- 1.41 MB
- 2022-04-22 13:48:49 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'锅炉水处理技术培训资料(2012年度)北京化新通达清洗技术有限责任公司二零一二年四月
目录第一章结垢及腐蚀的形成与危害1矚慫润厲钐瘗睞枥庑赖。第二章锅炉水处理概述6聞創沟燴鐺險爱氇谴净。第三章供暖工艺及类型10残骛楼諍锩瀨濟溆塹籟。第四章BF-30A热水锅炉防腐阻垢技术16酽锕极額閉镇桧猪訣锥。第五章零排污蒸汽发生技术21彈贸摄尔霁毙攬砖卤庑。第六章经济分析及相关成本计算26謀荞抟箧飆鐸怼类蒋薔。第七章附录30厦礴恳蹒骈時盡继價骚。
第一章结垢及腐蚀的形成与危害1.1、锅炉结垢的原因 含有硬度的水若不经过处理就进入锅炉,运行一段时间后,锅炉水侧受热面上就会牢固地附着一些固体沉积物,这种现象称为结垢。受热面上黏附着的固体沉积物就称为水垢。在一定条件下,固体沉淀物也会在锅水中析出,呈松散的悬浮状,称为水渣。水渣可随排污除去,但如果排污不及时,部分水渣也会在受热面上或水流流动滞缓的部位沉积下来而转化成水垢(通常称之为“二次水垢”)。 锅炉结垢的原因,首先是给水中含有钙镁硬度或铁离子,硅含量过高;同时又由于锅炉的高温高压特殊条件。水垢形成的主要过程为: 茕桢广鳓鯡选块网羈泪。1)受热分解在高温高压下,原来溶于水的某些钙、镁盐类(如碳酸氢盐)受热分解,变成难溶物质而析出沉淀。 2)溶解度降低在高温高压下,有些盐类(如硫酸钙、硅酸盐等)物质的溶解度随温度升高而大大降低,达到一定程度后,便会析出沉淀。 鹅娅尽損鹌惨歷茏鴛賴。3)锅水蒸发、浓缩在高温高压下,锅水中盐类物质的浓度将随蒸发浓缩而不断增大,当达到过饱和时,就会在受热面上析出沉淀。 4)相互反应及转化给水中原来溶解度较大的盐类,在运行中与其他盐类相互反应,生成了难溶的沉淀物质。如果反应在受热面上发生,就直接形成了水垢;如果反应在锅水中发生,则形成水渣。而水渣中有些是具有黏性的,当未被及时排污除去时,就会转化成水垢。另外,有些腐蚀产物附着在受热面上,也往往易转化成金属氧化物水垢。 籟丛妈羥为贍偾蛏练淨。上述这些析出的沉淀物质黏结在锅炉受热面上就形成了水垢,温度越高的部位,越易形成坚硬的水垢。1.2水垢的危害 35
水垢的导热性很差,其导热系数要比锅炉钢板的导热系数小几十倍至数百倍,所以锅炉结垢后就会严重阻碍传热并引起下列危害: 預頌圣鉉儐歲龈讶骅籴。1)浪费燃料,降低出力 锅炉结垢后将严重影响受热面传热,降低热效率,降低蒸汽出力,增加燃料消耗。根据测定,水垢厚度与浪费燃料的关系见下表1。渗釤呛俨匀谔鱉调硯錦。水垢厚度(mm)0.51358浪费燃料(%)23~56~101535表1 水垢厚度与浪费燃料的关系不同水垢的导热效率见表2介质类别导热系数W/(mK)软钢46.4-69.7碳酸盐水垢0.58-6.97硫酸盐水垢0.58-2.92硅酸盐水垢0.06-0.23氧化铁垢0.12-0.23含油水垢0.12-0.17水5.81-6.97表2不同水垢的导热效率2)易引起事故,影响安全运行 受热面结生水垢后,金属的热量由于受水垢的阻碍而难于传热给锅水,致使金属壁温急剧升高,当温度超过了金属所能承受的允许温度时,金属强度显著降低,从而导致金属过热变形,严重时将造成鼓包、裂缝,甚至爆管等事故。 铙誅卧泻噦圣骋贶頂廡。3)堵塞管道,破坏水循环 如果水管内结垢,就会减小流通截面积,增大水的流动阻力,破坏正常的水循环,严重时还会完全堵塞管道,或造成爆管事故。 擁締凤袜备訊顎轮烂蔷。4)引起垢下腐蚀,缩短锅炉寿命 锅炉结垢后还会引起垢下腐蚀等危害。有些结构紧凑或结构复杂的锅炉,一旦受热面结垢,就极难清除,严重时只好采用挖补、割换管子等修理措施,不但费用大,而且还会使受热面受到严重损伤。所有上述这些危害都将大大缩短锅炉的使用寿命。 贓熱俣阃歲匱阊邺镓騷。另外,锅炉结垢后,将增加清洗和维修的时间、费用及工作量等,影响生产,减小锅炉的有效利用率,降低经济性。坛摶乡囂忏蒌鍥铃氈淚。1.3水垢的清除 锅炉应以积极的防垢、防腐为本。但当锅炉结垢或腐蚀沉积物达到一定程度时,也应及时清洗除去,以免对锅炉安全运行带来隐患。 蜡變黲癟報伥铉锚鈰赘。清洗除垢的方法主要分为机械除垢和化学清洗两大类,其中化学清洗又可分为碱煮除垢和酸洗除垢。现将锅炉除垢的方法和要求简要介绍如下: 買鲷鴯譖昙膚遙闫撷凄。1)机械除垢主要采用电动洗管器、扁铲、钢丝刷及手锤等工具进行机械除垢。此法比较简单,成本低,但劳动强度大,除垢效果差,易损坏金属表面,只适用于结垢面积小,且构造简单,便于机械工具接触到水垢的小型锅炉。近年来,由于清洗专用的高压水枪的应用,使水力冲洗的机械除垢发展较快,这种高压水力除垢的效果较使用原始的机械工具有很大的提高,且较为安全、方便。但35
目前高压水力除垢仍仅限于结构较简单的工业锅炉。 綾镝鯛駕櫬鹕踪韦辚糴。2)碱洗(煮)除垢 锅炉碱煮的作用主要是使水垢转型,同时促使其松动脱落。单纯的碱煮除垢效果较差,常常需与机械除垢配合进行。碱煮除垢对于以硫酸盐、硅酸盐为主的水垢有一定的效果,但对于碳酸盐水垢,则远不如酸洗除垢效果好。碱洗煮炉也常用于新安装锅炉的除锈和除油污,有时也用于酸洗前的除油清洗或垢型转化。 驅踬髏彦浃绥譎饴憂锦。碱洗药剂用量应根据锅炉结垢及脏污的程度来确定。一般用于除垢时的用量(每吨水的用量)为:工业磷酸三钠5~10kg,碳酸钠3~6kg,或氢氧化钠2~4kg。这些碱洗药剂应先在溶液箱中配制成一定浓度,然后再用泵送人锅内,并循环至均匀。 猫虿驢绘燈鮒诛髅貺庑。碱煮除垢的方法与新锅炉煮炉基本相同,只是煮炉结束后,应打开锅炉的各检查孔,及时加以机械(或高压水力)辅助清垢,以免松软的水垢重新变硬。 锹籁饗迳琐筆襖鸥娅薔。3)酸洗除垢 目前在各种除垢方法中,以酸洗除垢效果较好,但酸洗工艺若不合适或控制不当也会影响除垢效果或腐蚀金属,有时甚至会严重影响锅炉的安全运行。为了确保锅炉酸洗的安全和质量,国家质量技术监督局专门制定颁发了《锅炉化学清洗规则》,并规定:从事锅炉化学清洗的单位必须取得省级及省级以上锅炉压力容器安全监察机构的资格认可,才能承担相应级别的锅炉化学清洗。无相应资格的任何单位和个人(包括用炉单位),都不得擅自酸洗锅炉。 構氽頑黉碩饨荠龈话骛。锅炉在酸洗前应预先取有代表性的垢样进行化验,制定清洗方案;进酸开始时须在锅炉内和酸箱内挂入腐蚀指标片(直到退酸时取出);酸洗工艺流程及酸洗液的温度、浓度、流速、酸洗时间等应按清洗方案实施和控制;清洗过程中应不断取样化验并如实作好记录。清洗结束后,用炉单位、清洗单位和锅炉安全监察部门应对清洗质量进行验收。工业锅炉的酸洗质量要求如下: 輒峄陽檉簖疖網儂號泶。(1)除垢率 清洗以碳酸盐垢为主的水垢,除垢面积应达到原水垢覆盖面积的80%以上。 清洗硅酸盐或硫酸盐水垢,除垢面积应达到原水垢覆盖面积的60%以上。 如除垢率低于上述规定,或虽达到规定要求但锅炉主要受热面上仍覆盖有难以清理的水垢时,应在维持锅水碱度达到水质标准上限值的条件下,将锅炉运行一个月左右再停炉,用人工或高压水枪清理脱落的垢渣和残垢。由于经酸洗后残留的硬垢往往已有所松动,当锅炉投入运行后会逐渐地脱落,若不作再次清理极易发生事故,所以当残留垢较多时必须加以处理。 尧侧閆繭絳闕绚勵蜆贅。(2)钝化膜锅炉清洗表面应形成良好的钝化保护膜,金属表面不出现二次浮锈,无点蚀。 (3)腐蚀速度用腐蚀指示片测量的金属腐蚀速度的平均值应小于6g/(m2·h),且腐蚀总量不大于72g/m2。 识饒鎂錕缢灩筧嚌俨淒。(4)炉管畅通清洗后锅内所有的水冷壁管和对流管等炉管都应畅流无阻。如清洗前已堵塞的管子,清洗后仍无法疏通畅流的,应由有修理资格的单位修理更换。 凍鈹鋨劳臘锴痫婦胫籴。1.4、锅炉的腐蚀原理与特征35
铁受水中溶解氧的腐蚀是一种电化学腐蚀,铁和氧形成腐蚀电池。铁的电极电位总是比氧的电极电位低,所以在铁氧腐蚀电池中,铁是阳极,遭到腐蚀,反应式如下:Fe→Fe2++2e,氧为阴极,进行还原,反应式如下:O2+2H2O+4e→4OH-在这里溶解氧起阴极去极化作用,是引起铁腐蚀的因素,这种腐蚀称为氧腐蚀。恥諤銪灭萦欢煬鞏鹜錦。氧腐蚀的特征:氧腐蚀的形态一般表现为:溃疡和小孔型的局部腐蚀,其腐蚀的产物表现为黄褐、黑色、砖红色不等。对金属的强度破坏非常严重。铁受到溶解氧腐蚀后产生Fe2+,它在水中进行下列反应:Fe2++2OH-→Fe(OH)2Fe(OH)2+2H2O+O2→4Fe(OH)3Fe(OH)2+2Fe(OH)3→Fe3O4+4H2O在上述反应中,Fe(OH)2是不稳定的,使反应继续往下进行,最终产物主要是Fe(OH)3和Fe3O4鯊腎鑰诎褳鉀沩懼統庫。腐蚀的部件:氧腐蚀是锅炉采暖系统常见的一种腐蚀。在运行和停运期间均可发生。其主要部位,首先是给水系统和省煤器,而且其腐蚀产物进入受热面中和循环水系统中,也会引起其他一些破坏。在系统停运期间由于防护不当,更是如此,不断造成设备及系统的破坏,其破坏程度越来越大,在金属表面形成许多小鼓包,鼓包表面的颜色(由黄褐色到硅红色不等,次层是黑色)。当将这些腐蚀产物清除后,便会出现腐蚀造成的陷坑。硕癘鄴颃诌攆檸攜驤蔹。给水中的溶解氧通常是造成热力设备腐蚀的主要原因,其来源主要由锅炉给给水或热力管网返回的的热水、凝结水在循环运行中漏入空气、汽轮机或凝汽器或凝结水泵的密封不严密等,它可以导致在运行期间和停用期间的氧腐蚀,为防止和减轻锅炉运行期间的氧腐蚀,必须对锅炉给水进行除氧。阌擻輳嬪諫迁择楨秘騖。1.5、锅炉的腐蚀危害及预防措施锅炉水质不良或停炉保养不当常会引起金属的腐蚀。锅炉发生腐蚀后,不仅使金属的有效厚度减薄,而且会使金属内部的金相组织遭到破坏,机械性能变差,造成锅炉的承压能力降低,使用寿命缩短,以至提前报废。有的腐蚀会在人们毫无察觉的情况下对设备造成损坏,严重时还会发生爆管事故,有的甚至会引发锅炉爆炸等灾难性事故。目前,我们普遍采用软化法进行给水处理,以防止结垢,殊不知经过软化的给水腐蚀性还要强于自来水(软化水腐蚀性:1.8g/m2.h,自来水腐蚀性:1.5g/m2.h)。因此,防止腐蚀也是保证锅炉安全运行的重要措施。 35
氬嚕躑竄贸恳彈瀘颔澩。工业锅炉常见的腐蚀主要有氧腐蚀和垢下腐蚀,其防止的措施主要有: 1).搞好给水处理给水中的溶解氧、铁离子和过低的pH值都会促进锅炉金属发生腐蚀。因此给水应尽量除氧;给水pH值应大于7;对于回收蒸汽冷凝水作给水的,应注意控制铁离子含量,有时用汽系统刚启动一段时间,凝结水中往往就含有黄色铁锈水,这时应适当排放至含铁量合格后才能作为锅炉给水。 釷鹆資贏車贖孙滅獅赘。2).保持锅水水质达到合格一般来说,锅水中含盐量和氯根含量过高,pH值和碱度过低或过高都会增加腐蚀。因此,在锅炉运行中应做到合理排污,维持锅水一定的pH值、碱度及PO43-含量,使锅水水质保持合格,不但可防止结垢,也有利于防腐。 怂阐譜鯪迳導嘯畫長凉。3).防止垢下腐蚀锅炉受热面结垢后,渗入垢下的锅水会在高温下极度浓缩,并发生化学反应,从而产生各种垢下腐蚀,但由于水垢的覆盖往往难以察觉。因此,锅炉结垢后应及时清洗除去。 谚辞調担鈧谄动禪泻類。4).使金属表面形成保护膜对于新安装的锅炉,良好的煮炉效果应能使金属表面形成完整的钝化保护膜。而在运行条件下,当锅水保持合适的pH值(一般为10~12)和一定量的磷酸根及碳酸根时,也有助于金属表面形成致密的保护膜,减缓腐蚀。但是如果锅炉水质控制不好,尤其是pH值过低或过高,常会破坏保护膜。 嘰觐詿缧铴嗫偽純铪锩。5).做好停炉保养不少锅炉的腐蚀常常是因为停炉保养不当所造成的,而停炉时产生的腐蚀产物又常会在锅炉运行时进一步加速腐蚀。因此,停炉时必须按规定要求做好保养工作。熒绐譏钲鏌觶鷹緇機库。35
第二章锅炉水处理概述2.1、锅炉水处理的国内外现状水质中会有较多的有害杂质,这种水质如果不经任何处理就进入锅炉,那么水中的杂质会在锅炉中形成水垢或水渣。由于锅炉是一种热交换设备,水垢的生成会极大地影响锅炉的导热能力(水垢的导热系数是钢铁的导热系数的数十分之一到数百分之一),因此,锅炉结垢将导致炉管过热损坏、燃料浪费、出力降低、消耗化学除垢药剂、缩短锅炉使用寿命等。水质不良对锅炉的另一种危害是腐蚀锅炉金属,使金属件破坏,增加水中的结垢成分,产生垢下腐蚀等。不良的水质对锅炉的危害如此大,因此,对锅炉给水的处理十分重要。鶼渍螻偉阅劍鲰腎邏蘞。十年来,在发达国家,以安全和节能为发展战略的锅炉水处理技术获得长足的进步,许多重大研究成果已转化成一系列技术标准和法规。对低压锅炉,普遍采取软化水-阻垢剂以防止结垢,采用机械除氧器-化学除氧剂(亚硫酸钠)除氧以防止腐蚀,采用防腐阻垢法和排污以保持水质工况。对中高压锅炉,普遍采取去离子水-阻垢剂以防止结垢,采用机械除氧器-化学除氧剂(亚硫酸钠或联氨)除氧以防止腐蚀,采用防腐阻垢剂法和排污以保持水质工况。对更高压力特别是亚临界压力锅炉,普遍采用全挥发处理技术。作为必须的安全措施,采用连续排污和定期排污以保持锅炉水质和工况。这些技术使锅炉的经济安全性大大提高。纣忧蔣氳頑莶驅藥悯骛。我国自改革开放以来,随着国民经济的发展作为工业心脏的锅炉的数量以相当快的速度增加。目前,中国是世界上拥有锅炉台数最多的国家之一。1998年度,全国在用锅炉总台数为50.65万台。其中,蒸汽锅炉34.07万台,占67.27%;热水锅炉16.58万台,占32.73%。按用途统计,生活用锅炉26.34万台,占52%;生产用锅炉23.78万台,占52%;发电用锅炉5286台,占1.05%。因此,中国锅炉水处理的任务十分艰巨。颖刍莖蛺饽亿顿裊赔泷。2.2、锅炉水处理技术概述2.2.1离子交换法阻垢技术离子交换剂是一类具有离子交换作用的功能材料。早在一百多年前,沸石类无机离子交换剂就已经发现并得到应用。后来出现了性能更好的阳离子交换剂磺化煤。1935年合成的有机离子交换树脂问世,1945年,苯乙烯系列离子交换树脂研究成功。现代大量使用的离子交换树脂有阳离子型强酸性树脂和弱酸性树脂、阴离子型强碱性树脂和弱碱性树脂、氧化还原树脂、两性树脂和鳌合树脂等。濫驂膽閉驟羥闈詔寢賻。离子交换树脂在水处理上的应用约占其产量的90%。当原水经过离子交换树脂床时,水中的杂质离子与树脂上的无害离子交换,从而把杂质离子从原水中去掉,使水质符合锅炉的要求。工业锅炉最长用的是钠型离子交换系统,通过钠离子交换树脂床的原水,其中的钙、镁离子即被除去,其残余硬度可降至0.05mmol/L以下,甚至可以使硬度完全消除。为了同时达到降低碱度的目的,可采用部分钠离子交换、如酸-钠离子交换、氢-钠、铵-钠、氯-钠等离子交换系统。为了获得去离子水或者脱盐水,可采用阳-阴、阳-阴混离子交换系统。銚銻縵哜鳗鸿锓謎諏涼。35
目前,离子交换法在我国锅炉房的普及率已达90%以上。在离子交换树脂的质量合离子交换系统的功能方面,我国与国外先进水平尚存在一定差距。美国Autotrol、Fleck等自动软水器,Kinetico公司的水力自动软化器已纷纷进入我国市场,我国尚无可与之竞争的国产品牌。挤貼綬电麥结鈺贖哓类。一种习惯性的认识是,原水经过软化之后,水的PH值提高了,因而水的腐蚀性也降低了。实际上,锅炉钢在原水和软化水中的腐蚀速度很大,按照锅炉腐蚀标准,都属于事故性腐蚀级。而且软化水比原水的腐蚀性更大。原水中含有天然缓释剂重碳酸钙,它是一种阴极性缓释剂,当在钢表面同阴极反应产物氢氧根离子相遇时,即生成碳酸钙沉淀而覆盖于阴极表面。由于阴极过程被抑制,钢的腐蚀速度减小。当原水被软化之后,随着硬度成分被除去,水中原有的天然缓释剂已不存在,因而水的腐蚀性增加了。同时,腐蚀产物覆盖于金属表面而成垢的情况变得严重了。因此,对使用软化水的锅炉,更有必要采取防腐措施。离子交换法的主要缺点是必须排放再生废液。再生废盐水可导致淡水咸化,其排放在一些国家已受到限制。赔荊紳谘侖驟辽輩袜錈。2.2.2膜分离法阻垢技术膜分离是借助一个膜相对被分离物系中各组分的选择透过能力不同而实现对物系中各组分分离的过程。膜分离技术发展的时间大致是,20世纪30年代,微滤;40年代,透析;50年代,电渗析;60年代,反渗透;70年代,超滤和液膜;80年代,气体分离;90年代,渗透蒸发。膜技术的大致应用范围是,微滤用于过滤细菌,超滤用于截留蛋白质,反渗透用于除去水溶液中的离子及相对分子质量为几百的小分子溶质。塤礙籟馐决穩賽釙冊庫。在锅炉水处理方面应用较多的是电渗析和反渗透。在发达国家,锅炉用水的预处理采用电渗析法已很常见。虽然反渗透远不及电渗析应用那么广泛,但反渗透法作为离子交换的预处理更为有利。膜法预处理的优点是,由于除去了大量离子,因而可使离子交换符合减少,延长再生周期;由于除去了污染物,因而可减轻树脂污染,延长离子交换树脂的使用寿命。裊樣祕廬廂颤谚鍘羋蔺。膜法的主要缺点是需要较严格的预处理和必须排放浓缩水。2.2.3除氧器-除氧剂法防腐技术为了防止锅炉系统的氧腐蚀,国内外研究开发的重点是从给水中除去腐蚀剂溶解氧。已开发了许多设备除氧方法,例如热力除氧、真空除氧、解吸除氧、氧化还原树脂除氧、钢屑除氧等。热力除氧和真空除氧的除氧效果好,使用性能稳定,一直是蒸汽锅炉普遍采用的防腐方法。为了保证除氧效果,还应在机械除氧之后再加入适量除氧剂。仓嫗盤紲嘱珑詁鍬齊驁。此外,也可以向软化水中直接加入除氧剂,使其和水中的溶解氧反应,除去腐蚀剂溶解氧。已开发了许多除氧剂,较重要的有亚硫酸盐、联氨、二乙羟胺、碳酰肼、氢醌、异抗坏血酸、胺基胍、甲基乙基酮圬等。不过,一般认为单独加入除氧剂不如除氧器-除氧剂法经济。绽萬璉轆娛閬蛏鬮绾瀧。亚硫酸钠使最常用的除氧剂。除了有可能使其分解的超高压锅炉外,对普通高压锅炉、中压锅炉和大容量低压锅炉,最好的防腐方法使:首先用机械除氧器除去大部分溶解氧,然后加入亚硫酸钠,使系统中亚硫酸根含量保持在2~7mg/L。亚硫酸钠的作用是防止水中残存氧对系统金属的腐蚀。一旦机械除氧器失灵或操作失误,亚硫酸钠还可作为防止氧腐蚀的第二道屏障。对没有安装除氧器的锅炉,可直接采用亚硫酸钠,其用量根据给水溶解氧含量计算,然后再稍增加,以保证系统中亚硫酸根含量。骁顾燁鶚巯瀆蕪領鲡赙。35
长期以来,人们试图找到比亚硫酸盐各国更好的还原剂以克服亚硫酸盐再贮存时容易氧化失效等缺点,但至今尚未发现像亚硫酸盐这样效果好而又廉价无毒的物质。在走过了漫长之路以后,特别是从不污染环境考虑,人们的兴趣重新回到了亚硫酸盐上来。北京化工大学通过试验研究,查明了亚硫酸盐的氧化机理,研制了稳定亚硫酸钠,从而为亚硫酸盐贮存失效问题提供了解决办法。瑣钋濺暧惲锟缟馭篩凉。水合联氨是比亚硫酸钠更好的除氧剂,国内外广泛用于高压锅炉给水除氧,作为机械除氧的辅助措施。由于联氨价格昂贵,又有较强毒性,因而中、低压锅炉很少采用。鎦诗涇艳损楼紲鯗餳類。2.2.4锅内加药法防腐阻垢技术锅内加药法防腐阻垢技术,是一种向锅内投加某些具有特殊功能的化学药剂来达到防腐阻垢目的的方法。实际上,早在离子交换法问世以前,锅内水处理技术已得到广泛应用。在离子交换法问世之后,锅内加药法与其配合使用,获得了更快发展。在发达国家,广泛采用离子交换-锅内加药,也可以单独采用锅内加药法,像我国这样单独采用离子交换法的锅炉非常少见,这可能是我国锅炉寿命较短的主要原因。下表列出锅炉水处理剂的一般种类及其作用,可根据锅炉结构和水质特点灵活运用。栉缏歐锄棗鈕种鵑瑶锬。表3锅炉水处理药剂及其作用种类药剂作用pH及碱度调节剂氢氧化钠、碳酸钠、磷酸盐、聚磷酸盐、磷酸、硫酸调整给水、锅水碱度、防止锅炉腐蚀与结垢软化剂氢氧化钠、磷酸盐、聚磷酸盐使水中的硬度成分沉淀淤渣分散剂木素磺酸钠、单宁、淀粉、聚丙烯酸、苯乙烯磺酸与马来酸共聚物使淤泥悬浮分散于水中、易于通过排污排出系统除氧剂亚硫酸盐、联氨、二乙羟胺、碳酸肼、氢醌、异抗坏血酸、胺基胍、甲基乙基酮肟除去水中溶解氧、防止锅炉氧腐蚀凝结水缓蚀剂吗啉、环己胺、烷基胺防止凝结水系统腐蚀目前,在我国市场上流行着把用循环冷却水系统的防垢剂和缓蚀剂直接出售给锅炉用户的做法。这种做法无疑有生意上的意义,但是对锅炉的防腐阻垢难以达到要求的可能原因如下。辔烨棟剛殓攬瑤丽阄应。(1)锅炉系统的水温明显高于循环冷却水系统,其腐蚀结垢机理有很大差别。(2)氧的存在是敞开式冷却水系统缓蚀剂1发挥作用的必要条件。在冷却水系统特别是敞开式冷却水系统,水中的溶解氧处于饱和状态,而锅水中的溶解氧含量很低甚至为零,因而不利于这类缓蚀剂的作用发挥。峴扬斕滾澗辐滠兴渙藺。(3)目前,即使碱性冷却水处对水的碱性仍然有比较严格的要求,而锅炉水的碱性远远超过这种限制,适合于冷却水细工的酸性处理对锅炉则是十分危险的。詩叁撻訥烬忧毀厉鋨骜。(4)目前,缓蚀性能最好的冷却水处理配方仍然是铬系配方和低铬系配方。因环保限制而开发应用的非铬系配方,其缓蚀效果均不如前者。文献报道的采用这些配方后金属的腐蚀速度对冷却水是允许的,而对锅炉来说,属于强烈腐蚀级或事故腐蚀级。则鯤愜韋瘓賈晖园栋泷。水处理剂的发展方向是绿色化。35
2.2.5停用锅炉的防腐保养锅炉停用期间的腐蚀甚至比运行时的腐蚀更严重,大规模的腐蚀损坏和局部腐蚀穿孔往往是由停用腐蚀引起的。2.3、锅炉水处理技术的发展方向改革开放以来,随着国民经济的发展,我国锅炉水处理技术获得了很大得发展,在许多方面已与国外先进的技术接轨,形成了一些具有自主知识产权的技术。在全新的绿色化学的冲击下,水处理技术正酝酿这种大突破。面临挑战,研究锅炉水处理技术的现状和发展动向是十分必要的。胀鏝彈奥秘孫戶孪钇賻。绿色水处理技术是以近年提出的“绿色化学”为基础的新概念,从始端,终端和中间过程杜绝污染产生的新思路,能够最大限度地节水和彻底解决水污染的重大技术,使21世纪水处理技术发展的中心战略。绿色水处理技术的理想是零排污水处理技术。鳃躋峽祷紉诵帮废掃減。对锅炉水处理来说,在过去很长一段时间,环境问题被安全问题所掩盖。在环境和安全难以兼得时,国内外普遍采取的做法是舍环境而取安全。由于受锅炉水处理技术上不够先进的限制,过去把环境保护和锅炉安全两者对立起来的灌顶恶化做法是可以理解的,但从可持续发展战略考虑则是不可取的。轱辘是耗水大户,发达国家的锅炉耗水两一般占第三位,仅次于冷却水和产品处理清洗用水。锅炉又是环境污染大户,连续排污、定期排污、冲洗废水排放、离子交换剂再生废水排放以及燃料燃烧废气和粉尘的排放等都在污染着人类赖以生存的环境。从可持续发展战略出发,以近年提出的绿色化学新概念为基础,传统大额安全和节能战略已不能满足持发展要求,消灭污染源头的绿色锅炉水处理技术或零排污锅炉水处理技术应当成为21世纪锅炉水处理发展的中心战略。稟虛嬪赈维哜妝扩踴粜。零排污技术是当前国外研究开发的重点和热点,难度和风险很大,改变传统思路非常重要。在这方面,不妨提供BF-30a技术的研究深化过程,希望起到抛砖引玉作用。陽簍埡鲑罷規呜旧岿錟。热水锅炉防腐阻垢技术是国家“八五”重点科技攻关课题和国家“九五”科技成果重点推广项目,其原定目标是解决我国普遍存在的热水锅炉运行腐蚀和停用腐蚀两大难题,形成具有自主知识产权的技术。然而,在完成了规定科研任务的基础上,其研究开发逐步深化,发展成了普通、中级和高级应用技术,实现了零排污。试验结果表明,只要解决了关键技术问题,在零排污工况下,锅炉运行更安全、更经济。沩氣嘮戇苌鑿鑿槠谔應。锅炉水处理技术是一门综合技术,与离子交换技术、膜分离技术、除氧技术、锅内加药技术、停用保养技术等的进步密切相关。零排污技术是21世纪锅炉水处理技术的发展方向,其研究开发的风险和难度很大,必须加大投入力度,组织科技力量对传统的、常规的有关技术进行全面的认识和评价,从观念上、理论上和技术上进行创新,才能完成历史赋予我们的任务。钡嵐縣緱虜荣产涛團蔺。(本章内容摘录于《热水锅炉防腐阻垢技术》,魏刚、熊蓉春。化工出版社)35
第三章供暖工艺及类型3.1.供热工程发展历程火的使用、蒸汽机的发明、电能的应用以及原子能的利用、可再生能源的开发利用,使人类利用能源的历史不断发生着重大变革,也使供热工程技术发生了质的飞跃。人类最早以火的形式利用能源到后来利用原始炉灶获得热能供暖、炊事和照明,属于局部取暖和用能方式。1673年英国工程师发明了热水在管内流动用以加热房间。1777年法国人把热水采暖用于房间。蒸汽机的发明,促进了锅炉制造业的发展。19世纪初期,在欧洲出现了以蒸汽或热水作为热媒的集中供暖系统。1877年,在美国纽约建成了第一个区域供热锅炉房。20世纪初,一些工业发达国家,开始利用发电厂内汽轮机的排汽,供给生产和生活用热,其后逐渐形成现代化的热电厂。原子核的裂变和聚变可以释放出巨大的能量,原子能应用于热电联产始于1965年。懨俠劑鈍触乐鹇烬觶騮。本世纪,随着全球可持续战略的实施和新能源革命,世界能源结构正在向优质化发展,清洁能源、可再生能源(太阳能、地热能、风能、水能等),将越来越多地替代碳能源。燃料多元化和设备小型化、冷热电联供与多联产、网络化与智能化控制和信息化管理以及环境友好,成为新一代能源系统的主要特征。因此,供热热源与供热方式的多元化,正在促进现代供热技术飞速发展.謾饱兗争詣繚鮐癞别瀘。3.2.我国供热事业的发展我国在远古时期,就有钻木取火的传说。故宫的火地供热,是迄今为止保存完好的我国古代宫殿常用取暖方式。火炉、火墙和火炕等局部供暖方式不仅至今在我国北方农村还被广泛地使用,目前的研究还表明,火炕是一种节能、舒适、环保、有发展应用前景的农村供暖方式。呙铉們欤谦鸪饺竞荡赚。在解放前,我国仅在一些大城市的个别建筑和特殊区域内设置集中式供暖系统,如当时北京的六国饭店、清华大学图书馆和体育馆、东单的德国医院等,又如上海的国际饭店、华山公寓等,被视为高贵的建筑设备。莹谐龌蕲賞组靄绉嚴减。新中国成立后,随着国民经济建设的发展和人民生活水平的不断提高,我国的供热事业得到了迅速发展,在东北、西北、华北三北地区,公共建筑、工业建筑及城镇居住建筑都实现了集中供暖,不少城镇实现了集中供热。麸肃鹏镟轿騍镣缚縟糶。35
供暖工程的设计、施工和运行管理,在50年代期间,主要以学习原苏联的技术为主。20世纪60~70年代,我国经济建设走“独立自主,自力更生”的发展道路,从而促进了供热技术的发展,形成了时代的特点。从仿制国外产品转向自主开发,60年代开始,我国能够自行设计开发大中小型的成套供热设备及各种锅炉,设计和制造各种铸铁、钢制和铝合金散热器,热水供暖技术得到快速的发展,公共建筑的蒸汽采暖方式逐步被替代,城镇集中供热事业迅速发展起来。改革开放以来,我国经济建设进入快速发展时期,多种供暖系统型式的应用和新型散热设备的研制都有了较大的发展。如工业企业中高温水供暖系统,钢制辐射供暖的应用、新型钢串片、钢板模压等散热器的研制和应用,高级旅馆中供暖与空调相结合的风机盘管系统等。1987年颁布了适合我国国情的国家标准《采暖通风与空气调节设计规范》(GBJ19-1987),1989年建设部颁布了《城市供热管网工程施工及验收规范》(CJJ28-28-1989),1990年颁布了《城市热力网设计规范》(CJJ34-1990)。此后,不断完善制定相应配套设计法规文件,对供热事业的发展起到了保证作用。截止到2000年,城镇供热面积达11.077亿㎡,城镇供热面积中住宅面积约占60%以上。納畴鳗吶鄖禎銣腻鰲锬。我国是能源消耗大国,在能源消耗结构中,煤炭约占总能耗的75%。供热、通风是能源消耗大户。供热事业的可持续性发展意味着资源持续利用、也意味着不可再生能源消耗的增长。因此,供热工程的发展,在消耗能源的同时也间接的对环境造成污染。生态环境得到保护和社会均衡发展是当前的全球环境问题之一。風撵鲔貓铁频钙蓟纠庙。新中国成立以来,供热事业的发展对发展我国经济、提高人民生活水平和改善环境发挥了重要作用。优化配置城镇供热资源,坚持集中供热为主,多种方式互为补充,大力开发和利用太阳能、地热等可再生能源和清洁能源。十五规划以来,按照全面落实科学发展观,构建节约型、环境友好型社会的要求,以提高能源利用为核心、以节能为重点,大力实施了城镇供热体制改革。推动了建筑节能和供暖系统的节能,新建住宅基本实现节能50%的目标。灭嗳骇諗鋅猎輛觏馊藹。3.3集中供热的热源及类型集中供热系统由热源、热网、热用户三大部分组成。热源:热源是泛指能从中吸取热量的任何物质、装置或天然能源。如区域锅炉房和热电厂等。热网:由热源向热用户输送和分配供热介质的管线系统。热用户:集中供热系统利用热能的用户。铹鸝饷飾镡閌赀诨癱骝。 集中供热系的热源是供热系统中的重要组成部分,它是由管道和设备组成的一个热力系统,其主要任务是生产和供给热媒。当集中供热系统的设计热负荷、热媒种类及其参数确定之后,就需要正确地选定热源型式、热源的热力系统及其设备。因此目前,集中供热系统主要按照热源种类分类:分为区域锅炉房集中供热系统、热电厂集中供热系统、工业余热集中供热系统、地热集中供热系统等。攙閿频嵘陣澇諗谴隴泸。3.3.1热电厂火力发电厂在生产电能的过程中,利用汽轮机排汽或从汽轮机中间抽出一部分蒸汽提供给供热系统以满足生产和生活的需要,我们把这种联合生产、供给热能和电能的火力发电厂称为热电厂。热电厂由于客观事实不可能与大型发电厂在同等起路线上“竞价上网”的。热电厂装机容量受热负荷大小、性质等制约,机组规模要比目前火电厂的主力机组小很多。热电厂由于既发电又供热,锅炉容量大于同规模火电厂。热电厂必须比一般火电厂多增设锅炉容量以备用,水处理量也大。热电厂必须靠近热负荷中心,往往又是人口密集区的城镇中心,其用水、征地、拆迁、环保要求等均大大高于同容量火电厂,同时还建热力管网。35
热电联产的蒸汽没有冷源损失,所以能将热效率提高到85%,比大型凝汽式机组(热效率达40%)还要高得多。趕輾雏纨颗锊讨跃满賺。供热汽轮机是热电厂实现热电联产过程中的关键装置,大体可分为背压式和抽汽式两大类。背压式汽轮机是排气压力高于大气压力的供热汽轮机。抽汽式汽轮机是从汽轮机中间抽汽供热的汽轮机。夹覡闾辁駁档驀迁锬減。(1)背压式汽轮机的发电功率是由通过汽轮机的蒸汽量决定的,而通过背压式汽轮机的蒸汽量决定于热用户热负荷的大小,所以背压式汽轮机的发电功率受用户热负荷的制约,不能分别地独立进行调节。因而限制了背压式汽轮机供热系统只适用于用户热负荷比较稳定的供热系统。视絀镘鸸鲚鐘脑钧欖粝。(2)抽汽式供热汽轮机上有多个抽汽口,其中多数不可调节,它的抽汽量是随汽轮机的负荷变化的。双抽式供热汽轮机有两个可调节抽汽口。由于它的抽汽量可以调节使其不随汽轮机负荷改变而变化,所以既可以保证供汽量随着用户的要求而变化,又可以保证在一定范围内不影响发电量。偽澀锟攢鴛擋緬铹鈞錠。(3)背压式汽轮机的发电功率是由通过汽轮机的蒸汽量决定的,而通过背压式汽轮机的蒸汽量决定于热用户热负荷的大小,所以背压式汽轮机的发电功率受用户热负荷的制约,不能分别地独立进行调节。因而限制了背压式汽轮机供热系统只适用于用户热负荷比较稳定的供热系统。緦徑铫膾龋轿级镗挢廟。总之,以热电厂为热源采用热电联产的方式可以有效提高热能利用率,节约燃料,减少有害物排放量,供热范围比较大。但是,建设热电厂的投资比较高,建设周期也较长。騅憑钶銘侥张礫阵轸蔼。图1双抽汽式汽轮机供热轮机供热系统示意图1.锅炉 2.汽轮机 3.发电机 4.高压加热器 5.低压加热器6.凝汽器 7.基本加热器 8.尖峰加热器 9.给水泵 10.凝结水泵11.热网循环泵 12.补水泵 13.冷却循环水管道 14.旁路管道疠骐錾农剎貯狱颢幗騮。3.3.2区域锅炉房35
3.3.2.1.区域锅炉房集中供热系统在锅炉房中设置蒸汽锅炉或热水锅炉作为热源,向一个较大区域提供加热的系统,称为区域锅炉房集中供热系统。相对于热电厂等其它热源的供热系统,区域锅炉房集中供热系统具有以下特点:镞锊过润启婭澗骆讕瀘。(1)区域锅炉房供热设备比较简单,建厂条件要求不高,投资较低,易于实现。(2)以区域锅炉房为热源的集中供热系统,供热范围可大可小,比较灵活。(3)区域锅炉房集中供热系统热媒的种类及其参数,主要是根据热用户用热设备的需求而选定的,比较简便。(4)供热管网施工安装工程量较小,工期短,见效快。(5)系统建设周期短,易于与城市建设同步进行。(6)区域锅炉房热效率低于热电厂的热能利用效率,但远远高于局部锅炉房的热效率。基于上述特点,区域锅炉房集中供热系统目前在我国发展集中供热事业过程中占有相当重要的地位。 根据国内外经验,调峰区域锅炉房与热电厂相结合的集中供热系统,可以使热电厂的运行达到最佳经济效益。 3.3.2.2.常用形式 (1)蒸汽锅炉房:为集中供热系统生产和供给热媒的蒸汽锅炉及其附属设备称为蒸汽锅炉房。以蒸汽锅炉房为热源的集中供热系统称为蒸汽锅炉房集中供热系统。蒸汽锅炉房普遍用于工矿企业中供应生产工艺热负荷,同时也可供应供暖、通风以及热水供应热负荷。榿贰轲誊壟该槛鲻垲赛。(2)热水锅炉房为热水集中供热系统生产和供给热媒的热水锅炉及其附属设备称为热水锅炉房。以热水锅炉房为热源的集中供热系统称为热水锅炉房集中供热系统。热水锅炉房大多用于城市区域或街区的供暖,或用于工矿企业中供暖通风热负荷较大的场合。近几年来发展较快。邁茑赚陉宾呗擷鹪讼凑。3.3.3集中供热系统的其他热源3.3.3.1工业余热 工业余热通常指的是工业生产过程中产品和排放物料所含的热以及设备散发出来的热。 可回收和利用的工业余热根据其载体不同通常分为三大类:①气态余热。如化工设备中排出的可燃气体、工业炉中排出的高温烟气、工业设备中蒸发出来的蒸汽以及动力设备中排出的乏汽等所含热量;②液态余热。如从工业炉或其它设备排出的冷却水等所含热量;③固态余热。如高温焦炭、各种金属的铸锭或熔渣所带有的物理热等。嵝硖贪塒廩袞悯倉華糲。工业余热的特点: (1)工艺余热的数量和参数直接受生产工艺影响,波动较大,与外界的热负荷无直接关系。 (2)大多数工业余热的载能体都属于高温和非洁净的载能体,利用这能量时,往往需要加添热能转换装置,或直接利用时,应考虑对载能体适当洁净的问题。该栎谖碼戆沖巋鳧薩锭。35
(3)工业余热在较大工矿企业中较大量地存在、多种多样,因此,要针对载能体的特点,设置合适的余热利用装置。劇妆诨貰攖苹埘呂仑庙。利用工业余热的方法: (1)利用蒸汽锻锤废汽的供热系统 (2)焦炉冷却水的供热系统 (3)闪蒸循环系统 (4)中间介质法工业余热利用是节约能源的一个重要途径。据不完全统计,我国目前许多大中型工矿企业中还存在着大量的工业余热未被利用,被利用的部分,大多都用在企业内部的供热系统中。关于集中供热系统中利用工业余热作热源的技术经济评价问题,还有待于进一步研究和实践。臠龍讹驄桠业變墊罗蘄。3.3.3.2地热水供热 地热是地热资源的简称,通常指能够经济地为人类所利用的地球内部的热资源。地热资源是一种典型的清洁能源,同时它也被称为“绿色能源”和“可再生能源”。在地球的最外层——地壳(平均厚度33km)中蕴藏着巨大的热水库。据科学家推算,地壳内地热水约有1亿km3,相当地球上全部海水总量的10%。我国的地热资源非常丰富,在我国大陆地区地热资源分布丰富的地区有西藏、云南、广东、河北、天津、北京等地。鰻順褛悦漚縫冁屜鸭骞。 将地热能直接用于集中供热系统是仅次于地热发电的地热利用方式。 地热能的分类:地热能按其在地下的贮存形式分为:蒸汽、热水、干热岩体、地压、岩浆。目前开采和利用最多的地热能是地热水。穑釓虚绺滟鳗絲懷紓泺。地热水供热的优点:利用地热水供热与其他热源供热相比具有节省矿物燃料和不造成城市大气污染的特殊优点。隶誆荧鉴獫纲鴣攣駘賽。 地热水的分类: (1)根据地热水温度的不同,地热水可分为:低温水(t<40℃);中温水(t=40~60℃);高温水(t=60~100℃);过热水(t>100℃)。浹繢腻叢着駕骠構砀湊。 (2)根据化学成分不同,地热水可分为:碱性水和酸性水。 (3)根据矿物质含量,地热水可分为:超淡水(含盐量低于0.1g/L);盐水(含盐量大于35g/L)。 作为供热的热源,地热水具有以下的一些特点: (1)在不同条件下,地热水的参数(温度、压力)及成分会有很大的差别。地热水的成分往往是有腐蚀性的,因而必须注意预防在传热表面和管路上发生腐蚀和沉积。鈀燭罚櫝箋礱颼畢韫粝。 (2)地热水的参数与热负荷无关。对于一个具体的水井,地热水的温度几乎是全年不变的,地热水的参数不能适应热负荷变化的特性,使得利用地热能的供热系统变得复杂。惬執缉蘿绅颀阳灣熗鍵。 (3)一次性利用。地热水热能被利用后通常就要被废弃。为了最大限度的利用其能位,就要采用分级利用地热水热能的热能利用方式,使得系统复杂和费用增大。贞廈给鏌綞牵鎮獵鎦龐。 35
开采深层地热水对地面沉降的影响虽不象浅层水那么严重,但应引起重视。从保护地热资源和防止地面沉降考虑,地热资源的开采要合理规划井群布局,做好开采层位的调整,控制每眼井开采指标。统一规划,严格控制井位、井数、井距和开采强度,有计划有步骤地科学开发利用,才能更好地发挥地热资源的作用。嚌鲭级厨胀鑲铟礦毁蕲。3.3.3.3核能供热定义:核能供热是以核裂变产生的能量为热源的城市集中供热方式。优点是可解决城市能源供应、减轻运输压力、消除烧煤造成的环境污染。方式:核热电站供热方式和低温供热堆供热方式。 核热电站反应堆工作参数高,必须按照核电厂选址规程建在远离居民区的地点,从而使其供热条件在一定程度上受到限制。薊镔竖牍熒浹醬籬铃騫。 低温供热堆的压力参数较低,一般为1~2Mpa,从安全角度,可能建造在城市近郊,因而,低温核供热堆用作城市集中供热的热源,今后在我国能得到发展应用。齡践砚语蜗铸转絹攤濼。3.3.3.4热泵热源 热泵是可以用作集中供热系统辅助热源的一种设备。其工作原理与制冷机相类似,主要是靠机械能、电能或其他能量的作用,把低温热源的能位提高到可被供热系统利用的能位水平。绅薮疮颧訝标販繯轅赛。 热泵是以低温热源排出的热量作为供热热源。采用热泵供热热源具有明显的节能效果。与锅炉房供热系统相比,(对热泵系统,发电效率为η=0.35;热泵效率系数COP=3.5;对锅炉房系统,锅炉效率η=0.9)其节能效果约为26%,减少向城市的排热量约为74%。总之,热泵供热系统不仅节能,而且能改善环境具有显著的经济效益和社会效益。热泵系统已逐步地被人们接受。今后开发和利用热泵供热系统热源用于集中供热具有广阔的商景。饪箩狞屬诺釙诬苧径凛。3.3.3.5太阳能热源 太阳能热源与常规能源相比较,太阳能资源优点很多,同时又都是一般常规能源所不能比拟的,概括起来有以下四个方面。烴毙潜籬賢擔視蠶贲粵。 (1)数量巨大:每年达到地表面的太阳能辐射能约为130万亿t标准煤,即为目前全世界所消费的各种能量总和的20000倍。鋝岂涛軌跃轮莳講嫗键。 (2)时间长久:根据天文学的研究结果可知,太阳系已存在大约150亿年左右。根据目前太阳辐射的总功率以及太阳上氢的总含量进行估算,尚可继续维持1000亿年之久。对于人类存在的年代来说可以认为是“取之不尽,用之不竭”的。撷伪氢鱧轍幂聹諛詼庞。 (3)普照大地:太阳辐射能“送货上门”,既不需要开采和挖掘,也不需要运输;普天之下,无论大陆或海洋,无论高山或岛屿,开发和利用都极为方便。踪飯梦掺钓貞绫賁发蘄。 (4)清洁安全:太阳能素有“洁净能源”和“安全能源”之称。它不仅毫无污染,远比常规能源清洁;也毫无危险,远比原子核能安全。婭鑠机职銦夾簣軒蚀骞。 (5)虽然太阳能也存在分散性,间断性和不稳定性以及效率低和成本高等缺点,致使目前还不能或至少是不容易与常规能源相竞争。但是由于太阳能资源具有上述诸多优点,特别是太阳能是“取之不尽,用之不竭”的,而且是洁净的优质可再生能源,如能合理利用,必将取得巨大的社会效益和经济效益。譽諶掺铒锭试监鄺儕泻。35
国内实践证明,太阳能利用中最先实用化的是太阳能供热水和太阳能供暖。其原因之一是它们所需要的集热温度不太高(40~60℃),另一个重要原因是:近年来随着工农业的发展,全国总能耗量的增加迅速,其结果导致环境的严重污染和常规能源的短缺。因此,节约常规能源和开发利用可再生能源势在必行。目前从工程实用来看,太阳能能够主要用于单栋建筑物供暖或热水供应上。俦聹执償閏号燴鈿膽賾。(本章内容摘录于《供热工程》,田玉卓等,机械工业出版社)35
第四章BF-30a热水锅炉防腐阻垢技术随着我国城镇化及工业化进程的加快,与生产生活密切相关的工业锅炉及热水锅炉采暖系统规模也快速增长。由于锅炉水处理技术水平的限制等原因,目前工业锅炉普遍存在腐蚀结垢问题,导致锅炉寿命缩短,维护及运行成本上升。“国家级有突出贡献的专家”北京化工大学魏刚教授,根据工业锅炉腐蚀结垢规律,利用“协同作用”原理首创BF-30a锅炉水处理技术。突破了把锅炉运行和停用分别处理的模式,同时解决了锅炉及热网系统运行腐蚀和停用腐蚀两个难题。缜電怅淺靓蠐浅錒鵬凜。该技术可以不使用离子交换器及除氧设备。具有安全,节能节水,使用方便的特点。1997年通过化工部工业化鉴定1998年获化工部技术发明三等奖1999年被国家科技部列为《国家级科技成果重点推广计划》项目2000年被国家知识产权局授予专利权2002年被认定为《北京市高新技术转化项目》2003年获中国锅炉水处理协会注册北京化新通达清洗技术有限公司,依托学校技术科研优势,多年来致力于工业锅炉防腐阻垢的应用技术的探索和研究、以及工业锅炉水处理的技术开发,取得了丰硕的成果和业绩,2001年被评为北京市高新技术企业。BF-30a锅炉水处理剂已经在近万台锅炉上应用,防腐阻垢效果优异,经济效益,社会效益,环境效益显著。骥擯帜褸饜兗椏長绛粤。4.1BF-30a防腐阻垢原理4.1.1防腐蚀机理BF-30a的防腐蚀机理主要是使锅炉金属表面生成某种保护性薄膜,这从电化学试验即可证实。图1添加剂对20g钢电极电位的影响35
从钢的电位-时间曲线(图1)可以看出,在不同条件下,钢的电极电位随时间变化的趋势均经历了剧烈降低然后稳定的过程,即首先发生表面天然保护膜的破坏,然后发生基体腐蚀。与加入亚硫酸钠之类的除氧剂后钢的电位大幅度下降的情况相反,加入BF-30a后,钢的电位在经过稍微降低后保持大致稳定的值,该值比原来水中钢的电位值高得多。对此可能的解释是,BF-30a对阳极过程的抑制比较显著。癱噴导閽骋艳捣靨骢鍵。图2示出BF-30a对钢在水中腐蚀的阳极过程和阴极过程的影响。BF-30a的加入使钢的自腐蚀电位剧烈正移,阳极极化也剧烈增加,但从阴极极化曲线看,虽然BF-30a的加入使氧的离子化过电位减小,但阴极极化却明显增加,由此看来,BF-30a既强烈地抑制了钢腐蚀的阳极过程,又明显地抑制了腐蚀的阴极过鑣鸽夺圆鯢齙慫餞離龐。图2钢在水中的动电位极化曲线程,是钢在水中的混合性缓蚀剂,同时,电化学试验结果很好的说明了BF-30a缓蚀率很高的原因。4.2阻垢机理4.2.1.螯合溶解作用螯合剂能与与水中钙离子形成稳定的水溶性螯合物,使给水中引入的硬度成分呈溶解状态。典型的螫合剂是乙二胺四醋酸盐(EDTA)和次氨基三醋酸盐(NTA),其阻垢机理是螯合剂同钙离子反应,将致垢阳离子封锁在其分子内,使致垢阳离子无法与致垢阴离子结合成垢,使大量的钙离子稳定在水中,相当于增加了微溶性钙盐在水中的溶解度,从而使钙在锅炉中呈溶解状态,起到了阻垢作用。该反应按化学计量进行,lmgCaCO3/L钙硬度成分需用3.8mg/LEDTA的四钠盐。榄阈团皱鹏緦寿驏頦蕴。为了查明BF-30a对水垢的螯合溶解作用,采用与螯合剂类似的试验方法,将碳酸钙固体和硫酸钙固体水垢放入BF-30a溶液中进行螯合溶解试验,试验结果表明,水中钙离子浓度缓慢增加,即BF-30a对水垢具有温和的螯合溶解能力。其与EDTA之类的螯合剂的主要区别,一是EDTA是按化学计量与钙离子反应,而BF-30a对钙离子的螯合溶解并不按化学计量,在理论上达到化学计量值之后仍具有螯合作用;二是与EDTA的强的螯合作用相比,BF-30a35
是将钙离子从固体上逐渐地缓慢地溶解下来,其作用非常温和,在多次试验中都没有发现垢块的分裂和剥落现象。这一情况对运行锅炉十分重要,因为螯合溶解作用将把锅炉内的原有水垢除去,使金属表面恢复洁净状态;但如果发生垢块的分裂剥离现象,就有可能引起垢块堵塞管道的危险。逊输吴贝义鲽國鳩犹騸。4.2.2晶格畸变作用图3无阻垢剂时的碳酸钙垢图4有阻垢剂时的碳酸钙垢为了查明BF-30a的阻垢机理,用透射电子显微镜观测了加和不加BF-30a时的碳酸钙粒子形貌,如图3和图4所示。未加入BF-30a时,在传热面上生长出规则的方解石结晶。加入BF-30a后,在传热面上仅发现少量疏松的无定形碳酸钙,很容易被水冲掉。显然,BF-30a使碳酸钙的结晶类型发生了变化,抑制了方解石的结晶生长。幘觇匮骇儺红卤齡镰瀉。可以认为,碳酸钙晶型的变化和结晶生长的抑制是因为BF-30a吸附于结晶上或者与碳酸钙晶体界面上的钙离子发生了螯合作用并占据了晶体正常生长的晶格位置,从而使晶体不能按正常规律生长,即晶体发生了畸变。誦终决懷区馱倆侧澩赜。4.2.3分散作用用浊度计法测定了BF-30a对锅炉内污垢的分散作用(图5)。结果表明,当没有阻垢剂时,原来处于悬浮状态的污垢以较快的速度沉降,上清液的浊度大幅度下降,在20h内下降到与无悬浮污垢的水样几乎一致。在加有BF-30a的情况下,试验期间污垢保持悬浮状态,上清液的浊度几乎没有发生变化。由此可知,BF-30a可以使随给水带入或在锅炉中生成的固体粒子分散在锅炉中,防止其沉积在传热面和流动缓慢的部位。试验结果还表明,这种分散作用也是非化学计量的。医涤侣綃噲睞齒办銩凛。产生这种分散作用的可能原因是,BF-30a通过物理和化学作用吸附到固体粒子表面,使粒子表面形成双电层,改变了粒子表面原来的电荷状态,舻当为遙头韪鳍哕晕糞。在静电作用下,粒子相互排斥,从而避免了粒子相互结合长大沉积,使其在水中保持分散状态。35
图5BF-30a对污垢的分散作用4.2.4低剂量效应BF-30a对水垢的螯合作用、分散作用以及晶格畸变作用都是非化学计量的,可以将比按化学计量高得多的钙离子稳定在水中,即具有明显的阈值效应。因此,当采用BF-30a法防腐阻垢时,只要加量达到一定值以上,就能控制成垢离子结晶生长,表现出良好的阻垢效果,没有必要加入比推荐用量更多的阻垢剂。鸪凑鸛齏嶇烛罵奖选锯。4.3药剂控制指标及监测使用办法4.3.1、对于系统比较小、工况简单的系统,建议采用以下方法:初次加药:首先,根据锅炉及供暖系统最大容水量,按容水体积及用量估算出初次加药量(按每吨水投加800克计算);其次,将药剂溶解于某一容器中(软化水箱或补水箱等),按容器体积配置成(重量比小于10%)溶液,并搅拌均匀,开启补水泵,将药液打入系统中,如此反复,直至将估算药量全部打入系统为止;最后,待系统中药剂浓度均匀后(此过程建议反复开动系统循环泵,促使药剂浓度均匀),检测系统水质pH值,若系统水质pH值大于10.5,则初投药过程结束,反之,若系统水质pH值小于10.5,则应酌情继续投加药剂,直至系统水质pH值大于10.5为止,初投药过程结束。(投入运行前热水锅炉系统上水时的初次加药量对系统防腐阻垢效果非常重要,所以初投药完成并循环均匀后系统水质pH值一定要保持大于10.5。)筧驪鴨栌怀鏇颐嵘悅废。运行投加:锅炉运行时,应根据每日系统补水量,按照每吨水500克药剂量计算运行投药量,投药操作与初投药操作一致。此外,如系统水质pH值小于10.5时,应酌情补充投加药剂。韋鋯鯖荣擬滄閡悬贖蘊。4.3.2、对于系统比较大、工况复杂的系统,建议采用以下设备进行投药操作:由于系统水容量大、工况变化复杂,人工投加及监测已经不能满足保持水中药剂浓度及使用效果的要求,所以应安装BGK系列自动监测投加设备,进行药剂投加及监测工作。涛貶騸锬晋铩锩揿宪骟。35
BGK系列自动监测投加设备能够连续在线监测锅炉水中药剂浓度,以闭环反馈方式控制投药设备,自动变流量向系统中投加药剂,实现精确投加,保证使用效果,同时具有备选的通讯功能。钿蘇饌華檻杩鐵样说泻。设备巡检:为了保证水处理效果及设备的安全运行,应对设备进行定期巡检,主要内容如下:每周标定一次电极(见使用说明)每天定时检查设备电气控制,仪表指示,水泵压力等是否运行正常。戧礱風熗浇鄖适泞嚀贗。4.3.3、停用保护锅炉停止运行前,向锅炉及系统中补充药剂,控制系统水质pH值大于10.5,然后封闭锅炉及系统即可。4.3.4、注意事项1、由于各地水质不同,按照推荐用量计算的加药完成后,一定要随时监测锅炉或系统水质pH值,根据实际情况对加药浓度或加药量进行调整,使锅炉水或系统水质pH值保持大于10.5。購櫛頁詩燦戶踐澜襯鳳。2、使用自制溶药箱及盐池改造的溶药池,有时由于固体药剂投入过多或搅拌时间较短等原因,会在溶药箱下部出现沉淀,此时应采取降低药剂配置浓度或增加搅拌时间等措施,或定期直接在药箱中加入温水,将沉淀物完全溶解后再进行固体药剂的溶解,否则由于沉淀物过多会导致投药泵损坏影响药剂效果。嗫奐闃頜瑷踯谫瓒兽粪。35
第五章零排污蒸汽发生技术5.1、概况零排污蒸汽发生技术是工业锅炉成套节水技术,也是一种新的锅炉水处理技术。锅炉是工业生产和人类生活的热能动力之源,在国民经济中占有重要地位,被誉为工业的心脏是当之无愧的。锅炉的工作介质是水,锅炉水处理是保证锅炉安全经济运行的重要环节。锅炉是一种热交换设备,把外部能源(煤、油和天然气)燃烧所产生的能量传递到工作介质,使水变成蒸汽。不良的水质中含有较多的有害杂质,如果这种水不经任何处理就进入锅炉,那么水中的杂质会在锅炉中形成水垢或水渣,水垢的形成会大大降低锅炉的导热能力,锅炉结垢将导致炉管过热损坏、燃料消耗量增加、出力降低、缩短锅炉使用寿命,甚至出现事故。因此对锅炉给水的处理十分重要。虚龉鐮宠確嵝誄祷舻鋸。5.2、工作原理原水箱软化装置软水箱除氧器工业锅炉分汽缸换热器再生废盐水、溶盐废水、反洗水、冲洗水排放连排定排被污染凝结水排放與顶鍔笋类謾蝾纪黾廢。图1凝结水回收前的开环运行方式5.2.1传统工业锅炉运行模式传统工业锅炉运行特点:(1)采用离子交换设备对原水进行软化处理,防止锅炉结垢。在锅炉给水处理环节,离子交换法在我国锅炉房的普及已达90%以上。当原水经过钠离子交换树脂床时,水中的钙、镁离子与树脂上的无害离子交换,从而把钙、镁离子从原水中去掉,其残余硬度可降至0.05mol/L以下。对于碱度较高的原水,还需要采用软化一降碱处理。采用离子交换法进行水处理,必须排放再生废液,其再生废盐水可导致淡水咸化,在这一环节,排放的废水约占原水的5-15%。結释鏈跄絞塒繭绽綹蕴。(2)采用热力除氧器除氧,防止锅炉氧腐蚀。(3)在工业锅炉运行过程中,由于水的高倍浓缩,水中的溶解固形物及悬浮物增加,为了保证蒸汽品质,确保锅炉安全,锅炉要进行必要的连续排污和定期排污。这一环节的排污量约占锅炉补水量的5-10%。餑诎鉈鲻缥评缯肃鮮驃。35
(4)在蒸汽应用环节,传统运行方式只注重热能的利用,而忽视了含能介质的回收。蒸汽做功冷凝后变为热水,这些含有高热值的凝结水,其品质远远高于软化水,接近纯水。但由于凝结水在回收过程中会对钢质管道产生严重腐蚀,铁等腐蚀产物对水质造成严重污染。未经处理的凝结水作为锅炉补充水时,水中所含大量铁离子会在锅炉传热面发生二次结垢及垢下腐蚀,造成更大的危害,使得蒸汽凝结水的回收利用有一定的难度。以前,有很多工业锅炉在系统和用汽装置设计、安装时就没有考虑凝结水的回收利用,将蒸汽凝结水排至地沟而白白浪费。有些用户虽然将凝结水回收作锅炉给水,但由于缺乏有效的管道防腐措施和凝结水处理技术,凝结水回收管道腐蚀严重,凝结水中铁离子含量较高,直接影响锅炉的安全运行。目前,工业锅炉凝结水达标回收利用率不到20%。爷缆鉅摯騰厕綁荩笺潑。5.2.2工业锅炉零排污蒸汽发生技术零排污蒸汽发生技术是工业蒸汽锅炉节水成套技术。该技术利用化学方法,采用系统综合处理的设计,从蒸汽发生的源头上杜绝污染,消除或减少离子交换再生废盐水、溶盐废水、反洗水、冲洗水、连续排污水、定期排污水和污染凝结水等的排放:抑制凝结水回收系统管道金属腐蚀,消除铁离子对凝结水的污染,实现高热值、高品质的凝结水能够回收至锅炉作为锅炉的补水,可明显减少锅炉燃料消耗,减少软化水用量,降低蒸汽生产成本,改善锅炉水质状况。由于锅炉水质状况的改善,还可以大大减少锅炉排污及排污造成的热能损失,提高锅炉效率,使锅炉运行更加安全。锞炽邐繒萨蝦窦补飙赝。零排污蒸汽发生技术使锅炉蒸汽发生系统运行方式由大量排污情况下运行(开环运行)改为封闭循环(闭环)运行。该技术改变了锅炉必须在大量排污工况下运行的传统模式,是锅炉水处理技术的重大突破。曠戗輔鑽襉倆瘋诌琿凤。零排污蒸汽发生技术的基本工艺流程是:BF-30a投加控制原水箱工业锅炉分汽缸换热器BF-31T投加控制凝结水质取样检测连排定排35
图2零排污锅炉闭环运行方式凝结水处理:在蒸汽管道加入BF-31T高效缓蚀剂,防止蒸汽凝结水对管道的腐蚀,最大限度地回收凝结水。在凝结水回收率≥70%的情况下,去掉离子交换器(或者尽量减少离子交换器的使用),以尽量减少离子交换剂的再生废水排放;轉厍蹺佥诎脚濒谘閥糞。加入对锅炉运行和停用都起保护作用的BF-30a高效防腐阻垢剂,以防止锅炉本体的腐蚀和结垢;水质自动监测控制系统。对锅炉水质和蒸汽凝结水质指标的实时检测并自动投加保护剂,使水质指标控制在最佳范围内,使保护剂的各项技术在系统中得到充分发挥。嬷鯀賊沣謁麩溝赉涞锯。5.2.3零排污蒸汽发生技术的关键技术(1)BF-31T凝结水保护剂BF-31T具有成膜,中和功能,并有合理的汽液相分配比。BF-31T中的成膜剂在金属表面形成单分子层的具有吸附和憎水作用的保护膜,由于成膜剂分子间的空隙比CO2,O2的截面小,从而防止了CO2,O2对金属的腐蚀。中和剂为碱性,既中和了水中的碳酸又为在线检测冷凝水中的保护剂浓度提供依据,合理的汽液相分配比可有效保护金属管道中气相空间,防止了凝结水管道的金属腐蚀及腐蚀产物对凝结水的污染。讯鎬謾蝈贺綜枢辄锁廪。(2)BF-30a高效防腐阻垢剂BF-30a具有使锅炉本体金属处于钝化状态和抑制金属腐蚀过程中阴极反应的双重保护功能,有效地防止了金属本体在运行状态和停炉状态下的氧腐蚀;同时由于BF-30a具有强力螯合作用,加入锅炉水中后,与水中的硬度离子形成稳定的水溶性螯合物,增加了硬度离子在水中的溶解度,大大抑制水垢的形成,同时可以产生缓慢溶解原有水垢的效果;由于BF-30a具有较强的晶格畸变作用、分散作用,晶格畸变功能使碳酸钙晶体在生长过程中破碎,形成外观不规则的小晶体,分散剂吸附在小晶体及金属表面形成双电层,在静电作用下,小晶体之间及小晶体与锅炉金属表面之间互相排斥,避免了在较高硬度水中锅炉金属表面沉积生成水垢。兒躉讀闶軒鲧擬钇標藪。(3)水质自动监测控制系统:要充分发挥BF-30a防腐阻垢药剂和BF-31T凝结水保护剂的功效,必须保证锅炉水系统中BF-30a35
和凝结水系统中BF-31T的浓度在一定的范围内。水质自动监测控制系统由检测单元、显示控制单元和投药单元组成。检测单元在线动态检测水质(炉水和凝结水,下同)的PH值和人为的设定值进行比较:将其比较结果经过数据处理后控制投药计量泵的投药量;药剂投加量的变化引起水质PH值的变化;检测探头从采样单元中检测到水质PH值的变化;新的检测结果再和设定值进行比较,改变药剂投加量。这样,就形成了闭环调节控制系统,从而达到较佳的水质控制效果。繅藺詞嗇适篮异铜鑑骠。5.3、如何实现锅炉系统的零排污零排污蒸汽发生技术的基本思路是从环保出发的成套节水节能技术,既排除了锅炉运行过程中排污对环境的污染,又保证了锅炉的节水节能,以及锅炉的安全运行。目前,国际上普遍采用的锅炉的节水节能措施是防止结垢以提高锅炉热效率,减少排污量和回收排污热以减少排污热损失,回收凝结水以提高热利用率和节约锅炉给水。防止结垢和减少排污率,必须通过提高给水质量和加入阻垢剂才能实现,而回收凝结水的前提条件是凝结水不被腐蚀产物等污染,三个方面节水节能措施都必须有水处理技术作保证。鮒簡觸癘鈄餒嬋锵户泼。新建锅炉系统的设计,首先应考虑供出蒸汽应全部安装换热器间接使用,所有换热设备均应安装凝结水回收装置,以保证足够的凝结水回收率。在凝结水回收率≥70%的情况下,原则上可不安装离子交换系统和除氧器,自来水管道直接与锅炉给水箱连接。考虑到传统观念的影响,若用户要求安装离子交换系统和除氧器时,应安装与离子交换系统和除氧器并联的管道,使自来水管道可直接与锅炉给水箱连接。眯毆蠐謝银癩唠阁跷贗。对于现有锅炉系统实现零排污技术改造,首先必须具备或建立凝结水回收系统。凝结水回收系统包括凝结水回收管道、凝结水箱、循环泵。增加全自动凝结水水质监控设备向系统中投加保护剂,防止凝结水系统的金属腐蚀,使凝结水中铁离子含量控制在<200μg/L;硬度为<0.01mmol/L,pH值≥7,符合2001《工业锅炉水质》标准。闵屢螢馳鑷隽劍颂崗鳳。在锅炉给水侧安装锅炉水质监控设备,向锅炉给水系统中投加BF-30a锅炉防腐阻垢剂,以防止锅炉本体的结垢和腐蚀。檁傷葦开阈灯伞馑諧粮。安装集中控制的锅炉自动排污装置,在保证锅炉安全运行的同时,尽量减少锅炉运行排污及排污热损失。回收蒸汽凝结水作锅炉给水,可以大大减少锅炉原水和软化水用量、节约用水和降低水处理的运行费用,还可去除或缩小补水的水处理系统,节省投资;鄭饩腸绊頎鎦鹧鲕嘤錳。回收蒸汽凝结水,还可以提高给水品质,降低锅炉排污率,使锅炉的排污率控制在3%以下;回收蒸汽凝结水,可大幅度提高锅炉给水温度,从平均给水温度20℃提高到65℃,降低燃料消耗;而利用凝结水作给水,不但提高了水温,而且凝结水中的溶解氧含量较低,可确保给水余氧含量达到合格标准。即使对于给水无除氧措施的小型工业锅炉,回收凝结水可大幅度提高给水温度,也能降低水中溶解氧含量,可显著减少锅炉的氧腐蚀。弃铀縫迁馀氣鰷鸾觐廩。采用凝结水回收技术,保证凝结水直接达到回收利用的同时,又解决了凝结水回收管道的腐蚀问题,延长了凝结水回收管道的使用寿命,其效益显而易见。调谇續鹨髏铖馒喪劉薮。35
5.4、系统运行数据对比系统运行数据对比主要参数凝结水回收前凝结水回收后凝结水回收率080%生产每吨蒸汽用水(吨)1.2-1.40.16-0.18生产每吨蒸汽耗燃料天然气:m3煤:t88m3(天然气)80m3(天然气)0.178t(煤)0.142t(煤)生产每吨蒸汽耗电(kWh)8.677.28生产每吨蒸汽费用(元)(天然气)-14.24从凝结水回收前、后系统运行参数比较可以看出:(1)凝结水回收后比回收前生产每吨蒸汽节约用水量≥80%;每吨蒸汽的燃料消耗,天然气消耗减少8m3,燃煤锅炉房的燃料煤减少0.036t;生产每吨蒸汽的耗电量减少1.5kWh左右。厲耸紐楊鳝晋頇兗蓽驃。(2)生产每吨蒸汽的费用在采用凝结水回收技术后,可节约14元左右。零排污蒸汽发生技术应用装置的特点:(1)具有广泛的适用性:凡是具有凝结水回收管道的工业锅炉系统都可以应用该技术实现凝结水的达标利用,对系统的复杂程度、凝结水回收管线的长短、锅炉水质情况没有任何限制。苧瑷籮藶黃邏闩巹东澤。(2)系统自动化程度高,不需要增加专职运行人员,系统运行、维护、操作简单易学。(3)系统安装施工量小;设备占地面积小(2m2);不用改变原有凝结水回收系统。(4)节约用水≥80,节约燃料≥10%,一次投资回收期<1年。35
第六章经济分析及相关成本计算以某锅炉房三台lot/h燃汽蒸汽锅炉为例,运行条件:使二备一,出力100%,运行天数150天;给水水质:硬度5mmol/L、碱度2.5mmol/L;水处理方式:钠离子交换和热力除氧。有凝结水回收管道,凝结水箱及循环泵。鴿摄禱鋅儀憚銼嚕缗赞。一、运行成本及效益分析传统运行方式下生产一吨蒸汽所需相关费用1、水耗:软化水耗:1.05t/吨蒸汽(含软化生产过程中反洗、配制再生液、置换、正洗的自耗水)锅炉排污水耗:0.05t/吨蒸汽(按5%排污率计)(不含减少除氧处理费及节电费用)水耗总量:1.1t/吨蒸汽2、软化用再生剂一盐的消耗:以再生剂比耗0.11kg/mol计算,软化处理硬度为5mmol/L的锅炉给水的盐耗:0.11×5=0.55kg/吨蒸汽箪啬癲剀净赶钩嬙鳄凫。3、能源消耗:(1)以天然气为燃料,每吨蒸汽含热能6×105Kcal,按锅炉总体效率75%,天然气发热量按QYdw8740Kcal/m3计算,燃料消耗:顽鷙瑪滨廈岘轆庫糞糧。m=Q/QYdwη=6×105/8740/75%=91.5m3(2)如以煤为燃料,每吨蒸汽含热能6×105Kcal,按锅炉总体效率75%,煤发热量按QYdwη=6×105/6×105/75%=133kg计算,燃料消耗:漬閫熾诀团諳赓戰餛锰。m=Q/QYdwη=6×105/6×105/75%=133kg二、以凝结水回收率70%计算,回收凝结水后,生产一吨蒸汽所节约的相关费用:1.节约用水:回收1吨凝结水可减少给水水耗1.1吨以凝结水回收率70%计算,生产每吨蒸汽可节约用水1.1×70%=0.77t2.节约的再生剂――盐:回收1吨凝结水可减少盐耗0.55kg以凝结水回收率70%计算,生产每吨蒸汽可节约用盐0.55×70%=0.39kg3.节约的燃料:35
条件:软化水温度15℃,凝结水回水温度65℃,(1)回收1吨凝结水锅炉给水温度提高,减少的热量损失:Q1=mc(t1-t2)=1000kg×4.187KJ/kg.℃×(65℃-15℃)=209350kJ鐸輜澠顶嫻塊謂斕痹廪。(2)以天然气为燃料,按锅炉总体效率75%,天然气发热量按QYdw36533Kcal/m3计算。回收1吨凝结水节约的天然气燃料:m=Q1/QYdwη=20935/36533/75%=7.64m3以凝结水回收率70%计算,生产一吨蒸汽所节约天然气燃料:m×70%=5.3m3(3)以煤为燃料,按锅炉总体效率75%,煤发热量按QYdw×103Kcal/kg计算。回收1吨凝结水节约的煤:m=Q1/QYdwη=20935/4.18×103/75%=11.12kg以凝结水回收率70%计算,生产一吨蒸汽所节约煤燃料:m×70%=7.78kg1.回收凝结水后,生产一吨蒸汽所节约的总费用(不含减少除氧处理费及节电费用):按水价4元/吨、盐价450元/吨、天然气价1.8元/m3、煤价400元/吨计算。抢觀淚婭师讴论櫚阵蘚。以天然气为燃料,生产吨蒸汽节约:4×0.77+0.45×0.39+1.8×5.3=12.8元以煤为燃料,生产吨蒸汽节约:4×0.77+0.45×0.39+0.4×7.78=6.4元三、此锅炉房年节约运行成本计算:三台10t/h蒸汽锅炉,运行条件:使二备一,出力100%。运行天数150天计年产汽量:10×2×24×150=7.2×104吨贼組櫻種愨单蝕渾潷骡。年节水:7.2×104×0.77=5.5×104吨年减少盐耗及盐的排放:7.2×104×0.39×10-3=28吨年减少天然气用量:7.2×104×5.3=3.8×105m3年节约运行费用:(不含减少除氧处理费及节电费用)7.2×104×12.8=92.16万元计算表1:1、回收1吨凝结水节约的燃料费用:条件:软化水温度15℃,凝结水回水温度65℃,软化水经过热力除氧后的锅炉给水温度95℃,95℃饱和水的热焓397.99kJ/kg35
,锅炉型号DZL20-1.25AⅡ2台,DHL20-1.25AⅡ2台,烟煤Ⅱ设计用代表性煤种应用基低位发热量17693kJ/kg,系统运行压力0.6Mpa,饱和水热热焓17693kJ/kg,现在排污率6%,改造后排污率2%,锅炉总体效率按70%计算:圓漣檸賡捣蕷舻燁錘泽。(1)锅炉给水温度提高,减少的热量损失:Q1=mc(t1-t2)=1000kg×4.187kJ/kg.℃×(65℃-15℃)=209350kJ蟄彎擼鯁棖佇緡癟椠贊。(2)降低排污率4%,减少的热量损失:Q2=D(-)x4%=1000kgx(697.1kJ/kg-397.99kJ/kg)x(6%一2%)=11964kJ义淨擁扪殴胁纸窺钣鳧。(3)按锅炉总体效率70%,烟煤Ⅱ设计用代表性煤种应用基低位发热量17693kJ/kg,计算节约的燃料费:绥骅懸缙澀鷂禍紳撻粮。M=(Q1+Q2)//η=(209350+11964)/17693/70%=17.87kg烟煤Ⅱ馒锁開钥焖緒珏編軻錙。烟煤Ⅱ按280元/t计算:280元/tx17.87/1000=5元/t2、生产1吨锅炉给水需自来水1.01吨,工业自来水水费按3元/t计算:3xl.01=3.03元/t3、锅炉给水处理费按0.52元/t(不含除氧处理费及电费)计算:4、合计:5+3.03+0.52=8.55元/t计算表2:每吨锅炉给水的处理费用(不含除氧处理费及电费):条件:锅炉房采用Na离子交换器,Na周期制水量4800吨,一次用含量98%盐1.22吨,再生剂浓度7%,反冲洗耗水19吨,小反冲洗耗水5吨。獄质嶇僅痺鲒潰脫帧開。再生一次Na罐消耗的自来水水量35
(1)用含量98%的盐配置1吨7%再生剂需要的水量由公式7%=推算出X=(1.2x98%-1.2x7%)/7%=15.6t(2)每吨软化水的处理费用35
第七章附录1、热水BF-30a,BF-31T不同浓度下的PH值和碱度2、工业锅炉水质标准35
热水BF-30a不同浓度下的PH值和碱度㈠、试验用水:配制水(硬度5mmol/L、碱度2.5mmol/L)试验温度:水浴80℃试验时间:30分钟,取出后快速冷却。㈡、试验数据如下表:浓度PH值碱度(mmol/L)50PPm9.322.95M:0.7P:2.25100PPm9.583.20M:0.95P:2.25150PPm9.653.50M:1.12P:2.38200PPm9.973.92M:1.40P:2.52250PPm10.215.30M:1.55P:3.75300PPm10.396.60M:1.95P:4.65350PPm10.637.85M:2.65P:5.20400PPm10.759.37M:3.35P:6.02450PPm10.8110.35M:3.90P:6.45500PPm10.9211.48M:4.60P:6.88550PPm10.9912.32M:5.30P:7.02600PPm11.0313.15M:6.05P:7.1035
中华人民共和国国家标准工 业 锅 炉 水 质 GBl576—2001 代替GBl576—1996一、范围本标准规定了工业锅炉运行时的水质要求。本标准适用于额定出口蒸汽压力小于等于2.5MPa,以水为介质的固定式蒸汽锅炉和汽水两用锅炉也适用于以水为介质的固定式承压热水锅炉和常压热水锅炉。鍥苋娛殫秽笾殇蕢谬藓。二、水质标准1、蒸汽锅炉和汽水两用锅炉的给水一般应采用锅外化学水处理,水质应符合表1规定表1项目给水锅水额定蒸汽压力,MPa ≤1.0>1.0 >1.6 ≤1.0>1.0>1.6≤1.6 ≤2.5 ≤1.6≤2.5悬浮物,mg/L≤5≤5 ≤5 总硬度,mmol/L1) ≤0.03≤0.03≤0.03 总碱度,mmol/L2)无过热器 6-26 6-24 6-16有过热器pH(25℃) ≥7≥7≥710-1210-1210-12溶解氧,mg/L3)≤0.1≤0.1≤0.05 溶解固形物,mg/L4)无过热器 <4000<3500<3000有过热器 SO32-,mg/L4) 10-3010-30PO43-,mg/L10-3010-30 相对碱度(游离NaOH/溶解固形物)5) <0.2<0.2含油量,mg/L ≤2 ≤2≤235
含铁量,mg/L6)≤0.3≤0.3≤0.3 1)硬度mmol/L的基本单元为c(1/2Ca2+、1/2Mg2+),下同。2)碱度mmo1/L的基本单元为c(OH-、1/2CO2-3、HC03-),下同。 对蒸汽品质要求不高,且不带过热器的锅炉,使用单位在报当地锅炉压力容器安全监察机构同意后,碱度指标上限值可适当放宽。3)当锅炉额定蒸发量大于等于6t/h时应除氧,额定蒸发量小于6t/h的锅炉如发现局部腐蚀时,给水应采取除氧措施,对于供汽轮机用汽的锅炉给水含氧量应小于等于0.05mg/L。4)如测定溶解固形物有困难时,可采用测定电导率或氯离子(C1-)的方法来间接控制,但溶解固形物与电导率或与氯离子(cl-)的比值关系应根据试验确定。并应定期复试和修正此比值关系。5)全焊接结构锅炉相对碱度可不控制。6)仅限燃油、燃气锅炉2、额定蒸发量小于等于2t/h,且额定蒸汽压力小于等于1.0MPa的蒸汽锅炉和汽水两用锅炉(如对汽、水品质无特殊要求)也可采用锅内加药处理。但必须对锅炉的结垢、腐蚀和水质加强监督,认真做好加药、排污和清洗工作,其水质应符合表2规定。杂砖墳雖紜飯曇覡墾騾。 表2项 目 给水锅炉水悬浮物,mg/L≤20总硬度,mmol/l≤4总碱度,mmol/l8-26pH(25℃)≥710-12溶解固形物,mg/L<50003、承压热水锅炉给水应进行锅外水处理,对于额定功率小于等于4.2MW非管架式承压的热水锅炉和常压热水锅炉,可采用锅内加药处理,但必须对锅炉的结垢、腐蚀和水质加强监督,认真做好加药工作,其水质应符合表3的规定。轼栀嗶鑊绷瘍懔諍訝澤。表3项目锅内加药处理 锅外化学处理给 水锅 水给 水锅 水悬浮物,mg/L≤20≤5总硬度,mmol/L≤6≤0.6PH(25℃)1)≥710~12≥710~1235
溶解氧,mg/L2)≤0.1含油量,mg/L≤2≤21)通过补加药剂使锅水pH值控制在10~12。2)额定功率大于等于4.2MW的承压热水锅炉给水应除氧,额定功率小于4.2MW的承压热水锅炉和常压热水锅炉给水应尽量除氧。4、直流(贯流)锅炉给水应采用锅外化学水处理,其水质按表1中额定蒸汽压力为大于1.6Mpa、小于等于2.5Mpa的标准执行。尋头厭呛羈阴帥讕匦赞。5、余热锅炉及电热锅炉的水质指标应符合同类型、同参数锅炉的要求。6、水质检验方法应按附录A(标准的附录)执行。作者周楠2012年4月于北化35'
您可能关注的文档
- 基于cass工艺—膜过滤中水处理技术的研究
- 探析丁辛醇生产废水处理技术研究
- 炼油厂污水处理技术应用研究
- 百口泉区块稠油污水处理技术研究
- 鞍山炼油厂污水处理技术研究
- 高浓度偶氮染料废水处理技术的研究
- 基于埕岛油田注入海水处理技术研究
- 探析化肥厂循环冷却水处理技术及工艺控制的优化
- 硫酸盐还原菌在酸性矿山废水处理技术中的应用研究
- cy含油污水生化处理站的污水处理技术选择研究
- 含氟中间体的降解及其生产废水处理技术的研究
- 含镍络合废水处理技术研究
- 焦磷酸盐镀铜废水处理技术研究
- 煤化工废水处理技术瓶颈分析及优化与调试
- 电絮凝—负载型纳米铁联用水处理技术研究
- 电解锌过程产生的含铊废水处理技术研究
- 高寒地区农村污水处理技术
- 中水回用于热电厂的水处理技术研究