- 183.83 KB
- 2022-04-22 13:49:48 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'˖ڍመڙጲhttp://www.paper.edu.cn椭圆分布族及相关类的联合混合性尹传存,朱丹曲阜师范大学统计学院,曲阜市 273165摘要:本文进一步发展了完全混合及联合混合的理论,给出了一类具有单边无穷支撑的一元分布不是联合混合的充分条件;给出论文WangandWang(2016)中关于椭圆分布族是联合混合的新证明;进一步研究了一元及多元斜线/偏斜椭圆分布族的联合混合问题。关键词:概率论;联合混合性;多元相关性;椭圆分布;斜线/偏斜椭圆分布中图分类号:O211JointMixabilityofEllipticalDistributionsandRelatedFamiliesYinChuancun,ZhuDanSchoolofStatistics,QufuNormalUniversity,Qufu273165Abstract:Inthispaper,wefurtherdevelopthetheoryofcompletemixabilityandjointmixability,weprovidedsufficientconditionsforsomeunivariatedistributionswithone-sideunboundedsupportarenotjointmixable;WepresentanalternativeprooftoaresultofWangandWang(2016)whichrelatedtothejointmixabilityofellipticaldistributionswiththesamecharacteristicgenerator.Wealsostudythejointmixabilityofslash-ellipticaldistributionsandskew-ellipticaldistributions.Further,inthemultivariateease,thecompletemixabilityandjointmixabilityofmultivariateellipticaldistributionsandmultivariateslash-ellipticaldistributionsarealsoinvestigated.Keywords:Probabilitytheory;jointmixability;multivariatedependence;ellipticaldistributions;slash/skew-ellipticaldistributions0IntroductionCompletemixabilityandjointmixabilitydescribewhetheritispossibletogenerateran-domvariables(orvectors)fromgivendistributionswithconstantsum.TheformallydefinitionofcompletemixabilityforadistributionwasfirstintroducedinWangandWang[1]andthenextendedtoanarbitrarysetofdistributionsinWang,PengandYang[2],althoughtheconcepthasbeenusedinvariancereductionproblemsearlier(seeGaffkeandRüschendorf[3],KnottFoundations:ResearchFundfortheDoctoralProgramofHigherEducationofChina(20133705110002).AuthorIntroduction:Correspondenceauthor:YinChuancun(1963-),male,professor,majorresearchdirection:RiskManagementandActuarialScience.E-mail:ccyin@mail.qfnu.edu.cn.ZhuDan(1988-),female,Ph.DCandidates,majorresearchdirection:RiskManagementandActuarialScience.E-mail:zhudanspring@163.com.-1-
˖ڍመڙጲhttp://www.paper.edu.cnandSmith[4],RüschendorfandUckelmann[5]).Thepropertiesareparticularlyofinterestinquantitativeriskmanagementandoptimizationproblemsinthetheoryofoptimalcouplings,wheredependencebetweenrisksisusuallyunknownorpartiallyunknown.Throughoutthepaper,wewriteX=dYiftherandomvariables(orvectors)XandYhavethesamedistribu-tion.ForacumulativedistributionsfunctionF,wewriteX∼FtodenoteF(x)=P(X≤x).Nextweintroducetheconceptsofcompletelymixableandjointlymixabledistributions.Byconvention,allvectorswillbewritteninboldandwillbeconsideredascolumnvectors,withthesuperscript⊤fortransposition.Definition1.1(WangandWang[1]).AunivariatedistributionfunctionFiscalledn-completelymixable(n-CM)ifthereexistnrandomvariablesX1,···,XnidenticallydistributedasFsuchthatP(X1+···+Xn=nk)=1,(0.1)forsomek∈R.AnysuchkiscalledacenterofF.IfFhasfinitefirstmomentµ,thenk=µ.Definition1.2(Wang,PengandYang[2]).TheunivariatedistributionfunctionsF1,···,Fnarejointlymixable(JM)ifthereexistnrandomvariablesX1,···,Xnwithdistributionfunc-tionsF1,···,Fn,respectively,suchthatP(X1+···+Xn=C)=1,(0.2)forsomeC∈R.Obviously,n-tupleF1,···,FnareJMdistributionswhenF1=···=Fn=F,thenFisn-CM.1PreliminaryResultsForabriefhistoryoftheconceptofthecompletemixability,werefertotherecentpapersofWang[6]andWangandWang[7].ExistingresultsoncompletemixabilityandjointmixabilityaresummarizedinWangandWang[1],Puccetti,WangandWang[8]:Thesetofalln-CMdistributionscanbecompletelydescribedonlywhenn=1orn=2.Theclassofall1-CMdistributionsconsistsofalldegeneratedistributions,whiletheclassof2-CMdistributionsconsistsofallthesymmetricdistributions,i.e.X∼Fanda−X∼Fforsomeconstanta.Someexamplesofn-CMdistributionsincludethedistributionofaconstant(forn≥1),uniformdistributions(forn≥2),normaldistributions(forn≥2),Cauchydistributions(forn≥2),binomialdistributionsB(d,p/q)withp,q∈N(ford=q);seeProposition2.3inWangandWang[1].Moreover,theyalsoprovedthatforanydistributionFwhichadmitsamonotonedensityonitsessentialsupport[a,b]withmeanµ,thenFisn-CMifandonlyifb−ab−aa+≤µ≤b−.nn-2-
˖ڍመڙጲhttp://www.paper.edu.cnAnycontinuousdistributiononaboundedinterval(a,b)havingaconcavedensityisn-CMforanyn≥3(seePuccetti,WangandWang[8])and,anycontinuousdistributionFonaboundedinterval(a,b)admitsadensityfsatisfyingf(x)≥3on[a,b],thenFisn-CMn(b−a)(seePuccetti,WangandWang[9]).Wang,PengandYang[2]findthenecessaryandsufficientconditionsforthejointmixabilityofnormaldistributions,andrecently,WangandWang[7]obtainnecessaryandsufficientconditionsforthejointmixabilityofsomeclassesofdistribu-tions,includinguniformdistributions,distributionswithmonotonedensities,distributionswithunimodal-symmetricdensities,andellipticaldistributionswiththesamecharacteristicgenera-tor.AspointedoutinPuccettiandWang[10],asafullcharacterizationofcompletelymixabledistributionisstilloutofreach,thereareevenlessresultsconcerningsufficientconditionsforjointmixabledistributions.TheonlyavailableonesaregivenintherecentpaperofWangandWang[7].ItwasmentionedinWang,PengandYang[2]thatitseemstobeextremelydifficulttofindgeneralsufficientconditionsforJMdistributions;Wang[11]alsoclaimsthatforn=1orn=2,thesetMn(µ)ofalln-CMdistributionswithcenterµisfullycharacterized.However,forn≥3,thefullcharacterizationonMn(µ)isstillanopenquestionandhasbeenextremelychallenging.Therestofthepaperisorganizedasfollows.InSection2wediscusstheconditionsonaresultofRüschendorfandUckelmann[5]relatedtocompletemixabilityofcontinuousdistri-butionfunctionhavingasymmetricandunimodaldensity.Sections3and4arededicatedtojointmixabilityofellipticaldistributionsandslash/skew-ellipticaldistributions,respectively.Section5extendedtheresulttotheclassofmultivariateellipticaldistributionsandmultivari-ateslash-ellipticaldistributions.SomeapplicationsrelatedtoourmainresultsarepresentinSection6.Section7drawsaconclusion.2SymmetricDistributionsItwouldbeofinteresttocharacterizetheclassofcompletelymixabledistributions.Onlypartialcharacterizationsareknownintheliterature.OneniceresultforthecompletemixabilityisgivenbyRüschendorfandUckelmann[5],WangandWang[1]citethisresultinarewrittenforminthefollowingtheorem,Wang[11]providedanewproofusingdualityrepresentation.ThepropertywasalsoextendedtomultivariatedistributionsbyRüschendorfandUckelmann[5].Theorem2.1.([5])Anycontinuousdistributionfunctionhavingasymmetricandunimodaldensityisn-CMforanyn≥2.Bydefinition,themodeormodalvalueofacontinuousprobabilitydistributionisthevaluexatwhichitsprobabilitydensityfunctionhasitsmaximumvalue,sothemodeisatthepeak.Forexample,theNormaldistribution,Student-tdistribution,LogisticDistribution,-3-
˖ڍመڙጲhttp://www.paper.edu.cnExponentialPowerDistributionandCauchydistributionareunimodal;Theuniformdistribu-tiononanyinterval[a,b]ismultimodal.AprobabilitydistributionfunctionFissaidtobesymmetricaroundavalueµifandonlyifF(µ−x)=1−F(µ+x−0)forallrealnumbersx,thatisX−µand−(X−µ)havethesamedistribution.IfFiscontinuous,thenconditionF(µ−x)=1−F(µ+x−0)becomesF(µ−x)=1−F(µ+x);IfFhasadensityf,thenfissymmetricaboutµifandonlyiff(µ−x)=f(µ+x)forallrealnumbersx.Notethatcompletemixabilityandjointmixabilityisaconceptofnegativedependence(cf.PuccettiandWang[12])andnotallunivariatedistributionsFaren-CM(JM).WangandWang[7]findthenecessaryandsufficientconditionsforthejointmixabilityofsomeclassesofdistribu-tions,includinguniformdistributions,distributionswithmonotonedensities,distributionswithunimodal-symmetricdensities,andellipticaldistributionswiththesamecharacteristicgener-ator.IfthesupportsofFi(i=1,2,···,n)areunboundedfromoneside,then(F1,···,Fn)isnotJMforanyn≥1;seeRemark2.2inWangandWang[7].Somecontinuousexampleswithone-sideunboundedsupportareexponentialdistribution,gammadistribution,Weibulldistribution,log-ellipticaldistribution,Paretodistribution,andsoon.Somediscreteexampleswithone-sideunboundedsupportaregeometricdistribution,Poissondistribution,logarithmicdistribution,Pascaldistribution,negativebinomialdistribution,Polya-Aepplidistribution,andsoon.ForasetofnunivariatedistributionfunctionsF1,···,Fn,asinPuccettiandWang[10],definetheminimalvarianceproblemas{()}∑n2σ(F1,···,Fn)=infVarXi:Xi∼Fi,1≤i≤n.i=1Proposition2.1inPuccettiandWang[10]tellsusσ2(F,···,F)=0holdsifandonly1nifF1,···,FnareJM.ItfollowsfromthediscussionabovethatifthesupportsofFi(i=1,2,···,n)areunboundedfromoneside,thenσ2(F,···,F)>0.Inparticular,forF=1n1···=Fn,wehave()()∑n∑VarXi=Var(X1)n+2ρij,i=11≤i−,21≤i−1.n−1Itshouldbenotedthatdeterminationofminimumandmaximumpossiblecorrelationamongtworandomvariableshashadatheoreticalandpracticalvaluesinitsownright,which-4-
˖ڍመڙጲhttp://www.paper.edu.cnisofgreatimportanceinempiricaldataanalysis.Weemphasizethatlowerandupperboundsforthecorrelationcoefficientactuallydependonthefamilyofmarginaldistributionsinquestion,andthatthecommonlyused[−1,1]intervalcanbeinappropriateinmanyapplications.FormoredetailsinthislinewereferthereadertoDukicandMarić[13].Theorem2.2.AssumeF1,···,F2n+1are2n+1univariatedistributionfunctionswithsym-metricdensitiesonthesameinterval[−a,a](a>0),ifF(na)≤n+1(i=1,2,···,2n+1),in+12n+1then(F1,···,F2n+1)isnotJM.ProofForanyX∼F(i=1,2,···,2n+1),theconditionsF(na)≤n+1(i=iiin+12n+11,2,···,2n+1)implythat()n2nP|Xi|>a>,i=1,2,···,2n+1.n+12n+1Itfollowsthat()2∑n+1()nananaP|X1|>,···,|X2n+1|>≥P|Xi|>−2nn+1n+1n+1i=12n>(2n+1)−2n=0.2n+1Notethat{}2∑n+1{}nanaXi̸=0⊇|X1|>,···,|X2n+1|>.n+1n+1i=1Hence()2∑n+1PXi̸=0>0.i=1Thus(F1,···,F2n+1)isnotJM.Corollary2.1.(NecessaryCondition)AssumeF1,···,F2n+1are2n+1univariatedistributionfunctionswithsymmetricdensitiesonthesameinterval[−a,a](a>0),if(F1,···,F2n+1)isJM,thenthereexistssomei(1≤i≤2n+1)suchthat()n1P|Xi|≤a>.n+12n+1ThefollowingresultextendedtheconditioninTheorem2.2from[−a,a]to(−∞,∞).Theorem2.3.AssumeF1,···,F2n+1are2n+1univariatedistributionfunctionswithsym-metricdensitiesonthesameinterval(−∞,∞),ifthereexistsa>0suchthat()nnFi(a)−Fia≥,i=1,2,···,2n+1,n+12n+1then(F1,···,F2n+1)isnotJM.-5-
˖ڍመڙጲhttp://www.paper.edu.cnProofForanyXi∼Fi(i=1,2,···,2n+1),theconditions()nnFi(a)−Fia≥,i=1,2,···,2n+1,n+12n+1implythat([])n2nP|Xi|∈a,a>,i=1,2,···,2n+1.n+12n+1Itfollowsthat(2∩n+1{[]})2∑n+1([])nanaP|Xi|∈,a≥P|Xi|∈,a−2nn+1n+1i=1i=12n>(2n+1)−2n=0.2n+1Notethat{}2∑n+12∩n+1{[na]}Xi̸=0⊇|Xi|∈,a.n+1i=1i=1Hence()2∑n+1PXi̸=0>0.i=1Thus(F1,···,F2n+1)isnotJM.ItiswellknownthatFis2-CMifandonlyifFissymmetric(seeProposition2.3inWangandWang[1]).However,forn>2,thisstatementisnottrueingeneral.Infact,thefollowingexampletellsusthesymmetryofFdoesnotimpliedFis3-CM.ItisalsoshowsthattheunimodalityassumptiononthedensityinTheorem2.1cannotremoved.Example2.1AssumeaunivariatedistributionfunctionFhasthefollowingbimodalsymmetricdensity{2r+1x2r,ifx∈[−a,a],2a2r+1f(x)=0,ifx∈/[−a,a],whererisapositiveinteger.Thedistributionisgivenby0,ifx<−a,F(x)=1(x2r+1+a2r+1),if−a≤x0,ψisacharacteristici1iiiigeneratorforann-ellipticaldistribution.Then(F1,···,Fn)isJMiftheinequality∑nσi≥2max{σ1,···,σn}(3.2)i=1issatisfied.ProofAssumeXfollowsfromamultivariateellipticaldistributionX∼En(,,ψ),where=(µ,···,µ)⊤and=(σ).Here1nijn×n{σ2,ifi=j,iσij=∑1(σ2−σ2),ifk̸=i̸=j.(n−1)(n−2)kl̸=klItisstraightforwardtocheckthatispositivesemidefiniteundercondition(3.2)andthesummationofallentriesiniszero.EachmarginalXofXhasdistributionE(µ,σ2,ψ),i1ii∑ni=1,2,···,n.Thecharacteristicfunctionofi=1Xicanbeexpressedas()∑n∑φnX(t)=expitµiψ(0),t∈R.(3.3)i=1ii=1Thatis()∑n∑φnXi(t)=expitµi.i=1i=1Hence,()∑n∑nPXi=µi=1,i=1i=1andthus(F1,···,Fn)isJM.Inparticular,whenever|ψ′(0)|<∞,wegiveamoreshorterproof.Corollary3.1.SupposethatF∼E(µ,σ2,ψ),whereµ∈R,σ>0andψisacharacteristici1iiiigeneratorforann-ellipticaldistributionwith|ψ′(0)|<∞.Then(F,···,F)isJMifthe1ninequality∑nσi≥2max{σ1,···,σn}(3.4)i=1issatisfied.-8-
˖ڍመڙጲhttp://www.paper.edu.cnProofTakingthesameXasintheproofofTheorem3.1.If|ψ′(0)|<∞,thenthecovariancematrixexistsandisequalto′Cov(X)=−2ψ(0)(Cambanisetal.[15]).Sothat()∑n′⊤VarXi=−2ψ(0)enen=0.i=1Hence(F1,···,Fn)isJM.Thisendstheproof.ThefollowingresultisadirectconsequenceofTheorem3.1.Corollary3.2.SupposethatF∼E(µ,σ2,ψ)withψ∈.ThenFisn-CMforanyn≥2.1∞ProofForanyn≥2,weassumethatX∼E(,,ψ)withψ∈,where=(µ,···,µ)⊤n∞and=σ2(1−ρ)E+σ2ρee⊤withρ=−1,Eisn×nidentitymatrix.Itsallmarginalsnnnn−1n∑nXhavedistributionF∼E(µ,σ2,ψ),thecharacteristicfunctionofXisgivenbyi1i=1i∑φnX(t)=exp(itnµ).i=1i∑nHence,P(i=1Xi=nµ)=1andthusFisn-CM.Remark3.1.Theorem2.21inFang,KotzandNg[14]showsthatψ∈∞ifandonlyifX∼En(,,ψ)isamixtureofnormaldistributions.Somesuchellipticaldistributionsarethemultivariatenormaldistribution,themultivariateT-distribution,themultivariateCauchydistributionandtheexponentialpowerdistributionEPn(,,β)withβ∈(0,1];seeKano[16]andGómez-Sánchez-Manzanoetal[17].SomeellipticaldistributionslikelogisticdistributionandKotztypedistributionarenotmixtureofnormaldistributions.Remark3.2.Weremarkthatamixtureofnormaldistributionsmaybeunimodal,bimodalormultimodal,andtheconditionsforbimodalitycanbefoundinRobertsonandFryer[18].TheFinCorollary3.2issymmetricbutnotnecessarilyunimodal,sothatCorollary3.2cannotreducesfromTheorem2.1.4Slash/Skew-EllipticalDistributionsInthissection,weinvestigatejointmixabilityofslash-ellipticaldistributionsandskew-ellipticaldistributions.-9-
˖ڍመڙጲhttp://www.paper.edu.cn4.1Slash-EllipticalDistributionsAdistributioncloselyrelatedtotheellipticaldistributionistheslashdistribution.Thisdistributioncanberepresentedasthequotientbetweentwoindependentrandomvariables,anellipticaloneandthepowerofauniformdistributionU(0,1).Moreprecisely,wesaythatarandomvariableXfollowsaslashellipticaldistributionifitcanbewrittenasZX=+µ,(4.1)1UqwhereZ∼E(0,σ2,ψ)isindependentofU∼U(0,1)andq>0istheparameterrelatedto1thedistributionkurtosis.WeusethenotationX∼SE(µ,σ2,ψ;q).Thisdistributionpresents1heaviertailsthantheellipticaldistribution,andasaconsequence,itisadistributionwithgreaterkurtosis.Similarly,wesaythatarandomvectorX∈Rphasslash-ellipticalmultivariatedistributionwithvectorlocationparameter,positivesemidefinitematrixscaleparameter,andtailparameterq>0,ifitcanberepresentedasZX=+,(4.2)1UqwhereZ∼Ep(0,,ψ)isindependentofU∼U(0,1)andkurtosisparameterq>0.WedenotethisasX∼SEp(,,ψ;q).Inparticular,whenZ∼Np(,)wegetslashnormaldistribution.Whenq→∞yieldstheellipticaldistribution.MorepropertiesofthisfamilyarediscussedinGómez,QuintanaandTorres[19].IntherecentpaperBulutandArslan[20],amatrixvariateversionoftheslashdistributionisintroduced,thenewdistributionisdefinedasascalemixtureofthematrixvariatenormaldistributionandtheuniformdistribution.Usingtherepresentation(4.1),thefollowingtheoremisaconsequenceofTheorem3.1.Theorem4.1.SupposethatF∼SE(µ,σ2,ψ;q),whereµ∈R,σ>0,ψisacharacteristici1iiiigeneratorforann-variateslash-ellipticaldistribution.Then(F1,···,Fn)isJMiftheinequality∑nσi≥2max{σ1,···,σn}i=1issatisfied.Remark4.1.Weremarkthatslash-ellipticaldistributionsarestillellipticaldistributions,sothatalltheresultsinSection3areapplicabletothisclass.Wealsoremarkthattheclassofslash-ellipticaldistributionscanbefurtherextendedbyconsideringdistributionsoftheformZX=+,h(V)whereZ∼En(0,,ψ)isindependentofV,apositiverandomvariable,andhisapositiveandmonotonicmeasurablefunctionwhichmaydependonadditionalparameterq.Forexample,Reyes,GómezandBolfarine[21]consideredthecaseh(V)=1,V∼Exp(2).Vq-10-
˖ڍመڙጲhttp://www.paper.edu.cn4.2Skew-EllipticalDistributionsArandomvariableXhasunivariateskew-normaldistributionwithasymmetryparameterλ∈Rifitsdensityfunctionisf(x)=2ϕ(x)(λx),x∈R,whereϕanddenotetheN(0,1)densityfunctionanddistributionfunction,respectively.WedenotethisbyX∼SN(λ).Theparameterλcontrolsskewness.Itisobviousthatwhenλ=0,werecovertheN(0,1)family.Theconstructionofsuchmodelsisbasedonthefollowinglemma(seeforexampleAzzalini[22]).Lemma4.1.LetYbearandomvariablewithdensityfunctionf(x)symmetricabout0,andZarandomvariablewithabsolutelycontinuousdistributionfunctionG(x)suchthatG′(x)issymmetricabout0.Theng(x)=2f(x)G(λx),−∞X),whereXisarandomvariablewhichhastheellipiticaldistributionF∼E1(0,g,π,λ),YisarandomvariablewhichhasthedistributionπandindependentofX(Fordetails,see(4)inJupp,RegoliandAzzalini[29]).NotethatZcanberewrittenasZ=X−2X1(Y>X).ItfollowsfromCorollary3.2thatthereexistnrandomvariablesX1,···,Xnidenticallydis-tributedasXsuchthatX1+···+Xn=0foralln≥2.NotethatthesupportsofthedistributionofX1(Y>X)isunboundedfromonesideandhenceitisnotn-CMforanyn≥2.ThusthedistributionofFisnotn-CMforanyn≥2.Remark4.2.ItseemswecanguessthataslongasFisasymmetricon(−∞,∞)withunboundedsupportfromtwosides,thenFisnotn-CM.Butitiswrong.Thefollowingisacounterexample.Bytheadditivity(seeProposition2.1(3)inWangandWang[1]),ifPiscontinuousdistributiononinterval(−1,1)havinganasymmetricconcavedensityandcenteredat0,QisnormalN(0,1).Thenforanyλ∈(0,1),λP+(1−λ)Qisasymmetricandisn-CMforn≥3.5ExtensionstomultivariatedistributionsInthissectionweextenttheresultsinSection3totheclassofn-variateellipticallycontoureddistributions.Wefirstintroducesomenotions.Thenotationvec(A)denotesthe-12-
˖ڍመڙጲhttp://www.paper.edu.cnvector(a⊤,···,a⊤)⊤,whereadenotestheithcolumnofp×nmatrixA,i=1,2,···,n.we1niuseA⊗BtodenotetheKroneckerproductofthematricesAandB;Weusetr(A)todenotethetraceofthesquarematrixAandetr(A)todenoteexp(tr(A))ifAisasquarematrix.WeusethefollowingdefinitiongiveninGupta,VargaandBodnar[30].Definition5.1.LetXbearandommatrixofdimensionsp×n.Then,Xissaidtohaveamatrixvariateellipticallycontoureddistributionifitscharacteristicfunctionhastheform⊤⊤⊤E(etr(iTX))=etr(iTM)(tr(TT)).(5.1)withT:p×n,M:p×n,:p×p,:n×n,≥0(positivesemidefinite),≥0,and:[0,∞)→R.ThisdistributionwillbedenotedbyX∼Ep;n(M,⊗,).Remark5.1.Ifn=1,wesaythatXhasavectorvariateellipticaldistribution.Itisalsocalledmultivariateellipticaldistribution.InthisspecialcasethecharacteristicfunctionofXtakesontheformof(3.1)withn=p.Theimportantspecialcaseofmatrixvariateellipticallycontoureddistributionisthematrixvariatenormaldistribution(X∼Np;n(M,⊗)),itscharacteristicfunctionis()⊤⊤1⊤E(etr(iTX))=etriTM−TT.(5.2)2Thenextlemmashowsthatlinearfunctionsofarandommatrixwithmatrixvariateellipticallycontoureddistributionhaveellipticallycontoureddistributionsalso(seeTheorem2.2inGupta,VargaandBodnar[30]).Lemma5.1.LetX∼Ep;n(M,⊗,).AssumeC:q×m,A:q×p,andB:n×mareconstantmatrices.Then,⊤⊤AXB+C∼Ep;n(AMB+C,AA⊗BB,).Thenextlemmagivesthemarginaldistributionsofamatrixvariateellipticallycontoureddistribution(seeTheorem2.9inGupta,VargaandBodnar[30]).Lemma5.2.LetX∼Ep;n(M,⊗,),andpartitionX,M,andasX=(X1,X2),M=(M1,M2),and[]1112=,2122whereX1isp×m,M1isp×m,and11ism×m,1≤m1,n>1issaidtohavematrixvariateslashellipticaldistribution(X∼MVSEp;n(M,,,q))if1−11X=M+2ZUq2,whereZ∼Ep;n(M,Ep⊗Eq,ψ)andU>0scalarvaluedrandomvariable,independentofZ.11HereM∈Rp×nisalocationmatrixand2and2aresquarerootsofpositivedefinitescattermatricesand,respectively.Usingtherepresentation(4.2)andCorollary5.1wegetthecompletemixabilityofmulti-variateslash-ellipticaldistributions.Theorem5.2.SupposethatF∼SEp(,,ψ;q),whereψisacharacteristicgeneratorforap×nmatrixvariateellipticallycontoureddistribution.Thenforanyn≥2,thereexistnp-dimensionalrandomvectorsX1,···,XnidenticallydistributedasFsuchthatP(X1+···+Xn=n)=1.-14-
˖ڍመڙጲhttp://www.paper.edu.cn6TwoApplicationsWangandWang[1]foundthefollowingresultinthecaseofthedensityofF1=···=Fnismonotoneandsupportedinafiniteinterval[a,b].Theorem6.1.SupposethatF∼E(µ,σ2,ψ),whereµ∈R,σ>0satisfiesi1iiii∑nσi≥2max{σ1,···,σn},(6.1)i=1andψisacharacteristicgeneratorforann-ellipticaldistribution.Thenforanyn≥2,()∑nminEf(X1+···+Xn)=fµi,X1∼F1;···;Xn∼Fni=1wherefisaconvexfunction.ProofTheresultfollowsbyusingthesameargumentasinWangandWang(2011).Definition6.1(Log-EllipticalDistribution).TherandomvectorXissaidtohavealog-ellipticaldistributionwithparametersµandσ2iflogXhasanellipticaldistributionE(µ,σ2,ψ).WeshallwriteX∼LE(µ,σ2,ψ).11ItfollowsfromValdez,Dhaene,MajandVanduffel[31]thatifthemeanofXexists,thenitisgivenby2E(X)=eψ(−σ).InspiredbyWangandWang[1]whoconsideredtheminimumofE(X1X2...Xn),Xi∼U[0,1],wegetthefollowingtheorem.Theorem6.2.SupposethatF∼LE(µ,σ2,ψ),whereµ∈R,σ>0satisfies(6.1)andψi1iiiiisacharacteristicgeneratorforann-ellipticaldistribution.Thenforanyn≥2,∑nminE(XX...X)=ei=1i.12nX1∼F1;···;Xn∼Fn∑nProofNotethatXX...X=f(logX),wheref(x)=ex.Theresultfollowsfrom12ni=1iTheorem3.1.7ConclusionsandfutureworkWepresentanewprooftoaresultduetoWangandWang[7]onJMofellipticaldistri-butionswiththesamecharacteristicgenerator.ForanyFi(i=1,2,···,n)withunboundedsupportfromoneside,itisshownthat(F1,···,Fn)isnotJMforanyn≥1.Wealsoextentsomeresultstoaclassofmultivariateslash-ellipticaldistributionsandmultivariatevariateel-lipticallycontoureddistributions.Afullcharacterizationofcompleteorjointmixabilityisstill-15-
˖ڍመڙጲhttp://www.paper.edu.cnopen.Inparticular,findnecessaryandsufficientconditionsforcompletemixabilityorjoin-tmixabilityofboundeddistributionsoraymmetricdistributionsormultimodaldistributionsthereisstillalotofworktodo.FurtheropenquestionsinthisfieldarecollectedinWang[6].Acknowledgements.WearegratefultoRuoduWangforinsightfulcommentsandvaluablesuggestionsonthemanuscript,especiallytheprooftoTheorem2.3.TheresearchwassupportedbytheNationalNaturalScienceFoundationofChina(No.11571198)andtheResearchFundfortheDoctoralProgramofHigherEducationofChina(No.20133705110002).参考文献(References)[1]Wang,B.andWang,R.,2011.Thecompletemixabilityandconvexminimizationproblemswithmonotonemarginaldensities.J.MultivariateAnal.102(10),1344-1360.[2]Wang,R.,Peng,L.andYang,J.,2013.Boundsforthesumofdependentrisksandworstvalue-at-riskwithmonotonemarginaldensities.FinanceStoch.17(2),395-417.[3]Gaffke,N.andRüscherndorf,L.,1981.Onaclassofextremalproblemsinstatistics.MathematischeOperationsforschungundStatistik.SeriesOptimization,12(1).123-135.[4]Knott,M.andSmith,C.S.,2006.Choosingjointdistributionssothatthevarianceofthesumissmall.J.Multivar.Anal.97,1757-1765.[5]Rüschendorf,L.andUckelmann,L.,2002.Varianceminimizationandrandomvariableswithconstantsum.in:Cuadras,etal.(Eds.),DistributionswithGivenMarginals,Kluwer,2002,211-222.[6]Wang,R.,2015.Currentopenquestionsincompletemixability.ProbabilitySurveys12,13-32.[7]Wang,B.andWang,R.,2016.Jointmixability.MathematicsofOperationsResearch41(3),808-826.[8]Puccetti,G.,Wang,B.andWang,R.,2012.Advancesincompletemixability.J.Appl.Probab.49(2),430-440.[9]Puccetti,G.,Wang,B.andWang,R.,2013.Completemixabilityandasymptoticequiv-alenceofworst-possibleVaRandESestimates.Insurance:MathematicsandEconomics53(3),821-828.[10]Puccetti,G.andWang,R.,2015b.Detectingcompleteandjointmixability.JournalofComputationalandAppliedMathmatics280,174-187.-16-
˖ڍመڙጲhttp://www.paper.edu.cn[11]Wang,R.,2014.Asymptoticboundsforthedistributionofthesumofdependentrandomvariables.JournalofAppliedProbability51(3),780-798.[12]Puccetti,G.andWang,R.,2015a.Extremaldependenceconcepts.StatisticalScience30(4),485-517.[13]Dukic,V.M.andMarić,N.,2013.Minimumcorrelationinconstructionofmultivariatedistributions.PhysicalReviewE,87(3):032114.[14]Fang,K.T.,Kotz,S.andNg,K.W.,1990.SymmetricMultivariateandRelatedDistri-butions.Chapman&Hall,London.[15]Cambanis,S.,Huang,S.andSimons,G.,1981.Onthetheoryofellipticallycontoureddistributions.JournalofMultivariateAnalysis11,368-385.[16]Kano,Y.,1994.Consistancypropertyofellipticalprobabilitydensityfunctions.J.Multi-variateAnal.51,139-147.[17]Gómez-Sánchez-Manzano,E.,Gómez-Villegas,M.A.andMarín,J.M.,2008.Multivariateexponentialpowerdistributionsasmixturesofnormaldistributionswithbayesianappli-cations.CommunicationsinStatistics-TheoryandMethods37(6),972-985.[18]Robertson,C.A.andFryer,J.G.,1969.Somedescriptivepropertiesofnormalmixtures.ScandinavianActuarialJournal,1969(3-4),137-146.[19]Gómez,H.W.,Quintana,F.A.andTorres,F.J.,2007.Anewfamilyofslash-distributionswithellipticalcontours.Statist.Probab.Lett.77(7),717-725.[20]Bulut,Y.M.andArslan,O.,2015.Matrixvariateslashdistribution.JournalofMultivari-ateAnalysis137,173-178.[21]Reyes,J.,Gómez,H.W.andBolfarine,H.,2013.Modifiedslashdistribution.Statistics:AJournalofTheoreticalandAppliedStatistics,47(5),929-941.[22]Azzalini,A.,1985.Aclassofdistributionwhichincludesthenormalones.ScandinavianJournalofStatistics12,171-178.[23]Gupta,A.K.,Chang,F.C.andHuang,W.J.,2002.Someskew-symmetricmodels.RandomOper.StochasticEquations10,133-140.[24]Nadarajah,S.andKotz,S.,2006.Skewdistributionsgeneratedfromdifferentfamilies.ActaAppl.Math.91,1-37[25]Azzalini,A.andDallaValle,A.,1996.Themultivariateskew-normaldistribution.Biometrika83,715-726.-17-
˖ڍመڙጲhttp://www.paper.edu.cn[26]Azzalini,A.andCapitanio,A.,1999.Statisticalapplicationsofthemultivariateskewnormaldistribution.J.R.Statist.Soc.B61,579-602.[27]Genton,M.G.,andLoperfido,N.M.,2005.Generalizedskew-ellipticaldistributionsandtheirquadraticforms.AnnalsoftheInstituteofStatisticalMathematics,57,389-401.[28]Henze,N.,1986.AProbabilisticRepresentationofthe’Skew-Normal’Distribution.Scan-dinavianJournalofStatistics13(4),271-275.[29]Jupp,P.E.,Regoli,G.andAzzalini,A.,2016.Ageneralsettingforsymmetricdistributionsandtheirrelationshiptogeneraldistributions.JournalofMultivariateAnalysis148,107-119.[30]Gupta,A.K.,Varga,T.andBodnar,T.,2013.EllipticallyContouredModelsinStatisticsandPortfolioTheory(SecondEdition).Springer,NewYork.[31]Valdez,E.,Dhaene,J.,Maj,M.andVanduffel,S.,2009.Boundsandapproximationsforsumsofdependentlog-ellipticalrandomvariables.Insurance:MathematicsandEconomics44,385-397.-18-'
您可能关注的文档
- 双变量对称式液压变压器的压力特性分析.pdf
- 基于农地综合价值的土地增值收益分配研究.pdf
- 基于在线品牌社区的社会影响对顾客参与活跃度的作用研究.pdf
- 基于宽禁带半导体GaN的高温电子电路研究.pdf
- 基于鸽子群优化算法的四旋翼无人直升机姿态控制.pdf
- 基于齿轮-五杆机构的液动仿袋鼠跳跃机器人腿部机构设计与增速特性研究.pdf
- 外周血内皮祖细胞纯化与细胞鉴定.pdf
- 手持终端采集全景图像中的车牌定位算法.pdf
- 断层突水非线性渗流-应力耦合研究.pdf
- 湿法无胶转移石墨烯技术.pdf
- 滋补脾阴法对糖尿病认知功能障碍大鼠海马线粒体功能障碍作用的研究.pdf
- 石墨烯纳米带电子输运性质的声子调控机理.pdf
- 硅藻土替代比例对沥青胶砂蠕变变形性能的影响研究.pdf
- 神经元图像中神经直径的检测研究.pdf
- 竞争环境下面向混合型消费者考虑服务质量的易逝品动态定价.pdf
- 谷子AuxIAA家族基因干旱胁迫响应表达模式分析.pdf
- 鼎湖鳞伞菌丝体多糖免疫活性研究.pdf
- 2017中小学教师拓展训练有感.doc
相关文档
- 施工规范CECS140-2002给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程
- 施工规范CECS141-2002给水排水工程埋地钢管管道结构设计规程
- 施工规范CECS142-2002给水排水工程埋地铸铁管管道结构设计规程
- 施工规范CECS143-2002给水排水工程埋地预制混凝土圆形管管道结构设计规程
- 施工规范CECS145-2002给水排水工程埋地矩形管管道结构设计规程
- 施工规范CECS190-2005给水排水工程埋地玻璃纤维增强塑料夹砂管管道结构设计规程
- cecs 140:2002 给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程(含条文说明)
- cecs 141:2002 给水排水工程埋地钢管管道结构设计规程 条文说明
- cecs 140:2002 给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程 条文说明
- cecs 142:2002 给水排水工程埋地铸铁管管道结构设计规程 条文说明