- 676.41 KB
- 2022-04-22 13:43:44 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'˖ڍመڙጲhttp://www.paper.edu.cn星型网络下量子态的制备王小宇,莫智文四川师范大学,数学与软件科学学院,成都,610066摘要:提出一种在量子星型网络情形下,用户之间利用部分纠缠态实现未知单粒子态远程制备.首先每个用户节点都与中央处理器共享足够多的纠缠态,各用户之间没有彼此纠缠,但是可以通过纠缠变换的方式构建量子信道.然后在辅助粒子和适当的酉变换以及单粒子测量的帮助下,任意两用户之间能够以某种概率实现任意单粒子态远程制备.当且仅当共享的纠缠态为最大纠缠时,可以实现制备的概率为1.关键词:量子纠缠态;纠缠交换;星型网络中图分类号:O413.1RemotestatepreparationforstarnetworkWANGXiao-Yu,MOZhi-WenCollegeofMathematicsandSoftwareScience,SichuanNormalUniversity,Chengdu,610066Abstract:Aschemeforprobabilisticremotestatepreparationofanarbitraryunknownstatewasproposedforstarnetwork.Userandcentralprocessingunitsharepartiallyentangledstates.Twodistantusernodesdonotinitiallyshareentanglementwitheachother.Therequiredentanglementamongusernodesisestablishedthroughentanglementswappingbasedonpartiallyentangledstates.Withthehelpofauxiliaryqubitsandappropriateunitarytransformationandsingle-qubitmeasurement,arbitrarytwouserscannishremotestatepreparationwithcertainprobability.Ifandonlyiftheentangledstatesismaximallyentangled,theprobabilityofpreparationcanreach1.Keywords:quantumentangledstate;entanglementswapping;starnetwork0引言在量子信息科学中,量子纠缠[1]扮演着极其重要的角色,被广泛运用在量子通信,量子密码,量子密集编码等领域.其中一个重要应用就是量子隐形传态,它是由Bennet[2]等人在1993年提出来的.通过事先共享的EPR对作为量子信道和经典通信,发送者可以将一个未知量子态远程传输给接收者.随后量子纠缠又被应用到一个新的领域,它是由Lo[3]等人在2000年提出的量子远程制备,基于相同的量子纠缠信道,利用更少的经典通信传送一个半未知的量子比特.与隐形传态不同的是远程制备中发送方知道量子态,但是不拥有此态,而在隐形传态中发送方拥有却可以不知道此态.目前为止,研究者已经提出了许多不同的制备的方案,比如,单粒子态制基金项目:高等学校博士点基金(20135134110003),国家自然科学基金(11671284).作者简介:王小宇(1992年-),女,硕士研究生,主要研究方向:量子通信.通信作者:莫智文(1963年-),男,教授,主要研究方向:人工智能,模糊语言,粗糙集,量子信息处理.E-mail:mozhiwen@263.net.-1-
˖ڍመڙጲhttp://www.paper.edu.cn备[3 5],多粒子态制备[6 8]等.这些方案都只有一个发送方,因此一种新的制备方案联合量子态制备[9 11]被提出来了,它是指发送者为两个或两个以上,并且需要制备态的信息被秘密分配给这些发送方.部分发送者是不能恢复制备态完整信息的,这样就避免信息被泄露.随后在2009,Wang等人介绍了关于受控远程量子态制备[12]的方案,该方案只有在控制方的允许条件下完成相应操作制备才能成功.2014年Cao提出了双向受控远程量子态制备[13 16]概念.制备双方与远程控制方共享五粒子cluster态,在控制方同意的情况下,才能以概率1实现量子态相互交换.方案中采用的量子信道是一个非最大纠缠态,我们知道最大纠缠态是很难制备的,它会受环境消相干影响退化为部分纠缠.随后,2015年Chen[17]等人利用部分纠缠态实现地面到卫星的量子隐形传态.该方案没有涉及到量子态制备的情况.结合以上这些情况,本文提出了一种在星型网络[18]情形下,以一定概率实现任意单粒子未知态的远程制备的方案.文中考虑每个用户都与中央处理器共享足够多的部分纠缠态,通过量子测量以及经典通信和相应的变换完成远程量子态单向制备和双向制备.1纠缠交换以及网络模型在这一部分,首先简单介绍Bell纠缠态,Bell态的基本形式如下:11ji=p(j00ij11i);ji=p(j01ij10i):(1)22它们可以通过适当的幺正变换进行相互转换,比如++ ji=Ixji=Iiyji=Izji(2)其中!!!!010 i1010x=;y=;z=;I=:(3)10i00 101由于在实际通信中,Bell纠缠态会受环境消相干影响退化为部分纠缠态,可以表示成:j i=j00i+j11i:(4)其中;均为实数,且满足2+2=1;>.若==p1,则该纠缠态为Bell态.2纠缠交换是量子纠缠的的一个特性,实际上是指在不同的粒子之间通过测量交换纠缠.最大纠缠态会受环境消相干影响退化为部分纠缠,所以在这里我们考虑如下两对部分纠缠态来进行说明j i1a=j00i+j11i;j i2b=j00i+j11i:(5)其中;均为实数,且满足2+2=1;.纠缠交换可以表示成p4+4p++ j i1aj i2b=(ji12jiab+ji12jiab)2(6)++ +(ji12jiab+ji12jiab)-2-
˖ڍመڙጲhttp://www.paper.edu.cn其中2j00i2j11ipjiab=(7)4+4也就是说,系统初态粒子(1;a)是纠缠的,粒子(2;b)是纠缠的,当我们对粒子(1,2)做了Bell基44测量之后,系统就变成了粒子(a;b)之间的纠缠,并且将以+的概率坍缩为部分纠缠态ji,2ab22的概率坍缩为Bell态ji.ab为了描述星型网络的量子态制备过程,我们构建如图所示的星型网络模型.星型网络是用一个量子中心处理器作为中心节点,其用户节点直接与中心节点相连.用户节点之间没有链接.中心节点负责提供和分发纠缠量子态.可以根据网络需求增加用户,实现多方通信.我们假设中心节点与用户节点共享足够多的部分纠缠态j i.图1:星型网络模型.2实现星型网络下量子态的制备方案2.1任意单粒子态的单向制备首先考虑星型网络中单粒子态的单向制备.假设发送者Alice想帮助接收者Bob在远方制备单粒态ji=a0j0i+a1j1i:(8)其中系数a;a均为非零实数,且满足a2+a2=1.该系数Alice知道,但是Bob不知道.中心节点0101分别与Alice和Bob共享纠缠态j i1a=j00i+j11i(9)j i2b=j00i+j11i其中粒子1,2属于中央节点,粒子a属于Alice,粒子b属于Bob.整个系统状纠缠态为ji=j i1aj i2b(10)-3-
˖ڍመڙጲhttp://www.paper.edu.cn首先中央节点对自己的粒子(1,2)作Bell基测量,并将结果告诉Bob,Bob根据测量结果对粒子b做1相应的幺正变换如表1所示.粒子a;b将坍缩为4种形式之一,可见等式5.由于当==p时,244j+i=j+i=Iij i,所以在这里我们只考虑粒子a;b以+的概率坍缩后状态为j+iy2的情况.变换后系统纠缠态为2j00i+2j11i+pjiab==xj00i+yj11i(11)4+4其中22x=p;y=p:(12)4+44+4表1:测量结果以及对应幺正变换测量结果幺正变换j+iIj izj+ixj iiy由于Alice知道系数a0;a1,她可以用这些系数所构成的基对粒子a做测量,并将测量结果告诉给Bob.测量基如下j0ia=a0j0i+a1j1i;j1ia=a1j0i a0j1i:(13)对应测量结果为j0ib=a0xj0i+a1yj1i;j1ib=a1xj0i a0yj1i:(14)假设Alice测量结果为j0ia,Bob引入一个初始态为j0im的辅助粒子m,j0ibm=a0xj00i+a1yj10i;并对所拥有的粒子(b;m)进行U1变换0q1yy21 200BqxxCBy2yCB1 2 00CU1=BxxC:(15)BC@0010A0001在U1变换下,系统将演变为如下形式ry2j0ibm=y(a0j0i+a1j1i)j0im+a0x1 2j0ij1im(16)x44Bob对辅助粒子m进行j0i;j1i基测量,如果测量结果是j0i,那么粒子b将会以概率为+y2m2坍缩为a0j0i+a1j1i,即完成制备.如果测量结果是j1im,则该量子态制备失败,即协议失败.-4-
˖ڍመڙጲhttp://www.paper.edu.cn44假设测量结果为ji,根据同样的方法我们将以概率为+y2完成制备.若我们考虑粒1a2子a;b坍缩后状态为ji时,我们将以概率22完成制备.总结所以情况完成任意单粒子态制44备的概率为(+)2y22+2212=22.当==p1时,成功实现量子态制备的22概率为1.2.2任意单粒子态的双向制备假设Alice想要远程制备一个任意单粒子态ji1给Bob,同时Bob也要远程制备另一个单粒子态ji2给Alice,其形式分别如下:ji1=a0j0i+a1j1i;(17)ji2=b0j0i+b1j1i:其中系数a;a;b;b均为实数,且满足a2+a2=1,b2+b2=1.Alice只知道系数a;a,Bob只0101010101知道系数b0;b1.中心节点分别与Alice和Bob共享两对纠缠态j i1a=j00i+j11i;j i2b=j00i+j11i;(18)j i3m=j00i+j11i;j i4n=j00i+j11i:其中粒子1,2,3,4属于中央节点,粒子a;n属于Alice,粒子b;m属于Bob.整个系统状纠缠态为ji=j i1aj i2bj i3mj i4n(19)首先中心节点对自己的粒子(1,2),(3,4)作Bell基测量.并将结果通过经典信道告诉给通信双方,Alice(Bob)根据测量结果对粒子n(b)做相应的幺正变换,如表1所示.测量后粒子a;b;m;n将坍缩为16种形式之一.jiabjimn;jiabjimn;(20)jiabjimn;jiabjimn:假设双方作变换后系统纠缠态为++(21)ji=jiabjimn=(xj00i+yj11i)ab(xj00i+yj11i)mn首先由于Alice知道系数a0;a1,她可以用这些系数所构成的基对粒子a做测量.测量基如下j0ia=a0j0i+a1j1i;j1ia=a1j0i a0j1i:(22)Bob知道系数b0;b1,他可以用这些系数所构成的基对粒子m做测量.测量基如下j0im=b0j0i+b1j1i;j1im=b1j0i b0j1i:(23)双方完成测量后,将结果通过经典信道告诉给对方,对方再根据测量结果作适当的酉变换,见表2.-5-
˖ڍመڙጲhttp://www.paper.edu.cn表2:Bob和Alice测量结果以及Bob和Alice对应酉变换Bob,Alice测量结果Bob,Alice所做酉变换j0i;j0iIIj1i;j0iIiyj0i;j1iiyIj1i;j1iiyiy测量后系统将坍缩为以下4种情况之一:(a0xj0i+a1yj1i)b(b0xj0i+b1yj1i)n(a0xj0i+a1yj1i)b(b1xj0i b1yj1i)n(24)(a1xj0i+a0yj1i)b(b0xj0i+b1yj1i)n(a1xj0i a0yj1i)b(b1xj0i b0yj1i)n假设测量结果为j1iaj1im,Alice,Bob分别对粒子n;b作iy变换,再各引入一个初始态为j0i的辅助粒子n1;b1,此时系统状态为(a0yj00i+a1xj10i)bb1(b0yj00i+b1xj10i)nn1,并分别对所拥有的粒子(b;b1),(n;n1)进行U2变换011000BCB0100CBqCU2=Byy2C:(25)B001 2C@qxxAy2y001 2 xxqy2在U2变换下,系统将演变为如下形式[y(a0j0i+a1j1i)j0ib1+a1x1 x2j0ibj1ib1][y(b0j0i+qy2b1j1i)j0in1+b1x1 x2j0inj1in1].Alice和Bob对辅助粒子n1;b1进行j0i;j1i基测量,如果测量结果是j0in,j0ib1那么粒子b将会坍缩为a0j0i+a1j1i,粒子n将会坍缩为b0j0i+b1j1i,即完成量子态双向制备且概率442为4(+)4y2y2=48.如果测量结果为j0ij1i,j1ij0i,j1i,j1i,则双4n1b1n1b1n1b1向制备失败.若双方作变换后系统纠缠态为其他组合情形,运用同样的方法也可以以一定概率完成量子态双向制备,对应概率参见表3.表3:不同情形下完成制备概率变换后系统纠缠态成功概率j+ij+i48abmnj+ij+i426abmnj+ij+i426abmnj+ij+i444abmn-6-
˖ڍመڙጲhttp://www.paper.edu.cn总结所以情况完成任意单粒子态制备的概率为48+426+426+444=44:当=1=p时,实现任意单量子态制备的概率为1.23结论本文给出了一种在星型量子网络下,任意通信双方利用部分纠缠态实现未知单粒子态制备.制备双方Alice和Bob分别与中央处理器共享足够多部分纠缠态,中央处理器对自己的粒子做测量,通过纠缠变换使得通信双方共享纠缠态.对于单向制备的情况,Alice只需做一次单粒子测量并将结果告诉Bob,Bob引入辅助粒子完成相应的酉变换即可实现.对于双向制备的情况,双方都需做一次单粒子测量并将结果告诉对方,各自引入辅助粒子完成相应的酉变换即可实现.当且仅当共享的纠缠态为最大纠缠时,能够实现制备的概率为1.参考文献(References)[1]KangMS,HongCH,HeoJ,etal.Controlledmutualquantumentityauthenticationusingentanglementswapping[J].ChinPhysB,2015.24(9):090306[2]BennettCH,BrassardG,CrepeauC,etal.TelepotationanunknownstateviadualclassicalandEinstein-Podolsky-Rosenchannels[J].PhysicalReviewLetter,1993.70:1895-1899.[3]LoHK.Classical-communicationcostindistributedquantum-informationprocessessing:ageneralizationofquantum-communicationcomplexity[J].PhysRev,2000.A62:012313.[4]罗明星.量子远程制备的理论研究进展[J].四川师范大学学报(自然科学版),2015.38(2):300-312.LuoMX.TheoreticalQuantumRemotePreparations[J].JournalofSichuanNormalUni-versity(NaturalScience),2015.38(2):300-312.[5]NguyenBA,CaoTB,NungVD,etal.Remotestatepreparationwithunitsuccessprobability[J].AdvNatSci:Nanosci.Nanotechnol.2011.2(3):035009.[6]DaiHY,ChenPX,LianLM,etal.Classicalcommunicationcostandremotepreparationofthefour-particleGHZclassstate[J].PhysLettA,2006.355:285-288.[7]YuYF,FengJ,ZhanMS.Preparingremotelytwoinstancesofquantumstate[J].PhysLettA,2003.310:329-332.[8]HouK,LiYB,LiuGH,etal.Jointremotepreparationofanarbitrarytwo-qubitstateviaGHZ-typestates[J]J.Phys.A:Math.Theor,2011.44:255304-255315.[9]PengJY,LuoMX,MoZW.Jointremotestatepreparationofarbitrarytwo-particlestatesviaGHZ-typestates[J].QuantumInfProcess,2013.12:2325-2342.-7-
˖ڍመڙጲhttp://www.paper.edu.cn[10]ChenN,QuanDX,XuFF,etal.Deterministicjointremotestatepreparationofarbitrarysingle-andtwo-qubitstates[J].ChinPhysB,2015.24(10):100307.[11]XiaoXQ,LiuJM,ZengGH.Jointremotestatepreparationofarbitrarytwo-andthree-qubitstates[J].JPhysB:AtMolOptPhys,2011.44:075501.[12]WangZY,LiuYM,ZuoXQ,etal.ControlledRemoteStatePreparation[J].CommunTheorPhys,2009.52:235-240.[13]ZhangD,ZhaXW,DuanYJ,etal.Deterministiccontrolledbidirectionalremotestatepreparationviaasix-qubitentangledstate[J].QuantumInfProcess,2016.15(5):2169{2179.[14]ThiBichCao,BaAnNguyen.Deterministiccontrolledbidirectionalremotestateprepa-ration[J].AdvNatSci:NanosciNanotechnol.2014.5:015003.[15]ZhangD,ZhaXW,DuanYJ,etal.DeterministicControlledBidirectionalRemoteStatePreparationViaaSix-qubitMaximallyEntangledState[J].IntJTheorPhys2016.55:440-446.[16]PengJY,BaiMQ,MoZW.Bidirectionalcontrolledjointremotestatepreparation[J].QuantumInfProcess,2015.14:4263-4278.[17]ChenN,QuanDX,PeiCX,etal.Quantumcommunicationforsatellite-to-groundnetworkwithpartiallyentangledstates[J].ChinPhysB,2015.24:020304.[18]曾宾阳,周南润,刘小青.基于GHZ态的量子网络身份认证方案[J].量子光学学报,2009.15(2):160-163.ZengBY,ZhouNR,LiuXQ.QuantumNetworkIdentityAuthenticationSchemeBasedonGHZState[J].ActaSinicaQuantumOptica,2009.15(2):160-163.-8-'
您可能关注的文档
- 大鼠灌胃蒙药复方阿拉坦-5后诃子酚性成分的药代动力学研究.pdf
- 套利活动对香港离岸人民币存款市场的影响研究.pdf
- 安徽巢北地区栖霞组臭灰岩段黄铁矿研究--形态及分布特征.pdf
- 家蚕BmPDCD2基因功能研究.pdf
- 岩溶地表水生系统不同季节的水化学昼夜变化特征及碳汇效应的研究--以重庆丰都雪玉洞流域地下水补给的水池为例.pdf
- 广东省碳排放与经济增长脱钩关系实证分析.pdf
- 微囊藻毒素合成酶McyG的N端结构域的结构研究.pdf
- 快充和超长稳定的高度互联Cu-Si合金纳米管锂离子电池阳极材料.pdf
- 提高环境质量的财政基础.pdf
- 棉花XTH基因家族全基因组鉴定及进化分析.pdf
- 欠驱动弹跳机器人着地相运动规划.pdf
- 武汉市腹泻婴幼儿隐孢子虫感染的分子流行病学调查.pdf
- 氧化石墨烯诱导再生丝素蛋白成胶.pdf
- 水通道蛋白的研究进展.pdf
- 活化方式对多孔活性生物炭材料的结构及电容性能的影响.pdf
- 温度对镁合金微动磨损行为影响研究.pdf
- 湖南省“四化”协同发展实证研究.pdf
- 漂浮式烘箱风嘴风速的研究.pdf
相关文档
- 施工规范CECS140-2002给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程
- 施工规范CECS141-2002给水排水工程埋地钢管管道结构设计规程
- 施工规范CECS142-2002给水排水工程埋地铸铁管管道结构设计规程
- 施工规范CECS143-2002给水排水工程埋地预制混凝土圆形管管道结构设计规程
- 施工规范CECS145-2002给水排水工程埋地矩形管管道结构设计规程
- 施工规范CECS190-2005给水排水工程埋地玻璃纤维增强塑料夹砂管管道结构设计规程
- cecs 140:2002 给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程(含条文说明)
- cecs 141:2002 给水排水工程埋地钢管管道结构设计规程 条文说明
- cecs 140:2002 给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程 条文说明
- cecs 142:2002 给水排水工程埋地铸铁管管道结构设计规程 条文说明