- 149.30 KB
- 2022-04-22 13:43:03 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'˖ڍመڙጲhttp://www.paper.edu.cn双曲积的渐近上曲率谢桂玲,肖映青湖南大学数学与计量经济学院,长沙 410082摘要:M.Bonk和T.Foertsch提出了Gromov双曲空间的渐近上曲率的概念,并提议研究双曲积的渐近上曲率。本文研究了上述问题,证明了Ku(Y∆;o)maxfKu(X1);Ku(X2)g,其中(X1;o1);(X2;o2)是两个给定基点的Gromov双曲空间,Y∆;o是它们的双曲积,Ku(X)是双曲空间X的渐近上曲率。此外,在一定的条件下我们得到Ku(Y∆;o)大于等于Ku(X2)。关键词:Gromov双曲空间;渐近上曲率;双曲积中图分类号:O181OntheAsymptoticuppercurvatureofhyperbolicproductsXIEGui-Ling,XIAOYing-QingCollegeofMathematicsandEconometrics,HunanUniversity,Changsha,410082Abstract:M.BonkandT.FoertschintroducedthenotionofasymptoticuppercurvatureforGromovhyperbolicspacesandsuggestedtostudytheasymptoticuppercurvatureofhyperbolicproducts.Inthispaper,westudytheseproblemsandprovethatKu(Y∆;o)maxfKu(X1);Ku(X2)g;where(X1;o1);(X2;o2)aretwopointGromovhyperbolicspaces,Y∆;oistheirhyperbolicproductandKu(X)istheasymptoticuppercurvatureofahyperbolicspaceX.Moreover,weobtainsomeextraconditionstosurethatKu(Y∆;o)isnosmallerthanKu(X2).Keywords:Gromovhyperbolicspace;Asymptoticuppercurvaturebound;Hyperbolicproduct.0IntroductionGiventwoGromovhyperbolicmetricspaces(seeDefinition1),theirCartesianproductwilltypicallyfailtobehyperbolicitself.Forexample,RisaGromovhyperbolicspacebutR2isnot.Butin[1],T.FoertschandV.SchroederintroducedthenotionofhyperbolicproductfortwoGromovhyperbolicmetricspacesandshowedthatthehyperbolicproductisstillaFoundations:ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina(No.11301165).AuthorIntroduction:XieGuiling(1991-),female,graduatestudents,majorresearchdirection:complexanalysis.Cor-respondenceauthor:XiaoYingqing(1979-),male,associateprofessor,majorresearchdirection:complexanalysis,E-mailaddress:ouxyq@hnu.edu.cn.-1-
˖ڍመڙጲhttp://www.paper.edu.cnGromovhyperbolicmetricspace.Accordingtotherequirements,wegiveabriefreviewaboutit,andsomebasicnotionsonecanfindinpreliminaries.Weusethenotationjxyjforthedistancebetweenx;yinagivenmetricspaceX.Fora;b;c2Randc0,onedefine:a=cb()ja bjc:LetX1,X2betwohyperbolicmetricspacesandY:=X1X2betheCartesianproductofX1andX2.OnY,T.FoertschandV.Schroederconsideredthemaximummetric,i.e.,jxyj:=maxfjx1y1j;jx2y2jg;8x=(x1;x2);y=(y1;y2)2Y:Takeapointoi2Xi,wesaythat(Xi;oi)isapointmetricspacefori=1;2.Suppose∆0,wewriteo:=(o1;o2)2Yanddefine:Y∆;o=X1∆;oX2:=f(x1;x2)2Yjjo1x1j=∆jo2x2jg:ThespaceY∆;oYisendowedwiththerestrictionofthemaximummetriconYandiscalledthehyperbolicproductof(X1;o1)and(X2;o2)byT.FoertschandV.Schroederin[1].Itwas′′′provedin[1]thatifX1;X2are-hyperbolic,thenY∆;ois-hyperbolicforsome=(∆;).ThenotionofasymptoticuppercurvatureKu(X)foraGromovhyperbolicspaceX(seeDefinition3)wasintroducedin[2].ItistheanalogofsectionalcurvatureonRiemannianmanifolds.TherearecloselyconnectionbetweentheasymptoticuppercurvatureKu(X)andthepinchedsectionalcurvatureofaRiemannianmanifoldX.WhenXisacompletesimply-connectedRiemannianmanifoldwithpinchedsectionalcurvature b2K a2<0,itwasshownthat b2K(X) a2<0in[2].ThisimpliesinparticularthattheasymptoticuuppercurvatureofrealhyperbolicspaceHnis 1.Inthepaper[2],therearevariousotherquestionsinrelationwiththeasymptoticup-percurvaturewereproposed.Forexampleitsbehaviorunderconstructionssuchasgluingsalongquasi-convexsetsorhyperbolicproducts.Inthispaper,westudytheasymptoticuppercurvatureofthehyperbolicproduct.Firstly,weobtainthefollowingtheorem.Theorem1.Supposethat(X1;o1);(X2;o2)aretwopointGromovhyperbolicspaces,∆0andY∆;oisthehyperbolicproductof(X1;o1)and(X2;o2),whereo=(o1;o2)2X1X2.ThenKu(Y∆;o)maxfKu(X1);Ku(X2)g:Nextly,weestimatethelowerboundofKu(Y∆;o)undersomeextraconditionsandobtainthefollowingtheorem.Theorem2.Supposethat(X1;o1);(X2;o2)aretwopointGromovhyperbolicspaces,∆0andY∆;oisthehyperbolicproductof(X1;o1)and(X2;o2),whereo=(o1;o2)2X1X2.-2-
˖ڍመڙጲhttp://www.paper.edu.cnAssumethatKisanonnegativeconstantandforallx;x′2X,thereexisty;y′2Xsuchthat12z=(x;y);z′=(x′;y′)2Yand∆;o′:′(xjx)o1=K(yjy)o2:ThenKu(Y∆;o)Ku(X1):Thepaperisorganizedasfollows.Insection2,somebasicdefinitionsandpropertiesarepresented.Insection3,wegiveproofsofTheorems1and2.1PreliminariesLetXbeametricspace,fixabasepointo2X,theGromovproductofx;x′2Xwithrespecttooisdefinedas′1′′(xjx)o:=(joxj+joxj jxxj):2Notethat(xjx′)0bythetriangleinequality.oDefinition1.ThemetricspacesXis-hyperbolicforsome0,ifitsatisfiesthe-inequality(xjy)ominf(xjz)o;(zjy)og forallx;y;z2Xandeverybasepointo2X.ThemetricspaceXiscalled(Gromov)hyperbolic,ifitis-hyperbolicforsome0.Obviously,ifametricspaceXsatisfiesthe-inequalityforabasepointo2X,thenforotherbasepointo′2X,the2-inequalityisfulfilled.ForpropertiesofGromovhyperbolicspaces,wereferto[3].ForaGromovhyperbolicspace,thefollowingclaimonceoccurredin[4],buttherearenoevidence.Forcompleteness,wegiveaproofhere.Lemma1.IfXisa-hyperbolicspaceforbasepointo2X.Thenthereexistsaconstanta0onlydependingonsuchthat′(xjx)omin(xi−1jxi)o alogn1≤i≤nforallx;x′2Xandalln-chainsx=x;x;;x=x′2X.01nProof.Letx;x′2Xandx=x;x;;x=x′2Xisan-chain.01nWefirstconsiderthecasewhenn=2k;k2N+,andclaimthat′(xjx)omin(xi−1jxi)o k:(1)1≤i≤n-3-
˖ڍመڙጲhttp://www.paper.edu.cnWeprovetheinequality(1)byinductivemethod.BytheconditionthatXisa-hyperbolicspace,theinequality(1)holdwhenn=2.Nowassumethatitistruewhenn=2k−1.Thatis,forthechainx0;x1;;x2k−1,wehave(xjx2k−1)omin(xi−1jxi)o (k 1):(2)1≤i≤2k−1Bytheinductionhypothesis,forthechainx2k−1;x2k−1+1;;xn=x2k−1+2k−1,wehave(x2k−1jxn)omin(xi−1jxi)o (k 1):(3)2k−1+1≤i≤n′kByinequalities(2)and(3),forthechainx=x0;x1;;x2k−1;;xn=x;n=2,wehave′(xjx)ominf(xjx2k−1)o;(x2k−1jxn)og min(xi−1jxi)o k:1≤i≤nThereforetheinequality(1)iscorrect.Nextly,weconsiderthecasewhen2k