• 504.41 KB
  • 2022-04-22 13:32:16 发布

基于罗丹明酰肼的铜离子荧光探针及其生物成像应用.pdf

  • 12页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'中国科技论文在线http://www.paper.edu.cnAnewfluorogenicandcolorimetricchemosensorbasedonrhodaminehydrazideforcopper(II)ionsanditsapplication5tobioimaging1222**RENLiexiang,WANGPanfeng,LIUBin,YANGBinsheng(1.Lulianguniversity,Departmentofchemistryandchemicalengineering,Lishicity,033000;2.InstituteofMolecularScience,Shanxiuniversity,Taiyuan,030006)Abstract:AnewrhodaminehydrazidederivativeLcontainingalongchainschiffbasewithsalicylic2+10acidwassynthesizedandcharacterized.AdditionofCuinducedasignificantsolutioncolorchange(colorlesstopink)andanenhancementinfluorescenceoftheprobe,eveninthepresenceofother2+commonlycoexistentcationsinCH3CN/HEPESbuffersolvent(1:1,v/v,pH7.0).Cu-promotedring-openingandhydrolysisofrhodamineLinaqueousacetonitrilemedialedtothefluorescenceturn-onchangeswithhighselectivityandhighsensitivity(detectionlimit≤22.9nM)andarapid15responsetime(≤1min).Importantly,theprobewassuccessfullyusedforfluorescenceimagingincoloncancerSW480cells2+Keywords:Rhodaminederivative;Chemosensor;Cuion;Cellimaging0Introduction20Copperisanessentialtraceelementthatplaysacriticalroleinthephysiologyoflivingorganismsincludinggeneexpressionandthefunctioningandstructuralenhancementofproteins,[1]2+andisalsorequiredbythehumannervoussystem.However,excessiveaccumulationofCuinthehumanbodywillleadtoanoxidativestress,organtoxicityanddisordersassociatedwith[2][3]neurodegenerativediseasessuchasMenkesdisease,Wilson’sdisease,andAlzheimer’s[4]25disease.Copperisalsoknownasasignificantmetalpollutantduetoitswidespreaduse.Asa2+result,monitoringofCuisofconsiderableinterestandhasrecentlyattractedsignificantattention.Todate,thechemodosimeterhasattractedatremendousamountofattentionasanalternativetosensorsbasedonmetalionbindingmechanismduetoitshighsensitivityandarapidresponse.30Asaclassicdyes/fluorophores,rhodaminedyesarewidelyusedasfluorescentprobesinroutineopticalanalysisowingtotheirhighabsorptioncoefficient,fluorescenceemissioninvisibleregion,[5−8]andhighfluorescencequantumyield.Spirolactam-typerhodaminederivativesarenonfluorescentandcolorless,whereasspirolactamring-openinggivesrisetostrongfluorescenceemissionandapinkcolor.Somemetalcationscaninducespirolactamring-openingprocess,and35greatprogresshasachievedinthedevelopmentofnewluminescentchemodosimetersbasedon2+thisprocessinthepastseveralyears.Cucaninducethespirolactamring-openingprocessofrhodaminederivativesduetothechelationofmetalionswiththeprobes,whichhasbecomethe2+majorstrategyfordesigningCu-selectiveluminescentchemodosimeterswithaluminescece[9−31]2+turn-onresponse.Cu-chelation-inducedspirolactamring-openingprocessisreversible.In2+40addition,Cucanalsoinducethehydrolysisofactivatedesters,shift-bases,andhydrazone.The2+combinationofCu-promotedhydrolysisandspirolactamring-openingofrhodamineintoonesystemisausefulstrategytogeneratefluorescentturn-onchemodosimetersfortheselective2+[32−33]2+detectionofCuions.Cu-Inducedspirolactamring-openingandhydrolysisprocessesisirreversible.Interestingly,CH3CN/H2Osolutionisneededdefinitelyforallofthesehydrolysis45processes.Worksrelatedtothisareaareofgreatchallengeandincreasinginterest.Briefauthorintroduction:liexiangRen(1978),women,lecturer,bioinorganicchemstryCorrespondanceauthor:BinshengYang,1967.11.Professor,Biochemistry.E-mail:yangbs@sxu.edu.cn-1- 中国科技论文在线http://www.paper.edu.cn2+InanefforttoexpandourresearchondevelopingCufluorescentprobes,wewereinterestedinstudyingthepropertiesofrhodaminehydrazide.Rhodaminehydrazidecanforma5-membered2+ringcomplexwithCu,whichmightpromotetheredoxhydrolysisofanamidebond,andthuscausethefluorescencerecoveryofrhodamineB.Inaddition,Schiffbasesarecompoundswitha50functionalgroupcontainingaC=Nbond,whichisalwaysinvolvedinsomeenzymatictransformations.ThehydrolysisofSchiffbasescanbepromotedbyacids,aminesandmetalions.Itiswellknownthatrhodaminedyeisdifficulttoacrossthecellmembranes.Tosolvethisproblem,inthepresentwork,arhodaminehydrazidederivativeLcontainingalongaliphatic2+chainhasbeendemonstratedasachemodosimeterforCu.ItrevealsthatrhodaminehydrazideL2+55indeedexhibitsahighlyselectivefluorescenceonreactionwithCu,andmayfindausein2+detectingCuinbiosystems.1Materialandmethods1.1MaterialsandinstrumentsAllthereagentswereanalyticalgradeandusedasreceived.Allsolventswereusedafter3+3+3+2+2+2+2+2+60appropriatedistillationorpurification.SolutionsofFe,Cr,Al,Hg,Fe,Mg,Mn,Co,2+2+2+2+2+2++++Pb,Cu,Cd,Ni,Ca,Zn,K,Na,Agwerepreparedfromtheirchloridesalts.HEPESbuffersolutions(10mM,pH7.0)werepreparedinwater.Deionizedwaterwasusedthroughouttheexperiments.Astocksolutionofthechemodosimeter(1.0mM)waspreparedbydissolving0.01mMofthechemodosimeterin10mLofCH3CN.ColoncancercellSW480wereobtained65fromtheAmericanTypeCultureCollection.Themediumandheat-inactivatedfetalbovineserum(FBS)werefromGIBCO(GrandIsland,NY).113HNMRspectrawererecordedonBruker-300MHzspectrometersandCNMRspectrarecordedon75MHzspectrometers,thechemicalshifts(δ)werereportedasppminCHCl3.FluorescenceresponseswererecordedonaFluoromax-Xspectrofluorometer(HORIBA).ESI-MS70spectrawereconductedbyAgilent6520Accurate-MassQ-TOFLC/MSmassspectrometer.UV-visible(UV-Vis)spectraweremeasuredwithaVarian50BIOspectrophotometer.Thetemperatureofthesolutionswasmaintainedat37ºCbyajacketedcellholderconnectedtoanexternalcirculatingwaterbath(ShimadzuTB-85orHuber).ElementalanalysesweremeasuredonaVarioELIIIanalyzer.IRspectrawererecordedwithanBrukerTENSOR21FT-IR75spectrophotometer.AllpHmeasurementsweremadewithaModelpHS-3CpHmeter(Shanghai,China).BioimagingofthesensorswereperformedonanDaltaVision(AppliedPrecision,LLC,USA)invertedfluorescencemicroscopy.1.2SynthesisThegeneralsyntheticprocedureisgiveninScheme1.4-aminosalicylicacid(0.765g,5mM)80weredissolvedin20mLethanol,followedbyadditionofexcessiveglutaraldehyde(5mL,12.5mM)andthemixturewasrefluxedfor2h.Thesolutionwascooledtoroomtemperature.Theprecipitatewasfilteredandwashed3timeswith15mLcoldethanol.Afterdryingunderreducedpressure,thereactionaffordedayellowcrudeproduct1(0.9g,yield:76%),whichwasusedwithoutfurtherpurification.[34]85Therhodaminehydrazidewassynthesisaccordingtothereportedmethod.Thenrhodaminehydrazide(0.46g,1.0mM)and1(0.23g,1.0mM)weredissolvedin30mLethanol,andthemixturewasrefluxedfor3h.Aftercoolingtoroomtemperature,apinksolidwereprecipitated.Thesolidwaspurifiedbyrecrystallizationtoprovide0.32gLasapinksolid,yield,47.5%.-2- 中国科技论文在线http://www.paper.edu.cn90CompoundL.-1FT-IR(KBr):3078,2929,1699,1616,1514,1465,1265,1116cm.1H-NMR(CDCl3),δ(ppm,300MHz,TMS):δ7.93(d,2H),7.60(4H,Phen-H),7.35(1H,Phen-H),7.26(2H,Phen-H),7.06(2H,Xanthene-H),6.46(2H,Xanthene-H),3.33(8H,NCH2CH3),1.37(6H,CH2CH2CH2),0.88(12H,NCH2CH3)(Fig.S1).++95ESImassspectrometry:m/z=674.33[M+H],[M+H]calculated674.33(Fig.S2).Anal.CacldforC:71.30,H:6.43,N:10.39;Find:C:71.26,H:6.64,N:10.30.HOHOOglutaraldehydeONNH2OHOEtOHHO1OCHONNH2OONHONNEt2NONEt2Et2NONEt2EtOHLScheme1SynthesisofL.1002+1.3UV–visandfluorescencetitrationstudyofLwithCuTheinorganicsaltwasdissolvedindistilledwatertoafford1.0mMaqueoussolution.The1.0mMstocksolutionofLwaspreparedinabsoluteCH3CN.Allthemeasurementswerecarriedoutaccordingtothefollowingprocedure:To10mLvolumetricflaskcontaining100μLofthe105solutionofL,differentamounts(10–400μL)ofmetalionswereaddeddirectlywithmicropipette,thendilutedto2.0mLwithCH3CN–HEPESbuffersolvent(1:1,v/v,pH7.0,10mMHEPES)solution.Fluorescencemeasurementswerecarriedoutwithexcitationandemissionslitwidthof2.5and2.5nmandPMTVoltageandexcitationwavelengthwas400Vand540nm,respectively.2.4.Cellcultureandfluorescencemicroscopyimaging110SW480wasculturedinRPMI1640mediumsupplementedwith10%FBS,and1%penicillin-streptomycinat37ºCinahumidifiedatmospherewith5%CO2and95%air.CytotoxicityassaysshowthatLissafeenoughformicroscopyimagingatlowconcentrations.Beforeimagingexperiment,thecellswereseededin24-wellplates.Thecellswereincubatedwith15μMLat37ºCunder5%CO2for30min,washed3timestoremovetheremainingprobeand2+115bathedinDMEMcontainingnoFBSpriortoimaging.Then15μMCuwasaddedinthegrowthmediumfor0.5hat37ºC,washed3timeswithPBSbuffer.Then,cellswereimagedunderainvertedfluorescencemicroscopy(DaltaVision).-3- 中国科技论文在线http://www.paper.edu.cn2Resultsanddiscussion2.1UV-visblestudies120Fig.1(a)Absorptionspectraof50μMLinthepresenceof2.0equiv.ofdifferentmetalionsin1:1CH3CN–HEPESbuffersolvent(pH7.0,10.0mMHEPES).(b)UV–vistitrationprofileofLupongradualaddition2+2+2+ofCu(0–1.5equiv.),(c)Job’splotoftheLwithCu,totalconcentrationofL+Cuwaskeptconstantat50.02+μM(d)AbsorptionofLat554nm(50.0μM)to2.0equiv.ofCuin1:1CH3CN–HEPESbuffersolution(10.0125mMHEPES,pH7.0)containing20equiv.ofvariousmetalions.2+2+2+2+Toexplorethesensitivityofthesensortowardsvariouscations(e.g.Ni,Hg,Fe,Co,2+2+2+2+2+3+3+3++++Ca,Cd,Mn,Cu,Zn,Cr,Fe,Al,K,Na,Ag),chloridesaltsofeachoftheguestmetalionswereemployedinCH3CN–HEPESbuffer(1:1,v/v,25ºC)atpH7.0(10mMHEPES130buffer).AsshowninFig.1a,theUV–visabsorptionspectrumofprobeLinCH3CN–HEPESbuffer(1:1,v/v)hasnoabsorptionbandabove400nm.Theabsorptionspectrumdoesnotchange2+significantlyinthepresenceofdifferentmetalionsexceptCu,suggestingthespirolactamringof2+rhodamineBunitprefersitsring-closedstateatthiscondition.WhileuponinteractionwithCuions,anewstrongabsorptionpeakforprobeLin500–590nmrangeissimultaneouslyobserved,135andthecolorofthesolutionchangesfromacolorlesstopink(Fig.2),clearlysuggestingtheformationofthering-openedamideformofL.Thecolor-onreactionshowsahighselectivity2+towardCuonly,ratherthanotherions.Fig.1bshowsthechangeintheabsorptionspectrum2+uponadditionofCutoasolutionoftheprobe(50μM/L)in1:1CH3CN–HEPESbuffersolution2+(10.0mMHEPES,pH7.0).WithincreasingCuconcentration,thenewabsorptionpeakat554140nmcomesout,indicatingtheformationofanewcompound.Theabsorbanceintensityenhances2+almost12-folduponadditionof1.0equiv.ofCuin1:1CH3CN–HEPESbuffersolution.-4- 中国科技论文在线http://www.paper.edu.cnFig.2PhotosofchangesincolorandfluorescentemissionoftheL(50μM)uponadditionof2.0equiv.variousmetalionsin1:1CH3CN–HEPESbuffersolution(10.0mMHEPES,pH7.0).145Bindinganalysisusingthemethodofcontinuousvariations(Job’splot)wasmeasured.AsillustratedinFig.1c,amaximumabsorbanceat554nmisobservedwhenthemolecularfraction2+ofLiscloseto0.5,whichestablishesthe1:1complexformationbetweenLandCu.The[35,36]stoichiometryissupported(Fig.S4,SupportingInformation)bytheHillplotmethod.As150wellas,thebindingconstant(logKa)isfurtherfoundtobe5.0,whichisalsodeterminedaccording2+totheHillplotmethod(Fig.S4).ThedetectionlimitofprobeforCuisdeterminedtobe1.0μM(Fig.S5)usingtheequationDL=K×Sb1/S,whereK=3,Sb1isthestandarddeviationoftheblank[37]solution(10times)andSistheslopeofthecalibrationcurve.Achievinghighselectivityfortheanalyteofinterestoverotherpotentiallycompetingspecies155isanecessityforbioimagingprobes.Thus,theabsorbancechangesofLweremeasuredbythe2+treatmentof2.0equiv.Cuionsinthepresenceof10equiv.otherinterferingmetalions2+2+2+2+2+2+2+2+3+3+3++++includingNi,Hg,Fe,Co,Ca,Cd,Mn,Zn,Cr,Fe,Al,K,NaandAg.The2+resultsdemonstratesthattheabsorbanceofprobeLisenhancedeffectivelybyCuionswiththeseionsasbackground(Fig.1d).Thisobservationconfirmsthatthecoexistentionshave2+160negligibleinterferingeffectonCusensingbyprobeL.2.2Fluoresencestudies2+Fig.3(a)FluorescencespectraofL(50μM))uponadditionof2.0equiv.Cuandothermetalionswiththe165excitationat540nmin1:1CH3CN–HEPESbuffersolution(10.0mMHEPES,pH7.0).(b)Emissionprofile-5- 中国科技论文在线http://www.paper.edu.cn2+of50μMLuponconcomitantadditionsofCu.Insert:Changesofemissionintensityat575nmwith2+2+incrementaladditionofCu(c)HillplotofthefluorescencetitrationdataofLat575nmwithCuinCH3CN–HEPESsolution.(d)Fluorescenceintensitychangesof50μMLupontheadditionofvariousmetalionsinCH3CN/HEPES(pH7.0,1:1,v/v)solution.λex=540nm,slit:2.5nm/2.5nm.1702+ThehighselectivityofLforCuwasfurtherobservedinthefluorescentspectra.The2+fluorescenceresponseofLtovariouscationsanditsselectivityforCuareillustratedinFig.3.ItisclearthatLshowsaveryweakfluorescenceintheabsenceofmetalionsinCH3CN–HEPES2+buffer(1:1,v/v).However,theadditionofCu(2.0equiv.)resultsinaremarkablyenhanced175fluorescenceintensity(λex=540nm).Wealsonotethatitisvisualwithasolutioncolorchangefromcolorlesstoyellowunderilluminationwitha365nmUVlamp(Fig.2).Noobvious2+2+2+2+2+2+2+2+responsescanbeobservedupontheadditionofNi,Hg,Fe,Co,Ca,Cd,Mn,Zn,3+3+3++++Cr,Fe,Al,K,Na,Ag,respectively(Fig.3a),whichisconsistantwiththeresultofUV–visspectra.TheseobservationsindicatesthatLhasahighsensitivityandexcellentselectivityfor2+2+180CuinCH3CN–HEPESbuffer(1:1,v/v).UpongradualadditionofCu,thefluorescenceintensityofthesolutionat575nmincreases(Fig.3b).Thefluorescenceintensityenhancesalmost2+2+8-folduponadditionof1.0equiv.ofCuinCH3CN–HEPESbuffer(1:1,v/v).WhenmoreCuistitrated,thefluorescenceintensityshowsnegligiblechanges.FromtheJob’splot(Fig.S6),amaximumfluorescencechangeisobservedwhenthemolar2+185fractionofthesensor[L]versus[Cu]+[L]is0.5,indicatinga1:1bindingstoichiometrybetween2+LandCu.Basedona1:1bindingmode,thebindingconstantiscalculatedtobelogKa=5.28fromtheHillplotofthefluorescencetitration(Fig.3c)withsatisfactorycorrelationcoefficientvaluesR=0.990.Thecalculateddetectionlimitis22.9nMfromthefluorescencespectra(Fig.S7),whichismuchlowerthanthetypicalconcentrationofbloodcopper(15.7–23.6μM)innormal[38]190individualsandthelimitofcopperindrinkingwater(~20μM)setbytheU.S.Environmental[39]ProtectionAgency.Competitionexperimentswerealsocarriedoutbymonitoringthechangeinfluorescence2+intensityat575nmuponadditionof2.0equiv.CuiontoasolutionofLanddifferentmetalions(10equiv.)inthebufferedsolution(Fig.3d).Itcanbeobservedthatnoneofthemetalionsexert195virtuallyanyeffectonthefluorescenceintensity.Therefore,theprobeiscapableoffluorescent2+recognitionofCuwithhighselectivityandsensitivity.2.3EffectofpHandkineticcharacteristicoftheswitch2+200Fig.4Thechangesofemissionintensityat575nmofL(50μM)intheabsenceandpresenceof2.0equiv.CuinH2O/CH3CN(v/v,1/1)atdifferentpH.-6- 中国科技论文在线http://www.paper.edu.cn2+InordertoinvestigatetheeffectoftheenvironmentalfactorstothedetectionofCu,the2+spectrumresponsewithorwithoutCuinthebuffersolutionsatdifferentpHvalueswasfirstlyevaluatedatroomtemperature.Fig.4showsthatnoobviousfluorescenceemissionofLis205observedbetweenpH4and12,suggestingthatthecompoundisinsensitivetopHandthatthespirolactamformisstillpreferredinthiscondition.IntherangepH5–7.5,amarkedfluorescence2+enhancementisobserveduponadditionofCu.Themoststrongfluorescenceintensityis2+observedaroundpH7.0forCu,whichisclosetophysiologicalconditions.Therefore,furtherstudiesarecarriedoutinH2O/CH3CN(v/v,1/1)atpH7.0.2102+Fig.5ChangesofemissionintensityofLat575nminthepresenceandabsenceof2.0equiv.ofCuandasthefunctionoftime(0–150s).Thetimecourseforthefluorescenceresponseof50μMprobeLupontheadditionof2.02+215equiv.CuinbufferedsolutionatroomtemperatureisshowninFig.5.Itisfoundthatthe2+obviousspectralchangeisobservedwithin1minuponadditionof2.0equiv.Cu.Thesolutionisstabletolightandairatroomtemperature.Therefore,thissystemcanbeusedforreal-time2+trackingofCuincellsandorganisms.Inthispaper,2minisusedforalltitrations.2.4Stoichiometricratioandmechanism2202+Fig.6IRspectraofL(a)andL-Cu(b)inKBrdisks.InordertoinvestigatewhythesignificantabsorbanceandfluorescencechangesofL,theIR2+225spectraexperimentsweremeasured.IRspectraofLandL-Cu(gotfromevaporationof-7- 中国科技论文在线http://www.paper.edu.cnacetonitrilesolution)weretakeninKBrdiscs,respectively,andtheresultswereshowninFig.6−1andFig.S8-S9.AsclearlyshowninFig.6,thepeakat1616cm,whichcorrespondstothe−1characteristicabsorptionofamidecarbonylgroup,isshiftedtolowerfrequency(near1589cm)2+uponchelatingwithCu.Thissamephenomenonhasalsobeenfoundinotherliteratures,during−1[28]−1[40]230whichthepeakcanshiftfrom1619to1595cmorfrom1616to1590cm.HydrazidesarealsoknowntobindCu(II)thuslywithresultingenhancedtransacylationreactivity.ThissupportsthenotionthatthecarbonylOatomandamidoNatominthehydrazideisinvolvedinthe2+coordinationofCuforminga5-memberedringcomplex.2352+2+2+Fig.7PhotosofchangesincolorofL(a)1:L,2:L+Cu,3:L+Cu+DETAinCH3CN;(b)1:L,2:L+Cu,3:2+2+L+Cu+DETA,4:L+Cu+EDTAinH2O/CH3CN(1:1,v/v).2+ToconfirmCumediatedhydrolysis,reversibilityexperimentswerecarriedoutinboth240acetonitrileandacetonitrile/watersystems.Theadditionofdiethylenetriamine(DETA)tothe2+L-CucomplexinpureacetonitrilerestoresthefluorescencesignalofLtoitsoriginallevel,a2+showninFig.7a.FurtheradditionofCuionstothesamesolutiongivestheoutcomeofthe2+L-CucomplexindicatingthereversiblebehaviorofLinacetonitrile.Ontheotherhand,addition2+ofCuchelatingagents,suchasEDTAorDETAtoacetonitrile/watersystems,doesnotdecrease245theintensityofthefluorescencesignals(Fig.7b),confirmingtheirreversiblecharacterofthisprocess.ThechangesofabsorbancespectraarealsoshowninFig.S10–S11.Tofurtherclarifythemechanism,thehydrolyticproductwassubjectedtotheESImassspectralanalysis.Theresultsshowthatthepeakatm/z=443.23(Fig.S3)correspondstorhodamineB(Calc.m/z=443.23)astheresultinghydrolyticproduct.Notably,thepeakat674.3disappearswhenLisfullyhydrolyzed2+250(Fig.S3).Takentogether,alikelysensingmechanismbasedontheCu-triggeredspirocyclicring-openingprocessisproposedinScheme2.-8- 中国科技论文在线http://www.paper.edu.cnOHNOHOOHOCu2+OCu2+ONNNHONNDETANONNONweakfluorescencestrongfluorescenceLL-Cu2+DH2OsisElyTroAdOhyHONONRing-openedRhodamine2+Scheme2ProposedbindingmechanismbetweenLandCu2552.5FluorescentimaginginSW480cellsFig.8BioimagingapplicationofchemodosimeterLinSW480cells.Representativefluorescenceimagesof2+SW480cellstreatedwithL(5μM)ineithertheabsence(a)orthepresence(b)of5equiv.Cu(30minat37ºC).(c)Bright-fieldimageofcellsshowninpanelb.(d)Overlayimageof(b)and(c).260Tofurtherevaluatethepracticalapplicabilityofthedesignedchemodosimeter-functionalizedprobe,fluorescentimagingexperimentswerecarriedouttodemonstrateitsvalueinbioimaging2+intracellularCuinSW480celllines.SW480cellwereincubatedwithreceptorL(5μM)inanRPMI-1640mediumfor30minat37ºCandwashedwithphosphatebufferedsaline(PBS)buffer265(pH7.4)toremoveexcessreceptorL.Asdeterminedbyfluorescentimagingmicroscopy,stainingcellstreatedwith5μMsolutionofLfor30mingivenointracellularfluorescence(Fig.8a).-9- 中国科技论文在线http://www.paper.edu.cn2+However,aftertreatmentwithCuions(25μM)underthesameconditions,thecellspretreatedwithreceptorL(5μM)showasignificantfluorescenceincreasefromtheintracellularregion(Fig.8b).Theappearanceofredfluorescenceisattributedtothehydrazidederivativeandring-opened2+270formofrhodamineproducedbyCuionmediatedhydrolysisofL.Theseresultssuggestthat2+receptorLiscellpermeableandaneffectiveintracellularCuionimagingagentwithturn-onredcoloredfluorescenceemissions.3ConclusionInsummary,awatersolublerhodaminefluorescentprobeLcontainingalongchainschiff275basewassynthesizedanditschemosensingpropertieswereinvestigated.Leasilyundergoes2+Cu-inducedhydrolysiscleavageoftheamidebondandspirocyclicringopeningoftherhodaminefluorophoretoproducepinkcolorationalongwith‘off–on’fluorescencechange.AlltheseselectiveandsensitiveresultsindicatethatchemosensorLcouldmeettheselectiverequirementsforenvironmentalapplication.Inaddition,thesensorcanalsobeappliedasan2+280excellentfluorescenceprobeforanalyticaluseinintracellularimagingofCuinlivingcellwithtunableredemission,whichwillfacilitateunderstandingofthebiologicalprocessesatthemolecularlevel.Acknowledgements285ThisworkwassupportedbyPh.D.ProgramsFoundationoftheMinistryofEducationofChina(20131401110011).References[1]G.Muthaup,A.Schlicksupp,L.Hess,D.Beher,T.Ruppert,C.L.Masters,K.Beyreuther,Theamyloid290precursorproteinofAlzheimer"sdiseaseinthereductionofcopper(II)tocopper(I),Science,1996,271,1406-1409.[2]C.Vulpe,B.Levinson,S.Whitney,S.Packman,J.Gitschier,IsolationofacandidategeneforMenkesdiseaseandevidencethatitencodesacopper-transportingATPase,Nat.Genet.3(1993)7-13.[3]P.C.Bull,G.R.Thomas,J.M.Rommens,J.R.Forbes,D.W.Cox,TheWilsondiseasegeneisaputativecoppertransportingP-typeATPasesimilartotheMenkesgene,Nat.Genet.5(1993)327-337.295[4]Y.H.Hung,A.I.Bush,R.A.Cherny,CopperinthebrainandAlzheimer"sdisease,J.Biol.Inorg.Chem.15(2010)61-76[5]H.N.Kim,M.H.Lee,H.J.Kim,J.S.Kim,J.Yoon,Anewtrendinrhodamine-basedChemsensors:applicationofspirolactamring-openingtosensingions.Chem.Soc.Rev.37(2008)1465-1472.[6]M.Beija,C.A.M.Afonso,J.M.G.Martinho,Synthesisandapplicationsofrhodaminederivativesasfluorescent300probes,Chem.Soc.Rev.38(2009)2410-2433.[7]X.Q.Chen,T.Pradhan,;F.Wang,J.S.Kim,J.Yoon,Fluorescentchemosensorsbasedonspiroring-openingofxanthenesandrelatedderivatives,Chem.Rev.112(2012)1910−1956.[8]Y.M.Yang,Q.Zhao,W.Feng,F.Y.Li,Luminescentchemodosimetersforbioimaging,Chem.Rev.113(2013)192−270305[9]L.Mei,Y.Xiang,N.Li,A.J.Tong,AnewfluorescentprobeofrhodamineBderivativeforthedetectionofcopperion,Talanta72(2007)1717-1722[10]X.Zhang,Y.Shiraishi,T.Hirai,Cu(II)-selectivegreenfluorescenceofarhodamine−diaceticacidconjugate,Org.Lett.9(2007)5039-5042[11]Y.Xiang,Z.F.Li,X.T.Chen,A.Tong,Highlysensitiveandselectiveopticalchemosensorfordetermination310ofCu2+inaqueoussolution,Talanta74(2008)1148-1153.[12]K.Swamy,S.K.Ko,S.K.Kwon,H.N.Lee,C.Mao,J.M.Kim,K.H.Lee,J.H.Kim,I.Shin,J.Y.Yoon,Boronicacid-linkedfluorescentandcolorimetricprobesforcopperions,Chem.Commun.44(2008)5915-5917.[13]X.Zhang,S.Sumiya,Y.Shiraishi,T.Hirai,EffectsofalkylchainlengthonCu(II)-selectivegreenfluorescenceofrhodamine-diaceticacidconjugates,J.Photochem.Photobiol.A205(2009)215-220.315[14]Y.Zhao,X.B.Zhang,Z.X.Han,L.Qiao,C.Y.Li,L.X.Jian,G.L.Shen,R.Q.Yu,Highlysensitiveandselectivecolorimetricandoff-OnfluorescentchemosensorforCu2+inaqueoussolutionandlivingcells,Anal.Chem.81(2009)7022-7030.[15]M.L.Zhao,X.F.Yang,S.H.He,L.P.AWang,Rhodamine-basedchromogenicandfluorescentchemosensorforcopperioninaqueousmedia,Sens.ActuatorB:Chem.135(2009)625-631.-10- 中国科技论文在线http://www.paper.edu.cn320[16]Y.Zhou,F.Wang,Y.M.Kim,S.J.Kim,J.Y.Yoon,Cu2+-selectiveratiometricand"Off-On"sensorbasedontherhodaminederivativebearingpyrenegroup,Org.Lett.11(2009)4442-4445.[17]C.W.Yu,J.Zhang,R.Wang,L.X.Chen,Highlysensitiveandselectivecolorimetricandoff-onfluorescentprobeforCu2+basedonrhodaminederivative,Org.Biomol.Chem.8(2010)5277-5279[18]P.X.Xi,J.Y.Dou,L.Huang,M.Xu,F.J.Chen,Y.J.Wu,D.C.Bai,W.G.Li,Z.Z.Zeng,Aselectiveturn-on325fluorescentsensorforCu(II)anditsapplicationinimaginginlivingcells,Sens.ActuatorB:Chem.148(2010)337-341.[19]J.F.Zhang,Y.Zhou,J.Yoon,Y.Kim,S.J.Kim,J.S.Kim,Naphthalimidemodifiedrhodaminederivative:ratiometricandselectivefluorescentsensorforCu2+basedontwodifferentapproaches,Org.Lett.12(2010)3852-3855.330[20]R.R.Tang,K.Lei,K.Chen,H.Zhao,J.W.Chen,Arhodamine-basedoff-onfluorescentchemosensorforselectivelysensingCu(II)inaqueoussolution,J.Fluoresc.21(2011)141-148.[21]Z.H.Xu,L.K.Zhang,R.Guo,T.C.Xiang,C.Z.Wu,Z.Zheng,F.L.Yang,Ahighlysensitiveandselectivecolorimetricandoff-onfluorescentchemosensorforCu2+basedonrhodamineBderivative,Sens.ActuatorB:Chem.156(2011)546-552.335[22]L.Huang,F.J.Chen,P.X.Xi,G.Q.Xie,Z.P.Li,Y.J.Shi,M.Xu,H.Y.Liu,Z.R.Ma,D.C.Bai,Z.Z.Zeng,Aturn-onfluorescentchemosensorforCu2+inaqueousmediaanditsapplicationtobioimaging,DyesPigm.90(2011)265-268.[23]L.J.Tang,F.F.Li,M.H.Liu,R.J.Nandhakumar,Singlesensorfortwometalions:colorimetricrecognitionofCu2+andfluorescentrecognitionofHg2+,Spectrochim.Acta.A78(2011)1168-1172.340[24]N.R.Chereddy,S.Thennarasu,Synthesisofahighlyselectivebis-rhodaminechemosensorfornaked-eyedetectionofCu2+ionsanditsapplicationinbio-imaging,DyesPigm.91(2011)378-382.[25]W.Y.Liu,H.Y.Li,B.X.Zhao,J.Y.Miao,Synthesis,crystalstructureandlivingcellimagingofaCu2+-specificmolecularprobe,Org.Biomol.Chem.9(2011)4802-4805.[26]C.W.Yu,L.X.Chen,J.Zhang,J.H.Li,P.Liu,W.H.Wang,B.Yan,"Off-On"basedfluorescentchemosensor345forCu2+inaqueousmediaandlivingcells,Talanta85(2011)1627-1633.[27]F.Ge,H.Ye,J.Z.Luo,S.Wang,Y.J.Sun,B.X.Zhao,J.Y.Miao,AnewfluorescentandcolorimetricchemosensorforCu(II)basedonrhodaminehydrazoneandferroceneunit,Sens.ActuatorB:Chem.181(2013)215-220.[28]S.Goswami,D.Sen,A.K.Das,N.K.Das,K.Aich,H.K.Fun,C.K.Quah,A.K.Maity,P.Saha,Anew350rhodamine-coumarinCu2+-selectivecolorimetricand"off-on"fluorescenceprobeforeffectiveuseinchemistryandbioimagingalongwithitsboundX-raycrystalstructure,Sens.ActuatorB:Chem.183(2013)518-525.[29]M.H.Min,X.F.Wang,Y.M.Chen,L.M.Wang,H.L.Huang,J.G.Shi,HighlysensitiveandselectiveCu2+sensorbasedonelectrospunrhodaminedyedopedpoly(ethersulfones)nanofibers,Sens.ActuatorB:Chem.188(2013)360-366.355[30]F.JHuo,L.Wang,C.X.Yin,Y.T.Yang,H.B.Tong,J.B.Chao,Y.B.Zhang,Thesynthesis,characterizationofthreeisomersofrhodaminederivativeandtheirapplicationincopper(II)ionrecognition,Sens.ActuatorB:Chem.188(2013)735-740.[31]L.J.Qu,C.X.Yin,F.J.Huo,J.B.Chao,Y.B.Zhang,F.Q.Cheng,Apyridoxal-baseddualchemosensorforvisualdetectionofcopperionandratiometricfluorescentdetectionofzincion,Sens.ActuatorB:Chem.191(2014)360158-164.[32]V.Dujols,F.Ford,A.W.Czarnik,Along-wavelengthfluorescentchemodosimeterselectiveforCu(II)ioninwater,J.Am.Chem.Soc.119(1997)7386-7387.[33]M.X.Yu,M.Shi,Z.G.Chen,F.Y.Li,X.X.Li,Y.H.Gao,J.Xu,H.Yang,Z.G.Zhou,T.Yi,C.H.Huang,Highlysensitiveandfastresponsivefluorescenceturn-onchemodosimeterforCu2+anditsapplicationinlivecell365imaging,Chem.Eur.J.14(2008)6892-6900.[34]X.Yang,X.Guo,Y.Zhao,Developmentofanovelrhodamine-typefluorescentprobetodetermineperoxynitrite,Talanta57(2002)883-890.[35]C.HHung,G.F.Chang,A.Kumarm-Benziporphodimethene:anewporphyrinanaloguefluorescencezinc(II)sensor.Chem.Commun.(2008)978-980.370[36]B.Ozmen,E.U.Akkaya,Infraredfluorescencesensingofsubmicromolarcalcium:pushingthelimitsofphotoinducedelectrontransfer.TetrahedronLett.41(2000)9185-9188.[37]M.Shortreed,R.Kopelman,M.Kuhn,B.Hoyland,Fluorescentfiber-opticcalciumsensorforphysiologicalmeasurements,Anal.Chem.68(1996)1414-1418.[38]H.S.Jung,P.S.Kwon,J.S.Kim,C.S.Hong,J.W.Kim,S.Yan,J.Y.Lee,J.H.Lee,T.Joo,J.S.Kim,375Coumarin-derivedCu2+-selectivefluorescencesensor:synthesis,mechanisms,andapplicationsinlivingcells,J.Am.Chem.Soc.31(2009)2008-2012[39]DrinkingWaterContaminants,UnitedStatesEnviromentalProtectionAgency,816-F-09-004,2009[40]H.Zhu,J.L.Fan,J.Lu,M.M.Hu,J.FCao,J.Wang,H.LLi,X.JLiu,XJ.Peng,OpticalCu2+probebearingan8-hydroxyquinolinesubunit:Highsensitivityandlargefluorescenceenhancement,Talanta93(2012)55–61.380-11- 中国科技论文在线http://www.paper.edu.cn基于罗丹明酰肼的铜离子荧光探针及385其生物成像应用1222任列香,王攀峰,刘斌,杨斌盛(1.吕梁学院,化学化工系,离石,033000;2.分子科学研究所,山西大学,太原,030006)摘要:本文利用罗丹明酰肼合成了一个长链的希夫碱化合物L,并利用多种方法进行了表2+390征。研究表明,在CH3CN/HEPES缓冲液中(1:1,pH=7.0),Cu离子的滴加引起该化合物2+颜色有无色变为粉色,同时荧光大大增强。其他共存离子不会对Cu产生干扰。机理研究2+表明,Cu离子的加入引起了罗丹明螺环的开环过程,并在水分子的做一下,酰胺键断裂。2+探针对Cu离子具有较高的选择性和灵敏度,反应时间短,检出限为22.9nM。另外,该检测过程在SW480细胞内得以实现。395关键词:罗丹明;铜离子;传感器;细胞成像中图分类号:O621.3-12-'