• 430.63 KB
  • 2022-04-22 13:32:17 发布

玉米-大豆间作和施氮对红壤旱地作物碳氮吸收的影响.pdf

  • 13页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'中国科技论文在线http://www.paper.edu.cnEffectofmaize-soybeanintercroppingandnitrogenrateson#cropnitrogenandcarbonuptakeinuplandredsoil11112*5YANGWenting,MIAOJianqun,WANGXiaowei,XUJiancheng,LUMeijuan(1.SchoolofAgriculturalSciences,JiangxiAgriculturalUniversity,Nanchang,330045;2.CollegeofTerritorialResourcesandEnvironment,JiangxiAgriculturalUniversity,Nanchang,330045)Abstract:Theobjectiveofthisresearchwastodeterminetheeffectofcroppingpatterns(monomaize,10monosoybeanandmaize-soybeanintercropping)andnitrogenrates(0,75,150,225,300kg/ha)oncropbiomass,nitrogenandcarbonaccumulationinuplandredsoil.Theresultsshowthat:Comparedwithsolemaize,maizedrymatteryieldandcarbonaccumulationdecreasedwheninintercroppedsoybean.Also,theinteractionbetweenintercroppingandnitrogenrateschangednitrogenaccumulationanddistributionincropgrain,strawandroot.Nitrogenapplicationsignificantlyincreasedmaizedry15matteryield,nitrogenandcarbonaccumulation,butreducedthoseofsoybean.Inaconclusion,corn-soybeanintercroppingandnitrogenratesaffectedthegrowthofcornandsoybeaninuplandredsoil,andchangedtheallocationsofnitrogenandcarbon.Maize-soybeanintercroppingshouldbeaneffectiveandsustainablecroppingsystemforuplandredsoil.Keywords:Agroecology;Nitrogenaccumulation;Carbonaccumulation;Redsoil200IntroductionIntercroppingasatraditionalcroppingsystem,ithasbeenusedformillenniabysmallholderfarmersinAsia,AfricaandLatinAmericatoincreaseyieldsandexploitspeciescomplementarities7(Vandermeer1989;Zomeretal.,2009).InChina,morethan2.8×10haaresownwithintercropping25annually(Zou2002),especiallyinnorthwestChina(Lietal.,2001).IntercroppingalsoisusedinEuropeanorganiccroppingsystems(Hauggaard-Nielsenetal.,2009).Ithasshownagiantpotentialtocontributetomodernandsustainableagriculture(Lithourgidisetal.,2011;Malikietal.,2016).Manyadvantagesofintercroppinghavebeenreported,especiallycereal-legumeintercroppingsystem[8,9](Lietal.,2007a;Betencourtetal.,2012).Themostimportantadvantagemaybeit30significantlyimprovescropyieldcomparedwithsolecropping(Lietal.,2007a;Renetal.,2016).Yieldcomponents(Neugschwandtner&Kaul2014)andyieldperplant(Echarteetal.,2011)aswellasconcentrationsanduptakeofnutrients(Lietal.,2001;Ramirez-Garciaetal.,2015)ofcerealcropsmaybethemainreasonsfortheobservedhigheryieldinintercrops.Highyieldalsomaybeobtainedbyintercroppingthroughanimprovedwaterandradiationcapture(Colletal.,2012).35Improvingcropnutrientuptakeisanothermainadvantageofcereal-legumeintercropping.TheassociationofcerealsandlegumessharingthesamespaceandtimeledtoimprovecropN(Latatietal.,2013;Yangetal.,2013)andPnutrition(Lietal.,2003a;Latatietal.,2014).Nitrogen-fixingFoundations:ResearchFundfortheDoctoralProgramofHigherEducation(No.20133603120005);NationalNaturalScienceFoundationofChina(No.31360108)Briefauthorintroduction:Yangwenting(1984-),Male,Assistantprofessor,Agroecologyandsoilecology.E-mail:wtyang@jxau.edu.cn-1- 中国科技论文在线http://www.paper.edu.cnlegumesareanimportantresourceforintercroppedcerealswhichbenefitfromnitrogenuptakeandimprovedgrainyield(Betencourtetal.,2012).Thispositiveinteractionhasbeenconfirmedincowpea40(VignaunguiculataL.)-maize(Dahmardehetal.,2010),fababean(ViciafabaL.)-wheat(TriticumaestivumL.)/maizeandsoybean-maizeintercroppingsystems(Zhang&Li,2003;Lietal.,2005).Additionally,interspecificcomplementary,facilitationandcompetitioncouldimproveboththecropsnitrogenandphosphorusuptake(Corre-Hellou&Crozat,2005;Lietal.,2007a),butresearchoncropscarbonuptakeisstilllimitedandafewpublishedincereal-legumeintercroppingsystems(Chapagain&45Riseman2014).Redsoilisthethirdmostimportantsoilsoftheworldcovering13%ofthelandarea(Baligaretal.,622004).Redsoiloccupiesanareaof1.13×10km,accountingfor70%ofthelandinthesouthernChinaand11%ofthetotallandinChina(Lu&Shi2000).Theredsoilregionhashighproductivitypotential(Lietal.,2007b),whichcouldbeakeytoresolvethegrowingconflictbetweenfoodand50population.However,thereisunevendistributionofprecipitationinspace-time,seriouslanddegradation(Yuanetal.,2002),highacidityanddisturbed,lowfertilitysoil(Baligaretal.,2004;Wilsonetal.,2004).Cropyieldsarenotashighasexpectedduetolowsoilfertilitythatislargelyassociatedwithpoorphysicalproperties,suchascompaction,slowinfiltrationrate,highbulkdensity,andunstablesoilaggregates.Nitrogenisavitalfactorforhighyield,buttheredsoilhaslownitrogen55content(Caietal.,1995;Wilsonetal.,2004),whichresultsinexcessivenitrogenfertilizerapplicationbyfarmers.Nitrogenoverusecausesnitrateleaching(Luetal.,1995)andsoilacidification(Guoetal.,2010;Quetal.,2014).Inordertoincreasetheproductivityinredsoil,newandimprovedcroppingsystemsandlowerratesofnitrogenfertilizerareneeded.Corn-soybeanintercropping,asanimportantcereal-legume60intercropping,whichcouldincreasecropyieldandimprovesoilfertilityinuplandredsoil(Zhangetal.,2012;Zhangetal.,2013).Butthereislittleresearchoncropnitrogenandcarbonaccumulation.Thepresentstudywasperformedtoidentifytheefficientofcorn-soybeanintercroppingsystemfornitrogenandcarbonallocationwithdifferentratesofnitrogenapplication.Theaimofthisstudywastoassesscornandsoybeangrowninuplandredsoilasaffectedbycroppingpatternsandnitrogenrateswith65focuson(a)cropdrymatter,(b)cropnitrogenandcarbonaccumulationincorn-soybeanintercroppingsystemsascomparedwithpurestandsofbothcrops.-2- 中国科技论文在线http://www.paper.edu.cn1Materialsandmethods1.1ExperimentaldesignandmanagementTheexperimentwasconductedinJiangxiAgriculturalUniversitySci-techPark,NanchangChina(28°46’N,70115°50’E).Thesoilusedinthisexperimentwascollectedfrom0-20cmlayerattheSci-techPark.Thesoilwasair-dried,visibleplantrootswereremoved,andsievedthrougha1-mmsieve.Thephysicalandchemicalcharacteristicsofthesoilwereasfollows:pH4.10,organicmatter18.24g/kg,totalN1.24g/kg,totalP0.73g/kg,totalK9.27g/kg,availableN90.72mg/kg,OlsenP57.25mg/kg,availableK128.72mg/kg.Plasticpotsusedintheexperimentwere220mminheight,withupperandlowerdiametersof180mmand150mm.Thebottomof75thepotshadthreeholes(diameter10mmeach)withtwolayersnylonnet(diameter0.074mm).Eachpotwasfilledwith4.0kgofsoilattwoweeksbeforeplanting.Theexperimentwasdesignedasarandomizedcompleteblockwithafactorialarrangementwithtwofactorsandfourreplicates.Thetwofactorswerecroppingsystemandnitrogenrate.Thecroppingsystemsincludedmonoculturecorn(MC),monoculturesoybean(MS)andcorn-soybeanintercropping(CS);nitrogenrateswere0,8075,150,225and300kg/ha,(Tab.1).Tab.1Experimentaldesignanddescriptionoftreatments-1TreatmentNitrogenrates(kgha)CroppingpatternsCSN00Corn-soybeanMCN00MonocornCSN175Corn-soybeanMCN175MonocornCSN2150Corn-soybeanMCN2150MonocornCSN3225Corn-soybeanMCN3225MonocornCSN4300Corn-soybeanMCN4300MonocornMS0MonosoybeanTheselectedcorncultivar‘BainuoNo.2’andthesoybeancultivar‘Taiwan292’wereusedintheexperment.85Cornwassowninseedbedon3May2015,andeachsimilarcornseedlingtransplantedintoapoton10May2015,foursoybeanseedsweresownperpotincorn-soybeanintercroppingandmonosoybeanonthesameday.Twosoybeanplantsremainedinintercroppingandmonosoybeanon24May2015.Thecornandsoybeanwere4harvestedon30July2015.Thefertilizerrateineachpotwasbasedoncornplantdensityinalocalfield(6.0×10-3- 中国科技论文在线http://www.paper.edu.cnplant/ha),PandKwereappliedat45kg/haand135kg/harespectively.EachpothadthesamePandK,but90differentnitrogenratesaccordingtothetreatments(Tab.2).Basalfertilizerincludedpotassiumchloride1.125-1-1-1g·pot,calciumsuperphosphate6.25g·potineachpot,andurea0,0.25,0.50,0.75,1.00g·potunderN0,N1,N2,N3,N4,respectively,wasappliedbeforecornwastransplanted.Thefirsttopdressingfertilizerincludedpotassium-1-1chloride1.125g·potineachpot,andurea0,0.375,0.75,1.125,1.50g·potunderN0,N1,N2,N3,N4,respectively,wasappliedwhencornwasatthecornjointingstage(4June2015).Thesecondtopdressingfertilizer-1-195includedpotassiumchloride1.5g·potineachpot,andurea0,0.625,1.25,1.875,2.50g·potunderN0,N1,N2,N3,N4,respectively,wasappliedatthecorntasselingstage(30June2015).Tab.2PotfertilizerratesMonoMonocornCorn-soybeansoybeanTreatmentsN0N1N2N3N4N0N1N2N3N4Nitrogen0751502253000751502253000-1(kg·ha)Nitrogen01.252.503.755.0001.252.503.755.000-1(g·pot)Urea02.725.438.1510.8602.725.438.1510.860-1(g·pot)Potassiumchloride3.753.753.753.753.753.753.753.753.753.753.75-1(g·pot)Calciumsuperphosphate6.256.256.256.256.256.256.256.256.256.256.25-1(g·pot)1.2Plantsamplingandmeasurement100Plantsampleswereallcollectedatthecropsharvest.Thecornandsoybeanroot,straw(leavesandstem),andgrainwereseparated,driedat105°Cfor30minandthendriedat80°Cfor48hours,dryweightwasrecorded.Driedplantsamplesweremilledto1mmmeshandstoredinsmallbags.Nitrogencontentofplantsamplesweredeterminedbythestandardmacro-KjeldahlprocedureusingaTMKjeltec2300analyzerunit(FossTecatorAB,Hoganas,Sweden).Carboncontentsofplantsamples105weredeterminedbytheWalkley-Blackchromicacidwetoxidationmethod(Dalal1979).Nitrogenor-1carbonaccumulation(g·pot)wasdefinedasthenitrogenorcarboncontentofcropsamples(root,-4- 中国科技论文在线http://www.paper.edu.cnstrawandgrain)timestherelativedryweightofthecrop.1.3DataanalysesThestatisticalsignificanceofdifferencesamongtreatmentsweretestedwithANOVA(SPSS19.0,110SPSSInc.,Chicago,IL,USA),Duncantestwasusedtocomparethemeans,differencesatp<0.05levelwereconsideredtobestatisticallysignificant.2Results2.1DrymatteryieldofcornandsoybeanComparedwithmonocornwiththesamenitrogenrate,corninintercroppinghadlowerdrymatter115inrootandstrawatN1,N2andN4,thedrymatteryieldofcornstrawwasalsoobviouslyreducedatN0;intercroppingsignificantlyreducedthecorngrainatN3,butsignificantlyincreasedthecorngrainatN2(Fig.1A).Whateverintercroppingormono,asthenitrogenratesincreasing,thedrymattersyieldofcorn(includingroot,strawandgrain)wereincreased.ButthedrymatteryieldofcornhadnosignificantdifferencebetweenCSN2andCSN3,thehighestdrymatteryieldofcornwasobtainedfrom120MCN4.Intercroppingandnitrogenbothimpactedthedrymatteryieldofsoybean(Fig.1B).ComparedtoMS,thesoybeanstrawandgrainweresignificantlyincreasedinCSN0,butobviouslydecreasedinCSN1andCSN4;thedrymatteryieldsofsoybeanrootweredrasticallyreducedinallcorn-soybeanintercropping(N0,N1,N2,N3,N4).ThedrymatteryieldsofsoybeaninCSN3andCSN4were125significantlylowerthanthatinCSN0.Nitrogenapplicationmightinhibitsoybeanrootgrowthinthecorn-soybeanintercropping.AB120.0a-1)RootStrawGrainab30.0RootStrawGrain100.0b)adc-125.0bc80.0ce20.0c60.0ed15.0e40.0fbafedcdcc10.020.0fbcaCorndrymatter(g.pothg5.0dabbcc.0fggfdedeabcdebcaSoybeandrymatter(g.potCSN0MCN0CSN1MCN1CSN2MCN2CSN3MCN3CSN4MCN40.0acbdedMSCSN0CSN1CSN2CSN3CSN4TreatmentsTreatmentsFig.1Drymatteryieldofcropsunderdifferentcroppingsystemsandnitrogenrates130(Thedifferentsmalllettersinthesamegroup(root,strawandgrain)meanssignificantlydifferentatP<0.05.Barsindicatethestandarderror.Thesamebelow.)2.2NitrogenconcentrationofcornandsoybeanComparedtosolecornwiththesamenitrogenrate,thecorngrainnitrogenconcentrationswere-5- 中国科技论文在线http://www.paper.edu.cnsignificantlyincreasedinCSN2andCSN3,thecornstrawnitrogenconcentrationsweresignificantly135increasedinCSN0andCSN4,thecornrootNconcentrationinallintercroppingtreatmentswereimproved,butobviousdifferenceonlyobservedinCSN4(Fig.2A).Inthesamecroppingsystems(soleorintercropping),thehighestnitrogenconcentrationsofcornrootandstrawwereobtainedfromN4,butcorngrainwasobtainedfromN3.ComparetoN0,thenitrogenconcentrationsofcorn(includingroot,strawandgrain)hadnoobviouslyincreasedatN1andN2,butwhichhadsignificantlyincreased140atN4.ComparedtoMS,thenitrogenconcentrationsofrootandstrawwereallsignificantlydecreasedinintercroppingsystemswithnitrogenapplication;thenitrogenconcentrationsofgrainwerealsodecreasedinCSN0andCSN1,butincreasedinCSN3andCSN4(Fig.2B).Nitrogenapplicationsignificantlyinhibitedthenitrogenconcentrationsofsoybeanrootandstrawinintercroppingsystems,145butsignificantlyimprovedthenitrogenconcentrationsofsoybeangrainatN3andN4.)40.0-140.0MSCSN0CSN1CSN2CSN3CSN4a)CSN0MCN0CSN1MCN1CSN2MCN2CSN3MCN3CSN4MCN4-1cddcb35.035.0Aaa30.0B30.0bbb25.025.0ba20.020.0bba15.0c15.0cdbcbbddaadeefefff10.010.0bccdbcbbcbcddebccdbcddbfgefggdef5.05.0Cornnitrogenconcentration(g.kg0.00.0Soybeannitrogenconcetration(g.kgRootStrawGrainRootStrawGrainFig.2Nitrogenconcentrationofcropsunderdifferentcroppingsystemsandnitrogenrates1502.3NitrogenaccumulationofcornandsoybeanComparedtomonocornwiththesamenitrogenrate,thecornrootandstrawnitrogenaccumulationsinintercroppingweresignificantlyreducedatN2level,butwhichwasincreasedatN4;thecorngrainnitrogenaccumulationwassignificantlyincreasedatN2,butdecreasedatN3(Fig.3A).Inthesamecroppingsystems(soleorintercropping),thehighestnitrogenaccumulationsofcorn(root,155strawandgrain)wereobtainedfromN4.ComparedtoN0,thenitrogenaccumulationsofcorn(root,strawandgrain)hadobviouslyincreasedinN2,N3andN4.Whateversoleorintercropping,nitrogenapplicationmarkedlyincreasedthenitrogenaccumulationofcorngrain.ComparedtoMS,allintercroppingsystemsweresignificantlyreducedthesoybeanrootandstrawnitrogenaccumulationexceptthestrawnitrogenaccumulationinCSN2.ComparedtoCSN0,nitrogen160applicationsignificantlyreducedthesoybeanstrawandgrainnitrogenaccumulationinintercropping-6- 中国科技论文在线http://www.paper.edu.cnsystems(Fig.3B).ThehighestnitrogenaccumulationofcropabovegroundandrootwasobservedinCSN4,andthelowestwasMCN0amongalltreatments(Fig.3C).Comparedwithmonocornunderthesamenitrogenrate,allintercroppingtreatmentssignificantlyimprovedcropnitrogenaccumulationexcepttheroot165nitrogenaccumulationatN2.ComparedtoCSN0,intercroppingwithnitrogenappliedsignificantlyincreasedcropnitrogenaccumulationexceptCSN1.ThecroprootandabovegroundNaccumulationsinCSN4wereobvioushigherthanthoseinotherintercroppingtreatments,buttherewerenosignificantdifferencebetweenCSN2andCSN3.)1.2BRootStrawGrain-1)1.2Aaa170-11RootStrawGraina1acb0.8b0.8de0.6b0.6cd0.40.4ffab0.2ba0.2ggcdcddbccdeffCornnitrogenaccumulation(g.pot0ggdcddabSoybeannitrogenaccumulation(g.pot0abbcdcfggefe175CSN0MCN0CSN1MCN1CSN2MCN2CSN3MCN3CSN4MCN4MSCSN0CSN1CSN2CSN3CSN4)1.6TreatmentsTreatmentsa-11.5RootAboveground1.41.3Cbb1.2c1.11dede0.90.8f0.7g0.60.5h0.41800.30.2i0.1Nitrogenaccumulation(g.pot0ddfdecccdabMSCSN0MCN0CSN1MCN1CSN2MCN2CSN3MCN3CSN4MCN4TreatmentsFig.3Nitrogenaccumulationofcropsunderdifferentcroppingsystemsandnitrogenrates1852.4CarbonaccumulationofcornandsoybeanComparedtomonocornwiththesamenitrogenrate,thecornrootandstrawcarbonaccumulationsweresignificantlydecreasedatN1,N2andN4;thegrainCaccumulationwassignificantlyincreasedatN2,whichwasdecreasedatN3(Fig.4A).ComparetoN0,whatevermonoorintercroppingcorn,nitrogenapplicationmarkedlyincreasedthecorncarbonaccumulationinallcroppingsystems,but190therewerenoobviousdifferencebetweenCSN2andCSN3.ComparedtoMS,thesoybeancarbonaccumulationunderintercroppingwassignificantly-7- 中国科技论文在线http://www.paper.edu.cnincreasedonlyinCSN0,thecarbonaccumulationsofsoybeangrainswereobviouslyreducedwithnitrogenapplication(Fig.4B).ComparedtoCSN0,thesoybeancarbonaccumulationsweresignificantlyreducedinmostintercroppingwithnitrogenapplicationexceptthesoybeanrootcarbon195accumulationinCSN1.Forthecarbonaccumulationofalltreatments,thehighestcropcarbonaccumulationofcropabovegroundwasobtainedfromCSN4andthatofrootwasMCN4,thelowestcropcarbonaccumulationsofabovegroundandrootwerebothobtainedfromMCN0(Fig.4C).Comparedtosolecornwiththesamenitrogenrate,thecropabovegroundcarbonaccumulationwassignificantlyimprovedexceptatN3.200ComparedwithCSN0orMCN0,thecarbonaccumulationsoftreatmentswithnitrogenappliedweresignificantlyincreased.ThecropcarbonaccumulationatN4wasobvioushigherthanothertreatments,butwhichhadnosignificantdifferenceamongCSN2,CSN3andMCN3.)-150.050.0RootStrawGrainaa)BRootStrawGrain-140.0Adcb40.0c30.030.0ee20.020.0aacfabc10.0fdccbbc10.0edegfddcacdaebbcdCorncarbonacculation(g.pot0.0ffeddbSoybeancarbonaccumulation(g.pot0.0baacdcCSN0MCN0CSN1MCN1CSN2MCN2CSN3MCN3CSN4MCN4MSCSN0CSN1CSN2CSN3CSN4TreatmentsTreatments50.0ab)RootAboveground-145.0ccc40.0dC35.030.0ef25.020.0g15.0hh10.0Carbonaccumulation(g.pot5.00.0hghfedbdedecaMSCSN0MCN0CSN1MCN1CSN2MCN2CSN3MCN3CSN4MCN4Treatments205Fig.4Carbonaccumulationofcropsunderdifferentcroppingsystemsandnitrogenrates-8- 中国科技论文在线http://www.paper.edu.cn3Discussion3.1DrymatteryieldofcornandsoybeanComparedwithmonocorn,thecorndrymatteryieldwaslowerinmostofcorn-soybeanintercropping210treatments.Cereal-legumeintercroppingsystemssignificantlyimprovecropyieldcomparedwithsolecropping(Lietal.,2007a;Wangetal.,2015;Renetal.,2016).Butonlyconsideringoncerealcrops,thedrymatteryieldinintercroppingwasdecreased,comparedwithmonocropping(Bedoussac&Justes2010;Montietal.,2016;Renetal.,2016).Inthestudy,thedrymatteryieldofcorngraininintercroppedatN2(150kg/ha)washigherthanmonocorn,buttheyieldsofcornstrawandroothad215theoppositeresults.Similarlyresultwasreportedinmaize-fababeanintercroppingsystem(Lietal.,2011).Itmightbetheinterspecificcompetitionbetweentheintercroppedcropsandnitrogenrateschangedtheresourceallocationindifferentpartsofcorn(Shapiro&Wortmann,2006;Lietal.,2011).Nitrogenapplicationincreasedthedrymattersofcornatallratesofnitrogenapplication,thesimilarresultswerereportedinwheat-pea(PisumsativumL.)intercropping(Bedoussac&Justes2010)and220maize-fababeanintercroppingsystems(Lietal.,2011).Intercroppingsignificantlyreducedthedrymatterofsoybeanrootwithnitrogenapplied.Withoutnitrogenapplied,intercroppingimprovedthedrymatterofsoybeanstrawandgrain.Nitrogenapplicationmightinhibitsoybeangrowthinthecorn-soybeanintercropping.Abovegroundbiomassoffababean(Lietal.,2011)andgrainyieldofmungbean(VignaradiateL.)(Chowdhury&Rosario2251994)werereducedinintercroppedwithcornundernitrogenapplication.Nitrogenapplicationcouldlimitthebiologicalnitrogenfixationoflegumerhizobia(Fanetal.,2006),andtherootgrowthofcornaffectedthatofsoybean(Corre-Hellouetal.,2006).3.2CropnitrogenconcentrationandaccumulationInpresentstudy,corn-soybeanintercroppingandnitrogenapplicationimprovedcornnitrogencontent,230whereasareversetrendwasnoticedforsoybeanrootandstrawnitrogencontent.Thereductioninsoybeannitrogencontentsuggestedthatinterspecificcompetitionaffectedthelegumethroughthewholecropgrowthseason.Barley-peaintercroppingincreasednitrogencontentingrainandstrawofbarley(HordeumvulgareL.)(Montietal.,2016).Goodingetal.(2007)foundthatintercroppingincreasedthegrainNconcentrationinwheatwhenithadtheleastdeleteriouseffectonfababean.This235couldbeconsideredareflectionofthelowcompetitivenessofthelegumeversusthecerealfornitrogen.Highnitrogenapplied(225kg/ha,300kg/ha)significantlyincreasedthenitrogencontentofsoybean-9- 中国科技论文在线http://www.paper.edu.cngrain.ThemainreasonmightbethedrymatterofgrainswerereducedatNlevels(225kg/ha,300kg/ha)(Fig1),anotherreasonmightbemorefertilizerNwasallocatedtothesoybeangrains(PierozanJretal.,2015).240Nitrogenallocationsincorndifferentpartswerechangedbynitrogenratesinintercroppingsystems.Nitrogenapplicationincreasedthecornnitrogenaccumulation,especiallyincorngrain.Meanwhile,intercroppingwithnitrogenapplicationdecreasedthenitrogenaccumulationofsoybean.Thegreaternitrogenacquisitionbyanon-legumecropintercroppedwithalegumewasfrequentlyreportedintheliteratures(Eagleshametal.,1981;Chapagain&Riseman,2014).Maize-cowpea245intercroppingincreasedmaizenitrogen(Eagleshametal.,1981),thebarley-peaintercroppingincreasedbarleybiomassN(Chapagain&Riseman2014).Inpresentresult,intercroppingsignificantlyincreasedthenitrogenaccumulationofcornstrawathighnitrogenrates(225kg/ha,300kg/ha).IncreasedNfertilizerwasusuallyobservedtofavormainlythenon-legume,whichwasastrongercompetitorandthusgotabiggershareoftheavailableN(Corre-Hellouetal.,2006).Maize-fababeanintercropping250improvedthemaizeabove-groundnitrogenacquisitionundernitrogenapplication(225kg/ha,300kg/ha)innorthofChina(Lietal.,2011).HighratesofinorganicNapplicationmightincreasethepercentageofNallocationinabovegroundofcorn(Heetal.,2001).Interspecificrootinteractionwasanothermainreasonofimprovingthemaizenitrogenuptake(Lietal.,2003b).Meanwhile,thehighNavailabilityinsoilmightinhibitNfixationfromlegume(Chuetal.,2004),thepeanitrogen255accumulationwasreducedincereals(wheatandbarley)-peaintercropping(Montietal.,2016).Assoybeanhadhighnitrogencontentandaccumulation,cropnitrogenaccumulationsinintercroppingsystemswereincreasedcomparedwithsolecorn.3.3CropcarbonaccumulationIntercroppingreducedthecornroot,strawandgraincarbonaccumulationsinmostofintercropping260systems,butthecorngraincarbonaccumulationwassignificantlyincreasedatN2.Thecropcarbonaccumulationwasrarelyreportedincereal-legumeintercroppingsystems.IntercroppedbarleyshowedhighersequesteredhigherCinsoilcomparedtomonoculturebarley(Chapagain&Riseman2014).Interspecificrootinteractionisamainreasonofimprovingthemaizecarbonuptake(Lietal.,2003b).Nitrogenapplicationmarkedlyincreasedthecorncarbonaccumulationinallcroppingsystems,and265significantlyreducedthecarbonaccumulationofsoybeanincorn-soybeanintercropping.CarbonuptakeandallocationincropsthatwaslargelydependentonmicrobialsymbiontsforNandP(Harris-10- 中国科技论文在线http://www.paper.edu.cnetal.,1985).Carbonassociatedwithnitrogenmetabolismwasveryimportantforcrops(Schnyder1993).HighratesofinorganicNapplicationcouldincreasethepercentageofCallocationinabovegroundofcorn(Heetal.2001).Mostproductionofphotosyntheticwasusedforcarbonand270nitrogenmetabolism(Huppe&Turpin1994),nitrogenappliedincreasedthegrowthofcorn,theradiationinterceptedbysoybeanmightbedeceasedbythehighcanopyofcorn.Eventhoughintercroppingreducedthecornroot,strawandgraincarbonaccumulations,addedthesoybeancarbonaccumulation,thecropstotalabovegroundcarbonaccumulationsinintercroppingsystemswerehigherthanthoseinsolecorn.2754ConclusionInthispaper,theresultsofcorn-soybeanintercroppingwithnitrogenrateinuplandredsoilwerenoticedthat(i)intercroppingreduceddrymatteryieldofcorn,nitrogenrateincreasedthedrymatteryieldofcornandreducedthedrymatteryieldofsoybean;(ii)intercroppingchangedthecorndifferentpartsnitrogenaccumulationdependingonnitrogenrates,andreducedthecorncarbonaccumulation,280nitrogenrateincreasedcornnitrogenandcarbonaccumulation,butreducedthoseofthesoybean.Corn-soybeanintercroppingandnitrogenrateaffectedthegrowthofcornandsoybeaninuplandredsoil,whichwasresultedinthedifferenceofthecropsnitrogenandcarbonuptakeanddistribution.CerealcropsintercroppedwithlegumesoffersanopportunityforuplandredsoiltobetteruseNcomplementarity,cropresidueandnaturalresources,whichcouldbenefittomaintainthesoilhealth285withhighlandproductivity.References[1]Baligar,V.C.,Fageria,N.K.,Eswaran,H.,Wilson,M.J.&He,Z.Natureandpropertiesofredsoilsoftheworld.InTheRedSoilsofChina[M],Germany,Berlin:Springer,2004[2]Bedoussac,L.&Justes,E.DynamicanalysisofcompetitionandcomplementarityforlightandNuseto290understandtheyieldandtheproteincontentofadurumwheat-winterpeaintercrop[J].PlantandSoil,2010,330,37-54.[3]Betencourt,E.,Duputel,M.,Colomb,B.,Desclaux,D.&Hinsinger,P.IntercroppingpromotestheabilityofdurumwheatandchickpeatoincreaserhizospherephosphorusavailabilityinalowPsoil[J].SoilBiologyandBiochemistry,2012.46,181-190.295[4]Cai,G.X.,Peng,G.H.,Wu,Y.W.,Ma,M.T.,Gan,S.W.&Men,C.F.Fateofureanitrogenappliedtorapegrownonaredsoilandefficiencyofureainraisingrapeyield[J].Pedosphere,1995,5,107-114.[5]Chapagain,T.&Riseman,A.Barley-peaintercropping:Effectsonlandproductivity,carbonandnitrogentransformations[J].FieldCropsResearch,2014,166,18-25.[6]Chowdhury,M.K.&Rosario,E.L.Comparisonofnitrogen,phosphorusandpotassiumutilizationefficiency300inmaize/mungbeanintercropping[J].TheJournalofAgriculturalScience,1994,122,193-199.[7]Chu,G.X.,Shen,Q.R.&CaoJ.L.NitrogenfixationandNtransferfrompeanuttoricecultivatedinaerobicsoilinanintercroppingsystemanditseffectonsoilNfertility[J].PlantandSoil,2004,263,17-27.[8]Coll,L.,Cerrudo,A.,Rizzalli,R.,Monzon,J.P.&Andrade,F.H.Captureanduseofwaterandradiationinsummerintercropsinthesouth-eastPampasofArgentina[J].FieldCropsResearch,2012,134,105-113.305[9]Corre-Hellou,G.&Crozat,Y.Assessmentofrootsystemdynamicsofspeciesgrowninmixturesunderfieldconditionsusingherbicideinjectionand15Nnaturalabundancemethods:acasestudywithpea,barleyandmustard[J].PlantandSoil,2005,276,177-192.[10]Corre-Hellou,G.,Fustec,J.&Crozat,Y.InterspecificcompetitionforsoilNanditsinteractionwithN2-11- 中国科技论文在线http://www.paper.edu.cnfixation,leafexpansionandcropgrowthinpea-barleyintercrops[J].PlantandSoil,2006,282,195-208.310[11]Dahmardeh,M.,Ghanbari,A.,Syahsar,B.A.&Ramrodi,M.Theroleofintercroppingmaize(ZeamaysL.)andCowpea(VignaunguiculataL.)onyieldandsoilchemicalproperties[J].AfricanJournalofAgriculturalResearch,2010,5,631-636.[12]Dalal,R.C.Simpleprocedureforthedeterminationoftotalcarbonanditsradioactivityinsoilsandplantmaterials[J].Analyst,1979,104,151-154.315[13]Eaglesham,A.R.J.,Ayanaba,A.,Rao,V.R.&Eskew,D.L.Improvingthenitrogennutritionofmaizebyintercroppingwithcowpea[J].SoilBiologyandBiochemistry,1981,13,169-171.[14]Echarte,L.,Maggiora,A,D.,Cerrudo,D.,Gonzalez,V.H.,Abbate,P.,Cerrudo,A.,Sadras,V.O.&Calvino,P.Yieldresponsetoplantdensityofmaizeandsunflowerintercroppedwithsoybean[J].FieldCropsResearch,2011,121,423-429.320[15]Fan,F.,Zhang,F.,Song,Y.,Sun,J.,Bao,X.,Guo,T.&Li,L.Nitrogenfixationoffababean(ViciafabaL.)interactingwithanon-legumeintwocontrastingintercroppingsystems[J].PlantandSoil,2006,283,275-286.[16]Gooding,M.J.,Kasyanova,E.,Ruske,R.,Hauggaard-Nielsen,H.,Jensen,E.S.,Dahlmann,C.,Fragstein,P.V.,Dibet,A.,Corre-Hellou,G.&Crozat,Y.Intercroppingwithpulsestoconcentratenitrogenandsulphurinwheat[J].TheJournalofAgriculturalScience,2007,145,469-479.325[17]Guo,J.H.,Liu,X.J.,Zhang,Y.Shen,J.L.,Han,W.X.,Zhang,W.F.,Christie,P.,Goulding,K.W.T.,Vitousek,P.M.&Zhang,F.S.SignificantacidificationinmajorChinesecroplands[J].Science,2010,327,1008-1010.[18]Harris,D.,Pacovsky,R.S.&Paul,E.A.Carboneconomyofsoybean-Rhizobium-Glomusassociations[J].NewPhytolohist,1985,101,427-440.330[19]Hauggaard-Nielsen,H.,Gooding,M.,Ambus,P.,Corre-Hellou,G.,Crozat,Y.,Dahlmann,C.,Dibet,A.,Fragstein,P.V.,Pristeri,A.&Monti,M.Pea-barleyintercroppingforefficientsymbioticN2-fixation,soilNacquisitionanduseofothernutrientsinEuropeanorganiccroppingsystems[J].FieldCropsResearch,2009,113,64-71.[20]He,P.,Jin,J.&Zhou,W.Effectofnitrogenapplicationonaccumulationandtranslocationofcarbonand335nitrogencompoundsintwomaizecultivarswithdifferentsenescentappearance[J].JournalPlantNutrition,2001,24,671-681.[21]Huppe,H.C.&Turpin,D.H.Integrationofcarbonandnitrogenmetabolisminplantandalgalcells[J].AnnualReviewofPlantBiolology,1994,45,577-607.[22]Latati,M.,Blavet,D.,Alkama,N.,Laoufi,H.,Drevon,J.J.,Gérard,F.,Pansu,M.&Ounane,S.M.The340intercroppingcowpea-maizeimprovessoilphosphorusavailabilityandmaizeyieldsinanalkalinesoil[J].PlantandSoil,2014,385,181-191[23]Latati,M.,Pansu,M.,Drevon,J.J.&Ounane,S.M.Advantageofintercroppingmaize(ZeamaysL.)andcommonbean(PhaseolusvulgarisL.)onyieldandnitrogenuptakeinNortheastAlgeria[J].InternationalJournalofResearchinApplliedScience,2013,1,1-7.345[24]Li,L.,Li,S.M.,Sun,J.H.,Zhou,L.L.,Bao,X.G.,Zhang,H.G.&Zhang,F.S.Diversityenhancesagriculturalproductivityviarhizospherephosphorusfacilitationonphosphorus-deficientsoils[J].ProceedingsoftheNationalAcademyofSciences,2007,104,11192-11196.[25]Li,L.,Sun,J.,Zhang,F.,Li,X.,Yang,S.&Rengel,Z.Wheat/maizeorwheat/soybeanstripintercropping:I.Yieldadvantageandinterspecificinteractionsonnutrients[J].FieldCropsResearch,2001,71,123-137.350[26]Li,L.,Tang,C.,Rengel,Z.&Zhang,F.Chickpeafacilitatesphosphorusuptakebyintercroppedwheatfromanorganicphosphorussource[J].PlantandSoil,2003,248,297-303.[27]Li,L.,Zhang,F.,Li,X.,Christie,P.,Sun,J.,Yang,S.&Tang,C.Interspecificfacilitationofnutrientuptakebyintercroppedmaizeandfababean[J].NutrientCyclinginAgroecosystems,2003,65,61-71.[28]Li,Q.Z.,Sun,J.H.,Wei,X.J.,Christie,P.,Zhang,F.S.&Li,L.Overyieldingandinterspecificinteractions355mediatedbynitrogenfertilizationinstripintercroppingofmaizewithfababean,wheatandbarley[J].PlantandSoil,2011,339,147-161.[29]Li,W.,Li,L.,Sun,J.,Guo,T.,Zhang,F.,Bao,X.,Peng,A.&Tang,C.EffectsofintercroppingandnitrogenapplicationonnitratepresentintheprofileofanOrthicAnthrosolinNorthwestChina[J].Agriculture,Ecosystem&Environment,2005,105,483-491.360[30]Li,Z.W.,Zeng,G.M.,Zhang,H.,Yang,Bin.&Jiao,S.Theintegratedeco-environmentassessmentoftheredsoilhillyregionbasedonGIS-acasestudyinChangshacity,China[J].EcologicalModelling,2007,202,540-546.[31]Lithourgidis,A.S.,Dordas,C.A.,Damalas,C.A.&Vlachostergios,D.N.Annualintercrops:analternativepathwayforsustainableagriculture[J].AustralianJournalofCropScience,2011,5,396-410.365[32]Lu,R.K.&Shi,Z.Y.Rebuildingcountermeasuresandfertilitypropertiesfordegenerativeredsoilhillyregion[J].Soil,2000,4,198-209.(ChinesewithEnglishabstract)[33]Lu,R.K.,Shi,Z.Y.,Lai,Q.W.Studyonredsoilnutritionaldegradation(II):ureaandammoniumbicarbonatetransformatiioninredsoil[J].ChineseJournalofSoilScience,1995,26,241-243.(ChinesewithEnglishabstract)370[34]Maliki,R.,Sinsin,B.,Parrot,L.,Lançon,J.,Floquet,A.&Lutaladio,N.Sustainableagricultureandinnovationadoptioninasmall-scalefoodproductionsystem:thecaseofyaminrotationwithintercroppingmucunapruriensvarutilisandmaizeintheGuinea-SudanzoneofBenin[J]..American-EurasianJournalofAgricultural&EnvironmentalScience,2016,16:70-84.[35]Monti,M.,Pellicanò,A.,Santonoceto,C.,Preiti,G.&Pristeri,A.Yieldcomponentsandnitrogenusein375cereal-peaintercropsinMediterraneanenvironment[J].FieldCropsResearch,2016,196:379-388.-12- 中国科技论文在线http://www.paper.edu.cn[36]Neugschwandtner,R.W.&KaulH.P.SowingratioandNfertilizationaffectyieldandyieldcomponentsofoatandpeainintercrops[J].FieldCropsResearch,2014,155,159-163.[37]Pierozan,J.C.,Favarin,J.L.,deAlmeida,R.E.M.,deOliveira,S.M.,Lago,B.C.&Trivelin,P.C.O.Uptakeandallocationofnitrogenappliedatlowratestosoybeanleaves[J].PlantandSoil,2015,393,83-94.380[38]Qu,Z.,Wang,J.G.,Almøy,T.&Bakken,L.R.ExcessiveuseofnitrogeninChineseagricultureresultsinhighN2O/(N2O+N2)productratioofdenitrification,primarilyduetoacidificationofthesoils[J].GlobalChangeBiology,2014,20,1685-1698.[39]Ramirez-Garcia,J.,Martens,H.J.,Quemada,M.&Thorup-Kristensen,K.Intercroppingeffectonrootgrowthandnitrogenuptakeatdifferentnitrogenlevels[J].JournalofPlantEcology,2015,8,380-389.385[40]Ren,Y.Y.,Liu,J.J.,Wang,Z.L.&ZhangS.Q.Plantingdensityandsowingproportionsofmaize-soybeanintercropsaffectedcompetitiveinteractionsandwater-useefficienciesontheLoessPlateau,China[J].EuropeanJournalofAgronomy,2016,72,70-79.[41]Schnyder,H.Theroleofcarbohydratestorageandredistributioninthesource‐sinkrelationsofwheatandbarleyduringgrainfilling-areview[J].NewPhytologist,1993,123,233-245.390[42]Shapiro,C.A.&Wortmann,C.S.Cornresponsetonitrogenrate,rowspacing,andplantdensityineasternNebraska[J].AgronomyJournal,2006,98,529-535.[43]Vandermeer,J.H.TheEcologyofIntercropping[M].Cambridge:CambridgeUniversityPress,1989.[44]Wilson,M.,He,Z.L.,Yang,X.E.TheRedSoilsofChina[M].Berlin:SpringerPress,2004[45]Yang,W.T.,Li,Z.X.,Wang,J.W.,Wu,P.&Zhang,Y.Cropyield,nitrogenacquisitionandsugarcane395qualityasaffectedbyinterspecificcompetitionandnitrogenapplication[J].FieldCropsResearch,2013,146,44-50.[46]Yuan,D.H.,Wang,Z.Q.,Chen,X.,Guo,X.B.&Zhang,R.L.Characteristicsofnitrogenlossfromslopingfieldinredsoilareaunderdifferentcultivationpractices[J].ChineseJournalofAppliedEcology,2002,13,863.(ChinesewithEnglishabstract)400[47]Zhang,F.S.&Li,L.Usingcompetitiveandfacilitativeinteractionsinintercroppingsystemsenhancescropproductivityandnutrient-useefficiency[J].PlantandSoil,2003,248,305-312.[48]Zhang,X.Q.,Huang,G.Q.,Bian,X.M.&Zhao,Q.G.Effectsofintercroppingandlow-nitrogenfertilizationonmaizegrowthandyieldindryland[J].AgriculturalResearchintheAridAreas,2012,30,30-36.(ChinesewithEnglishabstract)405[49]Zhang,X.,Huang,G.,Bian,X.&Zhao,Q.Effectsofnitrogenfertilizationandrootinteractionontheagronomictraitsofintercroppedmaize,andthequantityofmicroorganismsandactivityofenzymesintherhizosphere[J].PlantandSoil,2013,368,407-417.[50]Zomer,R.J.,Antonio,T.,Richard,C.&Frank,P.TreesonFarm:AnalysisofGlobalExtentandGeographicalPatternsofAgroforestry[M].Nairobi:WorldAgroforestryCentre,2009.410[51]Zou,C.Y.&Li,Z.J.IntercroppingandRelayIntercroping[M].Fuzhou:FujianEducationPress,2002.(InChinese)玉米-大豆间作和施氮对红壤旱地作物415碳氮吸收的影响11112杨文亭,缪建群,王晓维,徐建程,鲁美娟(1.江西农业大学农学院南昌330045;2.江西农业大学国土资源与环境学院南昌330045)摘要:本文主要通过盆栽试验研究红壤旱地种植模式(玉米单作、大豆单作和玉米-大豆间作)420和施氮(0,75,150,225,300kg/ha)对作物生物量和碳氮吸收的影响.研究结果表明:相比玉米单作,玉米-大豆间作降低了玉米干物质产量和碳素累积量。同时,间作和施氮两者的相互作用改变了玉米和大豆不同部位(籽粒、茎秆和根)的氮素累积和分布。相比不施氮,施氮显著增加了玉米干物质产量和碳氮累积量,但是减少了大豆干物质产量和碳氮累积量。总的来说,玉米-大豆间作和施氮影响了红壤地玉米和大豆生长,改变了作物的碳氮分配,425玉米-大豆间作可以作为一种高效且可持续发展的红壤地种植模式。关键词:农业生态学;氮累积;碳累积;红壤中图分类号:S181-13-'