- 388.48 KB
- 2022-04-22 13:42:13 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'˖ڍመڙጲhttp://www.paper.edu.cn某些线性微分方程的解析解和相应非线性方程的正解赵增勤曲阜师范大学数学科学学院,曲阜273165摘要:对于某些具有泛函边界条件的线性微分方程,通过格林函数给出了解的解析表达式.利用得到的格林函数,研究了具有可数多个点的非局部边界条件和积分边界条件下的相应超线性方程正解的存在性.关键词:应用数学;解析解;线性泛函边界条件;格林函数;正解中图分类号:O175.14ExactsolutionsofsomelineardierentialequationsandpositivesolutionsofthecorrespondingnonlinearequationsZHAOZengqinSchoolofMathematicalSciences,QufuNormalUniversity,Qufu273165Abstract:ExactexpressionsofthesolutionsforsomelineardierentialequationswithfunctionalboundaryconditionsaregivenbytheGreen"sfunctions.UsingGreen"sfunctionsobtainedweinvestigateexistenceofpositivesolutionsforthecorrespondingsuperlinearequationswithcountablymanypointsandintegralboundaryconditions.Keywords:Appliedmathematics;Exactsolution;linearfunctionalboundarycondition;Green"sfunction;positivesolution.0IntroductionandthemainresultsThetheoryofnon-localboundaryvalueproblemshasbeenemergingasanimportantareaofinvestigationsinrecentyears.Theinvestigationofequationu00+f(t;u)=0withnon-localboundaryconditions(multi-pointorintegralboundaryconditions)canbeseenin[1,2,3,4,5,6,7,8]anditsreferences.Theinvestigationofone-dimensionalp-Laplaciannon-localboundaryproblemscanbeseenin[9,10,11,12]anditsreferences.Butconclusionsof基金项目:ResearchsupportedbytheNationalNaturalScienceFoundationofChina(11571197),andtheDoctoralProgramFoundationofEducationMinistryofChina(20133705110003)作者简介:ZhaoZengqin(1955-),male,professor,majorresearchdirection:Nonlinearfunctionalanalysisanditsapplication.-1-
˖ڍመڙጲhttp://www.paper.edu.cntheequation002 u+ku=f(t;u);atb;(0.1)withnon-localboundaryconditionsareless,seenin[13,14].Thispaperrstinvestigatestheexactsolutionsofthelinearequation002 u+ku=h(t);atb;(0.2)withtheboundaryconditions00u(a) u(a)=F1(u)+c1;
u(b)+u(b)=F2(u)+c2:(0.3)WedenotetheuniquesolutionbyitsGreen"sfunction.Afterthat,weapplytheresultsobtainedtostudythenonlinearboundaryvalueproblem(0.1)(0.3).Werelatethefollowingsymbolsandterminologies.x xThehyperbolicsineandthehyperboliccosinearedenotedbysinh(x)=e eand2x xcosh(x)=e+e,respectively.LetEbearealBanachspace,Edenotethesetofboundedlin-2earfunctionalsonE.AssumethatF;F2(C[a;b]),x(t)2C[a;b],y(t;s)2C([a;b][a;b]).12WedenotetheimageofF1atx(t)byF1(x())orF1(x).F1()denotetheimageofF1atx(t)=t.F1(I)denotetheimageofF1atx(t)12C[a;b].Clearly,F1(y(t;))isafunctionoft,F2F1(y(t;))isarealnumber.AssumeDC[a;b].AfunctionalB:D!RissaidtobeincreasingifB(x1)B(x2)forx(t)x(t);x;x2D.AboundedlinearfunctionalF2(C[a;b])iscalledpositive1212ifF(x)0foranynonnegativefunctionx(t)2C[a;b].Everylinearpositivefunctionalisevidentlyincreasing. Lemma1.[15]SupposethatEisaBanachspace,F2E,x(t)2C[a;b]!E.ThenZ!ZbbFx(s)ds=F(x(s))ds:aaLemma2.AssumethatF;F2(C[a;b]).Forthefunctionsinh(k(t s))2C([a;b][a;b]),12wehavethat2F2F1(sinh(k(t )))= 2F1F2(sinh(k(t ))) (0.4)k k kk=F2eF1e F2eF1e:Inparticular,FiFi(sinh(k(t )))=0;i=1;2:(0.5)Proof.Weknowthatkt ks ktks2sinh(k(t s))=ee ee:Therefore kt k ktk2F1(sinh(k(t s)))=eF1e eF1e;-2-
˖ڍመڙጲhttp://www.paper.edu.cnhence2F2F1(sinh(k(t ))) k k kk=F2eF1e F2eF1e;and(0.4)(0.5)hold.Lemma3.Supposethatfunctionh(t)iscontinuouson[a;b],F1andF2aregivenboundedlinearfunctionalsonC[a;b],c1;c2aregivenrealnumbers.k>0;;;
;arenonnegative;=(b a)++>0:(0.6)Thenthesecond-ordertwo-pointlinearboundaryvalueproblem8<