的结论可得)。www.hackshp.cn22'

您可能关注的文档