• 292.32 KB
  • 2022-04-22 13:49:51 发布

硅藻土替代比例对沥青胶砂蠕变变形性能的影响研究.pdf

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'中国科技论文在线http://www.paper.edu.cnEffectofalternativecontentofdiatomiteoncreep#deformationpropertyofasphaltsand**TAOJinglin,CHENGYongchun,YUDi,YANGJinsheng,MAJiansheng5(CollegeofTransportation,JilinUniversity)Abstract:Hightemperatureandanti-ageingpropertiesofasphaltcouldbeimprovedbytheadditionofdiatomiteasresearchedinpreviouspapers.Itisbelievedtobealternativesuperiormineralfillerintheconstructionofasphaltpavementincomparisonwithordinarylimestonepowder.Inthispaper,compressionstrengthandanti-deformationpropertiesofasphaltsandswithdifferentcontentof10diatomitewereinvestigatedbyuniaxialcompressionfailuretestanduniaxialcompressioncreeptest.Fivegroupsofasphaltsandswithdifferentvolumecontent(0:1,0.25:0.75,0.5:0.5,0.75:0.25and1:0)ofdiatomitetolimestonewereselected.Thecompressionstrengthandsecantmoduluswerefirstlyincreasedwiththeincreasingofdiatomite’scontentandthendecreasedwhenitexceed0.75whilstthecreepstrainwasfirstlydecreasedandthenincreasedwiththeincreasingofthat.Thecompression15strengthandanti-deformationpropertiesofasphaltsandswereimprovedbythereplacementofdiatomite.Keywords:Pavementconstructionmaterials;Asphaltsand;Diatomite;Secantmodulus;Creepstrain0Introduction20Diatomiteisasedimentaryrock,whiteorlightyellowincolor,composedofthefossilizedskeletonsofdiatoms,onecelledalgae-likeplantswhichaccumulatesinmarineorlacustrine[1]environments.Ithasbeenusedtoimprovethepropertiesofasphaltandmixtureasaninorganic[2-10][2]modifierforseveralyears.Kietzmanetal.firstlystudiedtheperformanceofdiatomitemodifiedasphaltconcreteandfoundthatthehightemperaturedeformationresistanceofasphalt[3,4]25mixturewasimproved.Tanetal.indicatedthatdiatomitemodifiedmixturehadbetterlowtemperatureperformancethanthatofcontrolmixture,andthecriticalbendingandcompressivestrainenergydensitiesofmodifiedmixturewereallgreaterthanthatofthecontrolmixture.Guo[5]etal.studiedthepropertiesofdiatomite-glassfibermodifiedmixtureandindicatedthatdiatomitehadasignificanteffectonthestiffnessmodulusofasphaltmixture;thecompound[6,7]30modifiedmixturehadbettertravellingperformancethanthatofcontrolmixture.Congetal.investigatedpropertiesofdiatomitemodifiedasphaltandfoundthatthehightemperatureandrheologicalpropertieswereimprovedbytheadditionofdiatomitewhilethelowtemperaturepropertywasnoteffectivelyaffected.Andageingresistanceofdiatomitemodifiedasphaltwas[8,9]significantlyimprovedwithincreasingdiatomitecontent.Chengetal.alsoindicatedthat35diatomiteimprovedageingresistanceofasphaltmasticincomparisonwithmineralpowderasphaltmastic,aswellastheimpactresistancesignificantlyandweakenthetemperature[10]susceptibility.Furthermore,Chengetal.suggestedthatthespecificsurfaceareawasthemostinfluentialfactorofmineralfillersonthepropertiesofasphaltmasticincomparisonwithdensity,particlesizedistributionandhydrophiliccoefficient,anddiatomiteasphaltmasticperformed40betterthanthatoflimestoneasphaltmastic,hydratedlimeasphaltmasticandfly-ashasphaltmastic.Itcanbeconcludedthatdiatomiteispotentialbeneficialfillerintheconstructionofasphaltpavementfromabovestudies.Foundations:SpecializedResearchFundfortheDoctoralProgramofHigherEducationofChina(No.20130061110041)Briefauthorintroduction:TaoJinglin(1990-),Male,PhDstudent,HisresearchworkfocusedonthetheoreticalandexperimentalstudyonasphaltandasphaltmixtureCorrespondanceauthor:CHENGYongchun(1961-),Male,Professor,HisrecentworkisfocusedontheTheoreticalandexperimentalstudyonasphaltandasphaltmixture.E-mail:chengyc@jlu.edu.cn-1- 中国科技论文在线http://www.paper.edu.cnAboveresearchesweremainlyinvestigatedtheeffectofdiatomiteonperformanceofasphalt45andmixture.However,asphaltmixturecouldbeconsideredasasystemofmulti-levelspatial[11,12]latticestructureaccordingtomortartheory.Thatisthecoarseaggregatedispersedinasphaltsandmatrixtoformtheasphaltconcretesystem,thefineaggregatedispersedinasphaltmasticmatrixtoformasphaltmortarsystemandthemineralfillerdispersedinasphaltmatrixtoformasphaltmasticsystem.Asthedispersematrixofasphaltconcrete,propertiesofasphaltsandwould50significantlyaffecttheperformanceofasphaltconcrete.Manystudiessimplifiedtheasphaltmixtureasthreephasesincludingasphaltsand,coarseaggregateskeletonandairvoidsinthere[13,14][15]FEMorDEMmodels.Baietal.investigatedthelongtermandshorttermcreepperformanceofasphaltsandandmodifiedthecrossmodel,whichpresentbetterpredictionaccuracy.Thecharacteristicsofasphaltsandaresimplerthanthatofasphaltconcretesincethe55absenceofskeletonstructuredevelopedduringcompactionprocessinasphaltconcrete.Itwouldbeeasytodescribetherheologicalpropertyofasphaltsandbecausethefrictionbetweenstonesandthestabilityofthestiffskeletoncanbeignored.Besides,therheologicalpropertiesofasphalt[15]sandsignificantlyinfluencetheruttingresistanceofasphaltconcrete.Therefore,itisameaningfultrytoinvestigatetheeffectofdiatomiteonmechanicalpropertiesofasphaltsandand60determinetheoptimaldiatomitecontentasalternativemineraladditivebasedonthesemechanicalproperties.Thiswillalsoprovideareferencefortheapplicationofdiatomitemodifiedasphaltmixture.Theaimofthispaperistoinvestigatetheeffectofdiatomiteoncreepdeformationofasphaltsand.Fivealternativeproportion(0:1,0.25:0.75,0.5:0.5,0.75:0.25and1:0)ofordinarylimestone65powderanddiatomiteasfillerinasphaltsandweredesigned.Thenthemechanicalandcreeppropertiesofasphaltsandsweretestedbyuniaxialcompressionfailuretestanduniaxialcompressionstaticcreeptest.1Experimental1.1Rawmaterials70TheasphaltusedinthispaperiscommercialrubbermodifiedasphaltcamefromPanjinPetrochemicalIndustry,LiaoningProvinceofChina.ThebasicpropertiesofrubbermodifiedasphaltaregiveninTable1.DiatomiteisthecalcinedproductfromJilinProvince.Themineralpowderusedislimestonepowder,whichistheordinaryfillerusedintheconstructionofasphaltpavement.BasicpropertiesofdiatomiteandlimestoneareshowninTable2.Particlesize[10]75distributionsofdiatomiteandlimestoneareshowninFig.1,whicharetestedbyBETmethod.Fineaggregates(whosediameterislessthan2.36mm)selectedtopreparetheasphaltsandarebasalt,whichareobtainedfromlocalstonefactoryinJilinProvince.TheapparentdensitiesoffineaggregatesatdifferentdiametersarelistedinTable3.80Tab.1BasicpropertiesofrubbermodifiedasphaltPropertyResultPenetration(25°C,0.1mm)67.9SofteningpointTR&B(°C)66.2Ductility(5°C,cm)24.93Density(25°C,g/cm)1.047Brookfieldviscosity(135°C,Pa⋅s)4.577Elasticrecovery(%)88-2- 中国科技论文在线http://www.paper.edu.cnTab.2Propertiesofdiatomiteandlimestone32PropertyColorPHApparentdensity(g/cm)Specificsurfacearea(m/g)DiatomiteOrange9.982.12711.556ResultLimestoneWhite7.842.6520.886100Limestone80Diatomite6040Percentpassing(%)2000.1110100Particlediameter(μm)Fig.1ParticlesizedistributionsofdiatomiteandlimestoneTab.3ApparentdensitiesoffineaggregatesDiameter1.180.60.30.150.0753Apparentdensity(g/cm)2.7132.7202.6992.6472.700851.2ExperimentaldesignAsphaltsandisconsistedofasphalt,fillerandfineaggregates,whichisthematrixofasphalt[11,12]mixturesinthecoarseaggregate-asphaltsanddispersesystem.ThegradationofasphaltsandissamewiththetypicaldensegradationofasphaltconcreteAC-13accordingtoChinesespecification(JTGF40-2004)exceptthatcoarseaggregates,diameterlargerthan2.36mm,are90removed.TheselectedgradationisshowninFig.2.Fig.2SelectedgradationofasphaltsandThispaperisfocusedontheeffectofdiatomiteonmechanicalpropertiesofasphaltsandasalternativefiller.Thevolumefractionoffillersignificantlyaffectstheperformanceofasphalt[16]95mastic.Therefore,assumethevolumeoffillerinasphaltsandwas1;thentheproportion0:1,0.25:0.75,0.5:0.5,0.75:0.25and1:0ofdiatomitetomineralpowderwereselected.Theresultsand-3- 中国科技论文在线http://www.paper.edu.cncorrespondingmassfractionofmineralpowderanddiatomiteinasphaltsandarelistedinTable4.Theratiooffillertoaggregateis16.2%byweightaccordingtothegradationofasphaltsand.ThevolumeproportionslistinTable4representthevolumeratiooflimestone/diatomitetothetotal100volumeoffiller.Andthemassfractionmeansthatthemassratiooflimestone/diatomitetothetotalmassofaggregate.FivegroupsofasphaltsandsarenamedAM-0,AM-25,AM-50,AM-75andAM-100whichrespectivecorrespondingtothevolumeratioofdiatomitetothevolumeoffilleris0%,25%,50%,75%and100%.Tab.4Designationoflimestone/diatomitecontentRun1(AM-0)2(AM-25)3(AM-50)4(AM-75)5(AM-100)VolumeLimestone1007550250proportion(%)Diatomite0255075100MassfractionLimestone16.212.28.14.10.0(%)Diatomite03.26.59.713.0105Note:*representsthevolumeratiooflimestone/diatomitetothetotalvolumeoffillerare75%and25%,respectively;**representsthemassratiooflimestone/diatomitetothetotalmassofaggregateare12.2%and3.2%,respectively.Thereisnotstandardspecificmethodtocalculatetheoptimalasphaltcontentofasphaltsand.[17]SotheoptimalasphaltcontentiscalculatedaccordingtoChinesespecification(JTGF40-2004).110Assumingasphaltbindersareuniformlydispersedinasphaltsand.Andtheasphaltcontentislinearlychangedwiththespecificsurfaceareaofaggregates.ThentheoptimalasphaltcontentPacouldbecalculatedasfollows:PS=×××ρADA0.1(1)aaSA=×()PFAii(2)3115WherePaistheoptimalasphaltcontent,%;ρaisthedensityofasphalt,kg/m;SAisthespecific2surfaceareaofaggregates,m/kg;DAisthethicknessofasphaltbinder,μm;Piisthepassingrateofaggregatesatdifferentdiameter,%;FAiisthesurfaceareacoefficientofaggregatesatdifferentdiameter,whichissuggestedasTable5accordingtoChinesespecification(JTGF40-2004).Tab.5SurfaceareacoefficientsofaggregatesatdifferentdiameterDiameter(mm)2.361.180.60.30.150.075FAi0.00820.01640.02870.06140.12290.3277120Therefore,SAofasphaltsandcouldbeobtainedaccordingtothedataofFig.2andTable52andtheresultis14.34m/kg.Researchershadinvestigatedtherelationshipbetweenthicknessofasphaltbinderandperformancesofasphaltconcreteandsuggestedthatthicknessshouldberangedin8~12μm.Thus,10μmischosenhereintocalculatetheoptimalasphaltcontent.ThenPacouldbecalculatedthroughequations1and2,andresultis15%.1251.3PreparationofasphaltsandInordertoinvestigatetheeffectofdiatomiteonasphaltsandandobtaintheoptimalcontent,asphaltsandswithdifferentcontentsofdiatomitearepreparedthroughstaticpressuremethodaccordingtoChinesespecifications(JTGE40-2011).Processofpreparationofasphaltsandisasfollows:Firstly,rubbermodifiedasphalt,fillers(diatomiteandlimestone)andfineaggregatesare130heatedinovenat180°Ctilltemperaturesofmaterialsarestable.Secondly,fineaggregate,filler-4- 中国科技论文在线http://www.paper.edu.cnandrubbermodifiedasphaltarepouredintothemixingpotstepbystep.Mixingtemperatureis170°Candmixingtimeofeachstepare90s,90sand180s,respectively.Thirdly,weighingtherightweightofmixesandputtingintothemold.Finally,compactingthemixesbyjackatthepressureof3kilopascal,whichlasting3minutes.Samplesofasphaltsandcouldbereleasedwhen135themoldiscooledtoroomtemperature.Thesizeofasphaltsandisφ50×50mm.AsphaltsandandmoldareshowninFig.3.Cylindricalmoldswithtwocylindricalplungerswereusedforcastingspecimens.Themoldshaveinnerdiametersof50.0mmandheightsof100.0mm,whiletheplungershavediametersof50.0mmandheightsof25.0mm.Afteranoil-lubricatedmoldwasfilledwiththehotasphalt140mixture,thetwoplungerswereusedtocompactthemixturebyapressmachine.Cylindricalspecimens(50±0.5)mmindiameterand(50±0.5)mminheightwereremovedfromthemoldsaftercoolingtoroomtemperatureslowly.Fig.3Asphaltsandandmold1451.4TestingmethodsUniaxialcompressionfailuretestUniaxialcompressionfailuretestiswidelyusedtoevaluatestress-strainrelationshipand[5]compressionstrengthofasphaltconcreteunderaconstantloadingrate.Thetestisconductedbyservo-hydraulictestsystems(MTS810,MTSSystemsCorporation,America).Sampleisplaced150onthecenterofbasesteelplateandcompressedbythepressureplate.Thetesttemperatureisroomtemperature(21°C±1°C)andtheloadingrateincluding2mm/min,10mm/minand20mm/min.Therearethreereplicatesforeachgroupsamplesandthemeanvalueiscalculatedtostudythemechanicalpropertyofasphaltsand.Theforce-deformationcurvecouldbeobtainedafterthetest.Thus,stress-straincurvecouldbecalculatedbyEqs.(3)and(4).Secantmodulusis155calculatedbyEq.(5)hereforfurthercomparativeanalysis,whichisdefinedastheratioofcompressionstrengthtothecorrespondingstrain.4Pσ=(3)2πdΔLε=(4)hσmaxE=(5)secεmax160Whereσisthestressofasphaltsand,MPa;Pistheforceduringtest,kN;disthediameterofasphalt,hereinis50mm;εisthestrainofasphaltsand;ΔListhedeformationduringtest,mm;Esecisthesecantmodulus,MPa;σmaxisthemaximumstress,namelycompressionstrength,MPa;-5- 中国科技论文在线http://www.paper.edu.cnεmaxisthestraincorrespondingtomaximumstress.Creeptest165Creeptestisanimportanttestmethodtoinvestigatethedeformationpropertyofasphalt[15,18]concrete.Itrevealstheviscoelasticpropertyofasphaltmaterials.Theuniaxialcompressionstaticcreeptestisemployedtoinvestigatetherheologicalpropertyofasphaltsandunderconstantstress.ThetestisconductedbyServo-PneumaticUniversalTestingMachine(NU-14,CooperTechnologiesLtd.,UK)andtesttemperatureis30°C.Theloadingisappliedbythe170Servo-PneumaticsystemandthedeformationisrecordedbytwoLVDTs(LinearVariableDifferentialTransformer)asshowninFig.4.Theuniaxialcompressionstaticcreeptestisperformedundercontinuousconstantloading.Threestresslevels,namely0.12MPa,0.36MPaand0.72MPa,areselectedinthispaper.Theloadingtimeis1800sandtherecoverytimeis900s.Strain-timecurvecouldbegotafterthetestandthenthedeformationpropertyofasphaltsand175couldbeanalyzed.Fig.4Theloadinganddeformationmeasuresystem2Resultsanddiscussion2.1Uniaxialcompressionfailuretest180Theuniaxialcompressionfailuretestwasemployedtoevaluatethemechanicalpropertyofasphaltsandunderconstantloadingrate,whichwasdisplacementcontrolmode.Allfivegroupsasphaltsandsweretestedatroomtemperature(21°C±1°C)andthreeloadingrate(2mm/min,10mm/minand20mm/min)areappliedonsamples.Thefailurestress,failurestrainandcorrespondingsecantmodulusofasphaltsandswerecalculatedaccordingtoEqs.(3),(4)and(5).185ResultsareshowninFig.5.122mm/min(a)110.102mm/min10mm/min1010mm/min20mm/min920mm/min876Strain0.055Stress(MPa)432100.00020406080100020406080100Contentofdiatomite(%)Contentofdiatomite(%)-6- 中国科技论文在线http://www.paper.edu.cn3002mm/min25010mm/min20mm/min200150100Secantmodulus(MPa)500020406080100Contentofdiatomite(%)Fig.5Resultsofuniaxialcompressionfailuretest:(a)failurestress,(b)failurestrainand(c)correspondingsecantmodulus190AscanbeseenfromFig.5,failurestressandsecantmodulusofasphaltsandsareincreasedwiththeincreasingofdiatomitewhilstfailurestrainaredecreasedwiththeincreasingofthat.Andtheextremepointsareallaround75%forthethreeparameters.ThefailurestressesofAM-75are2.63,2.03and1.74timesbiggerthanthatofAM-0correspondingtotheloadingratesof2mm/min,10mm/minand20mm/min,respectively.Thefailurestrengthofasphaltsandis195significantlyimprovedbythereplacementofdiatomite.ThefailurestrainratiosofAM-75toAM-0are0.52,0.55and0.53correspondingtotheloadingratesof2mm/min,10mm/minand20mm/min,respectively.Thedeformationabilityunderloadingseemstobedecreasedbythereplacementofdiatomite.However,theloadingofAM-75andAM-0aredifferentwhenthesamplesaredamaged,whichresultinthelowdeformation.Therefore,thesecantmodulusisa200morereliableparametertoevaluatethedeformationcoordinationabilityofasphaltsand.AsshowninFig.5(c),thesecantmodulusratiosofAM-75toAM-0are5.03,3.68and3.31correspondingtotheloadingratesof2mm/min,10mm/minand20mm/min,respectively.Thesecantmoduliareobviouslyincreasedbythereplacementofdiatomite,whichindicatethatthedeformationcoordinationabilitiesofasphaltsandsareimprovedbydiatomite.Previousstudies205havebeendemonstratedthatdiatomiteasphaltmasticpresentbetterhighandmediumtemperature[10]performancesthanthatoflimestoneasphaltmastic.Thesofteningpoint,viscosityandcomplex[9,10]modulusofasphaltmasticsareeffectivelyincreasedbytheadditionofdiatomite.Thus,thefailurestrengthandsecantmodulusofasphaltsandsareimprovedbythereplacementofdiatomite.210ItcouldbefoundthatthefailurestressandsecantmodulusareobviouslydifferentunderdifferentloadingratesfromFig.5.Thefastertheloadingrateis,thebiggerthefailurestressandsecantmodulusare.Whereasthefailurestrainsofasphaltsandsarenotevidentlyaffectedbythe[19][20]loadingrate.ItissimilarwiththeresultsobtainedbyWuetal.andCaietal.2.2Uniaxialcompressionstaticcreeptest215Theuniaxialcompressionstaticcreeptestwasemployedtoevaluatethedeformationresistanceofasphaltsandunderconstantstress.Itiswidelyusedtoanalyzethepermanent[15]deformationpropertyofasphaltconcreteforitssimplicity.Allfivegroupsasphaltsandsweretestedat30°Candthreestresslevels(0.12MPa,0.36MPaand0.72MPa)wereappliedonsamples.Sampleswereputintemperaturecontrollerfor4hbeforetestswereconductedtomake220sureallthesamplesreachedthetesttemperature.ResultsareshowninFig.6.-7- 中国科技论文在线http://www.paper.edu.cn0.62.0(a)AM-0(b)AM-0AM-25AM-25AM-501.6AM-500.4AM-75AM-75AM-1001.2AM-1000.8Strain(%)0.2Strain(%)0.40.00.001000200030000100020003000Time(s)Time(s)6(c)AM-0AM-255AM-50AM-75AM-10043Strain(%)2100100020003000Time(s)Fig.6Strain-timecurvesofuniaxialcompressionstaticcreeptests:(a)0.12MPa,(b)0.36MPaand(c)0.72MPaAsshowninFig.5,thecreepstrainsofAM-0areallthebiggestamongthefivegroups225whilstthatofAM-75areallthelowestunderthreestresslevels.Thecreepstrainsaresignificantlyincreasedwiththeincreasingofstresslevel.ThecreepstrainsofAM-0aretoohightobemeasuredbytestsystemafter400sunderthestressof0.72MPa,whichmeansthatAM-0hasbeendamagedunderthestresslevelat30°C.Thecreepstrainafter1800sandrecoveredstrainafterrecoveryof900saresummarizedinTable6.230Tab.6ResultsofstaticcreeptestsCreepstrain(%)Recoveredstrain(%)Group0.12MPa0.36MPa0.72MPa0.12MPa0.36MPa0.72MPaAM-00.5271.536*0.2871.062*AM-250.5101.0384.1510.2480.6053.241AM-500.3710.8771.3710.1570.4690.778AM-750.2880.4341.3600.1260.1780.847AM-1000.3071.0722.0880.1210.5661.351Note:*representsthedatacouldnotbemeasuredbythetestsystem.Itcanbeseenthatthecreepstrainandrecoveredstrainareobviouslyaffectedbythestresslevel.Thecreepstrainpresentsaquadraticcurvewiththeincreasingofalternativecontentofdiatomite.Generally,thecreepstraincanbedecomposedintoarecoverableviscoelasticpartand[21]235anirrecoverableviscoplasticpartandtherecoveredstrainstandsforthepermanentdeformation.Therefore,thedeformationresistanceofasphaltsandscouldbeimprovedbythe-8- 中国科技论文在线http://www.paper.edu.cnreplacementofdiatomite.AM-75presentsthebestdeformationresistancepropertycomparedtootherfourasphaltsands,whichmeansthattheoptimalalternativecontentofdiatomitewasaround75%.Lotsofstudieshavebeendemonstratedthatthehightemperaturepropertiesofasphaltand240mixtureareimprovedbytheadditionofdiatomite,whichisconsistwiththeresultobtainedherein[2,5-10].3ConclusionInthispapertheeffectsofalternativecontentofdiatomiteoncreepdeformationofasphaltsandarestudiedbyuniaxialcompressionfailuretestanduniaxialcompressioncreeptest.245Followingconclusionscanbedrawn:Failurestressandsecantmodulusofasphaltsandsareincreasedwiththeincreasingofdiatomitewhilstfailurestrainaredecreasedwiththeincreasingofthat.Andtheextremepointsareallaround75%forthethreeparameters.Thefailurestrengthandsecantmodulusofasphaltsandsareimprovedbythereplacementofdiatomite,whichindicatethatthe250deformationcoordinationabilitiesofasphaltsandsareimprovedbydiatomite.Thecreepstrainandrecoveredstrainareobviouslyaffectedbythestresslevel.Thecreepstrainpresentsaquadraticcurvewiththeincreasingofalternativecontentofdiatomite.Thedeformationresistanceofasphaltsandscouldbeimprovedbythereplacementofdiatomiteandtheoptimalalternativecontentofdiatomitewasaround75%.255AcknowledgementsTheauthorsexpresstheirappreciationforthefinancialsupportsofSpecializedResearchFundfortheDoctoralProgramofHigherEducationofChina(20130061110041);NationalNaturalScienceFoundationofChinaunderGrantNos.51678271,51278222,51408258and51508150;ChinaPostdoctoralScienceFoundationfundedproject(nos.2014M560237and2602015T80305);ScienceTechnologyDevelopmentProgramofJilinProvince(20160204008SF);TransportationScienceandTechnologyProjectofJilinProvince(2015-1-13).References[1]M.Reguerio,J.P.Calvo,E.Elizaga,V.Calderon.Spanishdiatomitegeologyandeconomics[J].Industrial265Minerals,1993;306:57-67.[2]J.H.KietzmanandC.E.Rodier.Effectofdiatomitefilleronperformanceofasphaltpavements[J].TransportationResearchRecord,1984;968.[3]Y.Q.Tan,L.Y.Shan,J.Fang,X.Y.Zhang.Anti-crackingmechanismofdiatomiteasphaltanddiatomiteasphaltmixtureatlowtemperature[J].JournalofSoutheastUniversity(EnglishEdition),2009;25(1):74-78.(In270Chinese)[4]Y.Q.Tan,L.Zhang,andX.Y.Zhang.Investigationoflow-temperaturepropertiesofdiatomite-modifiedasphaltmixtures[J].ConstructionandBuildingMaterials,2012;36:787-795.[5]Q.Guo,L.Li,Y.Cheng,Y.Jiao,C.Xu.Laboratoryevaluationonperformanceofdiatomiteandglassfibercompoundmodifiedasphaltmixture[J].Materials&Design,2015;66:51-59.275[6]P.Cong,S.Chen,andH.Chen.Effectsofdiatomiteonthepropertiesofasphaltbinder[J].ConstructionandBuildingMaterials,2012;30:495-499.[7]P.Cong,N.Liu,Y.Tian,Y.Zhang.Effectsoflong-termagingonthepropertiesofasphaltbindercontainingdiatoms[J].Constr.Build.Mater.2016;123:534-540.[8]Y.C.Cheng,H.L.Ma,P.Zhang,J.L.Tao,andJ.P.Huang.Experimentalstudyofphysicalandmechanical280propertiesofasphaltmortarswithdifferentfillers[J].JilinDaxueXuebao(Gongxueban),2014;06:1628-1632.(InChinese)[9]Y.Cheng,J.Tao,Y.Jiao,Q.Guo,C.Li.Influenceofdiatomiteandmineralpowderonthermaloxidativeageingpropertiesofasphalt,Adv.Mater.Sci.Eng.2015(2015).[10]Y.Cheng,J.Tao,Y.Jiao,G.Tan,Q.Guo,S.Wang,P.Ni.Influenceofthepropertiesoffilleronhighand285mediumtemperatureperformancesofasphaltmastic,Constr.Build.Mater.2016;118:268-275.[11]L.H.Csanyi,H.P.Fung.Mortartheoryforuseofungradedaggregatesinbituminousmixes[J].HighwayResearchBoardBulletin,1955(105).-9- 中国科技论文在线http://www.paper.edu.cn[12]H.Qiu,X.Tan,S.Shi,H.Zhang.Influenceoffiller-bitumenratioonperformanceofmodifiedasphaltmortarbyadditive[J].J.Mod.Transp.2013;21:40-46.290[13]A.Yin,X.Yang,H.Gao,H.Zhu.Tensilefracturesimulationofrandomheterogeneousasphaltmixturewithcohesivecrackmodel[J].EngFractMech2012;92:40-55.[14]Z.You,S.Adhikari,Q.Dai.Three-dimensionaldiscreteelementmodelsforasphaltmixtures[J].JEngMech-ASCE2008;134(12):1053-63.[15]F.Bai,X.Yang,A.Yin,G.Zeng.ModifiedCrossmodelforpredictinglong-termcreepbehaviorofsand295asphalt[J].Constr.Build.Mater.2014;65:43-50.[16]E.Hesami,D.Jelagin,N.Kringos,B.Birgisson.Anempiricalframeworkfordeterminingasphaltmasticviscosityasafunctionofmineralfillerconcentration[J].Constr.Build.Mater.2012;35:23-29.[17]JTGF40-2004.TechnicalSpecificationsforConstructionofHighwayAsphaltPavements[S].ChinaCommunicationsPress,Beijing,2004(inChinese).300[18]D.Gao,P.Wang,M.Li,W.Luo.Modellingofnonlinearviscoelasticcreepbehaviourofhot-mixasphalt[J].Constr.Build.Mater.2015;95:329-336.[19]JunweiWu;AndrewC.Collop;andGlennR.McDowell.DiscreteElementModellingofConstantStrainRateCompressionTestsonanIdealisedAsphaltMixture[J].2013;23:2-11.[20]W.Cai,G.R.McDowell,G.D.Airey.Discreteelementmodellingofuniaxialconstantstrainratetestson305asphaltmixtures[J].Granul.Matter.2013;15:163-174.[21]F.Bai,X.Yang,G.Zeng.Creepandrecoverybehaviorcharacterizationofasphaltmixtureincompression[J].Constr.Build.Mater.2014;54:504–511.310硅藻土替代比例对沥青胶砂蠕变变形性能的影响研究陶敬林,程永春,余地,杨金生,马建生(吉林大学交通学院)摘要:掺入硅藻土有助于提升沥青的高温性能与抗老化性能。因此,硅藻土替代传统矿粉用315于沥青路面建设当中将有助于提高沥青路面的性能。本文通过单轴压缩破坏试验和单轴压缩蠕变试验对五组不同硅藻土掺量(硅藻土和石灰石掺量的体积比分别为0:1,0.25:0.75,0.5:0.5,0.75:0.25和1:0)的沥青胶砂抗压强度和抗变形性能进行了研究。结果表明,当硅藻土掺量较低时,沥青胶砂的压缩强度和割线模量随着硅藻土掺量的增加而增加,蠕变应变随之减小;当硅藻土掺量体积比达到0.75后,压缩模量和切线模量开始下降,蠕变应变增320大。掺入硅藻土后沥青胶砂的压缩强度和抗变形性能得到提高。关键词:道路建筑材料;沥青胶砂;硅藻土;割线模量;蠕变应变中图分类号:U414-10-'